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ABSTRACT: One of the most lethal properties of high grade gliomas is their ability to invade the sur­
rounding normal brain tissue, as infiltrated cells often escape surgical resection and inevitably lead to 
tumour recurrence. The consequent poor prognosis and survival rate underscore the need to further 
understand and target the cellular mechanisms that underly tumour invasiveness. Proteases which 
degrade the surrounding stromal cells and extracellular matrix proteins have been demonstrated to be 
critical effectors of invasion for tumours of both central and peripheral origin. Within the nervous sys­
tem, the role of metalloproteinases as well as other classes of proteases in mediating the invasive phe-
notype of high grade gliomas has been an intense area of research. We present in this article a review of 
this literature and address the possibility that these proteases and the biochemical pathways that regu­
late their expression, such as protein kinase C, may represent potential targets in the therapy of high 
grade gliomas. 

RESUME: Mecanismes de 1'invasion gliomateuse: role des metalloproteinases matricielles. Une des propriety 
les plus lethales des gliomes a haut degre de malignite est leur capacite d'envahir le tissu cerebral normal avoisi-
nant, cette infiltration maligne echappant souvent a la resection chirurgicale, ce qui conduit inevitablement a la 
recidive tumorale. Le pronostic sombre et le taux de survie faible de demontrent la necessite de mieux comprendre 
et de cibler les mecanismes cellulaires sous-jacents au caractere envahissant de ces tumeurs. II a ete demontre que 
les proteases qui degradent les cellules du stroma avoisinant et les proteines de la matrice extracellulaire sont des 
effectrices critiques de 1'invasion par les tumeurs d'origine centrale et peripherique. Le role des metalloproteinases 
et des autres classes de proteases dans la mediation de 1'invasion du systeme nerveaux par les gliomes tres malins a 
fait l'objet de recherches intenses. Nous presentons une revue de cette litterature et nous considerons la possibilite 
que ces proteases et les voies biochimiques qui regulent leur expression, telles la proteine kinase C, pourraient etre 
ciblees dans le traitment des gliomes de haut grade. 

Can. J. Neurol. Sci. 1997; 24: 3-15 

The hallmark of malignant tumours lies in their ability to 
invade the surrounding tissue, leading to the disruption of the 
architecture and ultimately to the dysfunction of the affected 
organ. This invasion process consists of a complex series of 
steps, involving alteration of the tumour cells' interaction with 
specific extracellular matrix (ECM) ligands, proteolysis of the 
matrix by hydrolytic enzymes, and subsequent migration of the 
cells through the degraded structures.'"3 Of the many discrete 
events, the capacity of the tumour cells to enzymatically digest 
their surrounding stroma and matrix best characterizes the inva­
sive phenotype. 

To effect degradation of the surrounding cellular and pro-
teinaceous structures, malignant cells utilize one or more classes 
of proteolytic enzymes. The important role of proteases in the 
invasive process has been demonstrated in tumours of virtually 
every tissue-type.3"6 Specifically in the nervous system, proteas­
es have been strongly implicated as mediators of the invasive 
properties that characterize high grade gliomas.7"13 The infiltra­
tive nature of high grade gliomas is responsible for much of the 
morbidity and mortality associated with these tumours.14 

Surgical debulking of the tumour often constitutes only a tempo­

rizing measure, as microscopic infiltrated foci of tumour will 
lead to eventual recurrence, often in areas that are surgically 
inaccessible. As a result, patients afflicted with high grade 
gliomas are faced with a poor prognosis, with less than 10% of 
patients surviving beyond 2 years.15 Such grim statistics empha­
size the need to better understand the mechanisms that underlie 
glioma invasion, as these may lead to the identification of novel 
targets in the therapy of high grade gliomas. 

While the expression of proteases constitutes only one aspect 
of glioma biology, several features of proteases make them an 
attractive focus for continued research, especially with respect to 
potential therapeutics. First, while high grade glioma cells often 
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have accumulated a variety of oncogenic mutations (gene ampli­
fications, deletions, point mutations) of tumour suppressor genes, 
proto-oncogene-encoded growth factors, or growth factor recep­
tors (e.g., epidermal growth factor receptor, EGFR) that collec­
tively contribute to the malignant characteristics of the cell 
(reviewed in 16), these diverse cellular processes are "upstream" 
of protease function. Proteases may thus be attractive target 
molecules as they constitute the final effector molecules of inva­
sion. Second, with the continuing rapid growth in the under­
standing of the regulation of protease activity, our means to 
manipulate the activity of proteases is increasing. In this 
regard, in vitro demonstrations have been extrapolated into in 
vivo trials with anti-matrix degrading metalloproteinase (MMP) 
agents in animal- and human-models of tumours.1723 Third, the 
process of invasion is tightly linked with angiogenesis. Proteases 
which permit glioma infiltration may well be involved in the neo­
vascularization process,5 such that effective anti-invasive agents 
may also be effective in the inhibition of angiogenesis.19 Finally, 
the observation that virtually all malignant tumours, both central 
and peripheral, utilize proteases to invade3-5-24-25 offers hope that a 
better understanding of proteases may have positive repercus­
sions not only in the future therapy of gliomas, but also in the 
treatment of many other tumour-types. 

