A NOTE ON THE $\sum(S)$ -INJECTIVITY OF R(S)

BY

JOHN K. LUEDEMAN

1. Let R be a ring with 1. All modules considered are to be unital left R-modules unless otherwise noted.

DEFINITION. A σ -set for R is a nonempty set Σ of left ideals of R satisfying the following conditions:

 (σ_1) : If $I \in \Sigma$, J is a left ideal of I, and $J \supseteq I$, then $J \in \Sigma$.

 (σ_2) : If $I \in \Sigma$ and $r \in R$, then $Ir^{-1} = \{s \in R \mid sr \in I\} \in \Sigma$.

 (σ_3) : If I is a left ideal of $R, J \in \Sigma$, and $It^{-1} \in \Sigma$ for each $t \in J$, then $I \in \Sigma$.

Sanderson [4] defined an *R*-module *M* to be Σ -injective iff each $f \in \text{Hom}_R(I, M)$ can be extended to an $\overline{f} \in \text{Hom}_R(R, M)$ whenever $I \in \Sigma$.

A submodule N of a module M is Σ -essential in M (_RM is a Σ -essential extension of _RN) if for each $0 \neq x \in M$,

$$Nx^{-1} = \{r \in R \mid rx \in N\} \in \Sigma \text{ and } (Nx^{-1})x \neq 0.$$

In [3] it was shown that $_{R}M$ is Σ -injective iff given $_{R}A$ and a Σ -essential extension $_{R}B$ of $_{R}A$, each $f \in \text{Hom}_{R}(A, M)$ has an extension $\overline{f} \in \text{Hom}_{R}(B, M)$.

Let S be a semigroup. If S has a two-sided zero, denote it by z; otherwise adjoin a two-sided zero z to S. Let M be an R-module and define

 $M(S) = \{f: S \to M \mid f(z) = 0 \text{ and } f(s) = 0$

for all but a finite number of $s \in S$.

M(S) is an abelian group under pointwise addition. A scalar multiplication $R(S) \times M(S) \to M(S)$ is defined for $r \in R(S)$ and $m \in M(S)$ by $(rm)(s) = \sum_{th=s} r(t)m(h)$ if $s \neq z$, and (rm)(z)=0. If M=R, R(S) with the above defined multiplication and addition is a ring called the (contracted) semigroup ring of S. When M is an R-module, M(S) is an R(S)-module under the above defined operations. If S has an identity 1, M can be embedded in M(S) by mapping $m \mapsto m'$ where m'(s)=0 if $s \neq 1$, and m'(1)=m. Where $1 \in S$, we identify M with its image under the map $m \mapsto m'$. An element $m \in M(S)$ is often denoted by $m = \sum m(s)s$ ($s \neq z$). Scalar multiplication may then be written as $(\sum r(s)s)(\sum m(s)s) = \sum (\sum_{th=s} r(t)m(h))s$. Define

$$\Sigma(S) = \{T \mid T \text{ is a left ideal of } R(S) \text{ and } T \supseteq J(S) \text{ for some } J \in \Sigma\}.$$

It will be shown that $\Sigma(S)$ is a σ -set for R(S) if S is a monoid (semigroup with 1)

Received by the editors September 29, 1969.

or if S is finite and regular. If S is a monoid and R(S) is $\Sigma(S)$ -injective, then R is Σ -injective. If S is a finite group and R is Σ -injective, then R(S) is $\Sigma(S)$ -injective. This generalizes Theorem 4.1 of Connell [2]. Finally, if S is a finite inverse semigroup, and $Z_{\Sigma(S)}(R(S))=0$, then $Q_{\Sigma(S)}(R(S)) \approx Q_{\Sigma}(R)(S)$ (ring iso.).

In the course of proving several of our results, we require the following facts from [3]:

(1) Let R be a ring and Σ be a σ -set for R, then Σ is closed under finite intersections.

(2) Let R be a ring and Σ a nonempty collection of left ideals of R satisfying (σ_1) and (σ_2) , then Σ satisfies property (σ_3) if and only if Σ satisfies property (σ'_3) : (σ'_3) : If for some $J \in \Sigma$ there is associated to each $b \in J$ a $K_b \in \Sigma$, then $\sum K_b \ b \in \Sigma$.

