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UPPER BOUNDS FOR THE RESONANCE COUNTING FUNCTION
OF SCHRÖDINGER OPERATORS IN ODD DIMENSIONS

RICHARD FROESE

ABSTRACT. The purpose of this note is to provide a simple proof of the sharp
polynomial upper bound for the resonance counting function of a Schrödinger operator
in odd dimensions. At the same time we generalize the result to the class of super-
exponentially decreasing potentials.

1. Introduction. Let H = �∆ +V be a Schrödinger operator acting in L2(Rn), n odd,
whose potential V is super-exponentially decreasing. By definition, this means that for
every N there is a constant C such that

jV(x)j � Ce�Njxj

Let R(k) = (H � k2)�1 be the resolvent of H, initially defined for k in the upper half
plane. Let RV(k) denote the weighted resolvent

RV(k) = V
1
2 R(k)jVj

1
2 

When V is super-exponentially decreasing and n is odd, RV(k) has a compact operator
valued meromorphic continuation to the entire complex plane. Resonances are poles in
this meromorphic continuation.

We are interested in upper bounds for the counting function

n(r) = #fresonances k : jkj Ú rg

Here is what is known about the large r behaviour of n(r).
When n = 1 and V has compact support

n(r) =
2
ô

diam
�
supp(V)

�
r + o(r)

This result is due to Zworski [Z1]. For some super-exponentially decaying potentials in
one dimension there is a comparable result [F]

n(r) = Crö + o(rö)Ò

where ö is the order of growth of the Fourier transform of V. For a class of radially
symmetric potentials in dimensions greater than one Zworski [Z2] proves

n(r) = Cn radius
�
supp(V)

�
rn + o(rn)
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This exhausts the examples of Schrödinger operators for which the first term in an
asymptotic expansion is known.

For a general compactly supported potential in dimensions greater than one, only
upper bounds (of polynomial type) are known:

n(r) � Crn

The first polynomial bound (rn+1) was obtained by Melrose [Me1]. The sharp bound
(rn) was first obtained by Zworski [Z3]. For potentials decreasing like exp(�jxj1+è),
Sá Barreto and Zworski [SZ1] prove

n(r) � Cr(1+1Ûè)n

In Theorem 3.1 we generalize this to super-exponentially decaying potentials. The
Fourier transform of a potential in this class is an entire function in Cn. Our bound
is given in terms of the growth of the Fourier transform. We will show that if V̂(k) grows
like exp

�
Φ(jkj)

�
, then

n(r) � CΦn(cr)

Although polynomial lower bounds have not been established in general, it is known
that infinitely many resonances exist. This was shown in three dimensions by Mel-
rose [Me2], and in any odd dimension by Sá Barreto and Zworski [SZ2]. The existence
of infinitely many resonances was previously only known under positivity conditions on
the potential (see the references in [SZ2]).

There is a substantial literature on closely related problems, involving, for example,
metric perturbations of the Laplacian or even dimensions. We mention here only the
paper of Vodev [V] which was influential in our thinking. Further references can be
found in the review article [Z4] and the book [Me2].

It is worth pointing out that there are many other definitions of resonances in the
literature. The theory of dilation and translation analyticity give rise to definitions that
do not require the potential to decrease so rapidly.

2. Meromorphic continuation and the scattering operator We begin by using
standard Birman-Schwinger identities to show that RV(k) has a meromorphic continua-
tion. Let R0(k) = (�∆ � k2)�1 be the free resolvent and define R0V(k) = V

1
2 R0(k)jVj

1
2 .

For Im k Ù 0, the resolvent equation

R0(k) � R(k) � R(k)VR0(k) = 0

implies �
1 � RV(k)

��
1 + R0V(k)

�
= 1

For Im k large, the norm of R0V(k) is small, so 1 + R0V(k) is invertible and

1 � RV(k) =
�
1 + R0V(k)

��1
(2.1)
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The operator R0V(k) has an explicit integral kernel given by V
1
2 (x)G0(xÒ yÒ k)jVj

1
2 ( y),

where G0 is the free Green’s function. Using this representation, it is easy to see that in
odd dimensions R0V(k) has a compact operator valued analytic continuation to the entire
complex plane (except for a pole at zero in dimension 1). Thus, by the meromorphic
Fredholm theorem [S], the left side of (2.1) defines a meromorphic continuation for
RV(k).

