CONVEX HULLS OF SIMPLE SPACE GURVES

DOUGLAS DERRY

Abstract

1. Introduction. The convex hull of an arbitrary set M in real Euclidean n-space is known to consist of all the points within the r-simplexes with $r+1$ vertices from $M, r \leqslant n$. This note shows that if M is specialized to be a curve A_{n} of real order n, then its convex hull consists of all the points within the r-simplexes with $r+1$ vertices on $A_{n}, n=2 r+1$ or $n=2 r$. In the first case each interior point is within exactly one simplex. This result was given by Egerváry (1) for $n=3$. If n is even each interior point of the convex hull of A_{n} is within a 1-parameter system of $\frac{1}{2} n$-simplexes. The class of curves A_{n} includes the twisted n-ics, the convex hulls of which have been studied by Karlin and Shapley (2). Some of their results are consequences of the present results.

2. Some definitions. A curve A_{n} is defined to be a 1-1 continuous mapping in real Euclidean n-space of all the real numbers s computed modulo 1 or of the interval, $0 \leqslant s \leqslant 1$, which satisfies the order condition that no hyperplane contains more than n points of A_{n}.

The order condition implies that any linear k-space, $0 \leqslant k<n$, cannot contain more than $k+1$ points of A_{n}. If a hyperplane H supports A_{n} at an inner point s^{\prime} then s^{\prime} is defined to have multiplicity two within H. By displacing the hyperplanes it is possible to show that the sharpened order condition ${ }^{1}$ holds that no hyperplane contains more than n points of A_{n} if each point is counted with its proper multiplicity of one or two.

The symbol $[A, B, \ldots]$ denotes the intersection of all the linear spaces which include the point sets A, B, \ldots, while $\{A, B, \ldots\}$ denotes the convex hull of the union of the point sets A, B, \ldots Two sets A and B are said to be separated by a hyperplane H provided A is in one of the closed half spaces bounded by H and B in the other.
3. The boundary of A_{n}. The following lemma is stated without proof.

Lemma 1. If a hyperplane H supports a compact set X, then $\{H \cap X\}=$ $H \cap\{X\}$.

Theorem 1. The boundary of $\left\{A_{n}\right\}$ consists of all the points within all the q-simplexes for which the vertices are $q+1$ points of A_{n} including e endpoints, $2 q \leqslant n-2+e,(e=0,1,2)$.

[^0]Proof. If P be a boundary point of $\left\{A_{n}\right\}$, a hyperplane H exists which supports A_{n} and contains P. Let $s_{0}, s_{1}, \ldots, s_{q}$ be the distinct curve points in $H \cap\left\{A_{n}\right\}$. Because of the order condition, $\left\{s_{0}, s_{1}, \ldots, s_{q}\right\}$ is a q-simplex. By Lemma 1 ,

$$
P \in H \cap\left\{A_{n}\right\}=\left\{H \cap A_{n}\right\}=\left\{s_{0}, s_{1}, \ldots, s_{q}\right\}
$$

As H supports A_{n} an interior point s_{i} of A_{n} must be included in H twice. Consequently if e denotes the number of endpoints of A_{n} in H, it follows from the order condition that

$$
e+2(q+1-e) \leqslant n \text { or } 2 q \leqslant n-2+e
$$

Thus each boundary point of $\left\{A_{n}\right\}$ is within a q-simplex, with the required properties.

Conversely let P be a point of a q-simplex $\left\{s_{0}, s_{1}, \ldots, s_{q}\right\}$ for which $2 q \leqslant n-$ $2+e$. Then a hyperplane exists which contains P and supports A_{n}. To construct such a hyperplane, for each point s_{i} interior to A_{n}, let N_{i} be an arc $s^{\prime}{ }_{i}<s<s_{i}$ and if A_{n} is not closed let $N^{\prime}, N^{\prime \prime}$ be neighbourhoods of the endpoints 0,1 respectively. Let H be a hyperplane which contains n points of A_{n} including all $s_{i}, s^{\prime}{ }_{i}$ and so that the remaining $n-2(q+1)+e$ curve points within H are distributed among the arcs $N_{i}, N^{\prime}, N^{\prime \prime}$ in such a way that no $\operatorname{arc} N_{i}$ contains an odd number of these points. This distribution is always possible because if A_{n} is closed n is even and $e=0$. If $N_{i} \rightarrow s_{i}, N^{\prime} \rightarrow 0$, $N^{\prime \prime} \rightarrow 1$ then any limiting position of H contains P and supports A_{n}. As $P \in\left\{s_{0}, s_{1}, \ldots, s_{q}\right\} \subseteq\left\{A_{n}\right\}, P$ is a boundary point of $\left\{A_{n}\right\}$. The proof is now complete.
4. The structure of $\left\{A_{n}\right\}$. If $2 r=n$ or $2 r+1=n, S_{r}$ is defined to be an r-simplex with interior points of A_{n} as vertices except for even n when at most one of the vertices may be an endpoint of A_{n}.