2. LEMMA. Let S be a semigroup, R be a ring with 1, and Σ be a σ -set for R. If S is a monoid or a finite regular semigroup, then $\Sigma(S)$ is a σ -set for R(S).

Proof. (σ_1) is clearly satisfied.

 (σ_2) : Let $\sum r(s)s \in R(S)$ and $J(S) \in \Sigma(S)$ where $J \in \Sigma$. We must show that $J(S)(\sum r(s)s)^{-1} \in \Sigma(S)$. If

$$T = \bigcap \{ Jr(s)^{-1} \mid r(s) \neq 0 \},\$$

then $T \in \Sigma$ since R(S) consists of elements of finite support and Σ is closed under finite intersections. Thus $T(S) \in \Sigma(S)$ and $T(S)(\sum r(s)s) \subseteq J(S)$, so $J(S)(\sum r(s)s)^{-1} \in \Sigma(S)$.

 (σ_3) : Let K be a left ideal of R(S) and suppose $K\alpha^{-1} \in \Sigma(S)$ for all $\alpha \in J(S)$ where $J \in \Sigma$.

If S is a monoid, then $J \subseteq J(S)$; thus $Ka^{-1} \in \Sigma(S)$ for all $a \in J$. Hence, for each $a \in J$, there is $I_a \in \Sigma$ with $I_a(S)a \subseteq K$. By (σ'_3) , $\sum_{a \in J} I_a a \in \Sigma$ and $(\sum I_a a)(S) \subseteq K$. Thus $K \in \Sigma(S)$.

If S is regular, fix $s \in S$. For each $a \in J$, $as \in J(S)$ so there is $I_a \in \Sigma$ with

$$I_a(S)as = I_aa(S)s \subseteq K.$$

Hence

482

$$\sum_{a \in J} I_a a \in \Sigma$$
 and $(\sum I_a a)(S) s \subseteq K$.

Since $\sum I_a a$ depends on s, let $\sum I_a a = K_s \in \Sigma$. Since we can find, for each $s \in S$, a $K_s \in \Sigma$ with $K_s(S) s \subseteq K$,

$$\sum_{s\in S} K_s(S) s \subseteq K_s$$

Since S is finite,

$$T = \bigcap_{s \in S} K_s \in \Sigma$$

Since S is regular, for each $s \in S$, there is an $a \in S$ for which sas = s, then

$$Ts \subseteq K_s s = K_s(sa)s \subseteq K_s(S)s \subseteq K$$

so

$$T(S) = \sum_{s \in S} Ts \subseteq K$$
 and $K \in \Sigma(S)$.

3. THEOREM. Let S be a monoid, R be a ring with 1, Σ be a σ -set for R, and M be an R-module. Then M is Σ -injective if M(S) is $\Sigma(S)$ -injective.

Proof. Let $J \in \Sigma$ and $f \in \text{Hom}_{\mathbb{R}}(J, M)$, then $\tilde{f}: J(S) \to M(S)$ defined by

$$\tilde{f}(\sum r(s)s) = \sum f(r(s))s$$

is an R(S)-homomorphism. Since M(S) is $\Sigma(S)$ -injective, there is a $t = \sum t(s)s \in M(S)$ with $\tilde{f}(\sum r(s)s) = (\sum r(s)s)(\sum t(s)s)$ for all $\sum r(s)s \in J(S)$. Thus for $r \in J$,

$$f(r)\cdot 1 = \tilde{f}(r\cdot 1) = (r\cdot 1)(\sum t(s)s) = \sum rt(s)s \in M \cdot 1,$$

and rt(s)=0 for $s \neq 1$. Since $t(1) \in M$ and f(r)=rt(1) for $r \in J$, M is Σ -injective.

4. PROPOSITION. Let M be a Σ -injective R-module and G be a finite group. Then M(G) is a $\Sigma(G)$ -injective R(G)-module.