The process of invasion thus consists of numerous events, 
beginning with aberrations in cell-surface growth factor recep-
tors/ligands, second messenger systems within the cell, which 
culminate with the proteolytic effector limb of invasion. This 
article will present recent data that highlight each component of 
the invasion process. 

METALLOPROTEINASES AS EFFECTORS OF GLIOMA INVASION 

Proteases can be categorized into three broad classes accord­
ing to the distinctive biochemistry of their active sites. Matrix-
metalloproteinases (MMPs) require the binding of the zinc ion 
at the active site, hence the "metallo-" prefix. Serine- and cys-
teine-proteases are characterized by the amino acids that are 
critical to the catalytic function. As Table 1 illustrates, the 
majority of investigations correlating glioma invasiveness with 
proteolytic activity have focused on the MMPs as the predomi­
nant mediator of glioma invasion, although the serine-"-26-27 and 
cysteine-proteases28-29 have also been implicated. 

Metalloproteinases represent a large family of zinc-depen­
dent proteases that are capable of degrading almost all extracel­
lular matrix macromolecules.5-30 To date, at least 10 subtypes 
have been identified, each distinguished by its molecular weight, 
substrate diversity, and regulation of expression.5-30 Their capac­
ity to degrade a large variety of extracellular matrix (ECM) sub­
strates (Table 1) is exploited by both physiologic- and 
pathologic-processes (Table 2). The importance of MMPs in 
normal physiology is most evident in processes that require the 
degradation and resorption of cellular and proteinaceous materi­
al. During wound healing, the digestion of damaged ECM and 
stroma by fibroblast-derived MMPs is prerequisite to the deposi­
tion of new ECM.31 As another example, the coordinated break­
down of bone matrix that occurs in bone growth and 
remodelling also requires the activity of MMPs.32 The physio­
logic roles of MMPs are an important consideration when con­
templating these enzymes as targets of anti-invasive therapies. 

Table 1: Matrix-Degrading Proteases Implicated in Glioma Invasion. 

Metalloproteinases Substrates 
References demonstrating 
role in glioma invasion 

Type IV Collagenases gelatins 
72 kDa form collagen IV,V,VH (9,37-42) 
(Gelatinase A; MMP-2) elastin 
Inhibitor: TIMP-2 fibronectin 

92 kDa form gelatins (9,12,13,38,64) 
(Gelatinase B; MMP-9) collagen IV, V 
Inhibitor: TIMP-1 elastin 

Membrane-type 
metalloproteinases 
(MT-MMPs) 

Serine Proteases 
uPA/plasmin system 

proteolytically 
activates (40) 

72 kDa collagenase 

proteolytically 
activates 
most MMPs (except 
MMP-2, which lacks 
cleavage site for plasmin) 

gelatins 
fibronectin 
laminin 
proteoglycans 

(11,13,26,27,67,141,142) 

Cysteine Proteases 
Cathepsins gelatins 

fibronectin 
proteoglycans 

(28,29) 

Table 2: Physiologic and Pathologic Roles of Metalloproteinases in 
Tissue Resorption/Degradation. 

Normal processes Pathologic Processes 

Ovulation 
Blastocyst implantation 
Embryogenesis 
Mammary development 
Fetal membrane rupture 
Bone growth/remodelling 
Angiogenesis 
Macrophage function 
Neutrophil function 

Cancer invasion 
Tumour metastasis 
Rheumatoid arthritis 
Periodontal disease 
Wound healing 
Gastric ulcer 
Angiogenesis 

(Reproduced with permission. Modified from Woessner, J.F. I43) 

The elevated expression of MMP activity in tumours was 
first described by Liotta and colleagues33 in the context of B16 
melanoma cells, which demonstrated more type IV collagenase 
activity than their non-metastatic counterparts. Since then, MMP 
activity has been correlated with the invasiveness of many other 
tumours,4'5-24-34"36 strengthening the role of MMPs in tumour 
progression. 