From this formula we can see that the resonances are precisely those values of k for
which R0V(k) has an eigenvalue �1. Equivalently, resonances are precisely the zeros of
the analytic function det

�
1 + R0V(k)

�
—provided R0V(k) is trace class. Unfortunately, this

only happens when n = 1. In higher dimensions, it turns out that Rp
0V(k) for p Ù nÛ2 is

trace class. If �1 is an eigenvalue for R0V(k), then š1 is an eigenvalue for Rp
0V(k). Thus

the set of resonances is contained in the set of zeros of the function det
�
1 š Rp

0V(k)
�

for p Ù nÛ2 and š(�1)p = 1. This function is entire, except for poles arising from
eigenvalues. One can therefore estimate the number of resonances by estimating the
growth of this function. This approach is used in previous work.

Our approach is to first multiply 1 + R0V(k) by a suitable invertible operator and then
take the determinant. For k in the lower half plane, �k is in the upper half plane, and so
by (2.1) the operator 1 + R0V(�k) is invertible (with inverse 1 � RV(�k)) except at the
finitely places where k2 is an eigenvalue of H. Define

Q(k) =
�
1 + R0V(�k)

��1�
1 + R0V(k)

�
We will show that the determinant of Q(k) is well defined. Then resonances are precisely
the zeros of det Q(k) in the lower half plane. The disadvantage of our regularization is
that det Q(k) is not entire, but has poles in the upper half plane. (Clearly �k is pole
whenever k is a zero.) This makes it necessary to include an estimate of the scattering
phase in our proof.

In fact, we will show presently that det Q(k) = det S(�k) where S(k) is the scatter-
ing operator, confirming that resonances are precisely equal to scattering poles. This
equivalence is well known, but we could not resist giving this simple proof.

Begin with the classical Green’s function identity

G0(xÒ yÒ k) � G0(xÒ yÒ �k) = c(k)
Z

Sn�1
eikh°Òx�yi d°Ò(2.2)

where

c(k) =
iôkn�2

(2ô)n


This can be proven using the representation of G0 as a Fourier transform [see Me2], or
by applying Green’s theorem to the functions f (z) = G0(xÒ zÒ k), g(z) = G0(zÒ yÒ �k) in a
sphere of radius r and letting r tend to infinity.

The identity (2.2) for real k can be written as an operator equation. Let ôk denote
the operator that takes a function on Rn to its Fourier transform restricted to a sphere of
radius k. Then (2.2) can be written

R0(k) = R0(�k) + c(k)ôŁkôk
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This has to be interpreted as an equation involving operators between Besov spaces,
since none of the operators are bounded on L2(Rn) for real k. However, if we multiply on
the left by V

1
2 and on the right by jVj

1
2 then we do obtain an equation involving operators

on L2(Rn), namely
R0V(k) = R0V(�k) + c(k)FT

V(k)FjVj(k)(2.3)

where the operator FjVj(k): L2(Rn) ! L2(Sn�1) is the formal product ôkjVj
1
2 is given by

�
FjVj(k)†

�
(°) =

Z
Rn

eikhxÒ°ijVj
1
2 (x)†(x) dnxÒ

and the operator FT
V(k): L2(Sn�1) ! L2(Rn) is the formal product V

1
2ôŁk given by

�
FT

V(k)û
�
(x) = V

1
2 (x)

Z
Sn�1

eikhxÒ°iû(°) d°

Since all the operators in the equation (2.3) have analytic continuations to complex k,
the equation remains valid for all k 2 C.

We now return to Q(k). Using (2.3) this operator can be rewritten

Q(k) =
�
1 + R0V(�k)

��1�
1 + R0V(k)

�
=
�
1 + R0V(�k)

��1�
1 + R0V(�k) + c(k)FT

V(k)FjVj(k)
�

= 1 + c(k)
�
1 + R0V(�k)

��1
FT

V(k)FjVj(k))

= 1 + c(k)
�
1 � RV(�k)

�
FT

V(k)FjVj(k)

It follows from the estimates on singular values below that the second term on the left side
is trace class, so we may take the determinant. Using the identity det(1+AB) = det(1+BA)
gives

det Q(k) = det
�

1 + c(k)FjVj(k)
�
1 � RV(�k)

�
FT

V(k)
�


The operators on the left are now operators on L2(Sn�1). Now

c(k)FjVj(k)
�
1 � RV(�k)

�
FT

V(k) = c(k)ôk

�
V � VR(�k)V

�
ôŁk = T(�k)Ò(2.4)

is exactly the expression from stationary scattering theory for the T matrix. Thus

det Q(k) = det
�
1 + T(�k)

�
= det S(�k)Ò

as claimed.