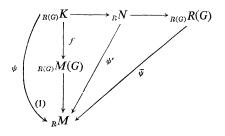
Proof. Let K be a $\Sigma(G)$ -essential left ideal of R(G) and $f \in \text{Hom}_{R(G)}(K, M(G))$. Define $\psi: K \to M$ by $\psi(k) = f(k)(1)$, then $\psi \in \text{Hom}_R(K, M)$. By Zorn's lemma, there is an R-module N, $K \subseteq N \subseteq R(G)$, and a $\psi' \in \text{Hom}_R(N, M)$ extending ψ and maximal with respect to the extension of ψ . N is a Σ -essential submodule of R(G) for if $0 \neq \sum r(g)g \in R(G)$, Then

$$N(\sum r(g)g)^{-1} \cap R \supseteq K(\sum r(g)g)^{-1} \cap R \supseteq J(G) \cap R \supseteq J$$

for some $J \in \Sigma$ since K is a $\Sigma(G)$ -essential left ideal of R(G). Moreover,

$$(N(\sum r(g)g)^{-1} \cap R)(\sum r(g)g) \neq 0$$

by the maximality of N. Hence we have the commutative diagram.



where the *R*-homomorphism $\overline{\psi}: R(G) \to M$ exists since *M* is Σ -injective and *N* is a Σ -essential submodule of R(G). Define $\eta: R(G) \to M(G)$ by $\eta(r)(g) = \overline{\psi}(g^{-1}r)$ for all $r \in R(G), g \in G$. Then η is an R(G)-homomorphism and for $k \in K$,

$$\eta(k)(g) = \psi(g^{-1}k) = f(g^{-1}k)(1) = (g^{-1}f(k))(1) = f(k)(g)$$

for all $g \in G$. Thus $\eta(k) = f(k)$ for all $k \in K$ and so M(G) is $\Sigma(G)$ -injective.

REMARKS. The proof of this proposition depends on the fact that when G is a finite group, each $f \in \text{Hom}_{R}(R(G), M)$ yields an $\overline{f} \in \text{Hom}_{R(G)}(R(G), M(G))$ by

defining $\overline{f}(r)(g) = f(g^{-1}r)$. If G is infinite, then $f \in \text{Hom}_R(R(G), R)$ defined by f(g) = 1 yields $\overline{f}(1)(g) = f(g^{-1}) = 1 \neq 0$ for all $g \in G$, and so $\overline{f} \notin \text{Hom}_{R(G)}(R(G), M(G))$. If G is not a group, then $\overline{f}(r)(g)$ is not necessarily defined for each $g \in G$. Hence, this proof depends strongly on the fact that G is a finite group.

THEOREM. Let R be a ring with 1, Σ be a σ -set for R, and G be a finite group. Then R(G) is $\Sigma(G)$ -injective iff R is Σ -injective.

Proof. Let R = M in Proposition 4 and Theorem 3.

5. The proof of Proposition 4 would have been shortened if the following were true:

If T is a $\Sigma(S)$ -essential left ideal of R(S), then _RT is a Σ -essential submodule of _RR(S) where S is a monoid.

Unfortunately, this is not true as shown by the following example.

EXAMPLE. Let R be a field of characteristic $p \neq 0$, G a finite p-group,

$$\Sigma = \{0, R\}$$
 and $T = \{\sum r(g)g \mid \sum r(g) = 0\},\$

the augmented ideal of R. Then $\Sigma(G)$ is the lattice of all left ideals of R(G), and T is $\Sigma(G)$ -essential in R(G). (For any $\sum r(g)g \in R(G)$, $0 \neq T(\sum r(g)g) \subseteq T$ and $T \in \Sigma(G)$.) However let $1 \in G$, then

$$T1^{-1} = \{r \in R \mid r \cdot 1 \in T\} = (0) \text{ and } (T1^{-1})1 = 0.$$

Therefore, $_{R}T$ is not a Σ -essential submodule of $_{R}R(G)$.

The above example also shows that if T is a $\Sigma(S)$ -essential left ideal of R(S), $T \cap R$ need not be a Σ -essential left ideal of R.

PROPOSITION. Let S be a monoid, R a ring with 1, and Σ be a σ -set for R. For each R-module M, N is a Σ -essential submodule of M if and only if N(S) is a $\Sigma(S)$ -essential R(S)-submodule of M(S). Moreover, in this case N(S) is a Σ -essential R-submodule of M(S).

