
II

Interactions of the Standard Model

A gauge theory involves two kinds of particles, those which carry ‘charge’ and
those which ‘mediate’ interactions between currents by coupling directly to charge.
In the former class are the fundamental fermions and nonabelian gauge bosons,
whereas the latter consists solely of gauge bosons, both abelian and nonabelian.
The physical nature of charge depends on the specific theory. Three such kinds of
charge, called color, weak isospin, and weak hypercharge, appear in the Standard
Model. The values of these charges are not predicted from the gauge symmetry, but
must rather be determined experimentally for each particle. The strength of cou-
pling between a gauge boson and a particle is determined by the particle’s charge,
e.g., the electron–photon coupling constant is −e, whereas the u-quark and pho-
ton couple with strength 2e/3. Because nonabelian gauge bosons are both charge
carriers and mediators, they undergo self-interactions. These produce substantial
nonlinearities and make the solution of nonabelian gauge theories a formidable
mathematical problem. Gauge symmetry does not generally determine particle
masses. Although gauge-boson mass would seem to be at odds with the principle of
gauge symmetry, the Weinberg–Salam model contains a dynamical procedure, the
Higgs mechanism, for generating mass for both gauge bosons and fermions alike.

II–1 Quantum Electrodynamics

Historically, the first of the gauge field theories was electrodynamics. Its modern
version, Quantum Electrodynamics (QED), is the most thoroughly verified phys-
ical theory yet constructed. QED represents the best introduction to the Standard
Model, which both incorporates and extends it.

U(1) gauge symmetry

Consider a spin one-half, positively charged fermion represented by field ψ . The
classical lagrangian which describes its electromagnetic properties is
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II–1 Quantum Electrodynamics 29

Lem = −1

4
F 2 + ψ (i /D −m) ψ. (1.1)

Here, the covariant derivative is Dμψ ≡ (∂μ + ieAμ)ψ , m and e are, respectively,
the mass and electric charge forψ ,Aμ is the gauge field for electromagnetism, Fμν

is the gauge-invariant field strength (cf. Eqs. (I–5.8), (I–5.9)), and F 2 ≡ FμνFμν .
This lagrangian is invariant under the local U(1) transformations

ψ(x)→ e−iα(x)ψ(x) , (1.2)

Aμ(x)→ Aμ(x)+ e−1∂μα(x). (1.3)

The associated equations of motion are the Dirac equation

(i /∂ −m− e /A )ψ = 0, (1.4)

and the Maxwell equation

∂μF
μν = eψγ νψ. (1.5)

It is worthwhile to consider in more detail the important subject of U(1) gauge
invariance, addressing both its extent and its limitations.

(i) Universality of electric charge: The deflection of atomic and molecular beams
by electric fields establishes that the fractional difference in the magnitude of elec-
tron and proton charge is no larger than O(10−20). Likewise, there is no evidence
of any difference between the electric charges of the leptons e, μ, τ . Whatever the
source of this charge universality may be, it is not the U(1) invariance of electro-
dynamics. For example assume that in addition to ψ , there exists a second charged
fermion field ψ ′ with charge parameter βe. It is easy to see that gauge invariance
alone does not imply β = 1. The electromagnetic lagrangian for the extended
system is

Lem = −1

4
F 2 + ψ (i /D −m) ψ + ψ ′ (i /D′ −m′) ψ ′, (1.6)

where D ′
μψ

′ ≡ (∂μ + iβeAμ(x))ψ
′. The above lagrangian is invariant under the

extended set of gauge transformations

ψ(x)→ e−iα(x)ψ(x), ψ ′(x)→ e−iβα(x)ψ ′(x),
Aμ(x)→ Aμ(x)+ e−1∂μα(x). (1.7)

This demonstration of gauge invariance is valid for arbitrary β, and thus says noth-
ing about its value. The U(1) symmetry is compatible with, but does not explain,
the observed equality between the magnitudes of the electron and proton charges.
We shall return to the issue of charge quantization in Sect. II–3 when we consider
how weak hypercharge is assigned in the Weinberg–Salam model.
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30 Interactions of the Standard Model

(ii) A candidate quantum lagrangian: The quantum version of Lem is in fact the
most general Lorentz-invariant, hermitian, and renormalizable lagrangian which is
U(1) invariant. Consider the seemingly more general structure

Lgen = −1

4
ZF 2 + iZRψR /DψR + iZLψL /DψL −MψRψL −M∗ψLψR, (1.8)

where Z, ZR,L are constants, /D is the covariant derivative of Eq. (1.1), and M
can be complex-valued. This lagrangian not only apparently differs from Lem,
but seemingly is CP-violating due to the complex mass term. However, under the
rescalings

A′μ = Z1/2Aμ, e′ = Z−1/2e, ψ ′
R,L = Z

1/2
R,LψR,L, (1.9)

we obtain

L ′
gen = −

1

4
F ′2 + iψ ′/D ′ψ ′ −M ′ψ ′

Rψ
′
L −M ′∗ψ ′

Lψ
′
R, (1.10)

where M ′ = (ZRZL)
−1/2M . A subsequent global chiral change of variable

ψ ′′
L,R = e−iαγ5ψ ′

L,R (α = constant) (1.11)

does not affect the covariant derivative term but modifies the mass terms,

L ′′
gen = −

1

4
F ′2 + iψ ′′/D′ψ ′′ −M ′e2iαψ

′′
R ψ

′′
L − (M ′e2iα)∗ψ ′′

L ψ
′′
R . (1.12)

Choosing the parameter α so that Im (M ′e2iα) = 0 and defining m ≡ Re(M ′e2iα),
we see that L′′gen reduces to Lem which appears in Eq. (1.1).

(iii) Renormalizability and U(1): Renormalizability plays a role in the preceding
discussion because U(1) symmetry by itself would admit a larger set of interaction
terms. In principle, U(1) invariant terms like ψσμνψFμν , ψψFμνFμν , ψγμγ ν

γ αγ βψFμνFαβ , etc. could appear in the QED lagrangian. However, they do not
because the condition of renormalizability admits only those contributions which
have dimension d ≤ 4. As discussed in App. C–3, the canonical dimension of
boson and fermion fields is d = 1, 3/2 respectively, and each derivative adds a unit
of dimension. Accordingly, the above candidate operators have d = 5, 7, 7 and
thus are ruled out. There remains an operator, FμνF̃ μν , which is gauge-invariant
and has dimension 4.1 A noteworthy aspect of this quantity is that, unlike the other
operators encountered thus far, it is odd under CP. This follows from writing it as
−4E · B and realizing that under CP, E → E and B → −B. However, a simple
exercise shows that we can identify this operator as a four-divergence FμνF̃ μν =
∂μK

μ, where Kμ ≡ 2εμναβAν∂αAβ . Thus, a contribution proportional to FμνF̃ μν

1 We define the tensor F̃ μν which is dual to Fμν as F̃ μν ≡ εμναβFαβ/2.
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II–1 Quantum Electrodynamics 31

can be of no physical consequence. Upon integration over spacetime, it becomes a
surface term evaluated at infinity. There is nothing in the structure of QED which
would cause such a surface term to be anything but zero.

QED to one loop

The perturbative expansion of QED is carried out about the free field limit, and is
interpreted in terms of Feynman diagrams. Two distinct phenomena are involved,
scattering and renormalization. The latter encompasses both an additive mass shift
for the fermion (but not for the photon) and rescalings of the charge parameter
and of the quantum fields. To carry out the calculational program requires a quan-
tum lagrangian LQED to establish the Feynman rules, a regularization procedure to
interpret divergent loop integrals, and a renormalization scheme.

One can develop QED using either canonical or path-integral methods. In either
case a proper treatment necessitates modification of the classical lagrangian. As
we have seen, the U(1) gauge symmetry implies a certain freedom in defining the
Aμ(x) field. Regardless of the quantization procedure adopted, this freedom can
cause problems. For canonical quantization, the procedure of selecting a complete
set of coordinates and their conjugate momenta is upset by the freedom to gauge
transform away a coordinate at any given time. For path integration, the integration
over gauge copies of specific field configurations gives rise to specious divergences
(cf. App. A–6). In either case, superfluous gauge degrees of freedom can be elim-
inated by introducing an auxiliary condition which constrains the gauge freedom.
There are a variety of ways to accomplish this. The one adopted here is to employ
the following gauge-fixed lagrangian,

LQED = −1

4
F 2 − 1

2ξ0
(∂ · A)2 + ψ (i/∂ − e0/A−m0)ψ, (1.13)

where e0 and m0 are, respectively, the fermion charge and mass parameters. The
quantity ξ0 is a real-valued, arbitrary constant appearing in the gauge-fixing term.
This term is Lorentz-invariant but not U(1)-invariant. One of its effects is to make
the photon propagator explicitly dependent on ξ0. The value ξ0 = 1 corresponds to
Feynman gauge, whereas the limit ξ0 → 0 defines the Landau gauge.

The zero subscripts on the mass, charge, and gauge-fixing parameters denote
that these bare quantities will be subject to renormalizations, as will the quantum
fields. This process is characterized in terms of quantities Zi and δm,

ψ = Z
1/2
2 ψr, Aμ = Z

1/2
3 Arμ ,

e0 = Z1Z
−1
2 Z

−1/2
3 e, m0 = m− δm,

ξ0 = Z3ξ, (1.14)
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32 Interactions of the Standard Model

where the superscript ‘r’ labels renormalized fields. The renormalization constants
Z1,Z2, andZ3 (associated respectively with the fermion–photon vertex, the fermion
wavefunction, and the photon wavefunction) and the fermion mass shift δm are
chosen order by order to cancel the divergences occurring in loop integrals. For
vanishing bare charge e0 = 0, they reduce to Z1,2,3 = 1, δm = 0.

The Feynman rules for QED are:

fermion–photon vertex:

−i e0 (γμ)αβ

μ

β α

(1.15)

fermion propagator iSαβ(p):

i (/p +m0)αβ

p2 −m2
0 + iε

p

β α

(1.16)

photon propagator iDμν(q):

i

q2 + iε
(
−gμν + (1− ξ0)

qμqν

q2 + iε
)

μν
q

(1.17)

In the above ε is an infinitesimal positive number.
The remainder of this section is devoted to a discussion of the one-loop radiative

correction experienced by the photon propagator.2 Throughout, we shall work in
Feynman gauge.

Let us define a proper or one-particle irreducible (1PI) Feynman graph such
that there is no point at which only a single internal line separates one part of
the diagram from another part. The proper contributions to photon and to fermion
propagators are called self-energies. The point of finding the photon self-energy
is that the full propagator iD′μν can be constructed via iteration as in Fig. II–1.
Performing a summation over self-energies, we obtain

Fig. II–1 The full photon propagator as an iteration.

2 We shall leave calculation of the fermion self-energy to Prob. II–3 and analysis of the photon-fermion vertex
to Sect. V–1.

https://doi.org/10.1017/9781009291033.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.003


II–1 Quantum Electrodynamics 33
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Fig. II–2 One-loop corrections to (a) photon propagator, (b) fermion-photon
vertex, and (c) fermion propagator.

iD′μν = iDμν + iDμα(i�
αβ) iDβν + · · ·

= −i
q2

[
1

1+�(q)
(
gμν − qμqν

q2

)
+ ξ0

qμqν

q2

]
, (1.18)

where the proper contribution

i�αβ(q) = (qαqβ − q2gαβ)i�(q) (1.19)

is called the vacuum polarization tensor. It is depicted in Fig. II–2(a) (along
with corrections to the photon-fermion vertex and fermion propagator in
Figs. II–2(b)–(c)), and is given to lowest order by

i�αβ(q) = −(−ie0)
2
∫

d4p

(2π)4
Tr

[
γ α

i

/p −m+ iε γ
β i

/p − /q −m+ iε
]
.

(1.20)

This integral is quadratically divergent due to singular high-momentum behavior.
To interpret it and other divergent integrals, we shall employ the method of dimen-
sional regularization [BoG 72, ’tHV 72, Le 75].

Accordingly, we consider �αβ(q) as the four-dimensional limit of a function
defined in d spacetime dimensions. Various mathematical operations, such as
summing over Lorentz indices or evaluating loop integrals, are carried out in d
dimensions and the results are continued back to d = 4, generally expressed as an
expansion in the variable3

ε ≡ 4− d
2

. (1.21a)

Formulae relevant to this procedure are collected in App. C–5. For all theories
described in this book, we shall define the process of dimensional regularization
such that all parameters of the theory (such as e2) retain the dimensionality they

3 We shall follow standard convention is using the symbol ε for both the infinitesimal employed in Feynman
integrals and the variable for continuation away from the dimension of physical spacetime.
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34 Interactions of the Standard Model

have for d = 4. In order to maintain correct units while dimensionally regularizing
Feynman integrals, we modify the integration measure over momentum to∫

d4p

(2π)4
→ μ2ε

∫
ddp

(2π)d
. (1.21b)

The parameter μ is an arbitrary auxiliary quantity having the dimension of a mass.
It appears in the intermediate parts of a calculation, but cannot ultimately influ-
ence relations between physical observables. Indeed, there exist in the literature a
number of variations of the extension to d �= 4 dimensions. These are able to yield
consistent results because one is ultimately interested in only the physical limit
of d = 4. Let us now return to the photon self-energy calculation to see how the
dimensional regularization is implemented.

