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ABSTRACT

In a typical equity-linked life insurance contract, the insurance company is en-
titled to a share of return surpluses as compensation for the return guarantee
granted to the policyholders. The set of possible contract terms might, however,
be restricted by a regulatory default constraint — a fact that can force the two
parties to initiate sub-optimal insurance contracts. We show that this effect can
be mitigated if regulatory policy is more flexible. We suggest that the regula-
tor implement a traffic light system where companies are forced to reduce the
riskiness of their asset allocation in distress. In a utility-based framework, we
show that the introduction of such a system can increase the benefits of the pol-
icyholder without deteriorating the benefits of the insurance company. At the
same time, default probabilities (and thus solvency capital requirements) can be
reduced.
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1. INTRODUCTION

Equity-linked life insurance contracts usually provide a yearly or maturity guar-
antee for the policyholders. The insurance company is (up to some limits) liable
for this return guarantee. As a compensation, the surplus above the guaranteed
amount is shared between policyholders and the owners (equity holders) of the
insurance company.Usually, the policyholders provide insurance premiums that
are invested in a reference portfolio. The investment decision is, however, often
affected by a regulatory default constraint. The regulator wants to restrict ex-
cessive risk taking of the insurance company (see, e.g., Gatzert and Schmeiser
(2008); Dong et al. (2015); Filipović et al. (2015)). To restrict risk taking, the reg-
ulator can use a variety of tools: The regulator may enforce price constraints by
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introducing restrictions on premium calculation (see, e.g., MacMinn and Witt
(1987)). Furthermore, the insurance company may be forced to provide risk-
based capital as, for example, specified in the Solvency II accord. Risk-based
capital regulation gains more andmore importance in insurance regulation (see,
e.g., European Parliament (2014)). The amount of risk capital needed is usually
defined by imposing an upper bound on the insurance company’s default prob-
ability (see, e.g., McCabe and Witt (1980)). If it is impossible to acquire new
capital, this implicitly forces the insurer to restrict the riskiness of its investment
decisions. The regulator may also directly impose restrictions on the insurance
company’s investment decision. In Germany, for example, pension funds and
small insurance companies that are not subject to Solvency II rules need to
bound the share of stocks and other risky investments in their portfolio.1

The introduction of (risk) constraints can, however, force the insurance com-
pany to offer Pareto inefficient contracts2 (see, e.g., the detailed discussion in
Rees et al. (1999)). The main research question in this paper is now how to mit-
igate this problem by designing a more flexible regulatory policy. The solution
we suggest is a “traffic light system” that indicates whether the life insurance
company is in danger of facing solvency problems (yellow signal) or even has
severe and immediate problems (red signal). If the insurance company is in dis-
tress (yellow signal), the regulator enforces a decrease in the riskiness of the asset
allocation. This traffic light solvency stress test is for example implemented in
Denmark and Sweden, see, e.g., Jørgensen (2007) — similar ideas have been
introduced in other European countries and in the Solvency II regulations. One
advantage of the traffic light system is the fact that it is easy to implement and
supervise.

We study the effect of the introduction of a “traffic light system” in a con-
tingent claim approach. The stakes of policyholder and insurance company are
options on future asset returns of the reference portfolio. The riskiness of this
reference portfolio depends on the different traffic lights, and it is reduced as
soon as the “yellow signal” appears. We introduce the regulatory optimiza-
tion problem that determines optimal contract terms maximizing the policy-
holder’s utility subject to a participation constraint of the insurance company
(and possibly an additional regulatory default constraint). We assume that the
insurance company is sufficiently supervised and cannot change the initially
agreed investment strategy after contract initiation. This is in contrast to an-
other strand of literature that examines the effect of “management discretion”
or “risk-shifting” — where the insurance company benefits by departing from
the contractually agreed strategy (at the expense of the policyholder). In our
framework, we model default events of the insurance company continuously
by a structural approach following the seminal paper of Black and Cox (1976).
Comparing to the traditional regulatory scheme where the asset allocation is
unchanged in distress, we show that the traffic light system increases the utility
of the policyholder without deteriorating the utility of the equity holder.

In the past literature on equity-linked life insurance contracts, it is a
common assumption that subsequent asset returns are independently and
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identically distributed. Typical asset models used are geometric Brownian
motion or Merton jump-diffusion (see, e.g., Døskeland and Nordahl (2008);
Gatzert and Schmeiser (2008); Schmeiser and Wagner (2013); Dong et al.
(2015); Schlütter (2014); Filipović et al. (2015) and many others). Our flexi-
ble regulatory framework departs from this common assumption. The refer-
ence portfolio returns resulting from our investment strategy are non-Lévy and
regime-dependent. Further complex and realistic models could be an interesting
path for future research.3

The remainder of the paper is organized as follows. In Section 2, we describe
the model setup and introduce the payoffs of the policy- and equity-holder,
taking account of the possible default of the insurance company. More impor-
tantly, the flexible regulatory intervention (traffic light system) is presented. In
the subsequent Section 3, the expected utility of the policyholder is computed
analytically. In Section 4, this utility is maximized subject to a participation
constraint of the insurance company. Thereby, we distinguish two cases: The
insurance company can fully hedge the financial risks of the insurance contract
(Section 4.1) or the insurance company is risk-averse and judges its payoffs ac-
cording to a utility function (Section 4.2). In a numerical example, we then il-
lustrate the advantage of the traffic light system. Finally, we provide some con-
cluding remarks and an outlook for future research in Section 5 and detailed
proofs in the Appendix.

2. NOTATIONS AND MODEL SETUP

Ourmodel contains three parties: an insurance regulator, a representative share-
holder (also equity holder) and a representative policyholder (also liability
holder). The latter two constitute a life insurance company. We assume that the
representative policyholder invests in an equity-linked life insurance contract
with a maturity of T years, T < ∞. At the initiation of the contract, the poli-
cyholder invests a lump sum L0 in a single premium contract, the shareholder
provides initial equity E0 > 0. Consequently, the initial asset value A0 of the in-
surance company is given by the sum of both contributions, i.e. A0 := L0 + E0.
We denote the share of the policyholder’s contribution (or equivalently the debt
ratio of our insurance company) by α := L0/A0, where obviously α ∈ (0, 1).

