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Abstract

The Fitting class (of finite, soluble, groups), Of, is said to be Hall ir-closed (where IT is a set of primes)
if whenever G is a group in g and H is a Hall w-subgroup of G, then H belongs to gf. In this paper,
we study the Hall w-closure of products of Fitting classes. Our main result is a characterisation of the
Hall w-closed Fitting classes of the form 2f#©^ (where <&m denotes the so-called smallest normal
Fitting class), subject to a restriction connecting ir with the characteristic of g. We also characterise
those Fitting classes g (respectively, ©) such that 3E#g (respectively, 5E)#3E) is Hall ir-closed for all
Fitting classes X. In each case, part of the proof uses a concrete group construction. As a bonus, one
of these constructions also yields a "cancellation result" for certain products of Fitting classes.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 10, 20 D 25, 20 E 22.

1. Introduction

All groups considered in this paper are finite and soluble, and all classes of
groups considered are subclasses of the class @ of all finite soluble groups. A
Fitting class g is a non-empty class of groups such that (1) if G E g and N <<7,
then N G g, and (2) if G = NtN2 where N, <G and Nt G g, then G G g.

Let IT be a set of prime numbers. The Fitting class g is said to be Hall
w-closed if whenever G G g and H is a Hall w-subgroup of G, then H G g,
while g is said to be Hall-closed if it is Hall T-closed for all sets T of primes.
Bryce and Cossey (1975) showed that the so-called smallest normal Fitting class,
denoted by <3t, is Hall-closed, and this result serves as a starting point for some
of our work here. More recently, Cusack (1980) has given a criterion for the Hall
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ir-closure of Fitting classes in terms of the "join" operation (see Section 8
below), although we will not be concerned with this aspect here.

If IT is a set of primes, then ir' denotes the complementary set of primes and
<SV denotes the class of all (finite, soluble) w-groups. The Fitting class g is
clearly Hall 7r-closed if either S , C g or g C ©„,. These two conditions are both
cases of the single condition

(y) g n @ , = @wno, where o = char(g) (see below),

and it is not hard to check that g is Hall ir-closed if it satisfies (y). Although
there exist many Hall ir-closed classes which do not satisfy (y), for example the
class ©„, and the class Sft of nilpotent groups, the results of this paper indicate
that classes satisfying (y) play an important part in the Hall ^--closure of certain
products of Fitting classes. If IT is the set of all primes, or if m contains only one
prime, then any Fitting class is Hall w-closed, and so we often exclude these
cases.

The Fitting class product g # © of Fitting classes g and © (see Section 2) has
occasioned considerable interest, especially in the case © = <§,. The fundamen-
tal properties of this product were developed by Cossey (1975), and further
results have been proved by Beidleman (1977), Hauck (1979a) and Hauck
(1979b). Here, we prove a number of results concerning the Hall w-closure of
products of Fitting classes, taking classes of the form g#@,, as our chief
interest.

Our main result, Theorem A, carries on the investigation of products of the
form g # @ , by determining which of these classes are Hall ir-closed, subject to
a restriction connecting m with the characteristic of g. Examples are given to
show that some restriction is necessary for the result to hold.

Theorems B and D are concerned with the Hall w-closure of general products.
Theorem B determines those Fitting classes X such that £ # g is Hall w-closed
for all Fitting classes g, while Theorem D determines those Fitting classes •£
such that g # £ is Hall w-closed for all Fitting classes g.

In each of Theorems A, B and D, one direction of the proof is relatively easy,
if not trivial, while the other direction uses a concrete group construction. As
something of a bonus, the construction used for Theorem B yields several
further results. One of these results, Theorem C, is a cancellation property for
certain products of Fitting classes, which generalizes a theorem of Hauck
(1979a).

The paper is divided into eight sections. The second contains background
material for the convenience of the reader, while the third gives three lemmas
which we shall need for Theorem A. The fourth section outlines several methods
for constructing Hall w-closed products. Section five is devoted to the proof of
Theorem A, while Section six contains the proofs of Theorems B and C.
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Theorem D is Section seven, while the final section mentions Cusack's work, for
completeness, and discusses the general case of Theorem A.

Certain results in this paper are developments of results in the author's Ph.D.
thesis at The University of Warwick. We would like to thank Dr. Trevor Hawkes
for his supervision of that thesis, and The Royal Commission for the Exhibition
of 1851 for financial support. We would also like to thank the referee for
shortening considerably our original Construction 5.3.

2. Background material

Let 5 be a Fitting class and G be a group. The g-radical of G, denoted by G5,
is the largest normal subgroup of G which lies in g. The characteristic of g,
denoted by char(g), is the unique set -n of primes such that ^ C g C <BW, where
9Jff = 9? n ©„: that such a set exists is shown in Hartley (1969). We say that g is
closed under taking subdirect products if whenever A ,̂ N2 <G with
G/Ni, G/N2 G g, then G/(N1 n N2) G g. The set of all prime numbers is
denoted by P, the set of natural numbers by N. If p G P and IT C P then SyL/G)
and Hall^(G) denote the set of Sylow /^-subgroups and the set of Hall 77-sub-
groups, respectively, of G; further, Op{G) will denote the largest normals-sub-
group of G. If n G N, then char(n) will denote the set of prime divisors of n,
while Cn will denote a cyclic group on order n.