The self-energy of Eq. (1.20), now expressed as an integral in d dimensions, is

�αβ(q) = 4ie2
0μ

2ε
∫

ddp

(2π)d
pα(p− q)β +pβ(p− q)α + gαβ(m2−p · (p− q))

[p2 −m2 + iε][(p − q)2 −m2 + iε] ,

(1.22)

where we retain the same notation �αβ(q) as for d = 4 and we have already com-
puted the trace. Upon introducing the Feynman parameterization, Dirac relations,
and integral identities of App. C–5, we can perform the integration over momentum
to obtain

�αβ(q) = (qαqβ − q2gαβ)
e2

0

2π2

�(ε)

(4π)−ε
με
∫ 1

0
dx

x(1− x)
(m2 − q2x(1− x))ε . (1.23)

We next expand�αβ(q) in powers of ε and then pass to the limit ε → 0 of physical
spacetime. In doing so, we use the familiar

aε = eln aε = eε ln a = 1+ ε ln a + · · · , (1.24)

and take note of the combination

�(ε)

(4π)−ε
= 1

ε
+ ln(4π)− γ +O(ε), (1.25)

where γ = 0.57221 . . . is the Euler constant. The presence of ε−1 makes it nec-
essary to expand all the other ε-dependent factors in Eq. (1.23) and to take care in
collecting quantities to a given order of ε. To order e2, the vacuum polarization in
Feynman gauge is then found to be
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�(q) = e2
0

12π2

[
1

ε
+ ln (4π)− γ

− 6
∫ 1

0
dx x(1− x) ln

(
m2 − q2x(1− x)

μ2

)
+O(ε)

]

= e2
0

12π2

⎧⎪⎪⎨⎪⎪⎩
1

ε
+ ln(4π)− γ + 5

3
− ln

−q2

μ2
+ · · · (|q2| 
 m2),

1

ε
+ ln(4π)− γ − ln

m2

μ2
+ q2

5m2
+ · · · (m2 
 |q2|).

(1.26)

The above expression is an example of the general property in dimensional reg-
ularization that divergences from loop integrals take the form of poles in ε. These
poles are absorbed by judiciously choosing the renormalization constants. Renor-
malization constants can also have finite parts whose specification depends on
the particular renormalization scheme employed. One generally adopts a scheme
which is tailored to facilitate comparison of theory with some set of physical ampli-
tudes. In the minimal subtraction (MS) renormalization, theZi subtract off only the
ε-poles, and thus have the very simple form,

Z
(MS)
i − 1 =

∞∑
n=1

ci,n

εn
(i = 1, 2, 3). (1.27)

Because the {Z(MS)
i − 1} have no finite parts, they are sensitive only to the ultravio-

let behavior of the loop integrals, and the ci,n are independent of mass. The simple
appearance of the MS scheme is somewhat deceptive since further (finite) renor-
malizations are required if the mass and coupling parameters of the theory are to be
asociated with physical masses and couplings. A related renormalization scheme
is the modified minimal subtraction (MS) in which renormalization constants are
chosen to subtract off not only the ε-poles but also the omnipresent term ln(4π)−γ
of Eq. (1.25). Minimal subtraction schemes are typically used in QCD where, due
to the confinement phenomenon (cf. Sect. II–2), there is no renormalization scale
that could naturally be associated with the mass of a freely propagating quark.
Yet another approach is the on-shell (o-s) renormalization, where the renormalized
mass and coupling parameters of the theory are arranged to coincide with their
physical counterparts.

On-shell renormalization of the electric charge

The renormalization scale for electric charge is set by experimental determina-
tions typically involving solid-state devices like Josephson junctions. These refer
to probes of the electromagnetic vertex −e�ν(p2, p1) of Fig. II–2(b) with on-shell
electrons (p2

2 = p2
1 = m 2

e ) and with q2 = (p1 − p2)
2 � 0. The value of the
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36 Interactions of the Standard Model

electromagnetic fine-structure constant α ≡ e2/4π obtained under such conditions
is given in rationalized units by

α−1 = 137.035999074(44). (1.28)

To interpret this in the context of the theoretical analysis performed thus far,
recall from Eq. (1.18) how the photon propagator is modified by radiative
corrections,

ie2
0Dμν = − i

q2
e2

0 gμν → ie2D′μν = −
i

q2

e2
0

1+�(q)gμν. (1.29)

We display only the gμν piece since, in view of current conservation, only it can
contribute to the full amplitude upon coupling the propagator to electromagnetic
vertices. The above suggests that we associate the physical, renormalized charge e
with the bare charge parameter e0 by

e2 = e2
0

1+�(0) � e2
0[1−�(0)]. (1.30)

In this on-shell renormalization prescription, the gμν part of the photon propagator
iD′μν(q) is seen to assume its unrenormalized form in the physical limit q2 → 0.
The appellation ‘on-shell’ means that the physical kinematic point q2 = 0 is
used to implement the renormalization condition, and, by absorbing the singular
vacuum polarization in the electric charge, one ensures that the photon has zero
mass. Likewise, in the on-shell renormalization approach fermion propagators have
poles at their physical masses.

Next, we show how to infer the form of the renormalization constant Z(o-s)
3 in the

on-shell scheme. There is a relation, called the Ward identity, that implies Z1 = Z2

as a consequence of the gauge symmetry of the theory. From Eq. (1.14), this gives

e =
√
Z
(o-s)
3 e0. (1.31)

Use of the relation e2 ≡ Z
(o-s)
3 e2

0 then specifies the on-shell renormalization con-
stant to be

Z
(o-s)
3 = 1− e2

12π2

[
1

ε
+ ln(4π)− γ − ln

(
m2

μ2

)
+O(ε)

]
. (1.32)

One can similarly absorb the ε-pole in either the MS or MS schemes by adopting

Z
(MS)
3 = 1− e2

12π2

1

ε
+O(e4),

Z
(MS)
3 = 1− e2

12π2

(
1

ε
− γ + ln(4π)

)
+O(e4). (1.33)
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II–1 Quantum Electrodynamics 37

Fig. II–3 Virtual pair production in the vicinity of a charge.

Eqs. (1.32), (1.33) display how the various renormalization constants differ by
finite amounts. The ε-poles in the fermion self-energy and the fermion-photon ver-
tex can be dealt with in the same manner and we find, e.g., in MS renormalization
(cf. Prob. II–3 and Sect. V–1),

Z
(MS)
1 = Z

(MS)
2 = 1− e2

16π2

1

ε
+O(e4), (1.34)

δm(MS) = 3e2

16π2
m

1

ε
+O(e4). (1.35)

Electric charge as a running coupling constant

The concept of electric charge as a ‘running’ coupling constant is motivated by the
following consideration. In the perturbative Feynman expansion for a given theory,
the hope is that corrections to the lowest-order amplitudes will be small. However,
potentially large corrections of the form ln q2/q2

0 can arise if the theory is renor-
malized at scale q2

0 but then applied at a very different scale q2. It is convenient
to deal with this problem by absorbing such logarithms into scale-dependent or
‘running’ renormalized coupling constants and masses.

To see why scale-dependent charge is not an unreasonable concept, consider the
vacuum polarization process of Fig. II–3, which depicts virtual production of a
fermion of charge Qie together with its antiparticle near a charge source. Due to
the source, each such vacuum fluctuation is polarized, and thus the source becomes
screened. All charged fermion species contribute to the screening, and the larger
the mass of the virtual pair, the closer they lie to the source. The effect is somewhat
akin to concentric onion skins, with each virtual pair forming a layer, resulting in
an effectively scale-dependent source charge.

Let us seek a method for specifying a running fine structure constant α(q) for
nonzero momentum transfers, with α(0) to be identified with the α of Eq. (1.28).
The interpretation of e2

0/(1 + Re �(q)) as a running charge is appealing since it
would maintain the simple −i/q2 structure of the lowest-order photon exchange
amplitude. The fact that �(q) is divergent (see Eq. (1.26)) can be circumvented by
subtracting off its value at q2 = 0 to define a finite quantity �(q) ≡ �(q)−�(0)
and defining
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38 Interactions of the Standard Model

e2(q) ≡ e2

1+ Re �(q)
� e2[1− Re �(q)], (1.36)

so that α(q) = e2(q)/4π . It is not difficult to deduce the behavior of �(q) from
the integral representation of Eq. (1.26), and we find

�(q) = α

3π

⎧⎪⎨⎪⎩
5

3
− ln

|q|2
m2

+ iπθ(q2)+ · · · (|q2| 
 m2),

q2

5m2
+ · · · (m2 
 q2).

(1.37)

Observe that the arbitrary energy scaleμ is absent from�(q), as would be expected
since �(q) is a physically measurable quantity.

The above formulae correspond to the loop correction of one fermion of mass
m. Generally, loops from all available fermions must be included, although contri-
butions of heavy (m2 
 q2) fermions are seen to be suppressed. Important modern
applications of the Standard Model engender phenomena at scales provided by the
gauge-boson masses MW,MZ. To obtain an estimate for α(M2

Z), we can apply
Eq. (1.37) to find

α−1(M2
Z) = α−1

[
1− α

3π

∑
i

Q2
i

(
ln
M2
Z

m2
i

− 5

3

)
+ · · ·

]
. (1.38)

If a sum over quark-loops (each being accompanied by the color factor Nc = 3)
and lepton-loops is performed, then the mass values in Tables I–2, I–3 yield the
approximate determination α−1(M2

Z) � 130. The main uncertainty in this approach
arises from quarks. It is possible to perform a more accurate evaluation of α(M2

Z)

(cf. Sect. XVI–6) which avoids this difficulty.
Let us return to the question of how to define a momentum-dependent coupling.

To emphasize the fact that a ‘running fine-structure constant’ is after all a matter
of definition, let us consider a somewhat different derivation (and definition) of
α(q2). One is able to renormalize the electric charge in a mass-independent scheme
[We 73] by calculating renormalization constants with m = 0. If we return to the
vacuum polarization diagram, but with m = 0, we find

�(q2) = e2
0

12π2

(
μ2

−q2

)ε [
1

ε
+ ln (4π)− γ + 5

3
+O(ε)

]

= e2
0

12π2

[
1

ε
+ ln (4π)− γ + 5

3
− ln

(−q2

μ2

)
+O(ε)

]
. (1.39)
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II–1 Quantum Electrodynamics 39

In order to apply the renormalization program, we must specify the value of the
coupling at some renormalization point,4 which we choose to be q2 = −μ2

R,
identifying

e2(μ2
R) =

e2
0

1+�(q2)
∣∣−q2=μ2

R

� e2
0

[
1− e2

0

12π2

(
1

ε
− ln

μ2
R

μ2
+ · · ·

)]
. (1.40)

However, if we had chosen a different renormalization point μ2
R

′
, we would have

obtained a different value,

e2(μ2
R

′
) = e2(μ2

R)+
e4

0

12π2
ln
μ2
R

′

μ2
R

. (1.41)

The functional dependence of the charge on the renormalization scale is embodied
in the so-called beta function of electrodynamics [GeL 54],

βQED(e) ≡ μR
∂e

∂μR
= e3

12π2
+O(e5). (1.42)

It can be shown [Po 74] that the leading and next-to-leading terms in a perturbative
expansion of βQED are independent of both renormalization and gauge choices.

The quantity e2(μ2
R) defined by integrating the beta function,

de

βQED(e)
= dμR

μR
, (1.43)

is not exactly the same quantity as the running coupling constant defined in
Eq. (1.36), differing by a (small) finite renormalization. For example, the electron
contribution to the running coupling in the range m2

e ≤ μ2
R ≤ M2

Z is

α−1(μ2
R)
∣∣
μ2
R=m2

e
− α−1(μ2

R)
∣∣
μ2
R=M2

Z

= 1

3π
ln
M2
Z

m2
e

, (1.44)

which contains the dominant logarithmic dependence, but differs from Eq. (1.38)
by a small additive term. However, complete calculations of all corrections to phys-
ical observables using the two schemes will yield the same answer. Since the run-
ning coupling constant is but a bookkeeping device, one’s choice is a matter of
taste or of convenience. Regardless of the specific definition employed for α(q2),
we see that as the energy scale is increased (or as distance is decreased), the run-
ning electric charge grows. This is anticipated from the screening of a test charge
due to vacuum polarization (recall our explanation of Fig. II–3). As the momentum
transfer of a photon probe is increased, the screening is penetrated and the effective
charge increases.