Proof. (\Rightarrow) Let $_{R}N \subseteq _{R}M$ and $0 \neq m \in M$. If $_{R(S)}N(S)$ is $\Sigma(S)$ -essential in $_{R(S)}M(S)$, then $N(S)(m \cdot 1)^{-1} \in \Sigma(S)$ and for some $T \in \Sigma$, $T(S)(m \cdot 1) \subseteq N(S)$. Thus $Tm \subseteq N$ and $Nm^{-1} \in \Sigma$. Moreover, there is $\Sigma t(s)s \in N(S)(m \cdot 1)^{-1}$ with

$$0 \neq (\sum t(s)s)(m \cdot 1) = \sum (t(s)m)s \in N(S).$$

Since M(S) is a free *R*-module, there is an $s \in S$ for which $0 \neq t(s)m \in N$. Hence $(Nm^{-1})m \neq 0$ and $_{R}N$ is Σ -essential in $_{R}M$.

(\Leftarrow) Let _RN be Σ -essential in _RM and $0 \neq \sum m(s)s \in M(S)$. Then if

$$T = \bigcap \{ Nm(s)^{-1} \mid m(s) \neq 0 \},\$$

 $T \in \Sigma$ since $\sum m(s)s$ has finite support. Thus

 $T(S)(\sum m(s)s) \subseteq N(S)$ and $N(S)(\sum m(s)s)^{-1} \in \Sigma(S)$.

Let $\{s_1, \ldots, s_n\}$ be the support of $\sum m(s)s$. There is $y_1 \in Nm(s_1)^{-1}$ such that $y_1m(s_1) \neq 0$, since $_RN$ is Σ -essential in $_RM$. If $y_1m(s_2)=0$, let $y_2=1$; otherwise choose $y_2 \in N(y_1m(s_2))^{-1}$ such that $y_2y_1m(s_2) \neq 0$. Continuing in this way we obtain $y_1, \ldots, y_n \in R$ with

$$0 \neq (y_n \ldots y_1) (\sum m(s)s) \in N(S).$$

Since $R \subseteq R(S)$, $_{R(S)}N(S)$ is $\Sigma(S)$ -essential in $_{R(S)}M(S)$. Moreover, since $y_n \dots y_1 \in R$, $_{R}N(S)$ is Σ -essential in $_{R}M(S)$.

Given a ring R and a σ -set Σ for R, in [3] we defined the Σ -singular ideal of R as

 $Z_{\Sigma}(R) = \{r \in R \mid Sr = 0 \text{ for some } \Sigma \text{-essential left ideal } S \text{ of } R\}.$

A Johnson maximal left Σ -quotient ring of $R, J_{\Sigma}(R)$, was constructed as

 $J_{\Sigma}(R) = \lim \{ \operatorname{Hom}_{R}(J, R) \mid J \text{ is a } \Sigma \text{-essential left ideal of } R \}.$

When $Z_{\Sigma}(R) = 0$, $J_{\Sigma}(R)$ was shown to be the Σ -injective hull of _RR, and to be unique up to isomorphism over R.

LEMMA. Let R be a ring with 1, Σ be a σ -set for R, and S be a monoid. Then $Z_{\Sigma}(R) = 0$ if $Z_{\Sigma(S)}(R(S)) = 0$.

Proof. Suppose $r \in Z_{\Sigma}(R)$, and let J be a Σ -essential left ideal of R with Jr=0. Fix $s(\neq z) \in S$. Then $J(S)(r \cdot s) = 0$ and J(S) is a $\Sigma(S)$ -essential left ideal of R(S). Hence

$$r \cdot s \in Z_{\Sigma(S)}(R(S)) = 0$$

so that $r \cdot s = 0$. Thus r = 0 and $Z_{\Sigma}(R) = 0$.

THEOREM. Let R be a ring with 1, Σ be a σ -set for R, and G be a finite group. If $Z_{\Sigma(G)}(R(G))=0$, then

$$J_{\Sigma(G)}(R(G)) \approx (J_{\Sigma}(R))(G)$$
 (ring iso.).

Proof. Since $Z_{\Sigma(G)}(R(G)) = 0$, $Z_{\Sigma}(R) = 0$ and so $J_{\Sigma}(R)$ is Σ -injective. By Proposition 4, $(J_{\Sigma}(R))(G)$ is $\Sigma(G)$ -injective, and by Proposition 5, $(J_{\Sigma}(R))(G)$ is a $\Sigma(G)$ -essential extension of R(G) since R is Σ -essential in $J_{\Sigma}(R)$. Thus $(J_{\Sigma}(R))(G)$ is the $\Sigma(G)$ -injective hull of R(G) and so is ring isomorphic to $J_{\Sigma(G)}(R(G))$.