If g is a Fitting class, Lockett (1974) defines classes g* and g , by

g* = (G e @: G X G = (G X G)S(G X 1)); and

F* = H (G: G is a Fitting class with @* = g*),

where G X G denotes the direct square of G. The following properties of the
classes g* and g% are relevant here; these properties are proved in Lockett
(1974), except where otherwise indicated.

2.1 THEOREM (Lockett). Let g and © be Fitting classes. Then

(a) g* and g+ are Fitting classes and

(S,). = g» C g C g* = (g*)*;

(b)

S* C © C g* if and only if ®* = g*,

if and only if ©„ = g#;

(c)(gn©)* = g* n ©*;
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(d) // g C © tfie/j g* C @* anrf (Bryce and Cossey (1975), Corollary 3.5),

C ©,;
(e) ' / g « closed under taking subgroups, quotient groups or subdirect products,

then g = g*;
(f) ifGandH are groups then (G X i / ) g . = Gg. X 7/g.;
(g) i/ G e g fte/i [G, Aut(G)] < G% ; and
(h) char(g#) = char(g) <WK/ I/I particular, 31 C ©„.

A Fitting class g with g = g* is called a Lockett class. A Fitting class g with
g 2 @* is called a normal Fitting class: it is shown in Lockett (1974), Theorem
2.2, that this definition of normal Fitting class is equivalent to that given by
Blessenohl and Gaschiitz (1970), except that Belssenohl and Gaschiitz allowed
the trivial Fitting class, (1), to be considered normal.

If g and © are Fitting classes, their product g # © is defined to be
g # @ = (G e @: G/G^ G ©).

It is well-known that g # © is again a Fitting class, and that the product is
associative. The following results of Cossey (1975) will be of use to us.

2.2 THEOREM (Cossey). Let g and © be Fitting classes.
(a) If%is normal, then so also are g#@ and ©#g.
(b) / / G is a group with G/G% <£ <Bm, then G <£ ©,.
(c) //3f, = S* n @«, then F#<3, = g*#@».

If 77- is a set of primes and g is a Fitting class, define

%.(&) = (G e @: HalUG) C g).

It is easy to check that ^ ( g ) is again a Fitting class. Properties of 5C^(g) are

proved in Hauck (1978) and in Brison (1979); the next proposition lists some

facts whose proofs may be found (where necessary) in the latter paper.

2.3 PROPOSITION. Let g and © be Fitting classes and let w and a be sets of
primes. Then

(a) ^(3Co(g)) = %.na<S);
(b) */g C © then %,(%) c %T(©);
(c) 3
(d) 3
(e) g « Hall m-closed ijand only j / g C
(f) char(^(g)) = tt' u char(g).

It is shown in Brison (1979) how part (d) of this result may be used to deduce
the following results of Bryce and Cossey (1975), Theorem 1.3 and Corollary
4.15.
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2.4 T H E O R E M (Bryce a n d Cossey) . Let it be a set of primes. Then
(a) the class ©, is Hall IT-closed; and
(b) (©,) , = ©„ n ©,.

We will use part (a) of this result without explicit mention.
The next fact will be crucial for the proofs of several of our results.

2.5 THEOREM (Berger; Laue, Lausch and Pain, Bryant and Kovacs; Cossey).
Let s and t be distinct primes. Then © , # © , (£ ®#. Specifically, there exists a
group H = H(s, t) e © , # © , such that 0,(H) = 1, while 0s(H) = H' = H@ ,
and \H/Ot(H)\ = /.

In the case where t\s — 1, the existence of H(s, t) in this theorem is shown by
Berger (1976), Proposition 3. In the case where t\s — I, the existence of H(s, t)
is a well-known consequence of the main theorems of the papers of Laue,
Lausch and Pain (1977) and of Bryant and Kovacs (1978); for example, a
construction of a suitable group H(s, t), given the results of Laue, Lausch and
Pain and of Bryant and Kovacs, is recorded in the thesis Brison (1978), Section
4.7.

If G is any group and n is a natural number, then G" will denote the (external)
direct product of n copies of G. Now suppose that A and B are groups, and let
W = B wr A denote the regular wreath product of B by A. Then we may regard
W as a split extension of a group B* by A, where B* — B^ is called the "base
group" of W. If C < B, then C* will always denote the corresponding subgroup
C* = {(c,,..., c^|): ct €: C) of B*. The following result is proved in Cossey
(1975), Lemma 2.2.

2.6 LEMMA (Cossey). Let g be a Lockett class and let A and B be groups. If
2? <2 g, then (B wr

Finally we mention a well-known method for constructing groups with a
unique chief series.

2.7 LEMMA. Let G be a group with a unique minimal normal subgroup N, where
N G ©^ for some prime p. Let q be a prime different from p. Then G possesses a
faithful irreducible GF{q)-module.