2.1. Asset model and guaranteed amount

Let us define a financial market consisting of one risk-free bond B with risk-
free interest rate r , i.e. dBt = r Bt dt and B0 = 1, and a risky asset which evolves
according to

dSt = μ St dt + σ St dWt, S0 = 1, (1)

whereμ > r , σ > 0, andW is a standard Brownianmotion under the real world
measureP. To start with, we assume that the insurance company invests the total
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proceeds A0 in a diversified portfolio of the risky and risk-free asset. Assume,
a constant share θ1 ∈ [0, 1] is invested in the risky asset S and the remainder
in the risk-free asset B. With the initial asset investment A0 > 0, this yields the
following asset dynamics:

dAt = (
r + θ1(μ − r)

)
At dt + σθ1 At dWt. (2)

The asset dynamics remains a log-normal process with a volatility of σθ1. The
amount guaranteed to the policyholder at time t ∈ [0,T] is assumed to be Lt =
L0 egt, where g ≤ r is the guaranteed rate. We want to analyze the financial risks
of equity-linked insurance contracts, therefore, as is common in this context (see,
e.g., Bauer et al. (2005); Døskeland and Nordahl (2008)), we purely consider
financial risks and ignore mortality risk.

2.2. Default of the insurance company

We want to explicitly take the default risk of the insurance company into ac-
count. Therefore, we make use of a structural approach and assume that the
insurance company defaults as soon as its assets At hit or drop below a specified
percentage η of the guaranteed amount Lt. Thus, we introduce a default barrier
Dt := ηL0 egt whose accrual rate g is the same as for the guaranteed amount.
The time of default is then the first-hitting time τ defined by

τ := inf
{
t ≥ 0

∣∣ At ≤ Dt
}
, (3)

where we set inf{∅} = ∞. The default parameter η is assumed to be smaller
than A0/L0 such that the company is solvent initially.

2.3. Terminal payoff to liability and equity holder

The insurance payoff to the policyholder is contingent on whether the insurance
company survives the maturity date T. If there is no premature default of the
insurance company, the policyholder receives the following terminal payoff:4

�L(AT) :=
{
AT if AT ≤ LT
LT + δ

[
αAT − LT

]+
else

= LT + δ
[
αAT − LT

]+ − [LT − AT]+, (4)

where we denote by [ · ]+ the maximum max{ ·, 0}. The participation rate δ ∈
[0, 1] is the percentage of surpluses that is credited to the liability holder. If there
is no premature default, the terminal contract payoff is a combination of a fixed
payment LT, a bonus call and a shorted put option on the insurance company’s
assets. The shorted put option refers to losses of the liability holder if the com-
pany is not defaulted prematurely but assets at maturity are insufficient to cover
the guaranteed amount.
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FIGURE 1: Return of liability and equity holder dependent on the asset return AT/A0 − 1 in case that the
insurance company survives until maturity T, i.e. τ > T. The parameters are set as A0 = 1, L0 = αA0 = 0.8,

D0 = 0.85, δ = 0.72, g = 1.75%, T = 10, μ = 6%, r = 2.5%, θ1 = 0.2, and σ = 0.2.

In the case of premature default, a rebate payment is provided to the policy-
holder at time τ . This rebate payment is given by the minimum of the current
asset value Aτ = Dτ and the current liabilities Lτ : 	L(τ ) := min(Lτ , Dτ ). If we
— for time consistency reasons — assume that the rebate payment is until time
T accumulated at the risk-free rate r , the policyholder receives the following
contract payoff at time T:

VL(AT) := 1{τ>T} �L(AT) + 1{τ≤T} er(T−τ) 	L(τ ) , (5)

where1{B} is an indicator functionwhich gives 1 if B occurs and 0 otherwise. The
equity holder always obtains the residual asset value. If there is no premature
default of the insurance company, the payoff to the equity holder is

�E(AT) := AT −�L(AT) =

⎧⎪⎨
⎪⎩
0 if AT≤ LT
AT − LT if LT < AT≤A0egT

AT − LT − δ
[
αAT − LT

]+
else

= [AT − LT]+ − δ
[
αAT −LT

]+
. (6)

If there is premature default, a rebate payoff 	E(τ ) := Dτ − min(Lτ , Dτ ) is
provided to the equity holder. More compactly, the total payoff to the equity
holder at maturity T is thus given by

VE(AT) := 1{τ>T} �E(AT) + 1{τ≤T} er(T−τ) 	E(τ ) . (7)

Hereby, we have again accrued the rebate payment at time τ with the risk-free
rate until the maturity date.

If the company survives maturity T, the payoff to the liability and equity
holder are given in Equations (4), and (6), respectively. A numerical example,
presenting the maturity return of liability and equity holder dependent on the
asset return AT/A0 − 1, is given in Figure 1. The dashed line corresponds to
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the guaranteed return egT − 1. If the asset return is greater than the guaranteed
return, the liability holder (grey line) receives a bonus payment. If the insurance
company survives the maturity, but the assets at that time are insufficient to
cover the liabilities, the liability holder receives a return less than the guaranteed
one. From Figure 1, one can observe that the equity holder’s return (black line)
is much more volatile than the liability holder’s return.

2.4. Payoff evaluation

We now assume that the liability holder judges the final payoff according to a
utility function, see Definition 2.1.

Definition 2.1 (Utility function: Inada conditions). The utility function uL(x) is
twice differentiable on R+, is strictly increasing in x, i.e. u′

L(x) > 0, is concave,
i.e. u′′

L(x) < 0, and has the following limiting derivatives: limx→0 u′
L(x) = ∞ and

limx→∞ u′
L(x) = 0.

Later on, we exemplarily use power utility, see Example 2.2.

Example 2.2 (Power utility). Let γL > 0, γL 
= 1 be the relative risk-aversion
parameter, then the power utility function is given by uL(VL) := V1−γL

L /(1 − γL).

The liability holder evaluates the payment streams according to the objective
function

UL(�) := EP

[
uL

(
VL(AT)

)]
, (8)

where the parameter vector � contains the control variables, i.e. the participa-
tion rate and the asset allocation parameters.5 For interpretation purposes, we
later use certainty equivalents defined as CEL(�) := (

(1 − γL)UL(�)
)1/(1−γL).