In tumours of the nervous system, immunohistochemical 
localization studies have confirmed that high grade human 
gliomas [glioblastoma multiforme (GBM) and anaplastic astro­
cytoma] express MMPs, whereas non-invasive low-grade astro­
cytomas and normal brain tissue do not.9 Additional evidence 
implicating MMPs in the invasive process of high grade gliomas 
is extensive, both in v/fro8-12-13'37-41 as well as in v/vo.40-42 
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Figure 1: The Proteolytic Cascade of an Invading Tumour. (1) Aberrations in cell-surface signaling by growth factors and second messenger systems 
have been shown to enhance the expression of various proteases. MMPs are synthesized in their latent or inactive "pro "forms. (2) One of the steps in 
the activation of the secreted "pro"-MMP requires proteolytic cleavage of the signal peptide, which is mediated by serine proteases (the 
urokinase/plasminogen/plasmin system) and by non-secreted MMPs that reside within the cell membrane (MT-MMP; transmembranous MMP). The 
cell-surface receptors for components of the plasminogen cascade combined with the membranous localization of the MT-MMPs effectively concen­
trate this proteolytic activation of secreted MMPs close to the cell surface. Of note, the 72 kDa type IV collagenase (MMP-2), which is suggested to 
be the predominant protease mediating glioma invasion, is not a substrate for cleavage by plasmin; rather, it is proteolytically activated by MT-
MMPs. Despite cleavage of the signal peptide, secreted MMPs remain inactive until they are dissociated from TIMPs (tissue-derived inhibitors of 
metalloproteinases; binds to active site of MMP). Following dissociation of the TIMP (3), MMP is fully active (4), leading to degradation of ECM 
barriers (5) and thereby permitting invasion (6). The breakdown of ECM may liberate growth factors from the matrix which acts to perpetuate the 
cycle (7). 

Among the many members of the MMP family of proteases that 
have been identified in gliomas, the emerging data suggest that 
72 kDa- and the 92 kDa-type IV collagenases (MMP-2 and 
MMP-9, respectively) are primarily responsible for the invasive 
properties of high grade gliomas. 

Comparing between MMP-2 and MMP-9, the former appears 
to predominate as the principal mediator of glioma invasiveness. 
In this regard, we have recently reported that the in vitro inva­
siveness of five different human glioma cell lines correlated 
closely (r2 = 0.95) with the level of MMP-2 activity detected in 
culture supematants (Figure 2). The role of MMPs was further 
corroborated by the observation that pharmacologic inhibitors of 
MMPs resulted in a >90% reduction in glioma invasion; con­
versely, increasing MMP-2 activity in non-transformed astro­
cytes resulted in an increase in their invasiveness.39 A similar 
correlation between invasion and MMP-2 activity in vitro was 
reported by Abe et al. in their survey of nine human glioma cell 
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lines.37 As well, Sawaya et al. have recently reported a correla­
tion between MMP-2 expression in vivo and increasing grade of 
the resected human glioma specimens, in which the MMP-2 
activity of glioblastoma was five-fold greater than that of normal 
brain or low-grade glioma.42 Furthermore, studies in situ demon­
strate relatively intense immunoreactivity for MMP-2 in high 
grade gliomas in contrast to virtual absence of labelling in the 
brain tissue surrounding the tumour mass.9-42 

MMP-9 expression has also been demonstrated in vitro and 
in vivo in gliomas, but the relationship between invasiveness and 
MMP-9 expression has tended to be not as conclusive compared 
to that observed for MMP-2.1213'38'4' Antibodies directed to 
either MMP-9 or its activator (urokinase/plasminogen) led to a 
reduction in glioma invasion by approximately 70%.I3 Similarly, 
in vivo, the level of MMP-9 activity derived from homogenates 
of surgical specimens was proportional to the grade of the 
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Figure 2: MMP-2 activity correlates with the invasiveness of human gliomas in vitro. A high degree of correlation (r2 = 0.95, p < 0.01) was demonstrated 
between glioma invasiveness and the activity of MMP-2. In contrast to the four human glioma cell lines tested (U251, U118, U87, A172, U563), non-trans­
formed astrocytes (W724/HFA) exhibited virtually no invasiveness, which paralleled its low MMP-2 activity. Invasiveness was assessed in an in vitro inva­
sion assay. MMP activities were assayed using a gelatin zymography. (Reproduced with permission. Modified from Uhm et al.39) 