4 Note that the renormalization point μR and the scale factor μ in dimensional regularization need not be
identical. They are sometimes confused in the literature, and hence we use a different notation for the two
quantities.
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40 Interactions of the Standard Model

The use of a mass-independent scheme is convenient for identifying the high-
energy scaling behavior of gauge theories. One useful feature is in the calcula-
tion of the one-loop beta function. Dimensional analysis requires that the one-loop
charge renormalization be of the form,

g = g0

[
1− g2

0b

(
μ2

−q2

)ε (
1

2ε
+ finite terms

)
+O(g4

0)

]
, (1.45)

where g is the ‘charge’ associated with the gauge theory being considered. Choos-
ing the renormalization point as q2 = −μ2

R and forming the beta function as in
Eq. (1.42), we see that β = bg3. This allows the beta function to be simply identi-
fied with the coefficient of ε−1 to this order.

II–2 Quantum Chromodynamics

Chromodynamics, the nonabelian gauge description of the strong interactions,
contains quarks and gluons instead of electrons and photons as its basic degrees
of freedom [FrG 72, Co 11]. A hallmark of Quantum Chromodynamics (QCD)
is asymptotic freedom [GrW 73a,b, Po 73], which reveals that only in the short-
distance limit can perturbative methods be legitimately employed. The necessity to
employ approaches alternative to perturbation theory for long-distance processes
motivates much of the analysis in this book.

SU(3) gauge symmetry

Chromodynamics is the SU(3) nonabelian gauge theory of color charge. The
fermions which carry color charge are the quarks, each with field ψ

(α)
j , where

α = u, d, s, . . . is the flavor label and j = 1, 2, 3 is the color index. The gauge
bosons, which also carry color, are the gluons, each with field Aaμ, a = 1, . . . , 8.5

Classical chromodynamics is defined by the lagrangian

Lcolor = −1

4
FaμνF a

μν +
∑
α

ψ
(α)

j (i /Djk −m(α)δjk)ψ
(α)
k , (2.1)

where the repeated color indices are summed over. The gauge field strength
tensor is

Fa
μν = ∂μA

a
ν − ∂νAaμ − g3f

abcAbμA
c
ν, (2.2a)

5 In this section, it will be particularly important to explicitly display color indices. We shall reserve indices
which begin the alphabet for gluon color indices (e.g., a, b, c = 1, . . . , 8), use mid-alphabetic letters for
quark color indices (e.g., j, k, l = 1, 2, 3), and employ greek symbols for flavor indices.
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II–2 Quantum Chromodynamics 41

where g3 is the SU(3) gauge coupling parameter, and the quark covariant derivative
is

Dμψ =
(

I∂μ + ig3A
a
μ

λa

2

)
ψ. (2.2b)

The lagrangian of Eq. (2.1) is invariant under local SU(3) transformations of the
color degree of freedom, under which the quark and gluon fields transform as given
earlier in Eqs. (I–5.11), (I–5.17). Equations of motion for the quark and gluon fields
are

( i /D − m(α) )ψ(α) = 0,

DμF a
μν = g3

∑
α

ψ
(α) λa

2
γνψ

(α). (2.3)

In its quantum version, the g3 → 0 limit of Lcolor describes an exceedingly sim-
ple world. There exist only free massless spin one gluons and massive spin one-
half quarks. However, the full theory is quite formidable. In particular, accelerator
experiments reveal a particle spectrum which bears no resemblance to that of the
noninteracting theory.

The group SU(3) has an infinite number of irreducible representations R. The
first several are R = 1, 3, 3∗, 6, 6∗ 8, 10, 10∗, . . . , where we label an irreducible
representation in terms of its dimensionality. Quarks, antiquarks, and gluons are
assigned to the representations 3, 3∗, 8 respectively. We denote the group genera-
tors for representation R by {Fa(R)} (a = 1, . . . , 8). The quantities λ/2 are group
generators for the d = 3 fundamental representation, i.e., F(3) = λ/2. They have
the matrix representation

λ1 =
⎛⎝0 1 0

1 0 0
0 0 0

⎞⎠ λ4 =
⎛⎝0 0 1

0 0 0
1 0 0

⎞⎠ λ7 =
⎛⎝0 0 0

0 0 −i
0 i 0

⎞⎠

λ2 =
⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠ λ5 =
⎛⎝0 0 −i

0 0 0
i 0 0

⎞⎠ λ8 =
⎛⎜⎝

1√
3

0 0

0 1√
3

0

0 0 −2√
3

⎞⎟⎠

λ3 =
⎛⎝1 0 0

0 −1 0
0 0 0

⎞⎠ λ6 =
⎛⎝0 0 0

0 0 1
0 1 0

⎞⎠ . (2.4)

As generators, they obey the commutation relations

[λa,λb] = 2ifabcλc (a, b, c = 1, . . . , 8) (2.5a)
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Table II–1. Nonvanishing f, d coefficients.

abc fabc abc dabc abc dabc

123 1 118 1/
√

3 355 1/2
147 1/2 146 1/2 366 −1/2
156 −1/2 157 1/2 377 −1/2
246 1/2 228 1/

√
3 448 −1/2

√
3

257 1/2 247 −1/2 558 −1/2
√

3
345 1/2 256 1/2 668 −1/2

√
3

367 −1/2 338 1/
√

3 778 −1/2
√

3
458

√
3/2 344 1/2 888 −1/

√
3

678
√

3/2

where the f-coefficients are totally antisymmetric structure constants of SU(3).
There exist corresponding anticommutation relations

{λa,λb} = 4

3
δab I+ 2dabcλc (a, b, c = 1, . . . , 8) (2.5b)

with d-coefficients which are totally symmetric. Values for fabc and dabc are given
in Table II–1.

Useful trace relations obeyed by the {λa} are

Tr λa = 0 (a = 1, . . . , 8) (2.6)

from Eq. (2.4) and

Tr λaλb = 2δab (a, b = 1, . . . , 8) (2.7)

from Eq. (2.5). The statement of completeness takes the form,

λaijλ
a
kl = −

2

3
δij δkl + 2δilδjk (i, j, k, l = 1, 2, 3), (2.8)

where a = 1, . . . , 8 is summed over. Useful labels for the irreducible represen-
tations of SU(3) are provided by the Casimir invariants. For any representation
R, the quadratic Casimir invariant C2(R) is defined by squaring and summing the
group generators {Fa(R)},

C2(R)I ≡
8∑

a=1

F2
a(R). (2.9)

There is also a third-order Casimir invariant,

C3(R)I ≡
8∑

a,b,c=1

dabcFa(R)Fb(R)Fc(R). (2.10)
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II–2 Quantum Chromodynamics 43

The quark and antiquark states form the bases for the smallest nontrivial irre-
ducible representations of SU(3). It is possible to use products of them, say p

factors of quarks and q factors of antiquarks, to construct all other irreducible ten-
sors in SU(3). Each irreducible representation R is then characterized by the pair
(p, q). For example, we have the correspondences 1 ∼ (0, 0), 3 ∼ (1, 0), 3∗ ∼
(0, 1), 8 ∼ (1, 1), 10 ∼ (3, 0), etc. The (p, q) labeling scheme provides useful
expressions for the dimension of a representation,

d(p, q) = (p + 1)(q + 1)(p + q + 2)/2, (2.11)

and of the two Casimir invariants,

C2(p, q) = (3p + 3q + p2 + pq + q2)/3,

C3(p, q) = (p − q)(2p + q + 3)(2q + p + 3)/18. (2.12)

From Eq. (2.12) we find C2(3) = C2(3∗) = 4/3 for the quark and antiquark
representations. Equivalently, upon setting j = k and summing in Eq. (2.8) we
obtain

λaijλ
a
jl =

16

3
δil = 4C2(3)δil . (2.13)

Generators for the d = 8 regular (or adjoint) representation are determined from
the structure constants themselves,

(F a(8))bc = −ifabc (a, b, c = 1, . . . , 8). (2.14)

It follows directly from Eq. (2.14) and from using Eq. (2.12) to compute C2(8) = 3
that

facdfbcd = C2(8) δab = 3 δab. (2.15)

This result, in turn, enables us to determine

fabcλbλc = 1

2
fabc[λb,λc] = ifabcfbcdλd = iC2(8)λa. (2.16)

As a final example involving SU(3), we evaluate the quantity

λbλaλb = 1

2

(
λb[λa,λb] − [λa,λb]λb + λbλbλa + λaλbλb

)
= 4C2(3)λa + ifabc[λb,λc] = 4

(
C2(3)− 1

2
C2(8)

)
λa. (2.17)

Shortly, we shall see how such combinations of color factors arise in various
radiative corrections.
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44 Interactions of the Standard Model

Including only gauge-invariant and renormalizable terms, we can write the most
general form for a chromodynamic lagrangian as

Lgen = −1

4
ZFμν

a F a
μν + ψα

LZ
αβ

L i /D ψ
β

L + ψα

RZ
αβ

R i /D ψ
β

R − ψα

LM
αβψ

β

R

− ψα

RM
†αβψ

β

L +
g2

3

64π2
θεμνλσF a

μνF
a
λσ , (2.18)

where the flavor matrices ZL,R are hermitian, color and flavor indices are as before,
except that for simplicity we suppress quark color notation. The final contribution
to Eq. (2.18) is called the θ-term. We can reduce Lgen to the form of Lcolor by first
rescaling,

A′aμ = Z1/2Aaμ, g′3 = Z−1/2g3, (2.19)

and then diagonalizing and rescaling with respect to quark flavors,

ψ ′L,R = UL,RψL,R, UL,RZL,RU
†
L,R = 
L,R, ψ ′′L,R = 


1/2
L,Rψ

′, (2.20)

where 
L,R are diagonal. Finally we diagonalize the mass terms

Lmass = −ψ ′′αL M ′αβψ ′′βR − ψ ′′αR M ′†αβψ ′′βL , (2.21)

where M ′ = 

−1/2
L ULMU

†
R


−1/2
R , by means of yet another set of unitary trans-

formations on the quark fields. Aside from the θ-term, this results in the canonical
expression for Lcolor of Eq. (2.1).

We shall demonstrate later in Sect. IX–4 that the above quark mass diagonaliza-
tion procedure induces a modification in the θ-parameter,

θ → θ = θ + arg det M ′. (2.22)

This does not imply θ = 0 because both θ and the original quark mass matrices are
arbitrary from the viewpoint of renormalizability and SU(3) gauge invariance. In
fact, the θ-term cannot be ruled out by any of the tenets which underlie the Standard
Model. Moreover, although the θ-term can be expressed as a four-divergence

Lθ = g2
3

32π2
θ ∂μK

μ, (2.23)

Kμ = εμνλσAaν

(
Fa
λσ +

g3

3
fabcA

b
λA

c
σ

)
, (2.24)

analysis demonstrates that Kμ is a singular operator and that its divergence cannot
be summarily discarded as was done in electrodynamics. This is a curious situation
because the θ-term is CP-violating. Thus, one is faced with the specter of large
CP-violating signals in the strong interactions. Yet such effects are not observed.
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II–2 Quantum Chromodynamics 45

Indeed, it has been estimated that the θ-term generates a nonzero value for the
neutron electric dipole moment de(n) � 5 × 10−16 θ e-cm, but to date no signal
has been observed experimentally, de(n) < 2.9 × 10−26 e-cm at C.L. 90% [RPP
12]. This provides the upper bound θ < 5.8 × 10−11. Perhaps Nature has dictated
θ ≡ 0, albeit for reasons not yet understood.

QCD to one loop

To develop Feynman rules for QCD, we must first obtain an effective lagrangian
which properly addresses the issue of SU(3) gauge freedom. For the U(1) gauge
invariance of QED, this was accomplished by adding a gauge-fixing term to the
classical lagrangian. The situation for SU(3) is analogous, but somewhat more
complicated due to its nonabelian structure. If we continue to use a Lorentz-
invariant gauge-fixing procedure, the effective QCD lagrangian (for simplicity,
consider just one quark flavor) can be expressed as

LQCD = −1

4
Fa
μνF

aμν + ψj(i /D−m0I)jkψk − 1

2ξ0
(∂μA

μ
a )

2

+ ∂μca∂μca + g3,0fabeA
μ
a (∂μcb)ce. (2.25)

Bare quantities carry the subscript ‘0’ and the field strengths and covariant deriva-
tive are defined as in Eqs. (2.2a), (2.2b). The quantities {ca(x)} (a = 1, . . . , 8) are
called ghost fields. As explained in App. A–5, they are anticommuting c-number
quantities (i.e., Grassmann variables) which couple only to gluons. Ghosts occur
only within loops, and never appear as asymptotic states. Each ghost-field loop
contribution must be accompanied by an extra minus sign, analogous to that of a
fermion–antifermion loop. Their presence is a consequence of the Lorentz-invariant
gauge-fixing procedure. In alternative schemes such as axial or temporal gauge,
ghost fields do not appear, but compensating unphysical singularities occur in
Feynman integrals instead.

