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1. Introduction. The convex hull of an arbitrary set M in real Euclidean 
w-space is known to consist of all the points within the r-simplexes with r + 1 
vertices from M,r < n. This note shows that if M is specialized to be a curve 
An of real order n, then its convex hull consists of all the points within the 
r-simplexes with r + 1 vertices on An, n = 2r + 1 or n = 2r. In the first 
case each interior point is within exactly one simplex. This result was given by 
Egervâry (1) for n — 3. If n is even each interior point of the convex hull 
of An is within a 1-parameter system of ^w-simplexes. The class of curves An 

includes the twisted w-ics, the convex hulls of which have been studied by 
Karlin and Shapley (2). Some of their results are consequences of the present 
results. 

2. Some definitions. A curve An is defined to be a 1-1 continuous mapping 
in real Euclidean w-space of all the real numbers 5 computed modulo 1 or of 
the interval, 0 < s < 1, which satisfies the order condition that no hyperplane 
contains more than n points of An. 

The order condition implies that any linear &-space, 0 < k < n, cannot 
contain more than k -f- 1 points of An. If a hyperplane H supports An at an 
inner point sf then s' is defined to have multiplicity two within H. By displacing 
the hyperplanes it is possible to show that the sharpened order condition1 

holds that no hyperplane contains more than n points of An if each point is 
counted with its proper multiplicity of one or two. 

The symbol [A,B, . . .] denotes the intersection of all the linear spaces 
which include the point sets A, B, . . . , while {A, B, . . .} denotes the convex 
hull of the union of the point sets A, B, . . . . Two sets A and B are said to be 
separated by a hyperplane H provided A is in one of the closed half spaces 
bounded by H and B in the other. 

3. The boundary of An. The following lemma is stated without proof. 

LEMMA 1. If a hyperplane H supports a compact set X, then {H C\X} = 

# n {x}. 
THEOREM 1. The boundary of {An} consists of all the points within all the 

q-simplexes for which the vertices are q + 1 points of An including e endpoints, 
2q < n - 2 + e, (e = 0, 1, 2). 
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Proof. If P be a boundary point of {An), a hyperplane H exists which 
supports An and contains P. Let So, Si, . . . , sQ be the distinct curve points in 
H C\ {An). Because of the order condition, {s0, su • • . , sq} is a g-simplex. 
By Lemma 1, 

P e HC\ {An) = {HC\An) = {5o, 5 i , . . . , 5,}. 

As i J supports ^4n an interior point st oi An must be included in H twice. 
Consequently if e denotes the number of endpoints of An in H, it follows 
from the order condition that 

e + 2(g + 1 - e) < n or 2q < n - 2 + e. 

Thus each boundary point of {An) is within a g-simplex, with the required 
properties. 

Conversely let P be a point of a g-simplex {s0, Si, . . . , stf} for which 2g < n — 
2 + e. Then a hyperplane exists which contains P and supports ^4„. To 
construct such a hyperplane, for each point st interior to An, let N{ be an arc 
s'i < s < Si and if ^4n is not closed let N', N" be neighbourhoods of the end-
points 0, 1 respectively. Let H be a hyperplane which contains n points of An 

including all su s' t and so that the remaining n — 2(g + 1) + e curve points 
within H are distributed among the arcs Nu Nr, N" in such a way that no 
arc Ni contains an odd number of these points. This distribution is always 
possible because if An is closed n is even and e = 0. If Ni —» su N' —» 0, 
iV" —> 1 then any limiting position of H contains P and supports An. As 
-PC {so, Si, • • • , sg) C {̂ 4W}, P is a boundary point of {An}. The proof is 
now complete. 

4. The structure of {An). If 2r = n or 2r + 1 = n, Sr is defined to be 
an r-simplex with interior points of An as vertices except for even n when at 
most one of the vertices may be an endpoint of An. 

THEOREM 2. The interior points P of {An) consist of all the interior points 
of the simplexes ST. 

For odd n, Sr is uniquely determined by any one of its interior points P; for 
even n, ST is uniquely determined by an interior point P and any one vertex which 
can be either endpoint of An or any arbitrary point of An if it is closed. 

Proof. We show first that every interior point ? of a simplex Sr is an in
terior point of {^4^}. As Sr Q {An) it will be sufficient to show P is not a 
boundary point of {An). Let e be the number of vertices of ST which are 
endpoints of An. If P were a boundary point of {An) it would be within a 
hyperplane H which would support {An}. H would also support Sr and con
sequently, as P is an inner point of Sr, Sr £ H. Therefore H would contain 
2(r + 1 — e) + e points of An. This would contradict the order condition 
as, by the definition of ST, e = 0 if n = 2r + 1 and e < 1 if n = 2r. Hence 
the inner points of the simplexes Sr are all inner points of {An}. 
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We next show that a given interior point P of {An} is an interior point of a 
simplex Sr. Let a be any real number if An is closed and 0 if An is open. Denote 
by A (a, s') the arc of points s, a < s < s'. Let sP be the least upper bound 
of all s' for which P i {A(a,sf)\. 