2.5. Regulatory intervention

The aim of this paper is to examine the impact of regulation on the contract
terms. Under Solvency II, solvency capital requirements are determined accord-
ing to the 99.5% Value-at-Risk over a one-year time horizon (see, for example
Art. 101 of the Solvency II directive). This approach restricts the annual de-
fault probability of the insurance company to 0.5%. To keep our setup analyti-
cally tractable, we do not bound annual default probabilities but instead assume
that the regulator sets an upper bound ε on the contract’s default probability
P(τ ≤ T). Then, we distinguish two cases:

(1) Traditional regulatory framework: In this setup, the asset portfolio follows
dynamics (2), i.e. the portfolio’s returns have a constant volatility.We choose
the term “traditional” as this is the setup that is frequently used in related
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literature, see, among others, Grosen and Jørgensen (2002), Chen and
Suchanecki (2007) and Schmeiser and Wagner (2015). In this setup, it is
possible to show that the default constraint is equivalent to a bound on the
share of risky assets θ1, i.e. 0 ≤ θ1 ≤ θmax for a given constant θmax ≤ 1.6

If, however, under Solvency II, capital requirements are determined annually
according to a 99.5% Value-at-Risk, this would allow the insurer to start with
an initially higher investment in risky assets. If the financial situation weakens
in the coming years, risk can be reduced to be still in line with solvency capital
requirements. This motivates our second framework:

(2) Flexible regulatory framework: Here, the regulator allows for flexibility in
the investment strategy, while still keeping the default probability constraint
P(τ ≤ T) ≤ ε. The concept is in analogy to Solvency II regulations in Eu-
rope where the regulator has the possibility to intervene, as soon as the as-
sets drop below some critical level {Kt}t≥0 (yellow signal) to avoid a default
event. If the company’s assets nevertheless drop below the default barrier
{Dt}t≥0 (red signal), the insurance company defaults. The possible interac-
tion in case of the “yellow signal” gives more freedom to act in the interests
of both liability and equity holder.

We now need some more technical details for the flexible regulatory framework.
The second (upper) regulatory threshold K is set as

Kt := K0 egt, (9)

where D0 = ηL0 < K0 < A0. The hitting time of this barrier is denoted by

τ̂ := inf
{
t ≥ 0

∣∣ At ≤ Kt
}
, (10)

where we again set inf{∅} = ∞. In case this barrier is hit, the regulator may
once force the insurance company to change its investment strategy from θ1 to
θ2 ∈ [0, 1]. Then, the asset value process is – for t ≥ 0 – given by

dAt =(
r + θZt (μ − r)

)
At dt + θZtσ At dWt, A0 > 0, (11)

where Zt = 1 for t ≤ τ̂ and Zt = 2 for t > τ̂ . The effect of this more flexible
design on the benefits of equity and liability holder is analyzed in the remainder
of this paper. For reasons of analytical tractability, we do not consider a strategy
recovery of the insurance company, i.e. it is not possible to return to the original
asset strategy θ1.7

Under this more flexible regulation, the default-triggering event remains un-
changed. A default occurs when the asset process At hits the lower threshold Dt
(i.e. if τ ≤ T). Since the asset process is continuous and the regulatory barrier
Kt by definition greater than Dt, the event {τ ≤ T} implies that {τ̂ ≤ T}, i.e. the
upper threshold is hit before the lower one.8
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3. THEORETICAL RESULTS

In order to determine the optimal investment strategy and examine the
regulatory effects on it, we need to compute the expected utility of the
policyholder (8).

3.1. Traditional regulatory framework

In the first case, we assume that there is no regulatory barrier {Kt}t≥0 and thus
the investment strategy stays constant at θ1 ∈ [0, 1]. Theorem 3.1 gives analytical
expressions for the expected utility of the terminal payoff to the policyholder.

Theorem 3.1 (Expected utility: Traditional regulatory framework). Assume the
model setup as described in Section 2 with asset process (2). Then, the desired
expectation is given by

UL(�) =: κ
(1)
L (A0, D0, L0,T),

where κ
(i)
L ( · ), i = 1, 2, can be computed via

κ
(i)
L (A0, D0, L0,T) =

∫ T

0
uL

(
er(T−τ )	L(τ )

) · f (i)(0, τ, At, Dt) dτ

+
∫ ∞

ln
(
D0
A0

) uL(�L(τ )
) · g(i)(y, 0,T, A0, D0) dy,

where g, respectively f , is for At > Dt, τ > T, y > ln(Dt/At), defined as

g(i)(y, t,T, At, Dt) := 1

σθi
√
T − t

ϕ

(
y− μ̃i (T − t)

σθi
√
T − t

)(
1 − e

−2 ln(Dt/At )2−y ln(Dt/At )
σ2θ2i (T−t)

)
,

f (i)(t, τ, At, Dt) := − ln(Dt/At)

σθi (τ − t)
3
2

ϕ

(
ln(Dt/At) − μ̃i (τ − t)

σθi
√

τ − t

)
,

μ̃i := r + θi (μ − r) − g − σ 2θ 2
i /2,

and ϕ( · ) denotes the density of the standard normal distribution.
Proof. See the Appendix.

In the case of power utility, most of the integrals in Theorem 3.1 can be de-
rived analytically. Apart from the expected utility, one can also derive the default
probability analytically. On the time interval [0,T], it is given by

P(τ ≤ T) = �

(
ln(D0/A0) − μ̃1T

σθ1
√
T

)
+

(
D0

A0

) 2μ̃1
σ2θ21

�

(
ln(D0/A0) + μ̃1T

σθ1
√
T

)
,

(12)

where �( · ) is the standard normal distribution function and μ̃1 is defined as in
Theorem 3.1, see also the Appendix.9
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3.2. Flexible regulatory framework

Now, we are going to derive the same results as in Theorem 3.1 under the as-
sumption that the investment strategy is changed from θ1 to θ2 as soon as the
regulatory barrier {Kt}t≥0 is hit. This leads to the asset process given by (11).
Technically, this setup is still analytically tractable: Until first hitting the regu-
latory threshold K at time τ̂ , the asset process behaves as a geometric Brownian
motion— one of the rare cases where the first-hitting time density is known an-
alytically (the hitting time is distributed according to an inverse Gaussian law,
see, for example, Folks and Chhikara (1978)). At time τ̂ , the asset value equals
the barrier Kτ̂ . After this hitting time, the assets are again a geometric Brownian
motion now with a different mean and volatility parameter due to the changed
investment strategy θ2. Thus, the time to default follows again an inverse Gaus-
sian law. To sum up, the default time τ is given by the convolution of two inverse
Gaussian random variables. The default probability can be evaluated via

P(τ ≤ T) =
∫ T

0
P
(
τ ≤ T

∣∣ Aτ̂ = Kτ̂

) · f (1)(0, τ̂ , A0, K0) dτ̂

=
∫ T

0

∫ T−τ

0
f (2)(τ̂ , τ, Kτ̂ , Dτ̂ ) · f (1)(0, τ̂ , A0, K0) dτ̂ dτ, (13)

with f as defined in Theorem 3.1. Equation (12) results as the special case
θ1 = θ2. Similarly to Theorem 3.1, one can derive the expected utility
EP[uL(VL(AT))] of the liability holder, see Theorem 3.2.

