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Abstract

Due to the increasing application of fractional calculus in engineering and biomedical processes,
we analyze a new method for the numerical simulation of a large class of coupled systems of
fractional-order partial differential equations. In this paper, we study shifted Jacobi polynomials
in the case of two variables and develop some new operational matrices of fractional-order
integrations as well as fractional-order differentiations. By the use of these operational matrices,
we present a new and easy method for solving a generalized class of coupled systems of fractional-
order partial differential equations subject to some initial conditions. We convert the system
under consideration to a system of easily solvable algebraic equation without discretizing the
system, and obtain a highly accurate solution. Also, the proposed method is compared with some
other well-known differential transform methods. The proposed method is computer oriented.
We use MatLab to perform the necessary calculation. The next two parts will appear soon.

1. Introduction

It is well known that coupled systems of partial differential equations (PDEs) are widely used
in engineering and biomechanics problems. Some applications of coupled systems of PDEs
arise in biomechanics when modeling the electrical activity in the heart (see, for example,
[30, 53, 54, 59]). They also occur when modeling some chemical and material engineering
problems, such as a system containing a continuous stirred tank reactor (CSTR) and a plug
flow reactor (PFR) in series [1, 35]. Various applications are found in solid mechanics; for
example, the dynamics of multi-deformable bodies coupled by standard light fractional-order
discrete continuum layers is described by coupled partial fractional-order differential equations
[10, 20, 40, 47]. Coupled systems of PDEs also appear in the modeling of some important
electromagnetic and gravitational problems (see, for example, [29, 56]).

Very recently, fractional calculus and fractional differential equations have gained the
attention of scientists and many interesting applications in several different disciplines
[15, 17, 38, 46] have been investigated. Several authors have found that many engineering
and physical processes can be modeled and explained well by systems of fractional-order
differential equations, compared with systems of conventional differential equations, and also
that fractional-order differentials and integrals provide more a accurate and real insight into
systems under consideration (see, for example, [13, 14, 16–20, 31, 33, 34, 48, 55] and the
references therein). All of these engineering problems are also mathematical problems and are
described by PDEs with integer or fractional-order derivative terms which can be discretized
into a problem of solving a system of ordinary differential, integro-differential or fractional-
order partial differential equations.

The analytical results based on the existence and uniqueness of solutions to some fractional
differential equations have been investigated by many authors (see, for example, [25, 45,
50–52] and the references therein). Bearing in mind the increasing application of fractional-
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order differential equations and PDEs, and due to the computational complexities of fractional
calculus and the non-availability of their explicit analytic solutions, the need to exploit various
efficient and reliable numerical schemes is a problem of fundamental interest.

In the literature, a number of numerical methods have been proposed for obtaining
approximate solutions to fractional-order differential equations such as eigenvector expansion,
the Adomian decomposition method (ADM), the fractional differential transform method
(FDTM) [2, 8] and the generalized block-pulse operational matrix method [32], to name
but a few. In [5, 6], some linear and nonlinear fractional-order PDEs have been solved by
using the homotopy analysis method (HAM). Very recently, in [7], the authors constructed
two high-order algorithms to handle multi-term time fractional diffusion-wave equations.
Also, some interesting numerical schemes based on operational matrices of fractional-order
integration with Haar wavelets, Legendre wavelets, sine-cosine and Chebyshev wavelets for
solutions to fractional-order differential equations have been developed in [28, 39, 42–44, 57].
In continuation, a new numerical scheme, based on the Haar wavelet, involving an operational
matrix of integration is developed in [4] for solutions of fractional-order multi-point boundary
value problems. Some new results related to the Jacobi polynomials and operational matrices
have been recently discovered (see [22–24]). Some operational matrices of arbitrary-order
derivatives and integrals and their applications are also constructed by using B-spline functions,
fractional Jacobi functions and the Taylor series method (for details, see [9, 21, 27]).

All the operational matrix methods are used to solve fractional-order differential equations
and PDEs. We attempt to generalize the operational matrix technique to solve coupled systems
of fractional-order PDEs. In this paper, we use Jacobi polynomials in two variables and develop
new operational matrices of fractional-order differentiations and integrations to solve a more
generalized class of coupled systems of fractional-order PDEs of the form

∂σU(x, y)

∂xσ
=

n∑
i=0

ai
∂iU(x, y)

∂yi
+

n∑
i=0

bi
∂iV (x, y)

∂xi
+

n∑
i=0

ci
∂iV (x, y)

∂yi
+ F1(x, y),

∂σV (x, y)

∂xσ
=

n∑
i=0

di
∂iV (x, y)

∂yi
+

n∑
i=0

ei
∂iU(x, y)

∂xi
+

n∑
i=0

fi
∂iU(x, y)

∂yi
+ F2(x, y),

(1)

subject to the initial conditions

U (i)(0, y) = Hi(y), V (i)(0, y) = Gi(y), i = 0, 1, . . . , n, (2)

where n− 1 6 σ < n, ai, bi, ci, di, ei, fi are all real constants, U = U(x, y) and V = V (x, y) are
the unknown solution of the system to be determined and U(x, y),V (x, y),F1(x, y) and F2(x, y)
∈ Cn([0, η]× [0, η]).