6. Let R be a ring with 1 and Σ be a σ -set for R. For any subset T of R and positive integer n, let T_n denote the set of $n \times n$ matrices with entries from T. As usual, R_n denotes the $n \times n$ matrix ring with entries from R. In [3], we defined Σ_n as

$$\Sigma_n = \{K \mid K \text{ is a left ideal of } R_n \text{ and } K \supseteq J_n \text{ for some } J \in \Sigma\}$$

and showed that Σ_n is a σ -set for R_n . A maximal Utumi left Σ -quotient ring of R, $Q_{\Sigma}(R)$, was constructed and $(Q_{\Sigma}(R))_n$ was shown to be ring isomorphic with $Q_{\Sigma_n}(R_n)$. It was also proved that $J_{\Sigma}(R) \approx Q_{\Sigma}(R)$ (ring iso.) whenever $Z_{\Sigma}(R) = 0$.

[December

Let S be a finite Brandt semigroup. Then $S = M^{0}(G; m; m; \Delta)$, an $m \times m$ Rees matrix semigroup over a group with zero G^{0} and with the $m \times m$ identity matrix Δ as sandwich matrix [1, Theorem 3.9, p. 102]. Then $R(S) \approx (R(G))_{m}$, the ring of $m \times m$ matrices over the ring R(G). Recall that $\Sigma(G)$ is a σ -set for $R(G), \Sigma(G)_{m}$ is a σ -set for $(R(G))_{m}$, and $\Sigma(S)$ is a σ -set for R(S) (since S is regular).

LEMMA. $\Sigma(G)_n = \Sigma(S)$.

Proof.

$$K \in \Sigma(G)_n \Leftrightarrow K \supseteq T_n \text{ for some } T \in \Sigma(G)$$

$$\Leftrightarrow K \supseteq (J(G))_n \text{ for some } J \in \Sigma$$

$$\Leftrightarrow K \supseteq J(S) \text{ for some } J \in \Sigma \text{ since } J(S) = (J(G))_n$$

$$\Leftrightarrow K \in \Sigma(S).$$

THEOREM. Let S be a finite Brandt semigroup, R a ring with 1, and Σ be a σ -set for R. If $Z_{\Sigma(S)}(R(S))=0$, then $Q_{\Sigma(S)}(R(S))\approx (Q_{\Sigma}(R))(S)$.

Proof. First we show that $Z_{\Sigma(G)}(R(G)) = 0$. To this end let $r \in R(G)$ and Lr = 0 for some $\Sigma(G)$ -essential left ideal L of R(G). Then L_n is a $\Sigma(G)_n$ -essential left ideal of

$$(R(G))_n = R(S)$$
 and $L_n\left(\sum_{i,j=1}^n re_{ij}\right) = 0.$

Since $\Sigma(G)_n = \Sigma(S)$,

$$\sum re_{ij} \in Z_{\Sigma(S)}(R(S)) = 0$$

so that

$$r = 0$$
 and $Z_{\Sigma(G)}(R(G)) = 0$.

To finish the proof of the theorem, we note that

$$\begin{array}{l} (Q_{\Sigma}(R))(S) \approx (Q_{\Sigma}(R)(G))_n \\ \approx (Q_{\Sigma^{(G)}}(R(G)))_n \text{ by the first part of the proof} \\ \approx Q_{\Sigma^{(G)}n}((R(G))_n) \\ \approx Q_{\Sigma^{(S)}}(R(S)) \text{ by the lemma.} \end{array}$$

Now let S be a finite inverse semigroup (i.e. a regular semigroup in which idempotents commute). The semigroup ring R(S) has an identity e [6, Theorem 2]. Let $S = S_0 \supset S_1 \supset \cdots \supset S_{n+1}$ be a principal series for S with $S_{n+1} = \{0\}$ if S has a zero and S_{n+1} empty otherwise. Then S_i/S_{i+1} is a Brandt semigroup for each $i=0, 1, \ldots, n$ [1, Exercise 3, p. 103]. If n=0, then $S \approx S_0/S_1$ is a Brandt semigroup and $(Q_{\Sigma}(R))(S) \approx Q_{\Sigma(S)}(R(S))$ by the previous theorem.