The Feynman rules for QCD are

three-gluon vertex:

−g3,0fabc[gμν(p − q)λ + gνλ(q − r)μ
+gλμ(r − p)ν]

μ,a

λ,c

qp

r

ν,b

(2.26)
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46 Interactions of the Standard Model

quark–gluon vertex:

−ig3,0(γμ)αβ

(
λa

2

)
jk

μ,a

β,k α,j

(2.27)

four-gluon vertex:

−ig2
3,0

[
(fabefcde(gμλgνσ − gμσgνλ)

+facefbde(gμνgλσ − gμσgνλ)
+fadefcbe(gμλgνσ − gμνgλσ )

] λ,c

σ,d

μ,a

ν,b

(2.28)

ghost–gluon vertex:

−g3,0fabcrμ

μ,a

b c
r

(2.29)

quark propagator iSjkαβ(p):

iδjk (/p +m0)αβ

p2 −m2
0 + iε

α,jβ,k

p

(2.30)

gluon propagator iDab
μν(q):

iδab

q2 + iε
(
−gμν + (1− ξ0)

qμqν

q2 + iε
)

μ,aν,b

q

(2.31)

ghost propagator:

iδab
p2 + iε a

p
b

(2.32)
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The above rules involve a total of four distinct interaction vertices. Of these,
the three-gluon and four-gluon self-vertices, and the ghost–gluon coupling have no
counterpart in QED. That all four vertices are scaled by a single coupling strength
g3 is a consequence of gauge invariance. Also, chromodynamics exhibits a certain
coupling-constant universality, called flavor independence, in the quark–gluon sec-
tor. All fields which transform according to a given representation of the SU(3) of
color have the same interaction structure, e.g., all triplets couple alike, all octets
couple alike but differently from triplets, etc. Quarks are assigned solely to the
color triplet representation. Thus, the quark–gluon interaction is independent of
flavor.

The renormalization constants of QCD are

Aaμ = Z
1/2
3 (Aaμ)

r , g3,0 = Z1Z
−3/2
3 g3,

ψ = Z
1/2
2 ψr, = Z

1/2
4 Z−1

3 g3,

ca = Z
1/2
3 (ca)r , = Z1FZ

−1
2 Z

−1/2
3 g3,

ξ0 = Z3ξ, = Z1Z
−1
3 Z

−1/2
3 g3,

m0 = m− δm,

(2.33)

where the quantities Z1, Z1, Z1F , and Z4 are defined by the above coupling, con-
stant relations and can be determined from Z2, Z3, and Z3. In the following, work-
ing in ξ0 = 1 gauge we shall compute the one-loop contributions to the gluon
self-energy and to the quark–gluon vertex, and, by absorbing the ε-poles, thereby
obtain expressions for Z3 and Z1F to leading order. Determination of the remain-
ing renormalization constants, which can be computed from loop corrections to
the quark and ghost propagators and the three-gluon, four–gluon, and ghost–gluon
vertices will be left as exercises. However, it is clear from the definition of g3,0 in
Eq. (2.33) that the relations

Z4

Z1
= Z1

Z3
= Z1

Z3
(2.34)

must hold in any consistent renormalization scheme. These are the analogs of the
Ward identities in QED. Physically, they ensure that the coupling-constant relations
which appear in the QCD lagrangian (as a consequence of gauge invariance) are
maintained in the full theory.

The QCD one-loop contribution to the quark–antiquark vacuum polarization
amplitude of Fig. II–4(a),6

6 To avoid notational clutter, we shall not put subscripts on the bare coupling for the remainder of this
subsection.
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(b) (c)(a)

Fig. II–4 One-loop corrections to the gluon propagator: (a) quark–antiquark pair,
(b) gluon pair, and (c) ghosts.

i�ab
αβ(q)

∣∣
quark

= −
(−ig3

2

)2 ∫
d4p

(2π)4

× Tr

[
γα(λ

a)kj
i

/p −m+ iε γβ(λ
b)jk

i

/p − /q −m+ iε
]
, (2.35)

differs from the QED self-energy only by the group factor (λa)jk(λb)kj =
Tr (λaλb) = 2δab (cf. Eq. (2.7)). Comparing with Eq. (1.39), we obtain

i�ab
αβ(q)

∣∣
quark

= iδab(qαqβ − gαβq2)

(
μ2

−q2

)ε [
g2

3

24π2

1

ε
+ · · ·

]
. (2.36)

This must be multiplied by the number of quark flavors nf which contribute in the
vacuum polarization loops.

The contribution from the gluon–gluon intermediate state of Fig. II–4(b) can be
written

i�ab
αβ(q)

∣∣
gluon

= 1

2
(−i)2

∫
d4k

(2π)4
Nab
αβ

[k2 + iε][(q − k)2 + iε] (2.37)

with

Nab
αβ = g3f

bcd[−gβμ(q + k)ν + gμν(2k − q)β + gνβ(2q − k)μ]
× g3f

acd[gμα(q + k)ν + gμν(q − 2k)α + gνα(k − 2q)μ]. (2.38)

The prefactor 1/2 in Eq. (2.37) is a Feynman symmetry factor associated with the
identical intermediate-state gluons. To arrive at this expression, special care must
be exercised with momentum flow in the three-gluon vertices. Upon extending the
integration to d dimensions and using Eq. (2.15) to evaluate the color factor, we
obtain

i�ab
αβ(q)

∣∣
gluon

= −1

2
C2(8)δabg 2

3 μ
2ε
∫

ddk

(2π)d
Nαβ

[k2 + iε][(q − k)2 + iε] (2.39)

with

Nαβ = (−5q2 + 2q · k − 2k2)gαβ + (6− d)qαqβ
+ (2d − 3)(qαkβ + qβkα)+ (6− 4d)kαkβ. (2.40)
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Integration of Eq. (2.39) yields

i�ab
αβ(q)|gluon = −i g2

3

16π2
C2(8)δab

(
μ2

−q2

)ε [
11

3
qαqβ − 19

6
gαβq

2

]
1

2ε
+ · · · .

(2.41)

The final contribution to the gluon propagator is the ghost-loop amplitude of
Fig. II–4(c),

i�ab
αβ(q)

∣∣
ghost

= −
∫

d4k

(2π)4
i

(k − q)2 + iε
× [g3f

bdc(k − q)β] i

k2 + iε [g3f
acdkα]. (2.42)

The bracketed quantities arise from the gluon–ghost vertices, and the minus
prefactor must accompany any ghost loop. Following the standard steps to a
d-dimensional form, we arrive at

i�ab
αβ(q)

∣∣
ghost

= −g 2
3 C2(8)δab μ2ε

∫
ddk

(2π)d
kα(k − q)β

[(k − q)2 + iε][k2 + iε] , (2.43)

which becomes to leading order in ε,

i�ab
αβ(q)

∣∣
ghost

= iδab
g2

3

16π2
C2(8)

(
μ2

−q2

)ε [
1

3
qαqβ + 1

6
gαβq

2

]
1

2ε
. (2.44)

The sum of gluon and ghost contributions takes the gauge-invariant form

i�ab
αβ(q)

∣∣
gl+gh

= −iδab g
2
3

8π2
C2(8)

5

3

(
μ2

−q2

)ε [
qαqβ − gαβq2

] 1

2ε
+ · · · .

(2.45)

Finally, adding the quark contribution for nf flavors gives the total result

�ab
αβ(q) = iδab(qαqβ − gαβq2)

g2
3

8π2

(
μ2

−q2

)ε [
2nf

3
− 5

3
C2(8)

]
1

2ε
+ · · · .

(2.46)

Renormalizing at q2 = −μ2
R, we find7

Z3 = 1− g2
3

8π2

(
μ

μR

)2ε [2nf
3
− 5

3
C2(8)

]
1

2ε
+O(g4

3). (2.47)

Proceeding next to the quark–gluon vertex, written through first order as

−i g3

2
(�aν )ji(p2, p1) = −i g3

2
γν(λ

a)ji − ig3(

a
ν)ji(p2, p1)+ · · · , (2.48)

7 For notational simplicity, we discontinue displaying the superscript (MS) on renormalization constants.
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(a) (b)

αα

ββ
ν ν

Fig. II–5 One-loop corrections to the quark–gluon vertex.

we see from Fig. II–5 that there are radiative corrections from both quark and gluon
intermediate states. The quark contribution is

−ig3[
a
ν(p2, p1)]j i

∣∣
quark =

(−ig3

2

)3 ∫
d4k

(2π)4
−igαβ
k2 + iε (λ

b)jnγα

× i

/p2 − /k −m+ iε
(λa)nlγν

i

/p1 − /k −m+ iε
(λb)liγβ. (2.49)

Aside from the replacement e → g3 and a color factor λbλaλb/8, which is eval-
uated in Eq. (2.17), the remaining expression is the QED vertex, which will be
analyzed in detail in Sect. V–1. Thus we anticipate from Eq. (V–1.19) that at
p1 = p2 = p and |p|2 
 m2,

[
a
ν(p, p)]j i

∣∣
quark = (C2(3)− 1

2
C2(8))

g2
3

8π2

1

2ε

(
μ2

−p2

)ε
(λa/2)jiγν + · · · .

(2.50)

The two-gluon intermediate state, which has no counterpart in QED, has the form

− ig3(

a
ν(p2, p1))ji

∣∣
gluon = ifabc(λ

cλb)ji
g3

3

4

∫
d4k

(2π)4
γ β(/k +m)γ α

× gνβ(2p2 − k − p1)α + gβα(2k − p1 − p2)ν + gαν(2p1 − k − p2)β

[k2 −m2 + iε][(p1 − k)2 + iε]2[(p2 − k)2 + iε] . (2.51)

By a now-standard set of steps, it is not difficult to extract the ε-pole from the
extension of the above to d dimensions, and we find

(
a
ν(p, p))ji

∣∣
gluon = (λa/2)jiγν

3

2
C2(8)

g2
3

8π2

(
μ2

−p2

)ε
1

2ε
+ · · · , (2.52)

implying a total vertex correction of the form,

(
a
ν(p, p))ji

∣∣
tot = (λa/2)jiγν [C2(3)+ C2(8)] g

2
3

8π2

(
μ2

−p2

)ε
1

2ε
+ · · · .

(2.53)

We thus determine the renormalization constant for the quark–gluon vertex at p2
i =

−μ2
R to be
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Z1F = 1− [C2(3)+ C2(8)] g
2
3

8π2

(
μ

μR

)2ε 1

2ε
+ · · · . (2.54)

There remains the task of determining Z2. We shall leave this for an exercise
(cf. Prob. II–3) and simply quote the result

Z2 = 1− C2(3)
g2

3

8π2

(
μ

μR

)2ε 1

2ε
+ · · · . (2.55)

Asymptotic freedom and renormalization group

A striking property of QCD is asymptotic freedom [GrW 73a,b, Po 73]. This is the
statement that, unlike the electric charge, the coupling constant g3(μR) of color
decreases as the scale of renormalization μR is increased. To demonstrate this, we
first combine our results for Z1, Z2 and Z3 to obtain the coupling renormalization
constant Zg,

g3,0 = Z1FZ
−1
2 Z

−1/2
3 g3 ≡ Zgg3,

Zg = 1− αs

4π

(
11− 2nf

3

)(
μ

μR

)2ε 1

2ε
+ · · · , (2.56)

where αs ≡ g2
3/(4π). From the ε−1 coefficient of Zg, we learn that

μR
∂g3

∂μR
= −

[
11

3
C2(8)− nf

2
C2(3)

]
g3

3

16π2
+O(g5

3), (2.57a)

or equivalently,

βQCD = −
(

11− 2nf
3

)
g3

3

16π2
+O(g5

3) ≡ −β0
g3

3

16π2
+O(g5

3). (2.57b)

The sign of the leading term in βQCD is negative for the six-flavor world nf = 6,
becoming positive only if the number of quark flavors exceeds 16. As we have
already seen, the QED vacuum acts as a dielectric medium with dielectric con-
stant εQED > 1 because spontaneous creation of charged fermion–antifermion
pairs results in screening (i.e., vacuum polarization) of electric charge. The dielec-
tric property εQED > 1 means that the QED vacuum has magnetic susceptibility
μQED < 1, and thus is a diamagnetic medium. The QCD vacuum is the
recipient of similar effects from virtual quark–antiquark pairs, but these are over-
whelmed by contributions from virtual gluons. As a result, the QCD vacuum is
a paramagnetic medium (μQCD > 1) and antiscreens (εQCD < 1) color charge
[Hu 81].
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The effect of asymptotic freedom can be displayed most clearly by performing
a renormalization group (RG) analysis on the 1PI amplitudes of the theory. A
connected8 renormalized Green’s function is defined in coordinate space as

G(nF ,nB)({x}) = 〈0|T
(
ψ
r
(x1) . . . A

r(xn)
)
|0〉conn (2.58)

where the numbers of quark and gluon fields are nF , nB , respectively, and for
convenience we suppress color and Lorentz indices. We employ the same symbol
G(nF ,nB) for the momentum Green’s function

(2π)4δ4(p1 + · · · + pn)G(nF ,nB)({p}) =
∫ n∏

j=1

(d4xj e
−ipj ·xj ) G(nF ,nB)({x})

(2.59)

where n = nF + nB . The 1PI amplitudes �(nF ,nB) are obtained by removing the
external-leg propagators from G

(nF ,nB)
1PI ,

G
(nF ,nB)
1PI =

∏
i′
D(pi′)

∏
j ′
S(pj ′) �

(nF ,nB)({p})
∏
i

D(pi)
∏
j

S(pj ), (2.60)

where unprimed (primed) momenta represent initial (final) states. The relations of
Eq. (2.33) imply for any renormalization scheme, which we need not specify yet,
that

G(nF ,nB) = Z
−nF /2
2 Z

−nB/2
3 G

(nF ,nB)
0 ,

D = Z−1
3 D0, S = Z−1

2 S0, (2.61)

where the zero subscript denotes unrenormalized quantities. From this, we have

�(nF ,nB) = Z
nF /2
2 Z

nB/2
3 �

(nF ,nB)
0 , (2.62)

and the combination of terms

Z
−nF /2
2 (μR) Z

−nB/2
3 (μR) �

(nF ,nB)({p}, g3(μR),m(μR), ξ(μR);μR) (2.63)

is therefore independent of the renormalization scale μR.
Let us now ascertain the behavior of �(nF ,nB) in the deep Euclidean kinematic

limit where all momenta {p} are both spacelike (in order to avoid singularities) and
very large compared to any other mass scale in the theory. To keep the situation
as simple as possible, we omit the dependence of �(nF ,nB) on both the quark-mass
m(μR) and gauge ξ(μR) parameters.9 Then from Eq. (2.59) we find in response to
a scale transformation p→ λp that

8 All the fields participating in a connected Green’s function are affected by interactions; in a disconnected
Green’s function, one or more of the field quanta propagate freely.