The method reduces the system of fractional-order differential equations to a coupled system
of algebraic equations. Generally, large systems of algebraic equations may lead to greater
computational complexity and large storage requirements. However, our technique is simple
and reduces the computational complexity of the resulting algebraic system. It is worth
mentioning here that the proposed method is computer oriented, and it is designed in such
way that it can be easily simulated with any computational software.

The rest of article is organized as follows. We begin by introducing some necessary definitions
and mathematical preliminaries from fractional calculus and Jacobi polynomials. In Section 3,
operational matrices of fractional-order derivatives and fractional-order integrals are developed.
Section 4 is devoted to the application of operational matrices of fractional derivatives and
fractional integrals to solve a coupled system of fractional-order PDEs. In Section 5, the
proposed method is applied to several examples and the results are discussed and also compared
with some other methods. The last section is devoted to a conclusion and a brief overview of
future work.
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2. Preliminaries

For convenience, this section summarizes some concepts, definitions and basic results from
fractional calculus, which are useful for further development in this paper.

Definition 2.1. [26, 41] Given an interval [a, b] ⊂ R, the Riemann–Liouville fractional-
order integral of order α ∈ R+ of a function φ ∈ (L1[a, b],R) is defined by

Iαa+φ(t) =
1

Γ (α)

∫ t
a

(t− s)α−1φ(s) ds,

provided that the integral on right-hand side exists.

Remark 2.2. It is to be noted that, throughout this paper, we will use the Caputo fractional-
order derivative.

Definition 2.3. For a given function φ(x) ∈ Cn[a, b], the Caputo fractional-order derivative
of order α is defined as

Dαφ(x) =
1

Γ(n− α)

∫x
a

φ(n)(t)

(x− t)α+1−n dt, n− 1 6 α < n, n ∈ N,

provided that the right-hand side is pointwise defined on (a,∞), where n = [α] + 1.

Hence, it follows that

Dαxk =
Γ(1 + k)

Γ(1 + k − α)
xk−α, Iαxk =

Γ(1 + k)

Γ(1 + k + α)
xk+α and DαC = 0, for a constant C.

(3)

2.1. The shifted Jacobi polynomials

The well-known two parametric Jacobi polynomials defined on [0, η], with parameter α, β are
given by the relation

P
(α,β)
η,i (x) =

i∑
k=0

(−1)i−kΓ(i+ β + 1)Γ(i+ k + α+ β + 1)

Γ(k + β + 1)Γ(i+ α+ β + 1)Γ(i− k + 1)Γ(k + 1)ηk
xk, i = 0, 1, 2 . . . . (4)

These polynomials are orthogonal and the orthogonality relation is∫η
0

P
(α,β)
η,i (x)P

(α,β)
η,j (x)W (α,β)

η (x) dx = R
(α,β)
η,j δi,j , (5)

where
W (α,β)
η (x) = (η − x)αxβ (6)

is the weight function. Also,

R
(α,β)
η,j δi,j =

ηα+β+1Γ(j + α+ 1)Γ(j + β + 1)

(2j + α+ β + 1)Γ(j + 1)Γ(j + α+ β + 1)
. (7)

This implies that any function v(x) that is square integrable in [0, η] can be approximated by
shifted Jacobi polynomials, that is,

v(x) ≈
m∑
a=0

CaP
(α,β)
η,j (x), (8)

https://doi.org/10.1112/S146115701700002X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701700002X


14 k. shah, h. khalil and r. a. khan

and as m→∞, the approximation becomes equal to the exact function. By using (5), (6) and
(7), we can easily calculate the coefficient Ca. We can also write (8) in vector form as

v(x) ≈ HT
M Ψ̂M (x), (9)

where M = m+ 1, HM is the coefficient vector and Ψ̂M (x) is an M term vector function. We
extend the notion to two-dimensional space and define two-dimensional Jacobi polynomials of
order M on the region [0, η]× [0, η] as a product function of two Jacobi polynomials

P (α,β)
η,n (x, y) = (P

(α,β)
η,i (x))(P

(α,β)
η,j (y)), n = Mi+ j + 1, i = 0, 1, 2, . . . ,m, j = 0, 1, 2, . . . ,m.

(10)

The orthogonality condition of P
(α,β)
η,n (x, y) is found to be∫η

0

∫η
0

(P (α,β)
η,a (x))(P

(α,β)
η,b (y))(P (α,β)

η,c (x))(P
(α,β)
η,d (x))W (α,β)

η (x)W (α,β)
η (y) dx dy

= R(α,β)
η,c δa,cR

(α,β)
η,d δb,d. (11)

Any function that is square integrable in [0, η]× [0, η] can be approximated by M terms of the

Jacobi polynomials P
(α,β)
η,n (x, y), that is,

f(x, y) ≈
m∑
a=0

m∑
b=0

Cab(P
(α,β)
η,a (x))(P

(α,β)
η,b (y)), (12)

where Cab can be obtained by the relation

Cab =
1

R
(α,β)
η,a R

(α,β)
η,b

∫η
0

∫η
0

f(x, y)(P (α,β)
η,a (x))(P

(α,β)
η,b (y))W (α,β)