The above result follows because the regular GF(q)-modvle for G is com-
pletely reducible as an ^-module, by Maschke's Theorem. Repeated application
of this lemma yields the following result.
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2.8 COROLLARY. Let px, . . . ,pr be a sequence of primes with pt ¥=Pi^i for all
relevant i. Then there exists a group M with a unique chief series

1 = Mr <\Mr_x < • • • <M, <M0 = M,
and where Mi_l/Mt is an elementary abelian p^-group, i = \, . . . , r. If
|A/,_]/M,| = /?/*, then at = 1, and we will denote such a group M by M =
M{pr\...,Pi).

3. Preliminary results

3.1 LEMMA. Let AT denote a semi-direct product of a group A by a group T,
where \ T\ = / G P, and suppose that A = {AT)'. Let D = {{d, .. ., d): d G T)
< {AT)1. ThenA'D G ©„.

PROOF. Let C = <c> denote a cyclic group of order t, and form W =
{A T) wr C. We adhere to the notation for wreath products in Section 2. If
1 < / < t and x £ AT, then xt will denote the element

, . . . , x,...,

We may suppose notation chosen so that

xf = x, + 1, 1 < / < t — 1; and

x, = x,,

for all x & AT.
Choose d G T with rf =̂  1 and let / = dx • • • d, G T*. Then /!*</> as A 'D

)'. Since d' = 1, we have

But 44"1! = 4(^c)"' G W" for all relevant i, and s o / G »F'. Since A =
then^*</> < W G ©„. But »F//1* s C , w r C , e ©„ and soy4*</> is subnor-
mal in W. Thus A *</) G ©„,, and the result follows.

3.2 LEMMA. Let D be a group with subgroups X, Y and Z such that D = XYZ
and X n Y = 1. Suppose that X <D, that Y <1YZ and that Crz{Y) < Y. Let g
fee a Fitting class with {XY)% = X%. Then D% = A^.

PROOF. Since Z>g and A'X are normal in D, we have

[D&XY] < {XY)z = X^ < X,
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and so D% < J = CD(XY/X). But X < J, and so by Dedekind's law we have

J = J n XYZ = X(CYZ{XY/X)) = XCYZ(Y),

since Y <YZ and X n Y = 1. But Cy z(y) < F, and so Z>g < * 7 . Thus
Dg = (XY)S = A^, as claimed.

The next result follows from Satz 4.1 of Hauck (1979a).

3.3 THEOREM (Hauck). Let 31 be a Fitting class and g) be a Lockett class such
that 3E C3). Let p be a prime with •£* #<Sp (£ ?). Then there exist groups N e £
a/tt/ ^ < A u t ^ ) , w/fA | A | = T>, JMC/J that the semi-direct product NA satisfies

NA eg).

4. Some products which are Hall-closed

In this section we produce several examples of products of Fitting classes
which are Hall w-closed. Our main interest is in products of the form 3#@*;
however, the first result disposes of products of the form ©„ # 5 , among others,
and gives one direction of Theorem D.

4.1 PROPOSITION. Let TT be a set of primes and let X be a Hall ir-closed Fitting
class. If @w C X*, then 3E#g is Hall ir-closed for all Fitting classes g.

PROOF. Let G E j # g , and let H e HallT(G). Since X is Hall w-closed then
H n Gj < tfj. Now H e 3E* and so Hx > H' by 2.1(f). But H/(H n Gj) =
HGX/GX, and \HG3i/Gdi\ is a char(g)-number. Thus H/H£ is an abelian
char(g)-group, and so H E J # g . The result follows.

The hypotheses on X in the above result are satisfied by any Hall 7r-closed
normal Fitting class, and in particularly by the class ©,,.

4.2 LEMMA. Let 1) be a Fitting class of characteristic a, and let IT be a set of
primes such that @wno C 1)*. Then

(®*#@,) n ©„ = (©#©*) n ®w.

PROOF. Let 8 = w n a. Now ®* n @w = @s by the hypotheses, and so

(©,)„ = ((©,),), c (2), n ©,), c (© n <5X c (®* n ©.). = (@a)*,
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by 2.1 (a) plus repeated application of 2.1(d). Thus

(® n ©.)„ = (@a)«, = @« n @» = (©• n ©„) n ®, = (© n ©„)• n ©„

the second equality by 2.4(b) and the final equality by 2.1(c, e). However,

(©*#©„) n@T = ( (®n ©,)•#©,) n ©,; and

(©#©,) n @w = ((© n ©.)#©*) n ©„

and so the assertion follows by Cossey's lemma 2.2(c).

The next result will, in Section 5, give one direction of Theorem A.

4.3 PROPOSITION. Let % be a Fitting class of characteristic a, and let IT be a set
of primes such that @wna C ®*. Then ®#@+ is Hall ir-closed.

PROOF. Let S denote IT C\ o and let % denote <St; then ®* n ©, = 5t. Let
G G ®#@», and let H e HallT(G).