Theorem 3.2 (Expected utility: Flexible regulatory framework). Assume the
model setup as described in Section 2 with asset process (11). The regulator may
intervene at time τ̂ – the first-hitting time of the insurance company’s assets A
breaching the regulatory barrier Kt = K0egt. At time τ̂ , the insurance company
is forced to change its investment strategy from θ1 to θ2. Then, the desired
expectation is given by

UL(�) =: ζL(A0, D0, K0, L0,T),

where

ζL(A0, D0, K0, L0,T) =
∫ T

0
κ

(2)
L (Kτ̂ , Dτ̂ , Lτ̂ , τ̂ ,T) · f (1)(0, τ̂ , A0, K0) dτ̂

+
∫ ∞

ln(K0/A0)
uL

(
�L(A0ey+gT)

)
· g(1)(y, 0,T, A0, K0) dy,

with f , g, and κL as defined in Theorem 3.1.

Proof. See the Appendix.

Remark 3.3 (Implementation of Theorems 3.1 and 3.2). The expectations pre-
sented in Theorems 3.1 and 3.2 are integrals over normal densities. Thus, they
can easily be implemented at high precision. Computation time is within fractions
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of seconds. That is why, it does not make sense to further simplify the given expres-
sions and solve the integrals analytically, although it is, for example, possible to
present κ(1)

L (A0, D0, L0,T) in Theorem 3.1 in a (lengthy) closed-form expression.

4. OPTIMAL CONTRACT TERMS

We have now analytic expressions for the utility of the policyholder. In this sec-
tion, we use these results to determine optimal contract terms.

4.1. Financial risk can be hedged

First, we want to consider a completemarket setting where the policy risk can be
hedged on financial markets (see, e.g., Brennan and Schwartz (1976); Døskeland
andNordahl (2008)). If there is no arbitrage, the hedging portfolio determines a
unique fair price of the insurance contract. Therefore, one changes the dynamics
of the reference portfolio from the market probability measure P to the (unique)
equivalent pricing measureQwith the risk-free bond dBt/Bt = r dt as reference
asset. Under Q, the risky asset evolves as

dSt = r St dt + σ St dW
Q
t , (14)

where still B0 = S0 = 1 and WQ is a standard Brownian motion under Q.
If an insurance contract is fairly priced, the expected discounted payoff to the
insurance company under Q equals its arbitrage-free initial stake (1−α)A0, i.e.

(1 − α)A0 = E0 = EQ

[
e−rT VE(AT)

]
= EQ

[
1{τ>T} e−rT�E(AT) + 1{τ≤T} e−rτ	E(τ )

]
. (15)

Similarly (and equivalently10) from the policyholder’s viewpoint, one has to en-
sure that

αA0 = L0 = EQ

[
e−rT VL(AT)

] = EQ

[
1{τ>T} e−rT�L(AT) + 1{τ≤T} e−rτ	L(τ )

]
,

(16)

withVE(AT) andVL(AT) as defined in Equations (7) and (5), respectively. In this
setup, the equity holder initiates contracts if and only if those contracts are at
least fairly priced, i.e. if E0 ≤ EQ[e−rT VE(AT)]. We understand this inequality
as the participation constraint of the equity holder. Contracts are initiated if
and only if the market value of the contract payoff is higher or equal to the
initial investment E0. As we have discussed earlier, the policyholder judges con-
tract terms according to the utility function UL(�). The parameters � = (δ, θ1)

in the traditional regulatory framework and � = (δ, θ1, θ2) under the flexible
regulatory framework can be influenced by the two parties when signing the
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insurance contract. We now set the regulatory optimization problem to deter-
mine the optimal parameter vector �. Therefore, the policyholder’s utility is
maximized subject to the participation constraint of the equity holder, i.e.

max
�

UL(�) (17)

s.t. E0 ≤ EQ

[
e−rT VE(AT)

]
,

see also (1) in Filipović et al. (2015). Recall that we assume that the parameter
vector � = (δ, θ1), respectively � = (δ, θ1, θ2), is agreed at contract initiation
and left unchanged until the maturity of the contract. However, this contract
decision might be further influenced by an additional regulatory constraint, for
example imposing a default constraint. In this case, the regulatory optimization
problem has to be modified to

max
�

UL(�)

s.t. E0 ≤ EQ

[
e−rT VE(AT)

]
P(τ ≤ T) ≤ ε, (18)

where ε > 0 is the upper bound on the company’s default probability. Due to
the non-linearity of participation and default constraint, problems (17) and (18)
cannot be solved explicitly. However, one can show that in the optimal solution,
the participation constraint is binding.11 In the following, we solve optimization
problems (17) and (18) numerically.

4.1.1. Numerical illustrations. We now illustrate optimization problem (17) in
a numerical example and discuss the effect of the flexible regulatory scheme as
opposed to the traditional regulatory scheme. In contrast to the asset alloca-
tion strategy, parameters like D0, η, are either set or restricted by national law
(insolvency condition η) or changing them might be difficult for the insurance
company (equity share 1 − α):

• In line with the balance sheet data from big German insurance companies
where equity is mainly composed of stocks and undistributed reserves, we set
the equity share to 1− α = 5%. From this, the initial assets are (without loss
of generality) A0 = 100; the initial single premium is L0 = 95.

• We limit a possible underfunding of the insurance company. Recall that the
company defaults as soon as the assets drop below the default barrier Dt =
D0egt. We distinguish the two cases where a slight underfunding (D0 = 94,
η = 94/95 ≈ 0.99) or a rather high underfunding (D0 = 90, η = 90/95 ≈
0.95) is allowed.

• The utility function of the policyholder is assumed to be power utility with a
relative risk-aversion parameter γL = 3.
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TABLE 1

RESULTS OF THE UTILITY MAXIMIZATION PROBLEMS (17) (NO DEFAULT CONSTRAINT) AND (18) (DEFAULT
CONSTRAINT PD ≤ 0.5%) IN THE TRADITIONAL (TOP, CONSTANT-MIX, θ1 = θ2) AND THE FLEXIBLE

(BOTTOM) REGULATORY FRAMEWORK . THE ANNUALIZED DEFAULT PROBABILITY PD IS DEFINED AS

PD := 1 − (
1 − P(τ ≤ T)

)1/T
. THE RESTRICTION PD ≤ 0.5% IS EQUIVALENT TO

ε = 1 − (1 − 0.5%)T ≈ 0.049 IN (18).