glioma.12 However, the MMP-9 activity observed in the higher 
grade gliomas may have been, in part, attributable to endothelial 
cells present within the tumour bulk. This is supported by the 
observation that within a glioma mass, the MMP-9 immunoreac-
tivity is intense in the endothelial cells of the vasculature in con­
trast to the relatively weaker labelling of the tumour cells 
themselves.9 This observed high MMP-9 activity of homoge­
nized high grade tumours may be related to the increased pres­
ence of endothelial cells , thus reflecting the degree of 
angiogenesis. 

As MMPs are synthesized as inactive, pro-enzyme forms, 
activation of both MMP-2 and MMP-9 requires the proteolytic 
cleavage of a leader peptide, reminiscent of the proteolytic cas­
cade that activates pro-enzymes of the pancreas and coagulation 
factors. Proteolytic activation of most MMPs, including MMP-
9, is mediated by the urokinase/plasminogen/plasmin system, 
members of the serine-protease family.530 In contrast, pro-
MMP-2 has no apparent plasmin-susceptible propeptide cleav­
age site (Table 3) and thus requires a different protease for 
activation. Recent reports have confirmed that pro-MMP-2 acti­
vation is mediated by the membrane-type MMPs (MT-

MMPs)25,34,43-46 (Table 3, Figure 1). Therefore, as glioma 
invasiveness correlates with MMP-2 activity, invasion would be 
predicted to also be dependent on the activity of the activating 
enzyme, membrane-type metalloproteinase (MT-MMP). In this 
regard, Rao's group has recently reported the MT-MMP-mediat-
ed activation of pro-MMP-2 in high grade gliomas.40 Taken 
together, the emerging literature suggests that glioma invasion 
utilizes numerous proteases, of which the predominant one may 
be MMP-2, and that the membranous localization of the activat-
ing MT-MMP effectively permits the concentrat ion of 
proteolytic activity close to the cell surface at the advancing 
tumour margin. 

Table 3: Type IV Collagenases Demonstrated in Glioma Invasiveness. 

72 kDa (MMP-2) 92 kDa (MMP-9) 

Role in glioma 
invasion 
Genetics1 

yes 

promoter lacks AP-1; 
characteristic of 
constitutively expressed 
or "housekeeping" gene 

Activation by: 
plasmin 

other modes of 
activation 

Inhibition by 
TIMP2 

No (no site for cleavage 
by plasmin) 
auto-activation 
proteolytic activation by 

MT-MMPs (40) 
primarily TIMP-2 
[TIMP-2 is also involved 
in activation of MMP-2 (46)] 
Glioma > Endothelium 

yes 

presence of AP-1 in 
promoter permits 
induction gene 
expression by 
transcription factors 
encoded by 
fos/jun oncogenes 

Yes 

Expression by 
glioma and/or 
endothelial cells3 

Possible relative role Invasion > Angiogenesis 
in invasion vs. angiogenesis 

primarily TIMP-1 

Endothelium > Glioma 

Angiogenesis > Invasion 

1 AP-1 sequence. Binding of Fos/Jun dimer transcription factor to the 
AP-1 sequence within the promoter of a gene may induce transcription 
of that gene. Genes whose promoter regions lack the AP-1 sequence are 
thus not amenable to Fos/Jun-mediated transcriptional activation. AP-1 
sequence (phorbol ester responsive element) is present in the promoter 
of MMP-1, MMP-3, MMP-9. The promoter for MMP-2 lacks AP-1. 
2 TIMP; tissue-derived inhibitor of metalloprotease. Both TIMP-1 and 
TIMP-2 are capable of binding to either MMP; the table notes the pre­
dominant TIMP - MMP interaction. 
3 Expression as assessed by immunoreactivity of tumour specimen in situ (9) 
MMP; matrix degrading metalloproteinase. 
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In summary, while the expression of numerous MMPs has 
been documented in gliomas, MMP-2 and possibly MMP-9 
appear to be the principal MMPs that mediate the invasive phe-
notype. As the activity of these enzymes requires selective pro­
teolysis of the leader peptide, the importance of MMP-activators 
must be underscored. 