We prove that P £ {A (a, sP)}. If this were false, P and {A (a, sP)} would 
be separated by a hyperplane at a positive distance from {A (a, sP)}. This 
hyperplane would also separate A (a, s') and P for s' > sP provided s' were 
sufficiently close to sP. Consequently P $ {A (a, s')} contrary to the choice 
of sP. 

P is on a supporting hyperplane of {A(a, sP)}. To prove this let sM be an 
increasing sequence which converges to sP. Because P $ {A (a, 5M)} a hyper
plane Hp exists which supports {A (a, sM)} and contains P. s^ can be chosen 
so that Hp converges. If H be its limit then P £ H and if supports {̂4 (a, sM)}. 
But, as Sy, is arbitrary, if supports {A (a, sP)}. From this result, together with 
the fact that P £ {A (a,sP)}, it follows that P is a boundary point of {A (a,sP)}. 

Consequently, by Theorem 1, a simplex Sq exists which contains P , has 
vertices on A (a, sP) and for which 2q < w — 2 + e, where e is the number of 
vertices of Sq which are endpoints of A (a, sP). The vertices of Sq are also on 
An. Let e' be the number of these vertices which are endpoints of An. As P 
is not a boundary point of {An}, 2q > n — 2 + e'. Therefore e' < e and so 
0 < e. If ^4n is open, er = e — 1 as 0 is a common endpoint of An and 4̂ (a, sP). 
The two inequalities yield the result 2q = n — 2 -\- e. Hence, if n = 2r, 
then e = 2 and q = r and, if w = 2r + 1, e = 1 and g = r. If 4 n is closed w 
is even and e' = 0. In this case the inequalities show e = 2 and r — q. 
P cannot be a point of a face of 5 r for such points, by Theorem 1, are bound
ary points of {AT). Therefore P is an interior point of the r-simplex Sr which 
satisfies the requirements of the theorem as e' = 0 for odd n and er < 1 for 
even n. This completes the proof of the first part of the theorem. 

For even n, e = 2 and consequently a is a vertex of Sr. If An is closed a is 
arbitrary and so in this case, for a given P , an Sr exists with an arbitrary 
vertex. If An is open a — 0. After a reversal of orientation of the points on the 
curve, the other endpoint of An can be represented by the number 0. Therefore 
Sr can be chosen so that either endpoint of An is a vertex provided n is even. 

Suppose now P is a point within two distinct simplexes with vertices 
So, Su ... , sr; s'o, s'u • • • » ^'r and that P is not in a face of {s0, Si, . . . , sr}-
Let k, 0 < k < r, be the number of vertices common to both simplexes. 
It follows, with the use of the Steinitz replacement theorem, that the space 

[So, Su • • • j Sr? S 0> S 1> • • • > S r\ 

has dimension at most 2r — k. It contains 2(r + 1) — k points of An. This 
leads to a contradiction of the order condition unless 2r — k = n in which 
case k = 0 and n = 2r. This proves, for odd n, that P is within only one 
simplex ST and, for even n, that P is never in more than one simplex Sr with a 
given vertex. The proof is now complete. 
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COROLLARY. Every point P in the interior of \A2T) is an interior point of 
each of two suitably chosen simplexes Sr, S'T which have no common vertex. 

Proof. If A2r is open each interior point P of {A2r} is, by the Theorem, 
interior to a simplex Sr (S'T) with the endpoint 5 = 0, (s = 1) as a vertex. 
If Srj Sf

r were to have a common vertex then, by the Theorem, they would be 
identical and both endpoints of A2r would be vertices in contradiction to the 
definition of the simplexes. If A2r is closed the result is clear. 

LEMMA 2. If the vertices of two r-simplexes ST, Sr
 T which have no common vertex 

are all on A2r and if an arc of A2r exists which contains two vertices of Sr and no 
vertex of S'r, then Sr, S'r have no point in common. 