η (x, y) dx dy. (13)

The weight function is defined as

W (α,β)
η (x, y) = W (α,β)

η (x)W (α,β)
η (y). (14)

For simplicity, we use the notation Cn = Cab, where n = Ma+ b+ 1, and rewrite (12) as

f(x, y) ≈
M2∑
n=1

CnP
(α,β)
η,n (x, y) = KT

M2ΨM2(x, y)

in vector notation, where KM2 is an M2 × 1 coefficient column vector and ΨM2(x, y) is an
M2 × 1 column vector of functions defined by

ΨM2(x, y) =
(
ψ11(x, y) · · · ψ1M (x, y) ψ21(x, y) · · · ψ2M (x, y) · · · ψMM (x, y)

)T
,

(15)

where ψi+1,j+1(x, y) = (P
(α,β)
η,i (x))(P

(α,β)
η,j (y)), i, j = 0, 1, 2, . . . ,m.

2.2. Error analysis

In this section, we provide an analytic expression for the error of approximation of a sufficiently
smooth function g(x, y) on ∆ = [0, η]× [0, η]. For this purpose, let

∏
M,M (x, y) be the space of

Jacobi polynomials. We assume that g(M,M)(x, y) is the best approximation in
∏

(M,M)(x, y).

For this purpose, consider a polynomial P̂(M,M)(x, y) that is any polynomial of degree 6 M
in variables x and y, respectively. Then, from the definition of best approximation,

‖g(x, y)− g(M,M)(x, y)‖2 6 ‖g(x, y)− P(M,M)(x, y)‖2. (16)
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The inequality in (16) is also satisfied if P(M,M)(x, y) is interpolating the polynomial at point
(xi, yj) and then, by a similar argument as in [12], the error of the approximation is given by

‖g(x, y)− P(M,M)(x, y)‖2 6

(
C1 + C2 + C3

1

MM+1

)
1

MM+1
,

where

C1 =
1

4
max

(x,y)∈[0,1]×[0,1]

∣∣∣∣ ∂M+1

∂xM+1
g(x, y)

∣∣∣∣, C2 =
1

4
max

(x,y)∈[0,1]×[0,1]

∣∣∣∣ ∂M+1

∂yM+1
g(x, y)

∣∣∣∣
C3 =

1

16
max

(x,y)∈[0,1]×[0,1]

∣∣∣∣ ∂2M+2

∂xM+1∂yM+1
g(x, y)

∣∣∣∣.
We refer the reader to [37] for the proof of the above result.

3. Operational matrices of integrations and differentiations

Spectral methods are very strong tools for solving many kinds of differential equations arising
in various fields of science and engineering. The aforementioned methods are based on various
kinds of operational matrices. The construction and application of the operational matrices
has recently become a fast-growing topic for research. In the case of a single variable,
the operational matrices of fractional-order integration and differentiation are available
in [42, 49]. Similarly, operational matrices for two-dimensional orthogonal polynomials can
be found in [22–24]. We generalize the notion to the case of two variables and develop
operational matrices of fractional-order integrations and differentiations. The construction
of these operational matrices are analogous. In order to make this article a self-contained
material, we present the proof and construction of operational matrices for two-dimensional
Jacobi polynomials.

Lemma 3.1. Let ΨM2(x, y) be as defined in (15). Then the integration of order υ of ΨM2(x, y)
with respect to x is given by

Iυx (ΨM2(x, y)) ' P υ,xM2×M2ΨM2(x, y), (17)

where P υ,xM2×M2 is the operational matrix of integration of order υ and is defined as

P υ,xM2×M2 =



Ω1,1,k Ω1,2,k · · · Ω1,r,k · · · Ω1,M2,k

Ω2,1,k Ω2,2,k · · · Ω2,r,k · · · Ω2,M2,k

...
...

...
...

...
...

Ωq,1,k Ωq,2,k · · · Ωq,r,k · · · Ωq,M2,k

...
...

...
...

...
...

ΩM2,1,k ΩM2,2,k · · · ΩM2,r,k · · · ΩM2,M2,k


,

and r = Mi+ j + 1, q = Ma+ b+ 1,Ωq,r,k = Θi,j,a,b,k for i, j, a, b = 0, 1, 2, . . . ,m,

Θi,j,a,b,k =

a∑
k=0

Λa,k,υSi,j,b,
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Sijb = δj,b

i∑
l=0

× (−1)i−l(2i+ α+ β + 1)Γ(i+ 1)Γ(i+ l + α+ β + 1)Γ(k + υ + l + β + 1)Γ(α+ 1)ηυ

Γ(i+ α+ 1)Γ(l + β + 1)Γ(i− l + 1)Γ(l + 1)Γ(k + υ + l + β + α+ 2)
.