Theorem 2. The interior points P of $\left\{A_{n}\right\}$ consist of all the interior points of the simplexes S_{r}.

For odd n, S_{r} is uniquely determined by any one of its interior points P; for even n, S_{r} is uniquely determined by an interior point P and any one vertex which can be either endpoint of A_{n} or any arbitrary point of A_{n} if it is closed.

Proof. We show first that every interior point P of a simplex S_{τ} is an interior point of $\left\{A_{n}\right\}$. As $S_{r} \subseteq\left\{A_{n}\right\}$ it will be sufficient to show P is not a boundary point of $\left\{A_{n}\right\}$. Let e be the number of vertices of S_{r} which are endpoints of A_{n}. If P were a boundary point of $\left\{A_{n}\right\}$ it would be within a hyperplane H which would support $\left\{A_{n}\right\} . H$ would also support S_{r} and consequently, as P is an inner point of $S_{r}, S_{r} \subseteq H$. Therefore H would contain $2(r+1-e)+e$ points of A_{n}. This would contradict the order condition as, by the definition of $S_{r}, e=0$ if $n=2 r+1$ and $e \leqslant 1$ if $n=2 r$. Hence the inner points of the simplexes S_{r} are all inner points of $\left\{A_{n}\right\}$.

We next show that a given interior point P of $\left\{A_{n}\right\}$ is an interior point of a simplex S_{r}. Let a be any real number if A_{n} is closed and 0 if A_{n} is open. Denote by $A\left(a, s^{\prime}\right)$ the arc of points $s, a \leqslant s \leqslant s^{\prime}$. Let s_{P} be the least upper bound of all s^{\prime} for which $P \notin\left\{A\left(a, s^{\prime}\right)\right\}$.

We prove that $P \in\left\{A\left(a, s_{P}\right)\right\}$. If this were false, P and $\left\{A\left(a, s_{P}\right)\right\}$ would be separated by a hyperplane at a positive distance from $\left\{A\left(a, s_{P}\right)\right\}$. This hyperplane would also separate $A\left(a, s^{\prime}\right)$ and P for $s^{\prime}>s_{P}$ provided s^{\prime} were sufficiently close to s_{P}. Consequently $P \notin\left\{A\left(a, s^{\prime}\right)\right\}$ contrary to the choice of s_{P}.
P is on a supporting hyperplane of $\left\{A\left(a, s_{P}\right)\right\}$. To prove this let s_{μ} be an increasing sequence which converges to s_{P}. Because $P \notin\left\{A\left(a, s_{\mu}\right)\right\}$ a hyperplane H_{μ} exists which supports $\left\{A\left(a, s_{\mu}\right)\right\}$ and contains $P . s_{\mu}$ can be chosen so that H_{μ} converges. If H be its limit then $P \in H$ and H supports $\left\{A\left(a, s_{\mu}\right)\right\}$. But, as s_{μ} is arbitrary, H supports $\left\{A\left(a, s_{P}\right)\right\}$. From this result, together with the fact that $P \in\left\{A\left(a, s_{P}\right)\right\}$, it follows that P is a boundary point of $\left\{A\left(a, s_{P}\right)\right\}$.