Proceeding by induction, suppose that $(Q_{\Sigma}(R))(T) \approx Q_{\Sigma(T)}(R(T))$ for all finite inverse semigroups having a principal series of length less than *n* and which satisfy

486

 $Z_{\Sigma(T)}(R(T)) = 0$. Now S_n is a Brandt semigroup so $R(S_n)(\subseteq R(S))$ has an identity, say f. If $x \in R(S)$, then both $xf, fx \in R(S_n)$ so

$$xf = f(xf) = (fx)f = fx$$

so that f is central in R(S). Thus

 $R(S) = R(S)(e-f) \oplus R(S)f,$

a ring direct sum. Now $R(S) f \approx R(S_n)$ by the maps

$$\sum r(s_n)s_n \mapsto (\sum r(s_n)s_n)f$$
 and $\sum r(s)sf \mapsto \sum r(s)sf$

for $\sum r(s_n)s_n \in R(S_n)$ and $\sum r(s)s \in R(S)$. Also $R(S/S_n) \approx R(S)(e-f)$ by the maps

$$\sum r(s)s \mapsto (\sum r(s)s)(e-f)$$
 and $(\sum r(s)s)(e-f) \mapsto \sum_{s \in S/S_n} r(s)s$

for $\sum r(s)s \in R(S)$.

Recall that a σ -set Σ for a ring R is the neighborhood system of zero for a ring topology on R. Therefore we may consider bases for Σ .

LEMMA 1. $\{T(S)f \mid T \in \Sigma\}$ is a base for $\Sigma(S_n)$.

Proof. Let $T(S)f \subseteq R(S)f$ where $T \in \Sigma$. If

$$t = \sum t(s_n)s_n \in T(S_n),$$

$$t \in R(S_n) \approx R(S)f.$$

Since f is the identity of $R(S_n)$, tf = t so

$$T(S_n) = T(S_n)f \subseteq T(S)f.$$

Now choose $T \in \Sigma$ so that $T(S_n) \in \Sigma(S_n)$ and let $t = \sum t(s)s \in T(S)$. Then

$$f = \sum f(s_n)s_n \in R(S_n)$$
 and $tf = \sum (t(s)f(s_n))ss_n$.

For each $s_n \in S_n$ with $f(s_n) \neq 0$, let $T_n = Tf(s_n)^{-1} \in \Sigma$. Then $L = \bigcap T_n \in \Sigma$ since f has finite support and $L(S)f \subseteq T(S_n)$.

LEMMA 2. $\{T(S)(e-f) \mid T \in \Sigma\}$ is a base for $\Sigma(S/S_n)$.

Proof. For $K \in \Sigma$, $K(S/S_n) \approx K(S)(e-f)$ using the isomorphism

$$R(S/S_n) \approx R(S)(e-f).$$

REMARK. In Lemma 2, we have actually shown that the image of $\{T(S)(e-f) \mid T \in \Sigma\}$ under the isomorphism $R(S)(e-f) \approx R(S/S_n)$ is a base for $\Sigma(S/S_n)$. We identify R(S)(e-f) with $R(S/S_n)$.

LEMMA 3. $\Sigma(S) = \Sigma(S_n) \oplus \Sigma(S/S_n)$.

Proof. Let $K, J \in \Sigma$. Then

$$K(S)f \oplus J(S)(e-f) \in \Sigma(S_n) \oplus \Sigma(S/S_n).$$

1970]

Letting $T = K \cap J$, we see that

$$T(S) \subseteq T(S)f \oplus T(S)(e-f) \subseteq K(S)f \oplus J(S)(e-f).$$

Thus $\Sigma(S_n) \oplus \Sigma(S/S_n) \subseteq \Sigma(S)$.

Now let $T \in \Sigma$. Then

$$K(S) \subseteq T(S)f^{-1}$$
 and $J(S) \subseteq T(S)(e-f)^{-1}$,

where $K, J \in \Sigma$. Hence

$$K(S)f \oplus J(S)(e-f) \subseteq T(S)$$

so $\Sigma(S) \subseteq \Sigma(S_n) \oplus \Sigma(S/S_n)$ and the lemma follows.