REGULATION OF GLIOMA PROTEASE EXPRESSION 

As evidence implicating the role of MMPs in glioma inva­
siveness accumulates, so too is the data regarding their regula­
tion. Like other enzymatic systems, there are multiple regulatory 
pathways that modulate MMP expression, for if left unchecked, 
the powerful degradative activities of these enzymes may lead to 
extensive tissue damage and destruction. Regulation of MMP 
expression occurs at three levels: 1) gene transcription, 2) proen­
zyme activation by selective proteolysis; and 3) inhibition by tis­
sue-derived inhibitors of metalloprotease (TIMPs) (Figure 1). 
These modes of MMP regulation offer not only a better under­
standing of MMP function, but also reveal areas of MMP 
expression that may be amenable to potential anti-invasive ther­
apeutics. 

Genetic regulation of MMP expression 

The expression pattern of MMPs with respect to specific 
growth factors, cytokines, and tumour promoters suggests a con­
vergence of control mechanisms on the transcription of MMP 
genes.30,47 While the expression profile is complex, an analysis 
of the promoter sequence of several MMP genes has shed light 
on the possible molecular basis for the similarities and differ­
ences observed in the expression patterns of the different MMP 
family members. 

In response to stimulation by a growth factor, the cell must 
be able to selectively turn on specific genes whose coordinate 
expression will lead to the intended effect of the growth factor. 
Genes that will be targeted for induction are identified by 
unique DNA sequences within their promoter regions that bind 
specific transcription factors that mediate gene induction. 
Transcription factors that are frequently expressed in response to 
various growth factors include c-fos and c-jun, whose protein 
products form the Jun/Fos dimer, a transcription factor that 
binds to and consequently activates genes whose promoter 
regions contain the sequence referred to as AP-1 (also known as 
phorbol ester responsive element). 

Genes that contain the AP-1 sequence within their promoters 
can be selected for induction via the Jun/Fos transcription factor 
(Figure 3). Thus, sequences such as AP-1 confer a "tag" which 
identifies select genes for coordinate induction in response to 
specific stimuli to the cell. This may explain how certain MMPs 
are induced simultaneously in response to stimulation by a 
growth factor or oncogene.3047'48 For example, in epidermal 
growth factor (EGF)-stimulated fibroblasts, the increase in 
Fos/Jun transcription factor leads to the co-induction of both 
MMP-1 and MMP-3, both of which contain the AP-1 sequence 
targeted by Fos/Jun. Another promoter sequence element that 
acts to identify specific genes for induction is the PEA3 
sequence, which binds the transcription factor encoded by the c-
ets oncogene.49 PEA3 may likely work in conjunction with AP-1 
to modulate the induction of genes that contain these promoter 
sequences. The coordinate gene-regulation model may be some­

what simplistic, as there are examples in which one of these 
genes may be selectively stimulated without an effect on the 
other. In general, however, the AP-1 and PEA3 regulatory ele­
ments seem to constitute important components in the transcrip­
tional control of MMP genes. 

In contrast, sequences such as TATA and GC-rich boxes that 
are more widespread in their distribution among genes do not 
confer inducibility to that gene. Rather, genes with only these 
sequences in the promoter tend to be constitutively expressed 
and are therefore often referred to as "housekeeping" genes. In 
this regard, unlike the other MMPs, the gene for MMP-2 lacks 
any sequence element that would confer inducibility (Figure 3), 
which may explain the observation that MMP-2 mRNA levels 
tend not to fluctuate. As such, the regulation of MMP-2 expres­
sion both physiologically and in pathologic states such as cancer 
likely requires post-transcriptional and post-translational modifi­
cations in response to cell-surface stimuli and intracellular sec­
ond messenger systems (Figure 1). 

MMP regulation: growth factors 

Cellular growth is a key point of convergence for many regu­
latory pathways, in which a critical balance is achieved between 
growth promotion and differentiation. There is extensive evi­
dence in peripheral tumours as well as in gliomas demonstrating 
the step-wise accumulation of mutations in genes that encode 
growth factors and growth factor receptors (oncogenes) as well 
as in genes that physiologically act to restrain growth (tumour 
suppressor genes). These mutations eventually tip the balance in 
favour of growth promotion, leading to uncontrolled growth and 
ultimately, to the malignant phenotype.'650-53 

A large proportion of mutations observed in high grade 
gliomas have been demonstrated in genes that encode growth 
factors and their respective receptors, which are frequently tyro­
sine kinases (reviewed in 16). Mutations have been reported for 
the following: epidermal growth factor (EGF) and its receptor 
(EGFR), basic fibroblast growth factor (bFGF) and its receptor 
(bFGFR), insulin-like growth factor (IGF-1) and its receptor 
(IGF-1R), platelet derived growth factor (PDGF) and the trans­
forming growth factor-beta (TGF-(3) family of proteins. The 
concurrent synthesis of ligand and receptor within a tumour cell 
may thus lead to an autocrine stimulation of the tumour. 