Consequently, by Theorem 1, a simplex S_{q} exists which contains P, has vertices on $A\left(a, s_{P}\right)$ and for which $2 q \leqslant n-2+e$, where e is the number of vertices of S_{q} which are endpoints of $A\left(a, s_{P}\right)$. The vertices of S_{q} are also on A_{n}. Let e^{\prime} be the number of these vertices which are endpoints of A_{n}. As P is not a boundary point of $\left\{A_{n}\right\}, 2 q>n-2+e^{\prime}$. Therefore $e^{\prime}<e$ and so $0<e$. If A_{n} is open, $e^{\prime}=e-1$ as 0 is a common endpoint of A_{n} and $A\left(a, s_{P}\right)$. The two inequalities yield the result $2 q=n-2+e$. Hence, if $n=2 r$, then $e=2$ and $q=r$ and, if $n=2 r+1, e=1$ and $q=r$. If A_{n} is closed n is even and $e^{\prime}=0$. In this case the inequalities show $e=2$ and $r=q$. P cannot be a point of a face of S_{τ} for such points, by Theorem 1, are boundary points of $\left\{A_{r}\right\}$. Therefore P is an interior point of the r-simplex S_{r} which satisfies the requirements of the theorem as $e^{\prime}=0$ for odd n and $e^{\prime} \leqslant 1$ for even n. This completes the proof of the first part of the theorem.

For even $n, e=2$ and consequently a is a vertex of S_{r}. If A_{n} is closed a is arbitrary and so in this case, for a given P, an S_{r} exists with an arbitrary vertex. If A_{n} is open $a=0$. After a reversal of orientation of the points on the curve, the other endpoint of A_{n} can be represented by the number 0 . Therefore S_{r} can be chosen so that either endpoint of A_{n} is a vertex provided n is even.

Suppose now P is a point within two distinct simplexes with vertices $s_{0}, s_{1}, \ldots, s_{r} ; s^{\prime}{ }_{0}, s^{\prime}{ }_{1}, \ldots, s^{\prime}{ }_{r}$ and that P is not in a face of $\left\{s_{0}, s_{1}, \ldots, s_{r}\right\}$. Let $k, 0 \leqslant k \leqslant r$, be the number of vertices common to both simplexes. It follows, with the use of the Steinitz replacement theorem, that the space

$$
\left[s_{0}, s_{1}, \ldots, s_{r}, s^{\prime}{ }_{0}, s^{\prime}{ }_{1}, \ldots, s_{r}^{\prime}\right]
$$

has dimension at most $2 r-k$. It contains $2(r+1)-k$ points of A_{n}. This leads to a contradiction of the order condition unless $2 r-k=n$ in which case $k=0$ and $n=2 r$. This proves, for odd n, that P is within only one simplex S_{r} and, for even n, that P is never in more than one simplex S_{r} with a given vertex. The proof is now complete.

Corollary. Every point P in the interior of $\left\{A_{2 r}\right\}$ is an interior point of each of two suitably chosen simplexes $S_{r}, S^{\prime}{ }_{r}$ which have no common vertex.

Proof. If $A_{2 r}$ is open each interior point P of $\left\{A_{2 r}\right\}$ is, by the Theorem, interior to a simplex $S_{r}\left(S_{r}^{\prime}\right)$ with the endpoint $s=0,(s=1)$ as a vertex. If $S_{r}, S^{\prime}{ }_{r}$ were to have a common vertex then, by the Theorem, they would be identical and both endpoints of $A_{2 r}$ would be vertices in contradiction to the definition of the simplexes. If $A_{2 r}$ is closed the result is clear.

Lemma 2. If the vertices of two r-simplexes S_{r}, S_{r}^{\prime} which have no common vertex are all on $A_{2_{r}}$ and if an arc of $A_{2_{r}}$ exists which contains two vertices of S_{r} and no vertex of $S^{\prime}{ }_{r}$, then $S_{r}, S^{\prime}{ }_{r}$ have no point in common.

Proof. Let $s_{0}, s_{1}, \ldots, s_{r}, s_{0}<s_{1}<\ldots<s_{r}<s_{0}+1 \quad\left(=s_{r+1}\right)$ be the vertices of S_{r}. By the hypothesis an arc $s_{k} \leqslant s \leqslant s_{k+1}$ exists which contains no vertex of $S_{r}^{\prime}, 0 \leqslant k<r$, if $A_{2 r}$ is open and $0 \leqslant k \leqslant r$, if $A_{2 r}$ is closed. In the latter case the coordinates may be adjusted so that $0 \leqslant k<r$. As $S_{r}, S^{\prime}{ }_{r}$ have no common vertex, distinct curve points $t^{\prime}{ }_{1}, t_{1}, \ldots, t^{\prime}{ }_{r}, t_{r}$ of $A_{2 r}$ exist so that