Traditional Regulatory Framework
CEL(�) θ∗

1 δ∗ PD

L0 = 95, D0 = 90 no default constraint, (17) 126.11 24.2% 73.2% 2.24%
default constraint, (18) 125.59 14.3% 82.9% 0.50%

L0 = 95, D0 = 94 no default constraint, (17) 124.63 12.5% 76.2% 1.26%
default constraint, (18) 124.58 9.7% 85.7% 0.50%

Flexible Regulatory Framework
CEL(�) (θ∗

1 , θ∗
2 ) δ∗ PD

L0 = 95, D0 = 90, K0 = 92 no default constraint, (17) 126.18 (25.7%, 14.3%) 73.7% 1.82%
default constraint, (18) 126.04 (23.7%, 6.9%) 74.5% 0.50%

L0 = 95, D0 = 94, K0 = 95 no default constraint, (17) 125.23 (18.1%, 2.4%) 84.0% 0.01%
default constraint, (18) 125.23 (18.1%, 2.4%) 84.0% 0.01%

Further, we set the time horizon to T = 10 and the financial market param-
eters to μ = 6%, r = 2.5% and σ = 0.2. The guaranteed rate is set to
g = 2.0%. The qualitative results in this section are consistent if the parameters
α, η, γL,T, μ, r, σ, g are changed in a reasonable way.

In the following, we want to solve the utility maximization problems with-
out default constraint (17) and with default constraint (18) in the traditional
regulatory framework, see Table 1 (top) for two different parameter sets dif-
fering by the default barrier D0 = 90, respectively D0 = 94. In Table 1, we
display the optimal certainty equivalent CEL(�) := (

(1 − γL)UL(�)
)1/(1−γL)

of the policyholder. We find that the regulatory restriction on the annualized
default probability PD,12 i.e. PD ≤ 0.5%, forces to decrease the riskiness of
the investment strategy from an equity share of θ∗

1 = 24.2% to θ∗
1 = 14.3% (if

D0 = 90), respectively from θ∗
1 = 12.5% to θ∗

1 = 9.7% (if D0 = 94). Such a
decrease has two effects on the policyholder’s contract value of (5): It reduces
the value of the bonus option [αAT−LT]+ in (4) but reduces default probabilities
and increases the value of the short put option −[LT − AT]+ in (4). The default
constraint decreases the maximum certainty equivalent of the liability holder
from CEL(�) = 126.11 to CEL(�) = 125.59 (if D0 = 90) and only slightly
decreases the certainty equivalent fromCEL(�) = 124.63 to 124.58 if D0 = 94.

We now want to carry out the same optimization under the flexible regu-
latory framework. Therefore, we set the initial regulatory barrier to K0 = 92
(if D0 = 90) and K0 = 95 (if D0 = 94).13 Then, we carry out the two op-
timizations over the parameter vector � = (δ, θ1, θ2). In our numerical ex-
ample, we first want to illustrate the optimization problem (17) without the
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default constraint. Therefore, Figure 2 varies the investment strategy (θ1, θ2)

fixing L0 = 95, D0 = 90, K0 = 92. For each pair (θ1, θ2), we then solve the
optimization problem (17). The top graph presents the resulting value of the
policyholder certainty equivalent CEL(�), and the bottom graph the partici-
pation rate δ of this optimal contract. The white line represents the traditional
regulatory framework, i.e. θ1 = θ2. As can be observed from Figure 2, this white
line does not contain the highest certainty equivalent CEL(�), i.e. we can con-
clude that the flexible regulatory scheme leads to utility improvements to the
liability holder. This highest certainty equivalent is given in Table 1 (bottom) to-
gether with the optimization results if a regulatory default constraint is imposed.
This leads to several interesting observations. First, ignoring the regulator and
its default constraint, the certainty equivalent increases slightly from 126.11 to
126.18 (if D0 = 90) and from 124.63 to 125.23 (if D0 = 94). Both results are
slight improvements due to the higher flexibility in the investment strategy. If a
default constraint is imposed, we first note from the bottom table that certainty
equivalents are only very slightly (if D0 = 90) or not at all (if D0 = 94) affected
(compare the results of optimization (17) and (18)). In the traditional regulatory
framework presented in Table 1 (top), this effect is much stronger. This points to
the advantage of the flexible regulatory framework where the asset strategy can
be adapted to the default constraint — only marginally changing the utility for
the policyholder. The resulting strategies in the flexible scheme typically lead to
initially higher equity shares but a strong decrease in case of distress. Compared
to the traditional regulatory framework, the certainty equivalent of the default
constrained optimization (18) is significantly increased for both a default barrier
D0 = 90 and D0 = 94.

4.2. Insurance company is risk-averse

In practice, the assumption of a complete market for insurance contracts is usu-
ally violated.Due to the long-termnature of the contracts, it is often not possible
to fully hedge the inherent financial risk. In this case, the insurance company
also values its payoff according to a utility function. Under this modification,
we can confirm the results from Section 4.1. Details are given in the Appendix.

We have so far demonstrated that the change from the traditional to the flex-
ible regulatory framework can significantly increase the maximal policyholder’s
utility — especially if a default constraint is imposed. That is why it is beneficial
if the regulator enforces the optimal asset strategy that results from the flexible
regulatory framework. The main reason why this new investment strategy leads
to an improvement in policyholder utility is the fact that the flexible scheme
allows for a higher upside potential (the initial equity share is higher than in
the traditional scheme) while still keeping the default probabilities low (the eq-
uity share θ2 in distress is lower than in the traditional scheme). This leads to
a higher maximal policyholder utility. If the default constraint is not binding,
the maximal policyholder utility in the flexible regulatory framework also leads
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FIGURE 2: Certainty equivalent CEL(�) of the liability holder (top) and fair participation rate δ (below) in a
numerical example dependent on the investment strategy (θ1, θ2). We set K0 = 92, A0 = 100,

L0 = 95, D0 = 90, g = 2.0%, T = 10, μ = 6%, r = 2.5% and σ = 0.2. The contracts solve optimization
problem (17) for a given strategy (θ1, θ2).

https://doi.org/10.1017/asb.2016.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2016.12


OPTIMAL ASSET ALLOCATION IN LIFE INSURANCE: THE IMPACT OF REGULATION 619

to a lower default probability than in the traditional regulatory framework (see
Tables 1 and A1).