Set AT = H n Gj,. Then ^ / A T » HG^/G^ G ©„ since (5, is Hall w-closed
and G/G® E ©,. But now by 2.2(b), (H/K)/(H/K)X G ©^. Since A" G St and
(H/K)^ = ^ / A " , it follows that H/Hx G ©„. Since Hx = ^ j , . , it follows that
H G ©*#©„. Applying 4.2, we find that # G S)#©#, and the result follows.

The next result will be used in the final section to show how the conclusion of
Theorem A (see Section 5) can break down if a hypothesis on the sets of primes
involved is omitted.

4.4 PROPOSITION. Suppose that the Fitting class 3£ and the sets IT and r of primes
satisfy either of the following conditions:

(a) T C TT; or

H

Then if © is any Hall IT-closed Fitting class, it follows that the class 9CT(3E)#@
is also Hall -n-closed.

PROOF. By 2.3 we have

(1) ^(3CT(3E)#©) = %nnr(X)#%v(®).

Suppose firstly that T C I T . Since © is Hall w-closed and T = m D T, it follows
from (1) and 2.3(e) that

and so 9CT(£)#@ is Hall 7r-closed.
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Suppose next that r $ it, and that condition (b) holds. Then »r n T C T \ { / ) }

for some p G T, and so <Bvnr C X. Thus @ = %,nT(<Svnr) C 3CffnT(£), by 2.3.
But now by (1), we have

(%T(z)#®) c @ = XT(!K;T(X)#©),

and the result follows.

This section on products which are Hall w-closed ends with the following
result, which is very easy to check.

4.5 PROPOSITION. Let IT be a set of primes and let g and © be Hall it-closed
Fitting classes. If © n ©„ is closed under taking quotients, then 3 # @ is Hall
IT-closed.

5. The proof of Theorem A

Theorem A will be proved by a sequence of lemmas and constructions.
Numbering of equations and other statements in the text will run consecutively
through the section.

THEOREM A. Let % be a Fitting class of characteristic a, and let it be a set of
primes with it u a =£ P. Then ® # © „ is Hall tr-closed if and only if @wno C 2)*.

In Section 8, it is shown that the assertion of Theorem A can break down in
the case that m U a = P.

We obtain the following immediate corollary.

5.1 COROLLARY. Let 2) be a Fitting class of characteristic a, where a ^ P. Then
£)#©„ is Hall-closed if and only if ®* = <Sa.

If <Bnna C 5)*, where a = char(5D), then it follows from 4.3 that ® # @ , is
Hall ir-closed, and so it remains to prove that "only if' assertion of Theorem A.

We now fix for the rest of this section a Fitting class 5D of characteristic a, and
a set IT of primes with IT u o ¥=P and <&wn<, $ ®*. We shall construct a group
which belongs to ® # @ , , but which has a Hall w-subgroup which does not
belong to $ )#©, , and Theorem A will follow.

Let g = ®* and let S = it n a. Since <&s $ g, then |8 | > 2.
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5.2 LEMMA. There exist groups P and N, and groups Ax < Aut(/*) and A2 <
Aut(Jv) with \AX\ = \A2\ = / G 8, such that

(i) P is an elementary abelian p-group, where p G P\ (T7 n o), with

P=[F,AX] and (PAX\ = (PA^=\;

and
(ii) (NA2\ = {NAJv =N_<E<5sn <D.
Here, of course, PAX and NA2 denote the natural semi-direct products.

PROOF. Since <BS $ 5, then the£e exists t G 8 with (g n ©»)#©, $ @ n ®4).
Choose /> G P\(w U a), and let P be a faithful irreducible G/(/>)-module f°r a

cyclic group Ax of order f: such a module exists by 2.7. We identify Ax with the
corresponding subgroup of Aut(/*), and form PAX. Then P = [P, ^4,] and

By 2.1(c, e), we have (® n ©«)* = S n S{, and so by 3.3 there exist groups
NJE 2) n ©, and ^ 2 < Aut(W) such that |^2| = ? and M42 ^ g. But then

= JV. This completes the proof.

5.3 CONSTRUCTION. We take groups P, N, Ax and A2 as in the conclusion of
5.2.

Choose s G 8 with s ¥= t: this is possible because \8\ > 2. By 2.5 there exists a
group ST G @,#@,\@t where S = (^(ST) = (ST)' and T a C,, while 0,(57)
= 1.

Let (? denote either P or N, and let A denote either A, or /12 according as Q
denotes P ox N respectively. Form

W= W{Q) = (QA) wr ST,

and let

L = L(Q) = [A*, S] <A*ST,

where (QA)* = Q*A* denotes the base group of W as in Section 2. Then
L = [L, S] by Gagen (1976), Corollary 0.2, and so

(1) LS = (LST)'; and

(2) L = F(LST), the Fitting subgroup.

Now (QA\ = Qs G 35, by 5.2. Since g is a Lockett class, then (QA)^ =
W " 25 e ®- But 2*^ <(^)*, and so (Q*L\ = gg.