9 We shall define a ‘running mass parameter’ later, in Chap. XIV.

https://doi.org/10.1017/9781009291033.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.003


II–2 Quantum Chromodynamics 53

G(nF ,nB)({λp}, g3(μR);μR) = λ4−nB−3nF /2 G(nF ,nB)({p}, g3(μR);μR/λ). (2.64)

This behavior is almost that of a homogeneous function occurring in a scale-
invariant theory. Canonical dimensions of the fields appear in the exponent of the
scaling factor along with an additive factor of four arising from the four-momentum
delta function in Eq. (2.59). However, in G(nF ,nB), there is also an implicit depen-
dence on λ due to the presence of the renormalization scale μR. The corresponding
scaling property of the 1PI amplitude is found from Eqs. (2.63), (2.64) to be

�(nF ,nB)({λp}, g3(μR);μR) = λ4−nB−3nF /2�(nF ,nB)({p}, g3(μR);μR/λ) (2.65)

or

�(nF ,nB)({λp}, g3(μR);μR) = λ4−nB−3nF /2

(
Z3(λμR)

Z3(μR)

)−nB/2
×
(
Z2(λμR)

Z2(μR)

)−nF /2
�(nF ,nB)({p}, g3(λμR);μR). (2.66)

This functional relationship can be converted to a differential RG equation by tak-
ing the λ-derivative of both sides and then setting λ = 1,(

n∑
i

pi
∂

∂pi
+ nB(1+ γB)+ nF

(
3

2
+ γF

)
− 4− βQCD

∂

∂g3

)
�(nF ,nB) = 0,

(2.67)

where

γF = μR
∂

∂μR
lnZ1/2

2 , γB = μR
∂

∂μR
lnZ1/2

3 (2.68)

are called the anomalous dimensions of the respective fields and βQCD is as in
Eq. (2.57).

Let us now see how to obtain leading-order estimates for the above anomalous
dimensions. To this order, the result for βQCD is both gauge and renormalization
scheme-independent. To start, we can use the result of Eq. (2.55) to determine γF ,

γF = 1

2
μR

∂ lnZ2

∂μR
= g2

3

16π2
C2(3) + O(g4

3), (2.69)

and analogously for γB . To solve the RG equation, we employ the variable t = ln λ,
where λ is the scaling parameter appearing in Eqs. (2.64)–(2.66), and introduce the
running coupling constant g3(t),

∂g3

∂t
= β(g3), g3(0) = g3. (2.70)
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Then it is straightforward to verify that the solution to Eq. (2.67) is

�({etp}, g3(μR);μR) = et(4−nB−3nF /2)D(t)�({p}, g3(t);μR), (2.71)

where

D(t) = exp

(
−
∫ t

0
dt ′
[
nBγB

(
g3(t

′)
)+ nFγF (g3(t

′)
)] )

(2.72)

is the anomalous dimension factor. The scaling behavior of the 1PI amplitude
is seen to have field dimensions with anomalous contributions in addition to the
canonical values.

Despite naive expectations, the interaction strength at the scaled momentum is
not the constant g3, but rather the running coupling constant g3 whose magnitude
decreases as the momentum is increased. Employing the lowest-order contribution
for βQCD in Eq. (2.57b), we can integrate Eq. (2.70) over the interval t1 < t < t2 to
obtain

(g3(t2))
−2 − (g3(t1))

−2 = 2
(
11− 2nf /3

)
(t2 − t1)/16π2, (2.73)

where nf is the number of quark flavors having mass less than
√
t2. It is conven-

tional to express this relation in a somewhat different form. Defining a scale 
 at
which g3 diverges and letting αs(q2) ≡ g2

3(q
2)/4π , we have to lowest order,

αs(q
2) = 4π

(11− 2nf /3)

1

ln(q2/
2)
+ · · · , (2.74)

where nf is the number of quark flavors with mass less than
√
q2. Higher order

contributions are discussed at the end of this section.
If αs(q2) continues to grow as q2 is lowered, any perturbative representation of

βQCD ultimately becomes a poor approximation, and we can no longer integrate
Eq. (2.70) with confidence. Although unproven, a popular working hypothesis
is that the QCD coupling indeed continues to grow as the energy is lowered,
leading to the phenomenon of quark confinement. In QED, the free parameter
α(q � 0) � 1/137 is quite small and expansions in powers of α converge rapidly.
However QCD behaves differently. In particular, it is clear from Eq. (2.74) that αs
is not really a free parameter, but is instead inexorably related to some mass scale,
e.g.,
. This phenomenon, called dimensional transmutation, means that an energy
such as 
 can effectively serve to replace the dimensionless quantity αs in the for-
mulae of QCD. Specifying QCD operationally requires not only a lagrangian but
also a value for 
. For example, QCD perturbation theory is useful only if ‘large’
mass scales M (i.e. those with (
/M)2 � 1) are probed. Because the complex-
ity of low-energy QCD has thus far prevented direct analytic solution of the theory,
there have been substantial efforts to develop alternative approaches. These include
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Table II–2. Determinations of αs(MZ).

Experiment q [GeV] αs(q
2) αs(MZ)

τ decays 1.777 0.330± 0.014 0.1197± 0.0016
DIS [F2] 2 → 15 −−− 0.1142± 0.0023
DIS [e + p → jets] 6 → 100 −−− 0.1198± 0.0032
QQ̄ states 7.5 0.1923± 0.0024 0.1183± 0.0008
ϒ decays 9.46 0.184+0.015

−0.014 0.1190+0.006
−0.005

e+e− jets & shapes 14 → 44 −−− 0.1172± 0.0051
e+e− [ew] 91.17 0.1193± 0.0028 0.1193± 0.0028
e+e− jets & shapes 91 → 208 −−− 0.1224± 0.0039

attempts to solve QCD numerically (lattice-gauge theory), phenomenological study
of various theoretical constructs (potential, bag, Skyrme models), exploitation of
the invariances contained in LQCD (notably chiral and flavor symmetries), and con-
sideration of the infinite color limit Nc → ∞ as a first approximation to QCD
(N−1

c expansion). The first of these topics is beyond the scope of this book (e.g. see
[GaL 10, DeD 10]), but the others will form the basis for much of our discussion.

Attempts to infer αs(q2) from experimental data are typically carried out under
kinematic conditions for which a perturbative analysis of QCD presumably makes
sense. Systems commonly used for this purpose include decays of the τ lepton,
deep-inelastic scattering (DIS) structure functions, ϒ decay, and hadronic event
shapes and jet production in e+e− annihilation. Suppose, as is generally the case,
a given process is computed to some order in QCD perturbation theory and reg-
ularized in the MS scheme. If such a theoretical expression is then used to fit the
data with a q-value characteristic of the given process employed, an expression
such as Eq. (2.74) can be used to determine 
 and αs(q2) can be evolved to dif-
ferent q. Since this operation depends on both the regularization procedure and
the number of quark flavors nf used in Eq. (2.74), a notation like 


(nf )

MS
would be

precise. Unfortunately there is no uniformity in the rate of convergence of QCD
perturbation theory from process to process. Thus, determinations of αs(q2) are
affected by both theoretical and experimental uncertainties, and a scatter of quoted
values results. Nonetheless, an impressive consistency now exists between determi-
nations carried out for a variety of conditions. Table II–2 lists values of αs(MZ) as
inferred from a diverse set of experimental inputs [Be 09], and Figure II–6, which
has attained the status of a QCD icon, displays the same. The current world average
at the Z-boson mass scale is [Be et al. 11]

αs(MZ) = 0.1184± 0.0007, (2.75)
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Fig. II–6 Energy dependence of αs(Q), from [RPP 12] (used with permission).

which implies the value 
(5)
MS
= 213 ± 8 MeV for the five-flavor sector of QCD.

Determinations of αs(q2) have been found to be qualitatively in accord consistent
with the predicted q2 dependence of QCD. Taken over the full range of available
data, values in the range 0.2 ≤ 
(GeV) ≤ 0.4 are not uncommon, e.g., 
(3)

MS
=

339± 10 MeV and 
(4)
MS
= 296± 10 MeV as cited in [Be et al. 11].

To conclude this section, we briefly comment on the status of higher-order con-
tributions to the running of the strong fine structure constant. To date, analytic
calculations on αs(μ) have been performed up to the four-loop level,

μ2 ∂

∂μ2
as = −β0a

2
s − β1a

3
s − β2a

4
s − β3a

5
s + · · · , (2.76)

in which as ≡ αs/(4π) is the expansion parameter and exact expressions for the
coefficients β0, β1, β2 and β3 appear in [RiVL 97]. The following useful approxi-
mations are also provided,

β0 � 11− 0.66667nf

β1 � 102− 12.6667nf

β2 � 1428.50− 279.61nf + 6.01852n2
f

β3 � 29243.0− 6946.30nf + 405.089n2
f + 1.49931n3

f , (2.77)

where as usual nf denotes the number of active flavors. The four-loop running of
αs can then be expressed as [ChKS 98],
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αs(μ
2
R) �

4π

β0t

[
1− β1

β2
0

ln t

t
+ β2

1 (ln
2 t − ln t − 1)+ β0β2

β4t2

β3
1

(
ln3 t − 2.5 ln2 t − 2 ln t + 0.5

)+ 3β0β1β2 ln t − 0.5β2
0β3

β6
0 t

3

]
,

(2.78)

where t ≡ ln(μ2
R/


2). As an example, let us use this (taking nf = 5) to determine
αs(μ) at three mass scales involving respectively the b quark, the Z boson, and the
Higgs boson, i.e., μb = 4.18 GeV, μZ = 91.1876 GeV and μH = 125.5 GeV,

αs(mb) � 0.2266, αs(MZ) � 0.1184, αs(MH) � 0.1129. (2.79)

These values reflect the behavior expected from asymptotic freedom, as discussed
earlier.10 They will later be of use in discussing running quark mass (Chap. XIV)
and Higgs-boson phenomenology (Chap. XV).

II–3 Electroweak interactions

The Weinberg–Salam–Glashow model [Gl 61, We 67b, Sa 69] is a gauge theory of
the electroweak interactions whose input fermionic degrees of freedom are mass-
less spin one-half chiral particles. It has the group structure SU(2)L×U(1), where
the SU(2)L, U(1) represent weak isospin and weak hypercharge respectively. The
subscript ‘L’ on SU(2)L indicates that, among fermions, only left-handed states
transform nontrivially under weak isospin.

Weak isospin and weak hypercharge assignments

First, we shall discuss how the fermionic weak isospin (Tw, Tw3) and weak hyper-
charge (Yw) quantum numbers are assigned. The fermion generations are taken
to obey a ‘template’ pattern – we assume that each succeeding generation differs
from the first only in mass. Thus, it will suffice to consider just the lightest fermions
for the remainder of this section. The first-generation electroweak assignments are
displayed in Table II–3.