Proof. Let s0, su . . . , sT1 s0 < si < . . . < sr < s0 + 1 ( = sr+i) be the 
vertices of Sr. By the hypothesis an arc sk < 5 < sk+i exists which contains 
no vertex of Sf

r, 0 < k < r, if A2r is open and 0 < k < r, if A2r is closed. 
In the latter case the coordinates may be adjusted so that 0 < k < r. As 
Sr, S'r have no common vertex, distinct curve points t\y tu . . . y t'Tl tT of A 2 r 

exist so that 

t i <C So < t\ < 12 ̂  s2 <! t2 < . . . < / k+i <C sk < sk+\ ^ tk+\ < . . . 
< t'r <Sr<tT<t\+l 

and so that none of the arcs t\ < 5 < tu 1 < i < r, contains a vertex of S'r. 
Let H be the hyperplane [t\, h, . . . , t'r, tr]. As H intersects A2r only in the 2r 
points t'u tu 1 < i < r, all the points of the arcs £ ' * < $ < / * , 1 < i < r, 
are either on H or on the same side of H while all the points of A2r not within 
the above arcs are on the opposite side of H. Thus H separates the vertices 
of Sr from those of S'r. Furthermore all the vertices of Sf

 r are at a positive 
distance from H. Hence ST and Sf

T have no points in common. The Lemma is 
now proved. 

Convex hulls are defined for affine space. The following result shows that the 
convex hull {A2r} can be defined in terms of projective concepts. 

THEOREM 3. If s0, su . . . , sr; s'o, s\, . . . , s'T are curve points of A2r for 
which 

0 < So < s'o < si < . . . < sT < s'r < 1, 

for open A2r and 

So < S'o < Si < . . . < ST < S'r < S0+ 1 ( = Sr+i) 

for closed A2r then the interior of {A2r\ consists of all the intersections 

[So, Si, . . . , Sr] O [S o, S'ly . . . , Sf
r]. 

Proof. Let P be a given point in the interior of {^42r}• By the Corollary 
to Theorem 2, simplexes Sr, S'r exist, without a common vertex, both of which 
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contain P as an interior point. Let So, Si, . . . , sr, 0 < So < Si < . . . < sr < 
so + 1 be the vertices of Sr. As 5 r , S'r have the common interior point P 
it follows from Lemma 2 that each arc st < 5 < si+u 0 < i < r, contains 
exactly one vertex of S'T. Therefore if s'o, s'u . . . , s'r be the vertices of S'r 

the subscripts may be adjusted so that, for closed A2r, 

So < S'o < Si < . . . < s'r-l < ST < S'r < So + 1 

and, for open A2r, either 

0 < So < S'o < Si < . . . < Sr < S'r < 1 

or 
0 < S'o < So < . . . < S'r < Sr < 1. 

As P is a common point of the simplexes 

P G [So, Su . . . , Sr] r\ [s'o, S'u . . . , S'r]. 

Now let Q be any point of [s0, Si, . . . , sr] r\ [s'o, s'u . . . , 5%] where 

Soj Si, . . . , Sr, S o, S i, . . . , S r 

are points of A2r which satisfy the inequality system. The r-spaces [sQ, Si, 
. . . , sr], [s'o, s'i, . . . , s'r] must have at least one point in common as 2r = n. 
They cannot have more than one point in common for then 

[So, Su . . . , Sr, S o, • • • , S r] 

would have dimension at most 2r — 1 and contain 2r + 2 points of A2r, in 
contradiction to the order condition. 

Q cannot be a point on a proper face of either simplex {so, s±, . . . , sr}, 
{s'o, s'i, . . . , s'r}. Suppose, for example, Q to be within the face {s0, Si, . . . , 
sT-i}. Then the space 

[So, Su . . . , Sr-l, s'o, • • • , S'r] 

would have dimension at most 2r — 1 and contain 2r + 1 points of A2r in 
contradiction to the order condition. 

If so, Su • • • , sr, s'o, . . . , s'r move continuously so that the inequalities are 
always satisfied, Q is uniquely defined and moves continuously. We know, if 
Q = P, that Q is interior to {A2r} as well as to both simplexes {so, Si, . . . , sr], 
{s'o, s'u • • . , s'r}. As Q cannot enter a proper face of either of these simplexes 
it must remain in the interior of both of them. Q cannot enter the boundary of 
{^42r}- For otherwise it would be in a hyperplane H supporting {A2r} and 
consequently supporting {s0, sh . . . , sT}. As Q is an interior point of the simp
lex, [so, Su • • • , sr] = H. It follows from the inequality system that at most one 
vertex of {s0, Su . . . , sr} is an endpoint of A2r. Hence H would contain at 
least 2{r + 1) — 1 = 2r + 1 points of A2r in contradiction to the order 
condition. Therefore Q must always remain in the interior of {^2r}. The proof 
is now complete. 
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