Let C = C(<2) = [g*, LST]. Then

(3) C = [C,LST],

by Gagen (1976), Corollary 0.2. Now CL <Q*L, and so

(CL)F = CL n (e*L)f = C L n 0 = C f £ A
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the final equality because C <\Q* and Q* n L = 1. Since C^L) < L by (2),
then we may apply 3.2 with A' = C, Y = L and Z = ST to conclude that

Now set P = C(P) < />* and TV = C(N) < N*. Taking Q successively equal
to P and N, we obtain groups

G(P) = PLST, and G(N) = NLST,

respectively, noting that L(P) and L(N) are isomorphic as ST-operator groups
and can be identified, so that LST may be regarded as a group of operators on
both P and N. We note that

(4) (NLST)x = N G ®.

5.4 LEMMA. /« the group PLST constructed above, we have C^-^P) = 1.

PROOF. In the notation of 5.3, and letting A = Ax, we have 1 =£ P = [P, A]
and \A\_= t G P. Thus CA(P) = 1, and so CA.(P*) = 1. Suppose that au G
C^.^j^P*), where a G A * and M G ST, and suppose further that u ¥= 1. Then by
the wreath product construction, the element u must move some component in
the direct product P*. Since A* normalises each component of P*, then au must
move some component, contrary to choice. Thus u = 1 and so CA»ST(P*) =
CA.(P*) = 1. Thus C^riP*) = 1. But P* = Cp.(LST) X P, by Gagen (1976),
Corollary 0.5, and so CLST(P) = 1, as claimed.

5.5 CONSTRUCTION. We start with the group PLST of 5.3. Form (PLST)',
where t = | T\ G S. If X < PLSr and 1 < / < t, define the following subgroups
of (PLST)':

Xt = {(1 JC l):x&X};

** = * , X • • • XI, ; and

Note that D has order / and normalises each of the groups /*,-, L, and Sit and
that PjL/SiD a PLST for all relevant /.

Let O = (PLS)*D. It follows from (1) and (3) that (PLST)' = PLS. Thus by
3.1 we have

Now let A: = P*L,S, <$ . Then <f>/K a LST. Now recall the group NLST
constructed in 5.3. We may define an action of <&/K on iV by requiring that
N($/K) as NLST. This action may be inflated to an action of $ on N; let 0
denote the semidirect product N<& so obtained.
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5.6 PROPOSITION. The group 0 constructed above lies in both g#©^ and
„, while a Hall w-subgroup of 0 lies in abelia of these classes.

PROOF. We retain notation from 5.3-5.5.
Since P% = 1 and N G g then (N X i»*)s = N. Now, C^P) = 1, by 5.4,

and so CL.S.D(P*) = 1. Taking X = N, Y = P* and Z = L*S*D in 3.2, we
find that 0 g = JV. Thus 0 / 0 5 » $ G ©,,. Since JV E 2), we have

6 G g # @ , and 9 G ©#©, .

Since iV < 0 then / / = NL*S*D < 0. By construction, /» G ©„. and # G
©„; thus i / e Hallw(0). We may write H = (NLxSx)LxSxD. Now,

(NLj^X = (iVL. X L,5,)g = TV X (L.S.Jg,

since g is a Lockett class and (NLX)^ = N by (4). Further, Q|5lO(Z-i) < Lx

because of (2). Now taking X = NLXSX, Y = L, and Z = 5,Z) in 3.2, we
conclude that

Let © denote either 5D or g. Since L, G @, C 2) C g, then N X Lt < H@ <
N X L ^ . Thus H/H% is isomorphic to a factor of (LlSl X 5,)£> by a normal
subgroup, M say, contained in Sv But then ((£,£, X S^D/M)^ =
(L, X 5,)/M, and so

Since ST & <Bm by choice, it follows from 2.2(b), that H/ H% £ ©„, and thus
that

H <£ g # @ , and H & £)#©».

This completes the proof of 5.6, and, with it, the proof of Theorem A.

6. The proofs of Theorems B and G

If G G @ and m C P, then w-soc(G) denotes the product of all minimal
normal w-subgroups of G, while soc(G) denotes P-soc(G). Note that TT-SOC(G) is
a direct product of elementary abelian groups, and that soc(G) > 1 if G > 1.

The proofs of Theorems B and C use the following construction.

6.1 CONSTRUCTION. The ingredients for the construction are as follows.
(a) Fitting classes g and ©.
(b) A class Q of groups which is closed under taking quotients, and a Fitting

class X with Q <t 3E.
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(c) A group T of minimal order in Q\£; clearly T > 1.
(d) A set 7r of primes with T G <3V.
(e) A group C 6 g with a normal subgroup D <G, such that G/D s soc(r),

and with a subgroup L G Hallw(G) such that L% = L@. = L n D.
We shall construct a group 0 G g#3E, with a subgroup $ G HalL/0) such

that $ £ ©#X.
To commence the construction, let N denote soc(T). Then G/D = N is a

non-trivial abelian group. Let T denote T/N, and form the regular wreath
product W = G wr T. In the usual notation for wreath products, G* = G'f' is
the base group of W.

Now W/D* = (G/D)WT Ta*Nwr T, by elementary properties of the
wreath product. By Huppert (1967), Kapitel I, Satz 15.9, there exists an injection
j : T -> W/D* = (G* f)/D* such that (by a reading of the proof),

(1) Nj < G*/D*.