For weak isospin, experience gained from charged weak current interactions
such as nuclear beta decay dictates that left-handed fermions belong to weak iso-
doublets while right-handed fermions be placed in weak isosinglets, as in

10 Using the exact relations for β0, . . . , β4 yields the same results to the stated level of accuracy.
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Table II–3. SU(2)L × U(1) fermion assignments

Particle Tw Tw3 Yw

νe,L 1/2 1/2 −1
eL 1/2 −1/2 −1
νe,R 0 0 0
eR 0 0 −2
uL 1/2 1/2 1/3
dL 1/2 −1/2 1/3
uR 0 0 4/3
dR 0 0 −2/3

leptons : 
L ≡
(
νe

e

)
L

νe,R eR,

quarks : qL ≡
(
u

d

)
L

uR dR. (3.1)

In view of nonzero neutrino mass, we include a right-handed neutrino. Each of the
degrees of freedom displayed above must be assigned a weak hypercharge. There
are a priori six in all,11

Y (qL) ≡ Yq, Y (uR) ≡ Yu, Y (dR) ≡ Yd,

Y (
L) ≡ Y
, Y (eR) ≡ Ye , Y (νR) ≡ Yν. (3.2)

In the Standard Model one identifies the electromagnetic current, following spon-
taneous symmetry breaking in the electroweak sector, by its coupling to the linear
combination of neutral gauge bosons having zero mass. The electric charge Q car-
ried by a particle is thus linearly related to the SU(2)L×U(1)Y quantum numbers
Tw3 and Yw,

aQ = Tw3 + bYw, (3.3)

where a, b are constants. We can use the freedom in assigning the scale of the
electric charge Q to choose a = 1. At this point, let us not assume any knowl-
edge of the fermion electric charge values. Ultimately, however, the left-handed
and right-handed components of the charged chiral fermions must unite to form
the physical states themselves. Consistency demands that the electric charges of
the chiral components of each such charged fermion be the same, whatever value
that charge might have. Using Eq. (3.3), we find

11 The reason that weak hypercharge engenders so many free parameters in contrast to weak isospin lies in the
difference between an abelian gauge structure (like weak hypercharge) and one which is nonabelian (like
weak isospin). Thus all doublets have the same weak isospin properties irrespective of their other properties,
analogous to flavor independence in QCD. For the abelian group of weak hypercharge, the group structure by
itself provides no guidelines for assigning the weak hypercharge quantum number. Like the electric charge, it
is a priori an arbitrary quantity.
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Yq = Yu − 1

2b
= Yd + 1

2b
, Y
 = Ye + 1

2b
= Yν − 1

2b
. (3.4)

Additional information is contained in axial anomaly cancelation conditions, to be
discussed in detail in Sect. III–3 (see especially Eq. (III–3.60b) and subsequent
discussion). In particular, the cancelation requirement implies the conditions

TrF 2
3 Yw = 0, (3.5a)

Tr T 2
w3Yw = 0, (3.5b)

TrY 3
w = 0, (3.5c)

where ‘Tr’ represents a sum over fermions and in Eq. (3.5a) F3 is the third generator
of the octet of color charges. These constraints imply

2Yq − Yu − Yd = 0, (3.6a)

3Yq + Y
 = 0, (3.6b)

2(3Y 3
q + Y 3


 )− 3(Y 3
u + Y 3

d )− Y 3
e − Y 3

ν = 0, (3.6c)

where the factors of ‘3’ are color related and the minus signs arise from chirality
dependence of the anomalies. Then, insertion of Eq. (3.4) into Eqs. (3.6b), (3.6c)
yields (

bY
 + 1

2

)3

− Y 3
ν = 0. (3.7)

If neutrinos are Majorana particles (i.e. identical to their antiparticles), then they
cannot carry electric charge and by Eq. (3.3), one has Yν = 0. If so, Eq. (3.7)
implies bY
 = −1/2, which fixes the remaining Yi via Eq. (3.4). Thus, provided
neutrinos are Majorana particles, once the weak isospin is chosen as in Eqs. (3.1),
(3.2) and all possible chiral anomalies are arranged to cancel, one obtains a pre-
diction for the fermion electric charge. We also learn that any attempt to determine
weak hypercharge values from the known fermion electric charges is affected by
an arbitrariness associated with the value of ‘b’. This accounts for the variety of
conventions seen in the literature. For definiteness, we have taken b = 1/2
in Eq. (3.3) and thus the relationship among the various quantum numbers in
Table II–3 is

Yw = 2(Q− Tw3). (3.8)

On the other hand, if neutrinos are Dirac particles, it follows from Eq. (3.4) that
Eq. (3.7) becomes a trivality and we learn nothing of weak hypercharge assign-
ments from anomaly cancelation arguments. In this instance, one assigns the weak
hypercharge by inserting the observed fermion electric charges into Eq. (3.8). The
ability to predict {Qi} values has been lost.
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SU(2)L×U(1)Y gauge-invariant lagrangian

Having assigned quantum numbers, we turn next to the electroweak interactions.
The Weinberg–Salam lagrangian divides naturally into three additive parts, gauge
(G), fermion (F ), and Higgs (H ),

LWS = LG + LF + LH . (3.9)

Throughout this section we shall concentrate on establishing the general form of
the electroweak sector, referring at times to only a few tree-level amplitudes. We
shall return in Chap. V to the subject of electromagnetic radiative corrections, and
present the electroweak Feynman rules along with various radiative corrections in
Chap. XVI.

The gauge-boson fields, which couple to the weak isospin and weak hypercharge
are, respectively,

−→
Wμ = (W 1

μ, W
2
μ, W

3
μ) and Bμ. These contribute to the purely

gauge part of the lagrangian as

LG = −1

4
F
μν

i F i
μν −

1

4
BμνBμν, (3.10)

where F i
μν (i = 1,2,3) is the SU(2) field strength,

F i
μν = ∂μW

i
ν − ∂νWi

μ − g2ε
ijkWj

μW
k
ν , (3.11)

and Bμν is the U(1) field strength,

Bμν = ∂μBν − ∂νBμ. (3.12)

The fermionic sector of the lagrangian density includes both the left-handed and
right-handed chiralities. Summing over left-handed weak isodoubletsψL and right-
handed weak isosinglets ψR, we have

LF =
∑
ψL

ψL i /D ψL +
∑
ψR

ψR i /D ψR. (3.13)

Since a right-handed chiral fermion does not couple to weak isospin, its covariant
derivative has the simple form

DμψR = (∂μ + i g1

2
YwBμ)ψR. (3.14)

This expression serves to define the U(1) coupling g1. Its normalization is dictated
by our convention for weak hypercharge Yw. The corresponding covariant deriva-
tive for the SU(2)L doublet ψL is

DμψL =
(

I
(
∂μ + i g1

2
YwBμ

)
+ ig2

�τ
2
�Wμ

)
ψL, (3.15)

given in terms of the SU(2) gauge coupling constant g2 and the 2×2 matrices I, �τ .
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II–3 Electroweak interactions 61

We shall not display the quark color degree of freedom in this section for reasons
of notational simplicity. However, it is understood that all situations in which quark
internal degrees of freedom are summed over, as in Eq. (3.13), must include a color
sum. Similarly, relations like Eq. (3.14) or Eq. (3.15) hold for each distinct internal
color state when applied to quark fields.

The above equations define a mathematically consistent gauge theory of weak
isospin and weak hypercharge. However, it is not a physically acceptable electro-
weak theory of Nature because the fermions and gauge bosons are massless.
A Higgs sector must be added to the above lagrangians to arrive at the full
Weinberg–Salam model. Thus, we introduce into the theory a complex doublet

� =
(
ϕ+

ϕ0

)
(3.16)

of spin-zero Higgs fields with electric charge assignments as indicated. The quanta
of these fields then each carry one unit of weak hypercharge. The Higgs lagrangian
LH is the sum of two kinds of terms, LHG and LHF , which contain the Higgs–
gauge and Higgs–fermion couplings respectively. The former is written as

LHG = (Dμ�)∗Dμ�− V (�), (3.17)

where

Dμ� =
(

I
[
∂μ + i g1

2
Bμ

]
+ ig2

�τ
2
· �Wμ

)
�, (3.18)

and V is the Higgs self-interaction,

V (�) = −μ2�†�+ λ(�†�)2. (3.19)

The parameters μ2 and λ are positive but otherwise arbitrary. For simplicity, we
write the Higgs–fermion interaction in this section for just the first generation of
fermions. Denoting the left-handed quark and lepton doublets respectively as qL
and 
L, we have

LHF = −guqL�̃uR − gdqL�dR − gν
L�̃νe,R − ge
L�eR + h.c., (3.20)

where the coupling constants gu, gd , ge and gν are arbitrary and we employ the
charge conjugate to �,

�̃ = iτ2�
∗. (3.21)

In a sense the Higgs potential V and Higgs–fermion coupling LHF lie outside
our guiding principle of gauge invariance because neither contains a gauge field.
However, there is no principle which forbids such contributions, and their presence
is phenomenologically required. Moreover, note that each is written in SU(2)L ×
U(1) invariant form.
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Spontaneous symmetry breaking

Mass generation for fermions and gauge bosons proceeds by means of spontaneous
breaking of the SU(2)L × U(1) symmetry. To begin, we obtain the ground-state
Higgs configuration by minimizing the potential V to give

�(−μ2 + 2λ�†�) = 0. (3.22)

We interpret this ground-state relation in terms of vacuum expectation values,
denoted by a zero subscript. Eq. (3.22) has two solutions, the trivial solution
〈�〉0= 0 and the nontrivial solution,

〈�†�〉0 = v2

2
, (3.23)

with

v ≡
√
μ2

λ
. (3.24)

Let us consider the latter alternative. A nontrivial vacuum Higgs configuration,
which obeys the constraint Eq. (3.23), respects conservation of electric charge,
and describes the spontaneous symmetry breaking of the original SU(2)L × U(1)
symmetry is

〈�〉0 =
(

0

v/
√

2

)
. (3.25)

In one interpretation, it is the order parameter for the Weinberg–Salam model, play-
ing a role analogous to the magnetization in a ferromagnet. Group theoretically, it
is seen to transform as a component of a weak isodoublet. The energy scale, v, of
the effect is not predicted by the model and must be inferred from experiment.

The fermion and gauge-boson masses are determined by employing Eq. (3.25)
for the Higgs field everywhere in the lagrangian LH . We first define charged
fields W±

μ ,

Wμ
± =

√
1

2
(W 1

μ ∓ iW 2
μ). (3.26)

corresponding to the gauge bosons W±. By substitution, we find for the mass
contribution to the lagrangian

Lmass =− v√
2
(guuu+ gddd + geee)+

(vg2

2

)2
W+
μ W

μ
−

+ v2

8
(W 3

μ Bμ)

(
g2

2 −g1g2

−g1g2 g2
1

)(
W

μ

3

Bμ

)
. (3.27)
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The fermion masses are given by

mf = v√
2
gf (f = u, d, e, . . .). (3.28)

Although the theory can accommodate fermions of any mass, it does not predict
the mass values. Instead, the measured fermion masses are used to fix the arbitrary
Higgs–fermion couplings. The charged W -boson masses can be read off directly
from Eq. (3.27),

MW = v

2
g2, (3.29)

but the symmetry breaking induces the neutral gauge bosons to undergo mixing.
Their mass matrix is not diagonal in the basis of W 3, B states. Diagonalization
occurs in the basis

Zμ = cos θw W
3
μ − sin θw Bμ,

Aμ = sin θw W
3
μ + cos θw Bμ, (3.30)

where the weak mixing angle (or Weinberg angle) θw is defined by

tan θw = g1

g2
. (3.31)

The neutral gauge-boson masses are found to be

Mγ = 0, MZ = v

2

√
g2

1 + g2
2, (3.32)

and the fieldsAμ andZμ correspond to the massless photon and massiveZ0-boson,
respectively. Observe that the W±-to-Z0 mass ratio is fixed by

MW

MZ

= cos θw. (3.33)

Electroweak currents

Now that we have determined the mass spectrum of the theory in terms of the input
parameters, we must next study the various gauge–fermion interactions. The tradi-
tional description of electromagnetic and low-energy charged weak interactions of
spin one-half particles is expressed as

Lint = −eAμJμem −
GF√

2
J
μ†
ch J

ch
μ , (3.34)

where Jμem is the electromagnetic current

Jμem = −eγ μe +
2

3
uγ μu− 1

3
dγ μd + · · · , (3.35)

J
μ

ch is the charged weak current (ignoring quark mixing)
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J
μ

ch = νeγ
μ(1+ γ5)e + uγ μ(1+ γ5)d + · · · , (3.36)

and GF � 1.166× 10−5 GeV−2 is the Fermi constant (cf. Sect. V–2).
Alternatively, we can use Eqs. (3.13)–(3.15) to obtain the charged and neutral

interactions in the SU(2)L × U(1)Y description,

L ′
int = −

g2√
8

(
W+
μ J

μ

ch +W−
μ J

μ†
ch

)
− g2W

3
μJ

μ

w3 − g1Bμ(J
μ
em − Jμw3), (3.37)

where Jμw3 is the third component of the weak isospin current,

�Jμw =
∑
ψL

ψLγ
μ �τ

2
ψL, (3.38)

summed over all left-handed fermion weak isodoublets. Substituting for Bμ and
W 3
μ in Eq. (3.37) in terms of Aμ and Zμ yields

L′int = −
g2√

8

(
W+
μ J

μ

ch +W−
μ J

μ†
ch

)
− g1cos θwAμJ

μ
em + Lntl−wk, (3.39)

where Jμch = 2Jμw,1+i2 is given in Eq. (3.36) and the neutral weak interaction Lntl−wk

for fermion f is12

L(f )ntl−wk = −
g2

2 cos θw
Zμ f̄ (g(f )v γμ + g(f )a γμγ5)f,

g(f )v ≡ T
(f )

w3 − 2 sin2 θw Q
(f )

el , g(f )a ≡ T
(f )

w3 . (3.40)

Specifically, we have for the vector and axial-vector couplings

g(e,μ,τ)v = −1

2
+ 2 sin2 θw, g(e,μ,τ)a = −1

2
,

g(u,c,t)v = 1

2
− 4

3
sin2 θw, g(u,c,t)a = 1

2
,

g(d,s,b)v = −1

2
+ 2

3
sin2 θw, g(d,s,b)a = −1

2
,

g
(νe,νμ,ντ )
v = 1

2
, g

(νe,νμ,ντ )
a = 1

2
.