4.2.1. Discussion of assumptions. Now, we want to discuss some of our model-
ing assumptions and their implications on the results. One important and nec-
essary assumption is the fact that the contract terms are agreed at the initia-
tion of the contract and left unchanged until its maturity. Without this assump-
tion, the insurance company might change the riskiness of the asset allocation
contrasting the original agreement. This policy change might reduce the pol-
icyholder’s utility or violate the regulatory default constraint. To avoid such
a policy change the regulator’s role is important. The regulator supervises the
investment strategy, enforces its default constraint and intervenes as soon as
the regulatory threshold is hit (yellow signal). Apart from this, a possibility to
eliminate the equity holder’s incentives for a change in the investment strategy
is the addition of an incentive constraint “(δ, θ1, θ2) ∈ argmaxUE(�)” in opti-
mization (18) (see also Filipović et al. (2015)). Then, if the equity holder deviates
from the initially agreed investment strategy, this would always deteriorate the
equity holder’s benefits. This extension is, however, numerically challenging and
beyond the scope of this paper.

To focus on the effect of the different regulatory frameworks, we have intro-
duced a rather simple insurance contract with only a terminal surplus participa-
tion. In practice, however, participating policies or collective defined contribu-
tion (DC) pension plans allow for periodic surplus participations. It is possible
to extend our setup to a periodic surplus participation, however, the analytic
tractability regarding the policyholder’s utility UL(�) is lost. Intuitively, intro-
ducing periodic surplus participation without further modifications of param-
eters and model setup, would reduce the risk buffer and increase the default
probability. If one optimizes � subject to a default constraint, this would result
in a less-riskier investment strategy. The latter can be avoided if, for example,
the surplus participation rate δ is lowered.

5. CONCLUSION

The present paper discusses flexible regulatory supervision that tries to lower
the effect of a regulatory default constraint. Typically, the regulator imposes a
Value-at-Risk-type constraint (default probability constraint) on the investment
strategy. Such a constraint might force the insurance company to offer Pareto
inefficient contracts with a lower utility of the policyholder. We show that this
problem can be alleviated if the regulator enforces an optimal investment strat-
egy that decreases risk in case of distress. Distress is defined by a “traffic light
system” where the yellow traffic light (distress) is triggered as soon as the insur-
ance company’s asset value drops below a threshold K . The proposed strategy
increases the policyholder’s utility and leads to Pareto-improvements for the two
involved parties.
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The advantage of this flexible scheme is that it is rather simple and — in
contrast to, for example, a more flexible and dynamic asset allocation strategy
like CPPI — easy to implement and supervise for a regulatory authority.

We want to stress that it can be beneficial to depart from the assumption of
a constant volatility investment strategy that is frequently used in the literature.
In further research, it is, for example, desirable to generalize our results to other
dynamic asset allocation strategies.
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NOTES

1. See, e.g., §3(2) AnlV (“Anlageverordnung” = investment ordinance).
2. A contract is Pareto inefficient if a modification of contract terms could increase the benefits

of at least one contract party without deteriorating the benefits of the other party.
3. In related areas such as asset-liability management, this has already been investigated. Here,

some authors suggest that the riskiness of the asset investment should depend on the insurance
company’s funding ratio (=assets divided by liabilities). I.e. an insurance company should adapt
its asset allocation depending on the possibility that it is (un)able to meet its obligations. Graf et al.
(2012), Pézier and Scheller (2013) and Bohnert et al. (2015) suggest a CPPI-based strategy. Graf
et al. (2011) and Hieber et al. (2015) change the asset allocation dependent on risk measures, i.e.
the expected shortfall below the company’s investment guarantees. Empirically, it is not obvious
whether life insurance companies increase or decrease risk in case of distress: Mohan and Zhang
(2014) find that US public funds increase risk if they are underfunded, while Rauh (2009) shows
that the asset allocation is less risky if the company’s financial condition is weaker.

4. We choose a relatively simple contract payoff. In reality, the policyholder is often entitled to
a periodic surplus participation. However, since the main focus of this paper is to analyze diverse
(rather) complex regulatory frameworks, we stick to this simple formulation of the contract payoff.

5. In case of the constant-mix investment strategy (2), we have that � = (δ, θ1). Later on, the
asset allocation strategy is allowed to be more flexible and, e.g., � = (δ, θ1, θ2), see the following
paragraph.

6. For a proof, see Equation (12) and footnote 9 in Section 3.
7. In practice, it is more reasonable to allow for a strategy recovery if assets At return to values

above the threshold Kt . It is possible to relax this assumption at the cost of additional complexity
in the closed-form expressions provided in Section 3.

8. The event {τ̂ > T} delineates the situation that the assets perform well until maturity T
and all the time exceed the upper regulatory threshold. The event {τ̂ ≤ T, τ > T} describes the
situation that the assets perform moderately until maturity T. The assets have hit the regulatory
barrier but the insurance company has not defaulted prematurely. The event {τ ≤ T} describes the
situation that the company has defaulted before maturity T.
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9. A higher equity holding θ1 results in a higher probability of hitting the default barrier Dt .
From Equation (12), we obtain

∂ P(τ ≤ T)

∂θ1
= −2 ln(D0/A0)

σθ2
1

√
T

ϕ

(
ln(D0/A0) − μ̃1T

σθ1
√
T

)

− ln(D0/A0)

(
4(r − g)T

σ 2θ3
1

+ μ − r

σ 2θ2
1

) (
D0

A0

) 2μ̃1
σ2θ21

�

(
ln(D0/A0) + μ̃1T

σθ1
√
T

)
> 0,

since D0 < A0 and g ≤ r < μ.
10. By Doob’s optional sampling theorem, it holds that A0 = EQ

[
1{τ>T}e−rT AT +

1{τ≤T}e−rτ Aτ

] = EQ

[
e−rT (

VL(AT) + VE(AT)
)]
. Thus, if Equation (15) is true, then Equation (16)

also holds (and vice versa).
11. If we denote by λ ≥ 0 the Lagrangian multiplier of the participation constraint, a derivation

with respect to the participation rate leads to

∂UL(�)

∂δ
+ λ

∂EQ

[
e−rT VE(AT)

]
∂δ

= 0. (19)

As ∂UL(�)/∂δ > 0 and ∂EQ

[
e−rT VE(AT)

]
/∂δ < 0, λ = 0 implies that the optimality criterion

(19) cannot be satisfied. Therefore, only if λ > 0, i.e. if the participation constraint is binding,
we can achieve optimal solutions for problem (17). As default probability does not depend on the
participation rate δ (see Equation (12)), this argument of a binding participation constraint also
holds for Problem (18).
12. In order to interpret the results, we annualize default probabilities to PD := 1− (

1− P(τ ≤
T)

)1/T
. Note, however, that in our model framework, default times are not uniformly distributed

over time (default probabilities for different time points can be obtained from Equations (12) and
(13)). Thus, default probabilities cannot be summarized by just one number. The value presented
can be seen as an average yearly default probability of the insurance company.
13. One could also include the parameter K0 into the parameter vector � of the optimization.