Let 0 denote the complete pre-image in W of Tj; then D* < 0 and &/D* a
r.

By construction, L* is a r-invariant Hall w-subgroup of G*, and so L* T G

Hall,/HO.
Let $ = 0 n L*f. Since W/Z>* G ©„, then the Hall w-subgroups of W are

conjugate under D* < 0, and it follows that

$ G HalL/0),

and then that

(2) $nG' = $n L*.
Let K* denote Z>* n L*, and note that /iT* < 4>. Then by (2),

(3) r = $nO'nL'=$nc*nD* = $nfl*.
Now 0 = Z)*4» by considerations of orders, and so

(4) t>/K* at @/D* at T & X.

But soc(0/Z>*) < (0 n G*)/D* by (1), and so

soc(O/AT*) < ($ n L*)/K*,

by (2) and the first isomorphism in (4).
By assumption, and the fact that @* is a Lockett class, K* = L^., and so

K* < <E>@.. Suppose that K* < 4>@.. Then ®&./K* n soc($/^:*)#l. Since
L*/K* is abelian, it follows that K* < $@. n L* <L*. However, $@. n i * <
$@. by (2), and so <V n L* < L@., contrary to K* = L| . . Thus ®@. = AT* G
©, and it follows that $ ^ ©#£ .

Now, G* n 0 <<G*, 0> (= W7) because G* <JT, while Z ) ' < G * n e and
G*/D* is abelian. Since G* G 3, then G* n 0 < 0S . But (G* n ©)/£>* > 1
by (1), and so D* < 0®. Since 0/Z>* at T, it follows by the minimal choice of
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T E Q\X, and the fact that Q is closed under taking quotients, that 0 / 0 g £ X.
Thus 0 £ g#X.

Starting with the "ingredients" outlined above, we have now constructed a
group © £ g#X, with a Hall w-subgroup 4> £ ©#X. This completes the con-
struction.

The above construction will now be used to prove two results about the Hall
7r-closure of products of Fitting classes, plus a "cancellation result."

Recall that if w is a set of primes then the class

3W = (G £ @: TT-SOC(G) < Z{G))

is a subdirect-product closed Fitting class, and so is a Lockett class in view of
2.1(e): see Bryce and Cossey (1974).

THEOREM B. Let X be a Fitting class and m be a set of primes with \ir\ > 2 and
•7r¥=P. Then g # X is Hall -u-closed for all Fitting Classes g if and only if ©„. C X.

PROOF. If ©„ c X, then g#X is trivially Hall Tr-closed for all Fitting classes g,
and so it remains to prove the converse.

Thus suppose that <3V (£ X, and let T be a group of minimal order in @,\X.
Let iV = soc(T); then N is non-trivial and is a direct product of its elementary
abelian Sylow subgroups. Suppose that

\N\ = /> f "P%
where the pt are distinct primes in m. For each / £ {1, . . . , / • } , choose qt £ w
with qt i^Pi'. this is possible because \IT\ > 2. Choose u £ P\TT. For each /,
construct a group

M,. = M(u\q?,Pi),

with unique chief series, as in 2.8. Since u & -n and soc(A/,) is a w-group, then
M, £ Zv. If //, £ Hall (M,), then soc(//() is a non-central 4r,-group, and so
//,. $ 3 . . Further, A/,/A// » Cpr

Let G = A/f' X • • • x A C and let £> = G'. Then G/D as AT. If L £
HalL,(G), then L ^ 3W, while the abelian group L n D belongs to 3V.

Now perform construction 6.1 with g = © = Qw, with Q = <BV, and with X,
7", 77-, G, Z) and L as above. We obtain a group 0 £ 3^#X, having a Hall
7r-subgroup $ Q: 3W#X. Thus the class 3W#X is not Hall w-closed, and the
theorem is proved.

We refer to Theorem D for comparison with Theorem B.
It follows from the above that if 9#X is Hall-closed for all Fitting classes g

(and fixed X), then X = @.
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As a second application of Construction 6.1, it will be shown that in certain
circumstances, the Hall 77-closure of a Lockett class g can be inferred from that
of g#X. We will need the following lemma, whose proof may be found in Bryce
and Cossey (1974), Lemma 1.1.

6.2 LEMMA. Let G be a group with normal subgroups N, M such that G/NM is
nilpotent and N n M = 1. Let g be a Fitting class with G/N Gg . Then C e g
if and only i/G/M E g.

6.3 PROPOSITION. Let £ be a Fitting class of characteristic T, and let IT be a set
of primes. Suppose that i / f G i f l T , then there exists s E w n T with @, #@j (£
X. Let g be a Lockett class such that g#X is Hall n-closed. Then g '•* Hall
IT-closed.

PROOF. Let ® = %„(%); then © is a Lockett class by 2.3(d). Suppose that g is
not Hall w-closed, and let H be a group of minimal order in g\@. Then H has a
unique maximal normal subgroup E = H&, which has index t in H, for some
/ E IT. Let M G HalL,(G). Then M n £ = Mg = M@. There are two cases to
consider.