$$
\begin{gathered}
t^{\prime}{ }_{1} \leqslant s_{0} \leqslant t_{1}<t_{2}{ }_{2} \leqslant s_{2} \leqslant t_{2}<\ldots<t^{\prime}{ }_{k+1} \leqslant s_{k}<s_{k+1} \leqslant t_{k+1}<\ldots \\
<t^{\prime}{ }_{r} \leqslant s_{\tau} \leqslant t_{\tau} \leqslant t^{\prime}{ }_{1}+1
\end{gathered}
$$

and so that none of the arcs $t^{\prime}{ }_{1} \leqslant s \leqslant t_{i}, 1 \leqslant i \leqslant r$, contains a vertex of S_{r}^{\prime}. Let H be the hyperplane $\left[t^{\prime}{ }_{1}, t_{1}, \ldots, t^{\prime}{ }_{r}, t_{r}\right]$. As H intersects $A_{2 r}$ only in the $2 r$ points $t^{\prime}{ }_{i}, t_{i}, 1 \leqslant i \leqslant r$, all the points of the $\operatorname{arcs} t^{\prime}{ }_{i} \leqslant s \leqslant t_{i}, 1 \leqslant i \leqslant r$, are either on H or on the same side of H while all the points of $A_{2 r}$ not within the above arcs are on the opposite side of H. Thus H separates the vertices of S_{r} from those of $S^{\prime}{ }_{r}$. Furthermore all the vertices of $S^{\prime}{ }_{r}$ are at a positive distance from H. Hence S_{r} and $S^{\prime}{ }_{r}$ have no points in common. The Lemma is now proved.

Convex hulls are defined for affine space. The following result shows that the convex hull $\left\{A_{2 r}\right\}$ can be defined in terms of projective concepts.

Theorem 3. If $s_{0}, s_{1}, \ldots, s_{r} ; s^{\prime}{ }_{0}, s^{\prime}{ }_{1}, \ldots, s^{\prime}{ }_{r}$ are curve points of $A_{2 r}$ for which

$$
0 \leqslant s_{0}<s_{0}^{\prime}<s_{1}<\ldots<s_{\tau}<{s^{\prime}}_{r} \leqslant 1,
$$

for open $A_{2 r}$ and

$$
s_{0}<s^{\prime}{ }_{0}<s_{1}<\ldots<s_{r}<s_{r}^{\prime}<s_{0}+1\left(=s_{r+1}\right)
$$

for closed $A_{2 r}$ then the interior of $\left\{A_{2 r}\right\}$ consists of all the intersections

$$
\left[s_{0}, s_{1}, \ldots, s_{r}\right] \cap\left[s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s_{r}^{\prime}\right] .
$$

Proof. Let P be a given point in the interior of $\left\{A_{2 r}\right\}$. By the Corollary to Theorem 2, simplexes $S_{r}, S^{\prime}{ }_{r}$ exist, without a common vertex, both of which
contain P as an interior point. Let $s_{0}, s_{1}, \ldots, s_{r}, 0 \leqslant s_{0}<s_{1}<\ldots<s_{r}<$ $s_{0}+1$ be the vertices of S_{r}. As S_{r}, S_{r}^{\prime} have the common interior point P it follows from Lemma 2 that each arc $s_{i} \leqslant s \leqslant s_{i+1}, 0 \leqslant i<r$, contains exactly one vertex of $S^{\prime}{ }_{r}$. Therefore if $s^{\prime}{ }_{0}, s^{\prime}{ }_{1}, \ldots, s^{\prime}{ }_{r}$ be the vertices of $S^{\prime}{ }_{r}$ the subscripts may be adjusted so that, for closed $A_{2 r}$,

$$
s_{0}<s_{0}^{\prime}<s_{1}<\ldots<s_{r-1}^{\prime}<s_{r}<s_{r}^{\prime}<s_{0}+1
$$

and, for open $A_{2 r}$, either

$$
0 \leqslant s_{0}<s_{0}^{\prime}<s_{1}<\ldots<s_{r}<s_{r}^{\prime} \leqslant 1
$$

or

$$
0 \leqslant s_{0}^{\prime}<s_{0}<\ldots<s^{\prime}{ }_{T}<s_{T} \leqslant 1
$$