Also,

Λa,k,υ =
(−1)a−kΓ(a+ β + 1)Γ(a+ k + α+ β + 1)Γ(1 + k)

Γ(k + β + 1)Γ(a+ α+ β + 1)Γ(a− k + 1)Γ(k + 1)Γ(1 + k + v)ηk
. (18)

Proof. In order to prove the result, take P
(α,β)
η,n (x, y) as defined by (10). Then the fractional

integral of order υ of P
(α,β)
η,n (x, y) with respect to x is given by

IυxP
(α,β)
η,n (x, y) = IυxP

(α,β)
η,a (x)P

(α,β)
η,b (y)

=

a∑
k=0

(−1)a−kΓ(a+ β + 1)Γ(a+ k + α+ β + 1)

Γ(k + β + 1)Γ(a+ α+ β + 1)Γ(a− k + 1)Γ(k + 1)ηk
Iυxx

kP (α,β)
η,a (y),

which, in view of the definition of fractional integrals, takes the form

IυxP
(α,β)
η,a (x)P

(α,β)
η,b (y)

=

a∑
k=0

(−1)a−kΓ(a+ β + 1)Γ(a+ k + α+ β + 1)Γ(1 + k)

Γ(k + β + 1)Γ(a+ α+ β + 1)Γ(a− k + 1)Γ(k + 1)Γ(1 + k + v)ηk
xk+υP

(α,β)
η,b (y).

(19)

Approximating xk+υP
(α,β)
η,b (y) by Jacobi polynomials in two variables, we obtain

xk+υP
(α,β)
η,b (y) ≈

m∑
i=0

m∑
j=0

Si,j,bP
(α,β)
η,i (x)P

(α,β)
η,j (y), (20)

where Si,j,b = (δj,b/R
(α,β)
η,i , R

(α,β)
η,j )

∫η
0

∫η
0
xk+υP

(α,β)
η,b (y)P

(α,β)
η,i (x)P

(α,β)
η,j (y)W

(α,β)
η (x, y) dx dy. In

view of the orthogonality relation, it becomes

Si,j,b =
δj,b

R
(α,β)
η,i

∫η
0

xk+υP
(α,β)
η,i (x)W (α,β)

η (x) dx.

Or using (6) and (4),

Si,j,b =
δj,b

R
(α,β)
η,i

i∑
l=0

(−1)i−lΓ(i+ β + 1)Γ(i+ l + α+ β + 1)

Γ(l + β + 1)Γ(i+ α+ β + 1)Γ(i− l + 1)Γ(l + 1)ηl

∫η
0

xk+υ+l+β(η − x)α.

The integrand in the above expression can be easily calculated by the well-known convolution
theorem of the Laplace transformation

£

( ∫η
0

xk+υ+l+β(η − x)α
)

=
Γ(k + υ + l + β + 1)Γ(α+ 1)

s(k+υ+l+β+α+2)
.

Taking inverse Laplace,∫η
0

xk+υ+l+β(η − x)α =
Γ(k + υ + l + β + 1)Γ(α+ 1)η(k+υ+l+β+α+1)

Γ(k + υ + l + β + α+ 1)
.
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We can get the generalized coefficient of (20) as

Sijb =
δj,b

R
(α,β)
η,i

i∑
l=0

× (−1)i−lΓ(i+ β + 1)Γ(i+ l + α+ β + 1)Γ(k + υ + l + β + 1)Γ(α+ 1)η(k+υ+l+β+α+1)

Γ(l + β + 1)Γ(i+ α+ β + 1)Γ(i− l + 1)Γ(l + 1)ηlΓ(k + υ + l + β + α+ 2)
.

Using (7) and simplifying, we get the generalized value as

Sijb = δj,b

i∑
l=0

× (−1)i−l(2i+ α+ β + 1)Γ(i+ 1)Γ(i+ l + α+ β + 1)Γ(k + υ + l + β + 1)Γ(α+ 1)ηυ

Γ(i+ α+ 1)Γ(l + β + 1)Γ(i− l + 1)Γ(l + 1)Γ(k + υ + l + β + α+ 2)
.

(21)

For simplicity of notation, we can write

Λa,k,υ =
(−1)a−kΓ(a+ β + 1)Γ(a+ k + α+ β + 1)Γ(1 + k)

Γ(k + β + 1)Γ(a+ α+ β + 1)Γ(a− k + 1)Γ(k + 1)Γ(1 + k + v)ηk
. (22)

Using (21), (22), (20) in (19), it follows that

IυxP
(α,β)
η,a (x)P

(α,β)
η,b (y) =

a∑
k=0

Λa,k,υ

m∑
i=0

m∑
j=0

Si,j,bP
(α,β)
η,i (x)P

(α,β)
η,j (y). (23)

Or

IυxP
(α,β)
η,a (x)P

(α,β)
η,b (y) =

m∑
i=0

m∑
j=0

a∑
k=0

Λa,k,υSi,j,bP
(α,β)
η,i (x)P

(α,β)
η,j (y). (24)

Let

Θi,j,a,b,k =

a∑
k=0

Λa,k,υSi,j,b. (25)

Then

IυxP
(α,β)
η,a (x)P

(α,β)
η,b (y) =

m∑
i=0

m∑
j=0

Θi,j,a,b,kP
(α,β)
η,i (x)P

(α,β)
η,j (y). (26)

Using the notation r = Mi + j + 1, q = Ma + b + 1, Ωq,r,k = Θi,j,b,a,k for i, j, a, b =
0, 1, 2, 3, . . . ,m, we get the desired result.