Case 1. Suppose that t $. r. Then let T be a cyclic group of order t.
Case 2. Suppose that / G T. Choose s G IT n T with ©,#©, $ X, and let T be

a group of minimal order in (@r#@J)\X. Then T has a unique maximal normal
subgroup, which coincides with Tx, and \T: Tx\ = s. It follows that T' G
Syl,(r), and then by 6.2 and the minimal choice if T, we find that 0s(T) = 1.

In either case, soc(T) is elementary abelian of order t" for some n > 1. Define
G = Hn and D = £"". Define L = M"; then L n £ = L 9 because © is a
Lockett class. Let £l = <3t if Case 1 applies, and let D = ©,#©, if Case 2
applies. Now perform construction 6.1 with g, ©, Q, X, 71, w, G, D and L as
defined here. We obtain a group 0 G S#X which has a Hall w-subgroup
$ <2 @#£. Since ©„. n S = ©„ n ©, by the definition of % = DC,(5), it follows
that $ £ 5#X, and so S#X is not Hall w-closed. This contradiction completes
the proof.

Note that by 2.5, we may take X = @, in the above result.
We now come to the promised cancellation property for certain products of

Fitting classes. We need a result of Hauck (1979b), Lemma 3.5, which for these
purposes may be stated as follows.

6.4 LEMMA (Hauck). Let g and © be Fitting classes with g $ ©*. Then there
exists / / E g such that H® = H&. is the unique maximal normal subgroup of H.
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6.5 PROPOSITION. Let g, © and X be Fitting classes with g#X C ©#X.
Suppose that if t G char(X) then there exists s G char(X) with <B,#<BS <£ X. 77ie«
g* c ©*.

PROOF. Suppose that g $ ©*• Let / / G g be as in the conclusion of 6.4; then
C = /Z® = /f@. has prime index t in H. If / £ char(^f) then / / G
(g#X)\(@#X), contrary to assumption. Thus t G char(X), and so there exists
s G char(X) with <3,#<&s (£ X. Let Q = <Bt #<3S, and let 71 be a group of minimal
order in £}\X. As in the proof of 6.3, soc(T) is elementary abelian of order /",
where n > 1.

With n as just defined, let G = H", and let D = C < G. Then G/D at
soc(r), while since ®* is a Lockett class then Gm. = D G ®.

Now perform construction 6.1 with g, ©, Q, •£, r, G and D as above, and
with 7T = P, and L = G. We obtain a group @ = $ G Hallw(0) such that
9 G (g#£) \ (©#£) , contrary to hypothesis. Thus 3 C ©*, and so g* C ©*.
This completes the proof.

It is not hard to find classes satisfying the hypothesis on X in 6.5; for example,
we may take X = 9?, the class of nilpotent groups, or, more generally, X = 2) X
3, where 3) and 3 are non-trivial Fitting classes of co-prime characteristics. It
may also be verified that the class of groups with central socle satisfies the
hypothesis on X. Possibly the most interesting consequence of 6.5 is given in
Theorem C below. Theorem C has been proved in the case that X, = @, by
Hauck (1979a), Satz 6.1, and Hauck's result had originally been conjectured by
Cossey (1975), page 293.

THEOREM C. Let Xbe a Fitting class with |char(X)| > 2. Let g and % be Fitting
classes with g # X , C ©#X,,. then g* C ©*.

PROOF. If s and t are distinct primes in char(X), then ©,#©, $ @_ by 2.5,
while X* C @, by 2.1(d). The result now follows immediately from 6.5.

7. The proof of Theorem D

We start by recalling the definition of a certain family of Fitting classes.
While these classes are "well-known", and are due to Gaschiitz, they seem
tohave been sparsely documented in the literature, except in the thesis of
Lockett (1971).
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Thus let 2f be a Fitting class and q be a prime. Define
e
q&) = (G e @: The G-chief q-lactors of G lying in Gg are G-central).

It is proved in Lockett (1971), Proposition 2.2.1, that e?(g) is a Lockett class.

THEOREM D. Let £ be a Fitting class and m he a set of primes with \IT\ > 2 and
IT ¥= P. Then 3£#3 is Hall ir-closed for all Fitting classes % if and only ifX, is Hall
•n-closed and @w C X*.

PROOF. The "if" assertion has been proved in 4.1.
Suppose that 3E#g is Hall w-closed for all Fitting classes g . Then X = X # ( l )

is Hall w-closed, where (1) denotes the Fitting class of groups of order 1.
Let 21 = X*, and suppose for a contradiction that ©„ (£ 21. By 6.4, there exists

a group H G <3V such that Hx = / / a is the unique maximal normal subgroup of
H. Then \H: H%\ = p G TT, and # a > # ' .

Choose <7 G 7T\{/>}, and r G P \w. Construct a group A/ = M(/-6, 9",/>) as in
2.8, with a unique chief series

1 < M2 < M, < M, for some a, Z> G N.