As P is a common point of the simplexes

$$
P \in\left[s_{0}, s_{1}, \ldots, s_{r}\right] \cap\left[s_{0}^{\prime}, s_{1}^{\prime}, \ldots, s^{\prime}{ }_{r}\right]
$$

Now let Q be any point of $\left[s_{0}, s_{1}, \ldots, s_{r}\right] \cap\left[s^{\prime}{ }_{0}, s^{\prime}{ }_{1}, \ldots, s^{\prime}{ }_{r}\right]$ where

$$
s_{0}, s_{1}, \ldots, s_{r}, s^{\prime}{ }_{0}, s^{\prime}{ }_{1}, \ldots, s^{\prime}{ }_{r}
$$

are points of $A_{2 r}$ which satisfy the inequality system. The r-spaces [s_{0}, s_{1}, $\left.\ldots, s_{r}\right],\left[s^{\prime}{ }_{0}, s^{\prime}{ }_{1}, \ldots, s^{\prime}{ }_{r}\right]$ must have at least one point in common as $2 r=n$. They cannot have more than one point in common for then

$$
\left[s_{0}, s_{1}, \ldots, s_{r}, s_{0}^{\prime}, \ldots, s_{r}^{\prime}\right]
$$

would have dimension at most $2 r-1$ and contain $2 r+2$ points of $A_{2 r}$, in contradiction to the order condition.
Q cannot be a point on a proper face of either simplex $\left\{s_{0}, s_{1}, \ldots, s_{r}\right\}$, $\left\{s^{\prime}{ }_{0}, s^{\prime}{ }_{1}, \ldots, s^{\prime}{ }_{r}\right\}$. Suppose, for example, Q to be within the face $\left\{s_{0}, s_{1}, \ldots\right.$, $\left.s_{r-1}\right\}$. Then the space

$$
\left[s_{0}, s_{1}, \ldots, s_{r-1}, s^{\prime}, \ldots, s_{r}^{\prime}{ }_{r}\right]
$$

would have dimension at most $2 r-1$ and contain $2 r+1$ points of $A_{2 r}$ in contradiction to the order condition.

If $s_{0}, s_{1}, \ldots, s_{r}, s^{\prime}{ }_{0}, \ldots, s^{\prime}{ }_{r}$ move continuously so that the inequalities are always satisfied, Q is uniquely defined and moves continuously. We know, if $Q=P$, that Q is interior to $\left\{A_{2_{r}}\right\}$ as well as to both simplexes $\left\{s_{0}, s_{1}, \ldots, s_{r}\right\}$, $\left\{s^{\prime}{ }_{0}, s^{\prime}{ }_{1}, \ldots, s^{\prime}{ }_{r}\right\}$. As Q cannot enter a proper face of either of these simplexes it must remain in the interior of both of them. Q cannot enter the boundary of $\left\{A_{2_{r}}\right\}$. For otherwise it would be in a hyperplane H supporting $\left\{A_{2_{r}}\right\}$ and consequently supporting $\left\{s_{0}, s_{1}, \ldots, s_{r}\right\}$. As Q is an interior point of the simplex, $\left[s_{0}, s_{1}, \ldots, s_{r}\right] \subseteq H$. It follows from the inequality system that at most one vertex of $\left\{s_{0}, s_{1}, \ldots, s_{r}\right\}$ is an endpoint of $A_{2 r}$. Hence H would contain at least $2(r+1)-1=2 r+1$ points of $A_{2 r}$ in contradiction to the order condition. Therefore Q must always remain in the interior of $\left\{A_{2 r}\right\}$. The proof is now complete.

References

1. E. Egerváry, On the smallest cover of a simple arc of space curve. Publ. Math. Debrecen 1 (1949), 65-70.
2. S. Karlin and L. S. Shapley, Geometry of moment spaces. Mem. Amer. Math. Soc. 12 (1953).

University of British Columbia

[^0]: Received October 14, 1955.
 ${ }^{1}$ I should like to thank the referee for the improvements he suggested and in particular for pointing out that the above form of the sharpened order condition, which makes no use of differentiability, was sufficient for the results of this paper.