Lemma 3.2. Let ΨM2(x, y) be as defined in (15). Then the derivative of order σ of ΨM2(x, y)
with respect to y is given by

Dσ
y (ΨM2(x, y)) ' Hσ,y

M2×M2ΨM2(x, y), (27)
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where Hσ,y
M2×M2 is the operational matrix of derivative of order σ and is defined as

Hσ,y
M2×M2 =



Ω1,1,k Ω1,2,k · · · Ω1,r,k · · · Ω1,M2,k

Ω2,1,k Ω2,2,k · · · Ω2,r,k · · · Ω2,M2,k

...
...

...
...

...
...

Ωq,1,k Ωq,2,k · · · Ωq,r,k · · · Ωq,M2,k

...
...

...
...

...
...

ΩM2,1,k ΩM2,2,k · · · ΩM2,r,k · · · ΩM2,M2,k


, (28)

and q = Mi+ j + 1, r = Ma+ b+ 1, Ωq,r,k = Θi,j,a,b,k for i, j, a, b = 0, 1, 2, . . . ,m,

Θi,j,a,b,k =

a∑
k=0

Λa,k,σSi,j,b, (29)

Sijb = δj,b

i∑
l=0

× (−1)i−l(2i+ α+ β + 1)Γ(i+ 1)Γ(i+ l + α+ β + 1)Γ(k − σ + l + β + 1)Γ(α+ 1)ησ

Γ(i+ α+ 1)Γ(l + β + 1)Γ(i− l + 1)Γ(l + 1)Γ(k − σ + l + β + α+ 2)
,

(30)

and

Λa,k,σ =
(−1)a−kΓ(a+ β + 1)Γ(a+ k + α+ β + 1)Γ(1 + k)

Γ(k + β + 1)Γ(a+ α+ β + 1)Γ(a− k + 1)Γ(k + 1)Γ(1 + k − σ)ηk
. (31)

Proof. The proof of this Lemma is similar to the proof of Lemma 3.1.

Lemma 3.3. Let ΨM2(x, y) be as defined in (15). Then the derivative of order σ of ΨM2(x, y)
with respect to x is given by

Dσ
x(ΨM2(x, y)) ' Hσ,x

M2×M2ΨM2(x, y), (32)

where Hσ,x
M2×M2 is the operational matrix of derivative of order σ with respect to x and is

defined as

Hσ,x
M2×M2 =



Ω1,1,k Ω1,2,k · · · Ω1,r,k · · · Ω1,M2,k

Ω2,1,k Ω2,2,k · · · Ω2,r,k · · · Ω2,M2,k

...
...

...
...

...
...

Ωq,1,k Ωq,2,k · · · Ωq,r,k · · · Ωq,M2,k

...
...

...
...

...
...

ΩM2,1,k ΩM2,2,k · · · ΩM2,r,k · · · ΩM2,M2,k


, (33)

and r = Mi+ j + 1, q = Ma+ b+ 1, Ωq,r,k = Θi,j,a,b,k for i, j, a, b = 0, 1, 2, . . . ,m,

Θi,j,a,b,k =

a∑
k=0

Λa,k,σSi,j,b, (34)
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Sijb = δj,b

i∑
l=0

× (−1)i−l(2i+ α+ β + 1)Γ(i+ 1)Γ(i+ l + α+ β + 1)Γ(k − σ + l + β + 1)Γ(α+ 1)ησ

Γ(i+ α+ 1)Γ(l + β + 1)(i− l)!l!Γ(k − σ + l + β + α+ 2)
,

(35)

and

Λa,k,σ =
(−1)a−kΓ(a+ β + 1)Γ(a+ k + α+ β + 1)Γ(1 + k)

Γ(k + β + 1)Γ(a+ α+ β + 1)Γ(a− k + 1)Γ(k + 1)Γ(1 + k − σ)ηk
. (36)

Proof. The proof of this Lemma is similar to the proof of Lemma 3.1.

Remark 1. Note that if f = LM2Ψ(x, y), then, for all ci ∈ R,

n∑
i=0

ci
∂if

∂yi
= LM2Hy

ciΨ(x, y), (37)

where

Hy
ci =

n∑
i=0

ciH
i,y
M2×M2 . (38)

Proof. The proof of this remark is straightforward.

4. Main result

Application of the operational matrices to coupled systems of fractional-order PDEs

In this section, we are interested in the approximate solution of a generalized class of coupled
systems of fractional-order PDEs of the form

∂αU

∂xα
=

n∑
i=0

ai
∂iU

∂yi
+

n∑
i=0

bi
∂iV

∂xi
+

n∑
i=0

ci
∂iV

∂yi
+ F1,

∂αV

∂xα
=

n∑
i=0

di
∂iV

∂yi
+

n∑
i=0

ei
∂iU

∂xi
+

n∑
i=0

fi
∂iU

∂yi
+ F2,

(39)

subject to the initial conditions

U (i)(0, y) = Hi(y), V (i)(0, y) = Gi(y) for i = 0, 1, . . . , n. (40)

We seek the solution of the above problem in terms of shifted Jacobi polynomials of order M
in the matrix form such that

∂σU(x, y)

∂xσ
= KM2Ψ(x, y),

∂σV (x, y)

∂xσ
= LM2Ψ(x, y). (41)

Applying integration of order σ with respect to x and using the initial conditions as defined
in (40),

U(x, y) = KM2PαM2×M2Ψ(x, y) +

n∑
i=0

xiHi(y), V (x, y) = LM2P βM2×M2Ψ(x, y) +

n∑
i=0

xiGi(y).