3. Upper bounds. We now state our main theorem.

THEOREM 3.1. Suppose that V is a super-exponentially decaying potential with

jV̂(z)j � CeΦ(jzj)

Then
n(r) � CΦn(cr) + O

�
Φn�1(cr)

�
for some constants c and C.

The proof will be broken up into a series of lemmas. We begin with a simple estimate.
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LEMMA 3.2. Let û(k) = det
�
1 + T(k)

�
where T(k) is a trace-class operator valued

analytic function in the closed upper half plane, where 1 + T(s) is unitary for s 2 R, and
where T(0) = 0. Let n(t) denote the number of zeros of û(k) in a half disk in the upper
half plane of radius t. Define

N(r) =
Z r

0

n(t)
t

dt

Then

N(r) �
1

2ô

Z r

0
t�1

Z t

�t
kT0(s)k1 ds dt +

1
2ô

Z ô

0
ln jû(reií)j dí

Here k Ð k1 denotes the trace norm.

PROOF. Integrating along a contour enclosing the half disk, we have

n(t) =
1

2ôi

I û0(k)
û(k)

dk

=
1

2ô
Im

Z t

�t

û0(s)
û(s)

ds +
1

2ô

Z ô

0
t

d
dt

ln jû(teií)j dí

�
1

2ô

Z t

�t
jû0(s)j ds +

1
2ô

Z ô

0
t

d
dt

ln jû(teií)j dí

We used the fact that jû(s)j = 1 for real s. Dividing by t and integrating, we find

N(r) �
1

2ô

Z r

0
t�1

Z t

�t
jû0(s)j ds dt +

1
2ô

Z ô

0
ln jû(reií)j dí

We used û(0) = 1 to evaluate the second term. Since û0(s) = û(s)tr
��

1 + T(s)
��1

T0(s)
�

,

and jû(s)j =
�1 + T(s)

��1 = 1 for real s, it follows that for real s

jû0(s)j �
�1 + T(s)

��1
T0(s)


1

�
�1 + T(s)

��1kT0(s)k1

= kT0(s)k1

This completes the proof.

To apply this lemma, we must estimate the trace norm of T0 along the real axis, and
the growth of û = det(1 + T) in the upper half plane when T is given by (2.4).

LEMMA 3.3. Let V be a super-exponentially decaying potential and let T(k) be given
by (2.4). Then for s 2 R

kT0(s)k1 � Cjsjn�2
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PROOF. The operator T(s) is a product c(s)FjVj(s)
�
1 � RV(�s)

�
FT

V(s). We estimate
each term and its derivative. To begin, we have

jc(s)j � Cjsjn�2

jc0(s)j � Cjsjn�3

It follows from the representation (2.1) that

k1 � RV(�s)k � C

kR0
V(�s)k � C

Using the explicit integral kernels for FT
V(s) and FjVj(s) it is easy to estimate the Hilbert-

Schmidt norms

kFT
V(s)k2

2 =
Z

Sn�1

Z
Rn
jeish°ÒxiV

1
2 (x)j2 dx d° � C

kFT0
V (s)k2

2 =
Z

Sn�1

Z
Rn
jih°Ò xieish°ÒxiV

1
2 (x)j2 dx d° � C

The same estimates hold for kFjVj(s)k2 and kF0
jVj(s)k2. The proof is completed by using

the Leibnitz rule to write T0(s), and the estimate

kABk1 � kAk
1
2
2 kBk

1
2
2

It remains to estimate the growth of û(k) for complex k.

LEMMA 3.4. Suppose V is a super-exponentially decreasing potential, and let T (k)
be given by (2.4). Then for k in the upper half plane, T(k) is trace class. Let û(k) =
det

�
1 + T(k)

�
. Suppose that the Fourier transform of V satisfies the growth estimate

jV̂(z)j � CeΦ(jzj)

for some positive, increasing function Φ(x). Then

jû(k)j � exp
 
é�(n�1)Φn

�
(2 + è)jkj

�
+ O

�
Φn�1

�
(2 + è)jkj

��!

for any è Ù 0, and some constant C.