LEMMA 4. $Z_{\Sigma(S)}(R(S)) = 0 \Rightarrow Z_{\Sigma(S_n)}(R/S_n) = 0$ and $Z_{\Sigma(S/S_n)}(R(S/S_n)) = 0$.

Proof. We prove the result for $Z_{\Sigma(S_n)}(R(S_n))$; the result for S/S_n follows similarly. Recall that $R(S_n) \approx R(S)f$ and $\Sigma(S_n)$ has $\{T(S)f \mid T \in \Sigma\}$ as a base. Let $r = rf \in R(S_n)$ be such that Lrf=0 where L is a $\Sigma(S_n)$ -essential left ideal of $R(S_n)$. Then $L \oplus R(S)(e-f)$ is a $\Sigma(S)(=\Sigma(S_n) \oplus (S/S_n))$ -essential left ideal of R(S), and $(L \oplus R(S)(e-f))(rf) = 0$. Hence $rf \in Z_{\Sigma(S)}(R(S)) = 0$ so that rf = r = 0 and $Z_{\Sigma(S_n)}(R(S_n)) = 0$.

We may now complete the proof of the following:

THEOREM. Let S be a finite inverse semigroup, R be a ring with 1, and Σ be a σ -set for R. Then if $Z_{\Sigma(S)}(R(S))=0$, $Q_{\Sigma(S)}(R(S))\approx (Q_{\Sigma}(R))(S)$ (over R(S)).

Proof. Recall that $S = S_0 \supset S_1 \supset \cdots \supset S_n \supset S_{n+1}$ is a principal series for S where n > 0. Then S/S_n is a finite inverse semigroup having a principal series of length n-1, and S_n is a Brandt semigroup. By Lemma 4,

$$Z_{\Sigma(S_n)}(R(S_n)) = Z_{\Sigma(S/S_n)}(R(S/S_n)) = 0$$

so that

$$Q_{\Sigma}(R)(S_n) \approx Q_{\Sigma(S_n)}(R(S_n))$$
 and $(Q_{\Sigma}(R))(S/S_n) \approx Q_{\Sigma(S/S_n)}(R(S/S_n))$

by the induction hypothesis. Then

$$Q_{\Sigma(S)}(R(S)) \approx Q_{\Sigma(S_n)}(R(S_n)) \oplus Q_{\Sigma(S/S_n)}(R(S/S_n)) \quad \text{(by [3, Theorem 5.3])}$$

$$\approx (Q_{\Sigma}(R))(S_n) \oplus (Q_{\Sigma}(R))(S/S_n)$$

$$\approx (Q_{\Sigma}(R))(S)f \oplus (Q_{\Sigma}(R))(S)(e-f)$$

$$= (Q_{\Sigma}(R))(S)$$

since f and (e-f) are central idempotents of R(S). A simple calculation shows that the composition of these isomorphisms is the identity when restricted to R(S); hence the result follows.

REMARK. If $_{R_n}R_n$ is Σ_n -injective iff $_RR$ is Σ -injective, then the above method of proof would show that R(S) is $\Sigma(S)$ -injective iff R is Σ -injective whenever S is a

[December

488

finite inverse semigroup. I suspect that both results are true; however, I have no proof. (The proof of Utumi [5, Theorem 8.3] does not seem to generalize to this situation.)

REFERENCES

1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vol. 1, Math. Surveys no. 7, Amer. Math. Soc., Providence, R. I., 1961.

2. I. G. Connell, On the group ring, Canad. J. Math. 15 (1963), 650-685.

3. John K. Luedeman, A generalization of the concept of a ring of quotients, Canad. Math. Bull. (to appear).

4. D. F. Sanderson, A generalization of divisibility and injectivity in modules, Canad. Math Bull. 8 (1965), 505-513.

5. Y. Utumi, On continuous rings and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158–173.

6. R. Wenger, Self-injective semigroup rings for finite inverse semigroups, Proc. Amer. Math. Soc. 20 (1969), 213-216.

CLEMSON UNIVERSITY,

CLEMSON, SOUTH CAROLINA