(42)

https://doi.org/10.1112/S146115701700002X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701700002X


20 k. shah, h. khalil and r. a. khan

Approximating
∑n
i=0 x

iHi(y) and
∑n
i=0 x

iGi(y) with two-dimensional Jacobi polynomials, we
can write

n∑
i=0

xiHi(y) = FHΨ(x, y),

n∑
i=0

xiGi(y) = FGΨ(x, y).

Substituting in (42),

U(x, y) = (KM2PσM2×M2 + FH)Ψ(x, y), V (x, y) = (LM2PσM2×M2 + FG)Ψ(x, y). (43)

For simplicity of notation, let

K̂ = (KM2PσM2×M2 + FH), L̂ = (LM2PσM2×M2 + FG). (44)

Using the simplified notation,

U(x, y) = K̂Ψ(x, y), V (x, y) = L̂Ψ(x, y). (45)

Now, using (37) and (38),

n∑
i=0

ai
∂iU

∂yi
= K̂Hy

aiΨ(x, y),

n∑
i=0

bi
∂iV

∂xi
= L̂Hx

biΨ(x, y),

n∑
i=0

ci
∂iV

∂yi
= L̂Hy

ciΨ(x, y),

n∑
i=0

di
∂iU

∂yi
= K̂Hy

di
Ψ(x, y),

n∑
i=0

ei
∂iV

∂xi
= L̂Hx

eiΨ(x, y),

n∑
i=0

fi
∂iV

∂yi
= L̂Hy

fi
Ψ(x, y).

(46)

We write the source terms in matrix form as F1 = F̂1Ψ(x, y) and F2 = F̂2Ψ(x, y). Using (41)
and (46) in (39),

KM2Ψ(x, y) = K̂Hy
aiΨ(x, y) + L̂Hx

biΨ(x, y) + L̂Hy
ciΨ(x, y) + F̂1Ψ(x, y),

LM2Ψ(x, y) = L̂Hy
di

Ψ(x, y) + K̂Hx
eiΨ(x, y) + K̂Hy

fi
Ψ(x, y) + F̂2Ψ(x, y).

(47)

This can be rewritten in matrix form asKT
M2Ψ(x, y)

LTM2Ψ(x, y)

=

K̂Hy
aiΨ(x, y)

L̂Hy
di

Ψ(x, y)

+

 L̂Hx
bi

Ψ(x, y)

K̂Hx
eiΨ(x, y)


+

 L̂Hy
ciΨ(x, y)

K̂Hy
fi

Ψ(x, y)

+

F̂1Ψ(x, y)

F̂2Ψ(x, y)

 .

Taking the transpose of the system and simplifying,

(
KT
M2 LTM2

)
A =

(
K̂Hy

ai L̂Hy
di

)
A+

(
L̂Hx

bi
K̂Hx

ei

)
A+

(
L̂Hy

ci K̂Hy
fi

)
A

+
(
F̂1 F̂2

)
A,

where

A =

(
Ψ(x, y) OM
OM Ψ(x, y)

)
.
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We can also write the system as(
KT
M2 LTM2

)
−
(
K̂Hy

ai L̂Hy
di

)
−
(
L̂Hx

bi
K̂Hx

ei

)
−
(
L̂Hy

ci K̂Hy
fi

)
−
(
F̂1 F̂2

)
= 0,

(
KT
M2 LTM2

)
−
(
K̂ L̂

)( Hy
ai OM2×M2

OM2×M2 Hy
di

)
−
(
K̂ L̂

)(OM2×M2 Hx
ei

Hx
bi

OM2×M2

)

−
(
K̂ L̂

)(OM2×M2 Hy
fi

Hy
ci OM2×M2

)
−
(
F̂1 F̂2

)
= 0,

⇒
(
KT
M2 LTM2

)
−
(
K̂ L̂

) Hy
ai Hx

ei +Hy
fi

Hy
ci +Hx

bi
Hy
di

− (F̂1 F̂2

)
= 0.

Using (44) and after a small modification,

⇒
(
KT
M2 LTM2

)
−
(
KM2PσM2×M2 LM2PσM2×M2

) Hy
ai Hx

ei +Hy
fi

Hy
ci +Hx

bi
Hy
di


−
(
FH FG

) Hy
ai Hx

ei +Hy
fi

Hy
ci +Hx

bi
Hy
di

− (F̂1 F̂2

)
= 0. (48)

This can be written in the form
X −XB − C = 0, (49)

where

X =
(
KT
M2 LTM2

)
,

B =

 PσM2×M2(Hy
ai) PσM2×M2(Hx

ei +Hy
fi

)

PσM2×M2(Hy
ci +Hx

bi
) PσM2×M2(Hy

di
)


and

C =
(
FH FG

) Hy
ai Hx

ei +Hy
fi

Hy
ci +Hx

bi
Hy
di

+
(
F̂1 F̂2

)
,

which is a system of algebraic equations. Note that the system is of the form of a Lyapunov
matrix equation, and thus finding its solution without using software is not easy. We use
Matlab for numerical simulations. By solving (49), we can get KT

M2 and LTM2 , which can be
used in (43) to get the approximate solution.