PROOF. We will use Weyl’s estimate

jû(k)j = j det
�
1 + T(k)

�
j �

Y
j

�
1 + ñj

�
T(k)

��

and therefore must estimate the singular values of T(k). Using the estimate

ñj(AB) � kAkñj(B)
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and
ñj(AB) = ñj(BA)

(twice) we find

ñj

�
T(k)

�
� kc(�k)(1 � RV(k)kñj

�
FT

V(�k)FjVj(�k)
�

(3.1)

� Cjkjn�2ñj(Vk)

Where the operator Vk = FjVj(�k)FT
V(�k) is an integral operator on L2(Sn�1) with integral

kernel V̂
�
�k(° � °0)

�
. To estimate the singular values we will use the following bound

without proof. (It follows from the analyticity of V̂.) Let L° denote the positive Laplacian
on Sn�1 in the variables °. Then for any è Ù 0 there is a constant C such that

þþþLpÛ2
° V̂

�
k(° � °0)

�þþþ � Cpp! eΦ((2+è)jkj)

Summing the Taylor expansion for the exponential, this gives, for é Ú C�1,

þþþeéL 1
2
° V̂

�
k(° � °0)

�þþþ � (1 � éC)�1eΦ((2+è)jkj)

Since the left side is the integral kernel for the operator eéL
1
2
° Vk, this implies that

keéL
1
2
° Vkk � CeΦ((2+è)jkj)

(The constants C may change from line to line.) Thus

ñj(Vk) = ñj(e�éL
1
2
° eéL

1
2
° Vk)

� keéL
1
2
° Vkkñj(e

�éL
1
2
° )

� CeΦ�éj1Û(n�1)

Here Φ = Φ
�
(2 + è)jkj

�
. Using (3.1), we get the same bound for ñj

�
T(k)

�
, if we increase

è slightly. Thus T(k) is trace class, and
þþþdet

�
1 + T(k)

�þþþ �Y
(1 + CeΦ�éj1Û(n�1)

)

This product is easily estimated by breaking it into two pieces. For j � (ΦÛé)n�1 we
obtain

Y
j�(ΦÛé)n�1

(1 + CeΦ�éj1Û(n�1)
) �

Y
j�(ΦÛé)n�1

(C + 1)eΦ�éj1Û(n�1)

= (C + 1)(ΦÛé)n�1
eΦnÛén�1

exp
�(ΦÛé)n�1X

j=1
�éj1Û(n�1)

�

= eΦnÛén�1+O(Φn�1)
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For j Ù (ΦÛé)n�1 we have

Y
jÙ(ΦÛé)n�1

(1 + CeΦ�éj1Û(n�1)
) � exp

� X
jÙ(ΦÛé)n�1

CeΦ�éj1Û(n�1)
�

� exp
�

CeΦ X
jÙ(ΦÛé)n�1

e�éj
1Û(n�1)

�

The sum appearing in this formula can be estimated by an integral.

X
jÙ(ΦÛé)n�1

e�éj
1Û(n�1)

� e�é(ΦÛé) +
Z 1

(ΦÛé)n�1
e�éx

1Û(n�1)
dx

� e�Φ + Ce�ΦΦn�2

Thus the product for large j satisfies the bound
Y

jÙ(ΦÛé)n�1

(1 + CeΦ�éj1Û(n�1)
) � eCΦn�2



Combining the estimates for small and large j completes the proof.
We can now prove the main theorem.

PROOF OF THEOREM 3.1. Let T(k) be given by (2.4). We must count the zeros of
û(k) = det

�
1 + T(k)

�
in a half disk of radius r in the upper half plane. The operator T(k)

is analytic in the upper half plane, except for possibly finitely many poles, which won’t
affect the counting function. Since 1 + T(k) = S(k) is the scattering operator, we know
that 1 + T(k) is unitary for k real, and that T(0) = 0. Therefore Lemma 3.2 applies. Using
Lemma 3.3 to estimate kT0(k)k1 and Lemma 3.4 to estimate ln jû(k)j yields

N(r) � C
Z r

0
t�1
Z t

�t
jsjn�2 ds dt + (2ô)�1

Z ô

0

�
é�(n�1)Φn

�
(2 + è)r

�
+ O(Φn�1((2 + è)r))

�
dí

� Crn�1 + 2�1é�(n�1)Φn
�
(2 + è)r

�
+ O

�
Φn�1

�
(2 + è)r

��

By looking at V̂ along the imaginary axis, we see that Φ must grow at least as fast as r.
(For compactly supported V’s we have Φ(r) = Cr.) Thus we can ignore the first term.
This gives

N(r) � 2�1é�(n�1)Φn
�
(2 + è)r

�
+ O

�
Φn�1

�
(2 + è)r

��
To get an estimate on n(r) from this, note that for any s Ù 1, since n(r) is monotone,

n(r) = n(r)(ln s)�1
Z sr

r

1
t

dt

� (ln s)�1
Z sr

r

n(t)
t

dt

= (ln s)�1
�
N(sr) � N(r)

�
� (ln s)�1N(sr)

This completes the proof.
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