(3.41)

Observe the structure of the neutral weak couplings g(f )v,a . If θw were to vanish, neu-
tral weak interactions would be given strictly in terms of Tw3, the third component
of weak isospin. However in the real world, phenomena like low-energy neutrino

12 One should be careful not to confuse Eq. (3.40) with the alternate form

L(f )ntl−wk = −eZμψ̄f (vf γμ + af γμγ5)ψf ,

vf =
T
(f )
w3 − 2 sin2 θw Q

(f )
el

2 sin θw cos θw
, af =

T
(f )
w3

2 sin θw cos θw
,

which also appears in the literature.

https://doi.org/10.1017/9781009291033.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.003


II–3 Electroweak interactions 65

interactions, MW/MZ, deep inelastic lepton scattering data, etc. all depend on the
value of θw. In addition, we note that because sin2 θw � 0.23, the leptonic vector
coupling constants g(e,μ,τ)v are substantially suppressed relative to the axial-vector
couplings.

Comparison of Eq. (3.34) with Eq. (3.39) yields

e = g1 cos θw = g2 sin θw. (3.42)

The Fermi interaction of Eq. (3.34) corresponds in the Weinberg–Salam model to
a second-order interaction mediated by W -exchange and evaluated in the limit of
small momentum transfer (1 
 q2/M2

W ),

GF√
2
= g2

2

8M2
W

. (3.43)

Together, these relations provide a tree-level expression for the W -boson mass,

M2
W =

1

sin2 θw

πα√
2GF

�
(

37.281 GeV

sin θw

)2

. (3.44)

Also, Eqs. (3.29), (3.43) imply

v = 2−1/4G
−1/2
F � 246.221(2) GeV. (3.45)

It is the quantity v which sets the scale of spontaneous symmetry breaking in the
SU(2)L × U(1) theory, and all masses in the Standard Model are proportional to
it, although with widely differing coefficients.

We shall resume in Chaps. XV, XVI discussion of a number of topics introduced
in this section, among them the Higgs scalar, the W± and Z0 gauge bosons, and
phenomenology of the neutral weak current. Also included will be a description of
quantization procedures for the electroweak sector, including the issue of radiative
corrections. First, however, in the intervening chapters we shall encounter a num-
ber of applications involving light fermions undergoing electroweak interactions
at very modest energies and momentum transfers. For these it will suffice to work
with just tree-level W± and/or Z0 exchange, and to consider only photonic or glu-
onic radiative corrections. We shall also neglect the gauge-dependent longitudinal
polarization contributions to the gauge-boson propagators (analogous to the qμqν

term in the photon propagator in Eq. (1.18)), as well as effects of the Higgs degrees
of freedom. For photon propagators, the qμqν terms do not contribute to physi-
cal amplitudes because of current conservation. Although current conservation is
generally not present for the weak interactions, both the qμqν propagator terms
and Higgs contributions are suppressed by powers of (mf /MW)

2 for an external
fermion of mass mf .
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II–4 Fermion mixing

In our discussion of the Weinberg–Salam model, we limited the number of fermion
generations to one. We now lift that restriction and consider the implication of
having n generations. Although the existing experimental situation supports the
value n = 3, we shall take n arbitrary in our initial analysis.

Diagonalization of mass matrices

To begin, it is necessary to generalize the Higgs–fermion lagrangian LHF of
Eq. (3.20) to

−LHF = gαβu q̄ ′L,α�̃u
′
R,β + g

αβ

d q̄ ′L,α�d
′
R,β + gαβν 
̄ ′L,α�̃ν

′
R,β

+ gαβe 
̄ ′L,α�e
′
R,β + h.c., (4.1)

where we employ the summation convention α, β = 1, . . . , n, and adopt the
notation

�u ′ = (u ′, c ′, t ′, . . .),
�d ′ = (d ′, s ′, b ′, . . .),
�ν ′ = (νe, νμ, ντ , . . .),

�e ′ = (e ′, μ ′, τ ′, . . .),

�q ′ =
((

u ′

d ′

)
,

(
c ′

s ′

)
,

(
t ′

b ′

)
, . . .

)
,

�
 ′ =
((

νe

e ′

)
,

(
νμ

μ ′

)
,

(
ντ

τ ′

)
, . . .

)
. (4.2)

Observe that we denote the individual neutrino flavor eigenstates as νe, νμ, ντ , with
no primes. The states which appear in the original gauge-invariant lagrangian are
generally not the mass eigenstates. That is, there is no reason why the n × n gen-
erational coupling matrices gu, gd, gν, ge should be diagonal. Following sponta-
neous symmetry breaking, we obtain the generally nondiagonal n×nmass matrices
m ′
u, m ′

d , m ′
ν , m ′

e from the analog of Eq. (3.28),

m ′
f =

v√
2

gf (f = u, d, ν, e). (4.3)

Although not diagonal in the flavor basis, these matrices can be brought to diag-
onal form in the mass basis. The transformation from flavor eigenstates to mass
eigenstates is accomplished by means of the steps
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−LF, mass = �u ′L m ′
u �u ′R + �d ′L m ′

d
�d ′R + �ν ′L m ′

ν �ν ′R + �e ′L m ′
e �e ′R + h.c.,

= �u ′L SuLSu†
L m ′

uSuRSu†
R �u ′R + �d ′L SdLSd†

L m ′
dSdRSd†

R
�d ′R

+ �ν ′L SνLSν†
L m ′

νSνRSν†
R �ν ′R + �e ′L SeLSe†L m ′

e SeRSe†R �e ′R + h.c.

= �uL mu �uR + �dL md
�dR + �νL mν �νR + �eL me �eR + h.c.

= �u mu �u + �d md
�d + �ν mν �ν + �e me �e. (4.4)

The n× n unitary matrices SαL,R (α = u, d, ν, e) relate the basis states,

�u ′L = SuL �uL, �d ′L = SdL �dL, �ν ′L = SνL �νL, �e ′L = SeL �eL,
�u ′R = SuR �uR, �d ′R = SdR �dR, �ν ′R = SνR �νR, �e ′R = SeR �eR, (4.5)

and induce the biunitary diagonalizations

m′
α = SαL mα Sα†

R , (α = u, d, ν, e), (4.6)

thus yielding the diagonal quark mass matrices

mu =

⎛⎜⎜⎜⎝
mu 0 0 . . .

0 mc 0 . . .

0 0 mt . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ , md =

⎛⎜⎜⎜⎝
md 0 0 . . .

0 ms 0 . . .

0 0 mb . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ , (4.7a)

and the diagonal lepton mass matrices

mν =

⎛⎜⎜⎜⎝
m1 0 0 . . .

0 m2 0 . . .

0 0 m3 . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ , me =

⎛⎜⎜⎜⎝
me 0 0 . . .

0 mμ 0 . . .

0 0 mτ . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ . (4.7b)

Although the Weinberg–Salam model is first written down in terms of the flavor
basis states, actual calculations which confront theory with experiment are per-
formed using the mass basis states. We must then transform from one to the other.
This turns out to have no effect on the structure of the electromagnetic and neu-
tral weak currents. One simply omits writing the primes, which would otherwise
appear. The reason is that (aside from mass) each generation is a replica of the oth-
ers, and products of the unitary transformation matrices always give rise to the unit
matrix in flavor space. Thus, at the lagrangian level, there are no flavor-changing
neutral currents in the theory.
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As an example of this, consider the leptonic contribution to the electromagnetic
current,

Jμem(lept) = −ē ′αγ μe ′α = −ē ′L,αγ μe ′L,α − ē ′R,αγ
μe ′R,α

= −(ēLSe†L )αγ
μ(SeLeL)α − (ēRSe†R )αγ

μ(SeReR)α
= −ēL,αγ μeL,α − ēR,αγ μeR,α = −ēαγ μeα, (4.8)

where we sum over family index α = 1, . . . , n and invoke the unitarity of matrices
SeL,R. Note that there is no difficulty in passing the SeL,R through γ μ because the
former matrices act in flavor space whereas the latter matrix acts in spin space.

Quark mixing

Thus far, the distinction between flavor basis states and mass eigenstates has been
seen to have no apparent effect. However, mixing between generations does
manifest itself in the system of quark charged weak currents,

J
μ

ch(qk) = 2ū ′L,αγ
μd ′L,α = 2ūL,αγ

μVαβdL,β, (4.9)

where

V ≡ Su†
L SdL. (4.10)

The quark-mixing matrix V, being the product of two unitary matrices, is itself
unitary. The Standard Model does not predict the content of V. Rather, its matrix
elements must be phenomenologically extracted from data. For the two-generation
case, V is called the Cabibbo matrix [Ca 63]. For three generations, it has been
referred to as the Kobayashi–Maskawa (KM) matrix [KoM 73] after its originators,
but is now usually denoted by the abbreviation ‘CKM’. We shall analyze properties
of such mixing matrices for the remainder of this section.

An n× n unitary matrix is characterized by n2 real-valued parameters. Of these,
n(n− 1)/2 are angles and n(n+ 1)/2 are phases. Not all the phases have physical
significance, because 2n − 1 of them can be removed by quark rephasing. The
effect of quark rephasing

uL,α → eiθ
u
α uL,α, dL,α → eiθ

d
α dL,α (α = 1, . . . , n) (4.11)

on an element of the mixing matrix is

Vαβ → Vαβe
i(θdβ−θuα ) (α, β = 1, . . . , n). (4.12)

Since an overall common rephasing does not affect V, only the 2n − 1 remaining
transformations of the type in Eq. (4.11) are effective in removing complex phases.
This leaves V with (n − 1)(n − 2)/2 such phases. One must be careful to also
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transform the right-chirality fields of a given flavor in like manner to keep masses
real. If so, all terms in the lagrangian other than V are unaffected by this procedure.

For two generations, there are no complex phases. The only parameter is com-
monly taken to be the Cabibbo angle θC and we write

V =
(

cos θC sin θC
− sin θC cos θC

)
. (4.13)

A common notation for the n = 2 mixed states is(
dC

sC

)
≡ V

(
d

s

)
. (4.14)

Within the two-generation approximation, weak interaction decay data imply the
numerical value, sin θC � 0.226.

The three-generation case involves the 3× 3 matrix

V =
⎛⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎠ , (4.15)

which is a form that emphasizes the physical significance of each matrix element.
The n = 3 mixing matrix can be expressed in terms of four parameters, of which
one is a complex phase. The presence of a complex phase is highly significant
because it signals the existence of CP violation in the theory. We shall return to
this point shortly. The KM representation employs three mixing angles θ12, θ13, θ23

and a complex phase δ. It can be viewed as the following Eulerian construction of
three matrices,

V =
⎛⎝1 0 0

0 c23 s23

0 −s23 c23

⎞⎠⎛⎝ c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

⎞⎠⎛⎝ c12 s12 0
−s12 c12 0

0 0 1

⎞⎠ , (4.16)

where sαβ ≡ sin θαβ, cαβ ≡ cos θαβ (α, β = 1, 2, 3). In combined form this
becomes

V =
⎛⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

⎞⎠ . (4.17)

By means of quark rephasing, it can be arranged that the angles {θαβ} all lie in the
first quadrant. In the limit θ23 = θ13 = 0, KM mixing reduces to Cabibbo mixing
with the identification θ12 = θC .

An alternative approach for describing the quark mixing matrix, the Wolfenstein
parameterization [Wo 83], expresses the mixing matrix as the unit 3 × 3 matrix
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together with a perturbative hierarchical structure organized by a smallness para-
meter λ. In the updated version, the Wolfenstein representation contains four para-
meters λ, A, ρ, η defined by

s12 ≡ λ, s23 ≡ Aλ2, s13e
−iδ ≡ Aλ3(ρ − iη). (4.18)

These definitions hold to all orders in λ. Since many phenomenological applica-
tions require accuracy to the level of order λ5, we write

V=

⎛⎜⎜⎜⎜⎜⎝
1− λ2

2
− λ4

4
λ λ3A(ρ − iη)

−λ+ A2λ5

2
(1− 2(ρ + iη)) 1− λ2

2
− λ4

8
(1+ 4A2) λ2A

λ3A(1− ρ̄ − iη̄) −λ2A+ Aλ4

2
(1− 2(ρ + iη)) 1− A2λ4

2

⎞⎟⎟⎟⎟⎟⎠.
(4.19)

Observe that the matrix element Vtd is expressed in terms of ρ̄ ≡ ρ(1 − λ2/2)
and η̄ ≡ η(1 − λ2/2). These quantities, which are useful in generalizing the so-
called unitarity triangle (cf. Sect. XIV–5) beyond leading order, are directly cited
in modern fits of the CKM matrix.