5. Illustrative examples

We analyze the new algorithm with three test examples. The first example is analyzed by using
the parameters α = 1, β = 1, while in the second example, we use the values α = 2, β = 2. In
both cases, we observe a high accuracy. Different error norms are used to analyze the accuracy
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and efficiency of proposed method. Also note that all the experiments are analyzed using the
domain [0, η] = [0, 1]. In order to understand the efficiency of the scheme, we display the results
graphically. In last example, we compare the proposed method with that of the differential
transform method. The simulation was carried out by using MatLab commands in my personal
computer with 2.5 GHz processor.

Example 5.1. Consider the system of two general coupled arbitrary-order non-homogeneous
PDEs as classified in [11], in the form

∂σU(x, y)

∂xσ
= 2

∂2U(x, y)

∂y2
+ 3

∂2V (x, y)

∂x2
+
∂V (x, y)

∂y
+ F1(x, y),

∂σV (x, y)

∂xα
= 3

∂2V (x, y)

∂y2
+ 4

∂2U(x, y)

∂x2
+
∂U(x, y)

∂y
+ F2(x, y),

(50)

subject to the initial conditions U (i)(0, y) = 0, V (i)(0, y) = 0, i = 0, 1, 2,

where 2 < σ 6 3 and the external or source terms are given by

F1(x, y) = −
x
(
36x− 24e2y + 2x3e2y − x3

)
ey

,

F2(x, y) = −
x
(
48xe2y + x3e2y + 3x3 − 24

)
ey

.

(51)

The exact solution at σ = 3 is known and is given as

U(x, y) = eyx4, V (x, y) = e−yx4. (52)

We approximate the solution of the above problem with different scale levels and observe
that the method is very efficient and provides a highly accurate estimate of the solutions. We
observe that the result is very accurate even for very a small level of M . Comparison of the
exact U(x, y) and V (x, y) with the approximate solutions obtained with this new technique
for scale level M = 6 is shown in Figure 1. One can easily see that the approximate solutions
approach the exact solutions at classical order very well. In order to analyze the absolute error
of approximation, we approximate the solutions at different scale levels, using M = 5, 6, 7,
and observe that the absolute amount of error decreases significantly with an increase of scale
level M (see Figure 2). This property also demonstrates the validity of (16). From Figure 2,
we can easily observe that, at scale level M = 7, the absolute error is much less than 10−5,
which is an acceptable number for such complicated problems. We approximate the solution
of the scheme at some fractional value of σ and observe that, as σ → 3, the result approaches
the exact solution. This phenomenon is visualized in Figure 3. Note that, for this problem, we
use the parameters as α = 1 and β = 1.

Example 5.2. Consider the coupled system of multi-term non-homogenous fractional-
order PDEs which is the generalization of some system of classical PDEs as discussed
in [11], given by

∂σU(x, y)

∂xσ
= 6

∂2U(x, y)

∂y2
+ 5

∂V (x, y)

∂y
+ F1(x, y),

∂σV (x, y)

∂xσ
= 3

∂2V (x, y)

∂y2
+ 4

∂2U(x, y)

∂x2
+ 5

∂U(x, y)

∂y
+ F2(x, y),

subject to the initial conditions U (i)(0, y) = 0, V (i)(0, y) = 0, i = 0, 1, 2,

(53)
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Figure 1. Comparison of approximate and exact solution U(x, y) (a) and V (x, y) (b) of Example (5.1).
Red dots and green squares represents exact U(x, y) and V (x, y), while the surfaces represent
approximate solutions, respectively. Here we set parameters α = 1, β = 1, M = 6 and σ = 3.

Figure 2. Absolute error in U(x, y) (a) and V (x, y) (b) of Example (5.1) at different scale levels
ranging from M = 5 to M = 7. Here we use the parameters α = 1, β = 1 and σ = 3.

where the source terms F1(x, y) and F2(x, y) are defined as

F1(x, y) = −60x4y3 − 144x4y2 − 30x3y2 + 108x3y + 48xy4 − 18y3

and

F2(x, y) = −40x4y3 − 108x4y2 + 45x3y2 − 36x3y − 96x2y4 + 72xy4 + 72xy3 + 12y3.

The exact solution of the above problem for σ = 3 is given as

U(x, y) = 2x4y4 − 3x3y3

https://doi.org/10.1112/S146115701700002X Published online by Cambridge University Press

https://doi.org/10.1112/S146115701700002X


24 k. shah, h. khalil and r. a. khan

Figure 3. (a) Approximate V (x, y) at y = 1 and at fractional values of σ, 2 < σ 6 3, of Example (5.1).
Setting α = 1, β = 1,M = 6. (b) Approximate U(x, y) at y = 1 and at fractional values of σ, 2 < σ 6 3.
Setting α = 1, β = 1,M = 6.

and

V (x, y) = 3x4y4 + 2x3y3.