This, however, only very slightly affects the maximal certainty equivalent CEL(�).
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APPENDIX A

Proof of Theorem 3.1. First, we recall results on the first-hitting time τ of a geometric
Brownian motion, i.e. the process A as defined in (2). The law of τ is known to be inverse
Gaussian (see, e.g., Folks and Chhikara (1978)). Lemma A.1 recalls some results on the first-
hitting time in this special case.

Lemma A.1 (First-hitting time distribution). Consider the process A from (2). Then, the sur-
vival probability within the interval (t,T] is given by

P
(
τ > T | τ > t

) = �

(
μ̃1(T − t) − ln(Dt/At)

σθ1
√
T − t

)
−

(
Dt

At

) 2μ̃1
σ2θ21 �

(
μ̃1(T − t) + ln(Dt/At)

σθ1
√
T − t

)
,

where Dt < At, μ̃1 := r + θ1(μ − r) − g − σ 2θ 2
1 /2, and �( · ) denotes the standard normal

cumulative distribution function. The density of τ can be obtained from

f (i)(t, τ, At, Dt) := − ln(Dt/At)

σθi (τ − t)
3
2

ϕ

(
ln(Dt/At) − μ̃i (τ − t)

σθi
√

τ − t

)
. (A1)

For y := ln(e−gT AT/At), we define g(1)(y, t,T, At, Dt) := P
(
y ∈ dy, τ > T

)
, which is known

to be

g(1)(y, t,T, At, Dt) =

⎧⎪⎨
⎪⎩

0 for y ≤ ln(Dt/At)

ϕ

(
y−μ̃i (T−t)
σθ1

√
T−t

)
σθ1

√
T−t

(
1 − e

−2 ln(Dt/At )2−y ln(Dt/At )
σ2θ21 (T−t)

)
else

,

(A2)

where ϕ( · ) denotes the density of the standard normal distribution.
Proof. See, e.g., Folks and Chhikara (1978); He et al. (1998); Shreve (2004).

Note that the same results hold, if we replace the asset strategy θ1 by θ2 (and similarly μ̃1

by μ̃2 := r + θ2(μ− r)− g−σ 2θ 2
2 /2). We denote the densities that result from this parameter

change by f (2)(t, τ, Aτ , Dτ ), respectively g(2)(y, t,T, At, Dt).
We now use Lemma A.1 to prove Theorem 3.1. Note first that if the barrier D is not hit

in the interval (0,T], (A2) helps us to obtain the distribution of the assets A at maturity T.
To compute the expected utility of the terminal payoff �L(AT) from (4), one simply has to
integrate its utility over (A2) on the set (ln(e−gT DT/A0),∞) = (ln(D0/A0),∞). If the barrier
is hit, i.e. τ ≤ T, the terminal payoff depends solely on the default time τ whose distribution
can be obtained from (A1). This then leads to

EP

[
uL(VL(AT))

] = EP

[
1{τ>T} uL

(
�L(AT)

)] + EP

[
1{τ≤T} uL

(
er(T−τ ) 	L(τ )

)]

=
∫ ∞

ln(D0/A0)
uL

(
�L(A0ey+gT)

) · g(1)(y, 0,T, At, Dt) dy

+
∫ T

0
uL

(
erT	L(τ )

)
· f (1)(0, τ, A0, D0) dτ. (A3)
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In the case of power utility (see Example 2.2), the latter integrals can be further
simplified.

Proof of Theorem 3.2. Theorem 3.2 can be derived using the previous results. Note that
the regulatory barrier Kt = K0egt is always hit prior to default due to the continuity of
the process A. Up to time τ̂ the process A is a geometric Brownian motion with strategy θ1
allowing us to use the density f (1)(t, τ̂ , At, Kt) from LemmaA.1 for τ̂ . At time τ̂ , we are back
in the situation that is already solved in Theorem 3.1: One has to adapt the initial values for
A, D, and L. Furthermore, the time to maturity is now T− τ̂ instead of T and the investment
strategy is now θ2. If the regulatory threshold K is never hit, we can in analogy to the proof
of Theorem 3.1 compute the expected utility of the terminal payoffs to get the first terms of
ζL(A0, D0, K0, L0,T):

ζL(A0, D0, K0, L0,T) =
∫ T

0
κ

(2)
L (Kτ̂ , Dτ̂ , Lτ̂ , τ̂ ,T) · f (1)(0, τ̂ , A0, K0) dτ̂

+
∫ ∞

ln(K0/A0)
uL

(
�L(A0ey+gT)

)
g(1)(y, 0,T, A0, K0) dy,

an expression that can be rewritten to

=
∫ T

0

∫ ∞

ln(D0/K0)

uL
(
�L(Kτ̂ ey+g(T−τ̂ )

)
· f (1)(0, τ̂ , A0, K0) · g(2)(y, τ̂ ,T, Kτ̂ , Dτ̂ ) dydτ̂

+
∫ T

0

∫ T

τ̂

uL
(
er(T−τ )	L(τ )

)
· f (1)(0, τ̂ , A0, K0) · f (2)(τ̂ , τ, Kτ̂ , Dτ̂ ) dτ dτ̂

+
∫ ∞

ln(K0/A0)
uL

(
	L(A0ey+gT)

)
· g(1)(y, 0,T, A0, K0) dy,

with κ
(2)
L ( · ), f , and g as defined in Theorem 3.1. Again, power utility simplifies the given

expressions.

Section 4.2: Insurance company is risk-averse. In contrast to the fair pricing constraint
in Section 4.1, we now assume that the insurance company is risk-averse and thus values its
payoff according to a utility function, i.e.