Attempts to theoretically predict the content of the CKM matrix have not borne
fruit. The CKM matrix elements have come to be thought of as basic quantities,
much like particle masses and interaction coupling constants. As such, each matrix
element must be determined experimentally (with several experiments per matrix
element). This endeavor, which has been a preoccupation of ‘Flavor Physics’ for
many years, has finally reached an acceptable level of sensitivity, particularly with
the operation of several B-factories (cf. Chap. XIV). Current values [RPP 12] for
the Wolfenstein parameters are

λ = 0.2257+0.0008
−0.0010, A = 0.814+0.021

−0.022,

ρ̄ = 0.135+0.031
−0.016, η̄ = 0.349+0.015

−0.017. (4.20a)

Alternatively, we have for the original parameter set,

s12 = 0.2257+0.0008
−0.0010, s23 = 0.0415+0.0014

−0.0015,

s13 = 0.0036+0.0004
−0.0003, δ = (68.9+3.0

−5.4

)o
. (4.20b)

Neutrino mixing

Flavor mixing affects not only the quarks, but also the leptons, in the form of
neutrino mixing. Just as the 3 × 3 quark mixing matrix V is associated with the
acronym ‘CKM’, there will be a 3 × 3 lepton mixing matrix U for neutrinos. Its
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standard acronym ‘PMNS’, acknowledges the early work of Pontecorvo [Po 68]
and of Maki, Nakagawa, and Sakata [MaNS 62]. As we will show in Sect. VI–2,
when we include the possibility of a Majorana nature of neutrino mass, lepton mix-
ing has a form very similar to quark mixing,

U = V(ν)Pν, (4.21)

where V(ν) has the same mathematical content as the quark mixing matrix V of
Eq. (4.17) except that the mixing angles {θij } and phase δ now pertain to the neu-
trino sector and

Pν =
⎛⎝1 0 0

0 eiα1/2 0
0 0 eiα2/2

⎞⎠ . (4.22)

Here, the {αi} are so-called Majorana phases. They are physical, i.e., observable,
if the Majorana neutrino option is chosen by Nature. Although not contributing to
neutrino oscillations, they will occur in the neutrinoless double beta decay
(cf. Sect. VI–5) of certain nuclei.

Thus far, information about the lepton mixing matrix has come from fits to neu-
trino oscillation data (although highly anticipated searches for neutrinoless double
beta decay are underway, cf. Sect. VI–5). There is no evidence at this time for CP
violation in the lepton sector, so one cannot yet distinguish between the Dirac and
Majorana cases described above. For either, the leptonic mixing angles are mea-
sured to be [RPP 12]13

sin2(2θ12) = 0.857± 0.024,

sin2(2θ23) ≥ 0.95 (at 90%C.L.),

sin2(2θ13) = 0.098± 0.013, (4.23)

which translates into angles (here we take the value for θ23 from Table 13.7 of
[RPP 12])

θ12 = (33.9± 1.0)o , θ23 =
(
40.4+4.6

−1.8

)o
, θ13 = (9.1± 0.6)o . (4.24)

These values are quite different from the quark mixing angles inferred from
Eq. (4.20b). Whereas the quark mixing matrix is a ‘zeroth-order’ unit 3× 3 matrix
modified by perturbative entries proportional to powers of the smallness parameter
λ, current data for lepton mixing are consistent with the ‘zeroth-order’ representa-
tion14

13 See also [FoTV 12] and [FoLMMPR 12].
14 This form, referred to as tri-bimaximal mixing [HaPS 02], is used here as simply a numerical convenience.
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V(ν)
0 =

⎛⎜⎝
2√
6

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2

⎞⎟⎠ . (4.25)

Perturbative modifications of this can be introduced as

sin θ13 = r√
2
, sin θ12 = 1+ s√

3
, sin θ23 = 1+ a√

2
, (4.26)

where the r, s, a parameters are sensitive, in part, to reactor, solar, and atmospheric
data, yielding V(ν)

0 → V(ν), where [KiL 13]

V(ν) =

⎛⎜⎜⎜⎜⎜⎜⎝

2√
6

(
1− s

2

) 1√
3
(1+ s) r√

2
e−iδ

− 1√
6

(
1+ s − a + reiδ) 1√

3

(
1− s

2
− a − 1

2
reiδ
)

1√
2
(1+ a)

1√
6

(
1+ s + a − reiδ) − 1√

3

(
1+ s

2
+ a + r

2
eiδ
) 1√

2
(1− a)

⎞⎟⎟⎟⎟⎟⎟⎠ .
(4.27)

In the above δ is the phase parameter which reflects the possibility of CP violation
in the lepton sector but for which there is, as of yet, no evidence. For the others,
the current limits

r = 0.22± 0.01, s = −0.03± 0.03, a = 0.10± 0.05, (4.28)

imply that we are not very far from this tri-bimaximal form.

Quark CP violation and rephasing invariants

There is no unique parameterization for three-generation quark mixing. Any
scheme which is convenient to the situation at hand may be employed as long as
it is used consistently and adheres to the underlying principles. There is, however,
a somewhat different logical position to adopt, that of working solely with rephas-
ing invariants. After all, only those functions of V which are invariant under the
rephasing operation in Eq. (4.18) can be observable. An obvious set of quadratic
invariants are the squared moduli �(2)

ij ≡ |V ij |2 where i, j = 1, 2, 3. The unitarity
conditions V†V = VV† = I constrain the number of independent squared-moduli
to four. They are of course all real-valued. In addition there are quartic functions
�
(4)
ab ≡ VijVklV

∗
il V

∗
kj , where we suspend the summation convention for repeated

indices and, to avoid redundant factors of squared-moduli, take a, i, k (b, j, l)
cyclic. There are yet higher-order invariants, but they are all expressible in terms of
the quadratic and quartic functions. The nine quantities �

(4)
ab are generally
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complex-valued. A unique measure of CP violations for three generations is pro-
vided by the rephasing invariant Im�(4)

ab ,

Im [VijVklV ∗il V ∗kj ] = J
∑
m,n

εikm εjln, (4.29)

where J is the so-called Jarlskog invariant [Ja 85],

J = c12c
2
13c23s12s13s23sδ = λ6A2η̄ +O(λ8) = (2.96+0.20

−0.16

)× 10−5. (4.30)

This combination of quark mixing parameters will always appear in calculations
of CP-violating phenomena. To have nonzero CP violating effects, the KM angles
must avoid the values θij = 0, π/2, and δ = 0, π . The CP-violating invariant J
achieves its maximum value for c13 = 2/

√
3, c12 = c23 = 1/

√
2, sδ = 1 at which

it equals 1/6
√

3. This set of circumstances is very unlike the real-world value in
Eq. (4.30).

The consideration of rephasing invariants need not involve just the mixing matrix
V, but can also be applied to the Q = 2/3, −1/3 nondiagonal mass matrices
m′
u, m′

d themselves. In particular, the determinant of their commutator is found to
provide an invariant measure of CP violations [Ja 85]. If, for simplicity, we work
in a basis where mu

′, m′
d are hermitian, it can be shown that Su,dL = Su,dR ≡ Su,d .

Thus we have

[m′
u,m′

d] = Su [mu,VmdV†] Su† = SuV [V†muV,md] V†Su†, (4.31)

from which it follows that

det [m′
u,m′

d] = det [mu,VmdV†] = det [V†muV,md]. (4.32)

The two commutators on the right-hand sides of this relation are skew-hermitian
and each of their matrix elements is multiplied by a Q = 2/3,−1/3 quark mass
difference, respectively. The determinant is thus proportional to the product of all
Q = 2/3, −1/3 quark mass differences, and explicit evaluation reveals

det [m′
u,m′

d] = 2i Im�(4)
∏
α>β

(mu,α −mu,β)(md,α −md,β). (4.33)

This provides a more extensive list of necessary conditions for CP violations to be
present. Not only are the mixing angles constrained as discussed above, but also
the quark masses within a given charge sector must not exhibit degeneracies.

Our discussion of the n = 2, 3 generation cases suggests how larger systems n =
4, . . . can be addressed, although the number of parameters becomes formidable,
e.g., four generations require six mixing angles and three complex phases. How-
ever, existing data indicate the existence of just three fermion generations, e.g.,
measurements from Z0-decay fail to see additional neutrinos, and there is no
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evidence from e+e− or pp collisions for additional quarks or leptons lighter than
roughly 50 GeV. Moreover, if there were more than three quark generations the
full quark-mixing matrix would be unitary, but one would expect to see violations
of unitarity in any submatrix. Yet to the present level of sensitivity, the 3 × 3 KM
mixing matrix obeys the unitarity constraint. The most accurate data occur in the
(V †V )11 = 1 sector. Here, the contribution from Vub is negligible and one finds
[Ma 11, HaT 10]

(V †V )11 = |Vud|2 + |Vus|2 + |Vub|2 = 0.9999(6). (4.34)

Problems

(1) SU(3)
(a) Starting from the general form λaijλ

a
kl = Aδij δkl + Bδilδjk + Cδikδjl (a =

1, . . . , 8 is summed), determine A,B,C by using the trace relations of
Eqs. (II–2.5a, 2.5b), etc.

(b) Determine Tr λaλbλc.
(c) Determine εijkεlmnλampλ

b
pkλ

a
niλ

b
lj .

(d) Consider the 8 × 8 matrices (Fa)bc = −ifabc, where the {fabc} are SU(3)
structure constants (a, b, c = 1, . . . , 8). Show that these matrices (the regu-
lar or adjoint representation) obey the Lie algebra of SU(3), and determine
TrFaFb.

(2) Gauge invariance and the QCD interaction vertices
(a) Define constants f, g such that the covariant derivative of quark q isDμq =

(∂μ + ifAμ)q and the QCD gauge transformations are Aμ → UAμU
−1 +

ig−1U∂μU
−1 and q → Uq, where Aμ are the gauge fields in matrix form

(cf. Eq. (I–5.15)). Show that q̄ /D q is invariant under a gauge transformation
only if f = g.

(b) Define a constant h such that the QCD field strength is Fμν = ∂μAν −
∂νAμ+ih[Aμ,Aν]. Let the gauge transformation forAμ be as in (a). Show
that Fμν transforms as Fμν → UFμνU

−1 only if h = g.

(3) Fermion self-energy in QED and QCD
(a) Express the fermion QED self-energy, −i�(p), of Fig. II–2(b) as a

Feynman integral and use dimensional regularization to verify the forms
of Z(MS)

2 , δm(MS) appearing in Eqs. (1.34), (1.35).
(b) Proceed analogously to determine Z2 for QCD and thus verify Eq. (2.55).

(4) Gravity as a gauge theory
The only force which remains outside of the present Standard Model is gravity.
General relativity is also a gauge theory, being invariant under local-coordinate
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transformations. The full theory is too complex for presentation here, but we
can study the weak field limit. In general relativity the metric tensor becomes
a function of spacetime, with the weak field limit being an expansion around
flat space, gμν(x) = gμν + hμν(x), with 1 
 hμν . Let us consider weak field
gravity coupled to a scalar field, with lagrangian L = Lgrav+Lmatter defined as

Lgrav = 1

64πGN

[
∂λhμν∂

λh̄μν − 2∂λh̄μλ∂σ h̄
μσ
]
,

Lmatter = 1

2

(
1− 1

2
hλλ

) [
(gμν + hμν)∂μϕ∂νϕ −m2ϕ2

]
,

where h̄μν ≡ hμν − gμνhλλ/2, all indices are raised and lowered with the flat
space metric gμν , and GN is the Cavendish constant.
(a) Show that the action is invariant under the action of an infinitesimal coor-

dinate translation, xμ → x ′μ = xμ + εμ(x) (1 
 εμ(x)), together with a
gauge change on hμν ,

ϕ(x)→ ϕ′(x ′) = ϕ(x),

hμν(x)→ h′μν(x ′) = hμν(x)+ ∂μεν(x)+ ∂νεμ(x).
Note: both εμ and hμν are infinitesimal and should be treated to first order
only.

(b) Obtain the equations of motion for ϕ and hμν . The source term for hμν is
T μν , the energy-momentum tensor for ϕ. Use the equation of motion for
hμν to show that T μν is conserved. Simplify the equations with the choice
of ‘harmonic gauge’, ∂νh̄μν = 0.

(c) Solve for hμν near a point mass at rest, corresponding to T 00 = Mδ(3)(x)

and T 0i = T ij = 0. Perform a nonrelativistic reduction for ϕ, i.e., ϕ(x, t) =
e−imt ϕ̃(x, t), in order to obtain a Schrödinger equation for ϕ̃ in the gravita-
tional field. Verify that Newtonian gravity is reproduced.
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