We approximate the solution of the problem with the proposed method and, as expected, we
get a highly accurate solution. We found that, at small scale level M = 6, the method provides
a highly accurate solution. The comparison of the approximate solution with the exact solution
is displayed in Figure 4, where one can easily see that the approximate solution coincides with
the exact solution. We approximate the solution of the above problem for fractional values of
σ and the same conclusion is made about the behavior of the solution. The numerical solution
approaches uniformly to the exact solution at σ = 3 as σ → 3. The results for fractional values
of σ and at y = 0.5 are displayed in Figure 5 and the results at y = 0.8 are displayed in
Figure 6. This phenomenon is one of the basic properties of fractional calculus, that is, as the
order approaches from a fractional to an integer value, the solution approaches the specified
solution at integer order. This shows that the method provides the best approximate solution
for fractional values of σ.

Example 5.3. Following [3, 36, 58], we consider the coupled system of fractional-order
PDEs given by

∂σU(x, y)

∂xσ
=
∂σU(x, y)

∂yσ
+ 2V (x, y),

∂σV (x, y)

∂xσ
= −∂

σU(x, y)

∂yσ
− 2U(x, y),

(54)
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Figure 4. Comparison of approximate and exact solution U(x, y) (a) and V (x, y) (b) of Example (5.2).
Red dots and green squares represents exact U(x, y) and V (x, y) while the surfaces represents
approximate solutions, respectively. Here we set parameters α = 2, β = 2, M = 6 and σ = 3.

Figure 5. (a) Approximate U(x, y) at y = 0.5 and at fractional values of σ, 2.5 < σ 6 3, of
Example (5.2). (b) Approximate V (x, y) at y = 0.5 and at fractional values of σ, 2.5 < σ 6 3. Setting
α = 2, β = 2 and M = 6 of Example (5.2).

subject to the initial conditions

U(0, y) = sin(y) and V (0, y) = cos(y).

The exact solution of the problem at σ = 1 is U(x, y) = sin(x+ y) and V (x, y) = cos(x+ y).
In [3, 58], the differential transform method is employed to solve this problem. We apply
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Figure 6. (a) Approximate U(x, y) at y = 0.8 and at fractional values of σ, 2.5 < σ 6 3, of
Example (5.2). (b) Approximate V (x, y) at y = 0.8 and at fractional values of σ, 2.5 < σ 6 3. Setting
α = 2, β = 2 and M = 6 of Example (5.2).

Figure 7. (a) Approximate U(x, y) at y = 0.8 and at fractional values of σ, 1 6 σ < 2, of
Example (5.3). (b) Approximate V (x, y) at y = 0.8 and at fractional values of σ, 1 6 σ < 2. Setting
α = 2, β = 2, σ = 1 and M = 6.

the presented algorithm and observe that the solution is highly accurate. The comparison
of the exact and the approximate solution for M = 5 is shown in Figure 7. One can easily
note that the solution matches very well. In order to compare the accuracy of the proposed
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method against other methods in the literature, we compare the absolute error with some
results reported in [36]. These results are displayed in Table 1.

Table 1. Comparison of absolute error in the exact and the approximate solutions obtained with
the proposed method and the error reported in [36] for Example (5.3).

x \ y = 0.1 Ue
L [36] Ue

C [36] Ue
P V e

L [36] V e
C [36] V e

P

0.0 3.6(10−5) 6.0(10−5) 4.04(10−8) 3.9(10−5) 6.0(10−5) 5.4(10−8)
0.1 1.1(10−4) 3.1(10−5) 1.8(10−9) 1.1(10−4) 3.0(10−5) 5.2(10−9)
0.2 1.3(10−4) 5.5(10−5) 3.0(10−10) 1.3(10−4) 5.5(10−5) 2.6(10−9)
0.3 8.1(10−5) 9.5(10−5) 9.5(10−11) 8.1(10−5) 9.6(10−5) 3.5(10−9)
0.4 1.1(10−5) 1.2(10−4) 1.1(10−9) 1.1(10−5) 1.2(10−4) 1.2(10−9)
0.5 4.3(10−5) 1.2(10−2) 1.3(10−9) 4.2(10−5) 1.2(10−4) 5.1(10−10)
0.6 6.4(10−5) 9.3(10−5) 5.9(10−10) 6.4(10−5) 9.3(10−5) 9.9(10−10)
0.7 5.2(10−5) 4.9(10−5) 1.1(10−9) 5.2(10−5) 4.8(10−5) 5.0(10−10)
0.8 2.2(10−5) 2.3(10−5) 3.9(10−11) 2.2(10−5) 2.2(10−5) 5.9(10−11)
0.9 1.6(10−5) 6.4(10−5) 1.0(10−9) 1.6(10−5) 6.4(10−5) 1.9(10−9)

Note that UeP , V
e
P represents absolute errors in U(x, y), V (x, y), respectively, obtained using

the proposed method.

6. Conclusion and future work

The method presented in this paper is a simple and highly accurate method for approximating
a numerical estimate of coupled systems of fractional PDEs. We observe that the error of the
approximation is much less than 10−5, which is an acceptable number. We believe that this
paper will act as a basis for establishing other numerical schemes for much more complicated
problems arising in the recent fields of biomedical and mechanical engineering and other
branches of science.
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