Form the regular wreath product W = H wr M, with base group W* in the
usual notation. By 2.6, it follows that

and so ^ a = Ws and ^ / W j a C f w r M . Let 9?2 denote ^ # 9 ^ , the class of
meta-nilpotent groups. It is easy to check that

(Cp wr M)^ = (Cp)*M2.

But now

Thus W/ Wx G eq(9l2), and so W G
Let /<: G Hallw(Af). Then L = H*K e Ha\ln(W). If L x { i/*, then, as in the

proof of 3.2, we find that

CM{H*/HZ) > C(H*/H*) > 1,

which is impossible by the wreath product construction. Thus L s = H£ and
(L/L^i = (#*<2) /L s , where (? e Syl,(A:). But g ^ Z( /Q by construction of
A/, and so L/Lx $. eq(3l2). But now L ^ -E#e9(9

(l2), and so 3E#e9(9^) is not
Hall w-closed, contrary to assumption. This completes the proof.

7.1 COROLLARY. Let X be a Fitting class. Then X # g is Hall-closed for all
Fitting classes g // and only if X is a Hall-closed normal Fitting class.

https://doi.org/10.1017/S1446788700024502 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024502


162 Owen J. Brison [ 18 ]

8. Concluding remarks

The paper by Cusack (1980) contains several results on the Hall 7r-closure of
normal Fitting classes. Theorem 1 of Cusack's paper states that if w is any set of
primes with \ir\ > 2 and 7r =̂ P, then there exists a normal fitting class which is
not Hall ^-closed. This result follows from each of our Theorems A and B,
although the class produced by Cusack is different to any of ours. Theorem 5 of
Cusack's paper gives a criterion for the Hall 7r-closure of any normal Fitting
class in terms of the "join" operation, where if g and © are Fitting classes then
their join g V © is the smallest Fitting class which contains both g and @. In
fact, slight modifications to Cusack's proof, plus the use of certain properties of
the %„() operator listed in Brison (1979), yield a criterion for the Hall w-closure
of an arbitrary Fitting class, as follows.

8.1 THEOREM (Cusack). Let g be a Fitting class and m be a set of primes. Then
g is Hall ir-closed if and only if

This result may be put together with certain of our results, to perhaps shed
some light on the join operation.

Finally, recall that Theorem A carries a restriction on the sets of primes
involved, namely that IT U a =£ P, in the notation of Section 5. It might be of
interest to determine the full picture, and we mention here some fragments of
progress in that direction. Because of 4.3, the restriction is not needed for the
"if" part of Theorem A, but the following examples show that some restriction is
necessary for the "only if" part.

Firstly, let p b e a prime and © be a Fitting class. Note that %p(l) = <3p:
Taking X = (1) and T = {p} in 4.4(b), we find that (£p,#® is Hall w-closed
whenever © is. In particular, it follows from 4.3 that (<5p.#<Bp)#<g, is Hall
^-closed for all m C P. In this case, a = m u a = P, and certainly <3vna = @, <J
(&p.#<5p)* whenever m properly contains {/>}.

Next let 7r = {p, q, r) and p = {p, q), where/?, q and r are distinct primes.
Taking m = r in 4.4(a), we find that the class 9Q(SRp)#@» is Hall w-closed. In
this case, a = char(5Cw(9fJp)) = i u p, and so m u o = P. However, w n a = p,
and it is clear that @p $ %r(^p) = (9C,,(9?P))*, the latter equality because of
2.1(e)and2.3(d).

We note that if X, -n and T satisfy 4.4(a) or (b), then either 3£ = (1), T = {/>}
and %T(T) = gy, or else m u char(XT(X)) = P.

The above examples show how Proposition 4.4 may be used to manufacture
Fitting classes ® of characteristic a such that 5D#@, is Hall w-closed, where
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•n u a = P, and <3vna <J ®*. Another approach is to try to find conditions on
the fitting class 5D which ensure that ®#@,, is not Hall w-closed, and we now
restrict attention to this aspect.

Some immediate information is provided by Proposition 6.3: if % is a Lockett
class which is not Hall w-closed, then g # @ ^ is not Hall w-closed. In the thesis
Brison (1978), it is shown that ©#©„, is not Hall-closed for a number of Fitting
classes 5D of full characteristic. One result in this direction is the following, which
is proved by an elaboration of the proof of Theorem A above: see Brison (1978),
Theorem 3.3.1.

8.2 PROPOSITION. Let % be a Fitting class of characteristic P, and suppose that
there exist groups A, B G @\®* with (\A\, \B\) = 1. Then <£#©„ is not Hall-
closed.

In this context, it is not hard to check that if 3E, tr and r satisfy 4.4(b), then /|
\A\ whenever / £ T and A E @N9CT(3E).

Entering the realm of special cases, there is a familiar class not covered by
anything so far. If p is a prime and n is a natural number, let Qp(n) denote the
class of (finite, soluble) groups of /^-length at most n. It is shown in Brison
(1978), Proposition 3.4.2, that S^/i)*©,, is not Hall-closed. By inserting the full
strength of 2.5 above into the argument, it may in fact be shown that S/,
is not Hall w-closed whenever p G n, \ir\ > 2 and m ¥* P.
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