UE(�) := EP

[
uE

(
VE(AT)

)]
. (A4)

This expectation can also be computed using the results in Theorems 3.1 and 3.2, respectively,
if one replaces the index L by E (i.e. the payoffs 	L(τ ), �L(AT) by 	E(τ ), �E(AT), the utility
function uL(x) by uE(x), etc.). In analogy to Section 4.1, we define a participation constraint
for the equity holder. Insurance contracts are initiated if the utility UE(�) exceeds some min-
imum reservation utility U0 ∈ R. This leads to the regulatory optimization problem, again
maximizing the policyholder’s utility subject to a participation constraint:

max
�

UL(�) (A5)

s.t. U0 ≤ UE(�),

where � = (δ, θ1) in the traditional regulatory framework and � = (δ, θ1, θ2) under the
flexible regulatory scheme. If, additionally, the regulator imposes a default constraint, the
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TABLE A1

RESULTS OF THE UTILITY MAXIMIZATION PROBLEMS (A5) (NO DEFAULT CONSTRAINT) AND (A6) (DEFAULT
CONSTRAINT PD ≤ 0.5%) IN THE TRADITIONAL AND FLEXIBLE REGULATORY FRAMEWORK. THE

ANNUALIZED DEFAULT PROBABILITY PD IS DEFINED AS PD := 1 − (
1 − P(τ ≤ T)

)1/T
.

Traditional Regulatory Framework
CEL(�) θ∗

1 δ∗ PD

L0 = 95, D0 = 90 no default constraint, (A5) 128.27 26.3% 89.4% 2.56%
default constraint, (A6) 127.07 14.3% 96.6% 0.50%

L0 = 95, D0 = 94 no default constraint, (A5) 126.91 22.2% 78.1% 3.50%
default constraint, (A6) 125.65 9.7% 97.1% 0.50%

Flexible Regulatory Framework

CEL(�) (θ∗
1 , θ∗

2 ) δ∗ PD

L0 = 95, D0 = 90, K0 = 92no default constraint, (A5) 128.35 (27.6%, 15.5%) 90.6% 2.12%
default constraint, (A6) 128.19 (25.8%, 6.6%) 92.4% 0.50%

L0 = 95, D0 = 94, K0 = 95no default constraint, (A5) 127.00 (23.5%, 11.1%) 82.2% 2.95%
default constraint, (A6) 126.72 (19.4%, 4.1%) 95.3% 0.50%

optimization problem has to be modified to

max
�

UL(�) (A6)

s.t. U0 ≤ UE(�)

P(τ ≤ T) ≤ ε,

where, again, ε > 0 is the upper bound on the company’s default probability. Also here, prob-
lems (A5) and (A6) have to be solved numerically. For the optimal solution, the participation
constraint is again binding.

Numerical illustrations.We use the same parameter set as in Section 4.1. The utility func-
tion of the insurance company is assumed to be power utility uE(VE) := V1−γE

E /(1 − γE)

with a relative risk-aversion parameter of 0 < γE = 0.2 < 1 < γL. It is reasonable to
assume that the equity holder is less risk-averse than the liability holder. Table A1 illustrates
the optimal results from the utility maximization problems (A5) and (A6). In this example,
we take a risk-free investment as the reference investment and set the reservation utility to
U0 = (E0erT)1−γE/(1 − γE). Participating in the insurance contracts leads to a utility level
which is at least as high as investing in the risk-free asset.

The results in Table A1 are very similar to Table 1 in Section 4.1. From the perspective
of optimal asset allocation (no default constraint), the introduction of the flexible regulatory
scheme leads to only small changes in the maximal policyholder utility (CEL(�) = 128.27
to 128.35 if D0 = 94 and CEL(�) = 126.91 to 127.00 if D0 = 90). Interesting is the case
where an additional default constraint is imposed by the regulator. In the traditional regula-
tory framework, a default constraint leads to a significant drop in the maximal policyholder
certainty equivalent (compare the result of optimizations (A5) and (A6) in Table A1). In
contrast, the resulting maximal certainty equivalentCEL(�) in the flexible regulatory frame-
work is only slightly affected by a default constraint. The optimal flexible strategy is again a
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FIGURE 3: Objective function pairs (UL(�),UE(�)) in case of a default constraint. Each point in this graph
corresponds to one possible insurance contract with an annualized default probability
PD := 1 − (

1 − P(τ ≤ T)
)1/T

smaller than 0.5% and parameter vector (δ, θ1, θ2).

reduction of the riskiness of the investment strategy in distress (θ2 < θ1). In order to demon-
strate the advantages of adopting our flexible regulation framework, we re-illustrate the first
example from Table 1 (L0 = 95, D0 = 90, K0 = 92, default constraint) in Figure 3. For dif-
ferent values of � = (δ, θ1) (traditional regulatory framework) and � = (δ, θ1, θ2) (flexible
regulatory framework), one can compute the utility of the policyholder (see Equation (8)) and
the equity holder (see Equation (A4)). Each parameter set can then be represented as a utility
pair (UL(�),UE(�)). The light gray area represents combinations that can be reached by the
traditional regulatory framework, the dark (and light) gray area those that can be reached
by the flexible regulatory framework. The black-dashed line represents the reservation utility
U0 — each contract lying above (or on) this line fulfills the participation constraint. The
two black dots on this line represent the contracts with maximal policyholder utility under
the additional default constraint, i.e. the solutions CEL(�) = 127.07 (traditional regulatory
scheme) and CEL(�) = 128.19 (flexible regulatory scheme) of optimization (A6), see Ta-
ble A1. The black arrow demonstrates the improvement in utility of the liability holder by in-
troducing the flexible regulatory scheme. Obviously, for each contract term in the traditional
framework, we can find one contract in the flexible regulatory framework that has a higher
utility for the policyholder, keeping the equity holder’s reservation utility constant. More
formally, one can state that the flexible regulatory scheme Pareto-dominates the traditional
regulatory scheme, see Definition A.2.

Definition A.2 (Pareto-efficient contract terms). Contract terms �∗ = (δ, θ1, θ2) ∈ X are
Pareto-efficient if there does not exist a contract term � ∈ X such that

� � �∗,

meaning that at least one of the following holds:

UL(�) ≥ UL(�
∗) and UE(�) > UE(�∗), or

UL(�) > UL(�
∗) and UE(�) ≥ UE(�∗).
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