While over-activity of these cell-surface signaling systems 
has been shown to enhance both the proliferative and invasive 
aspects of the glioma phenotype, much of the research into 
growth factor systems remains focused on the proliferative con­
sequences of the mutations. However, data addressing the link 
between growth factors and invasion is emerging. 

Numerous reports have demonstrated the effect of various 
growth factors/receptors on the invasiveness of gliomas. Of the 
many cell-signalling systems known to be aberrant in glioblas­
tomas, the EGFR gene has been an area of extensive research. 
Located at 7pl l-pl2, it is the most commonly amplified gene in 
glioblastomas. The frequency of amplification appears to corre­
late with increasing tumour grade, being present in 3% of astro­
cytomas, 7% of anaplastic astrocytomas, and nearly 40% of 
glioblastomas.51 Several reports have addressed the role of 
EGFR signal transduction system in glioma invasion. Using a 
xenograft model, in which spheroids of human glioma cells are 
juxtaposed to rat brain aggregates, exogenously applied EGF led 
to an increase in the invasion of tumour cells into the target cell 
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Comparison of Upstream Promoter Sequences of 
MMP Genes 

; Transcription 
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MMP-9 
MMP-10 
(uPA) 

MMP-2 

Promoter Binds Transcriptional Induction of 
Element Factor Encoded by Gene Expression 

AP-1 
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GC 
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No 
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thought to be somewhat 
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expressed genes) 

Figure 3: Comparison of the upstream promoter sequences of MMP genes. Unlike the promoter described in (A), the promoter in (B) associated with 
MMP-2 contains no DNA sequences that bind factors that induce gene expression. The relative lack of induction sequences on MMP-2 promoter is 
characteristic of "housekeeping" genes (e.g., widespread, constitutive expression). This is in contrast to the (A) promoters, which bear AP-l and/or 
PEA3 sequences. A cell surface signal, such as growth factor stimulation, may lead to induction of c-jun and c-fos oncogenes. The Jun/Fos dimers 
can bind to the AP-l site, thereby inducing expression of AP-l bearing genes. This may be one way by which promoter elements may allow coordinate 
regulation of numerous genes. Example: co-induction of MMP-3 with its activator, uPA.30 The following genes contain the PEA3 
element: MMP-1, MMP-3, MMP-7, MMP-10. (Reproduced with permission. Modified from Matrisian, L.M.47) 
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mass.54-55 The stimulatory effect on invasion was selective, as 
EGF, at the dose employed, did not enhance proliferation.54 In 
similar studies in which several growth factors were surveyed, 
EGF constituted the most potent agent to stimulate invasion into 
the brain aggregates.5657 The apparent destruction within the tar­
get cell mass was interpreted to be an indication of the invasion 
process rather than simply migration alone. However, while it is 
likely that the invasion and tissue destruction were mediated by 
proteases, MMPs or other protease levels were not assayed in 
these studies. 

While the mechanism of EGF-mediated invasion remains 
unclear in gliomas, specifically with respect to the possibility of 

involvement of proteases, there is evidence in other experimen­
tal models that links the EGF/EGFR signal transduction to the 
expression of proteases. Hu et al.48 investigated the effect of 
EGF in 3T3 fibroblast cells, in which EGF led to induction of 
expression of fos and jun oncogenes as well as MMP-1 and 
MMP-3. As both MMP-1 and MMP-3 promoters contain the 
AP-l site,3047 they studied the effect of EGF stimulation in 3T3 
cells that genetically lack the fos and jun genes. In the cells 
mutant for both fos and jun, EGF could no longer induce MMP-
l/MMP-3 expression, demonstrating that the fos/jun-encoded 
transcription factors, when present, transduce the cell-surface 
EGF signal to the level MMP genes. Similarly, PDGF-induced 
expression MMP-1 and MMP-3 was also shown to be jun/fos 
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dependent. While it remains unclear if the EGF/EGFR or other 
growth factor/receptor systems induce MMPs by the jun/fos 
mediators in gliomas, it is an attractive hypothesis to consider 
with respect to the mechanism of coordinating, at the genetic 
level, the expression of proteases in malignant cells. 

Another growth factor implicated in glioma invasiveness is 
basic fibroblast growth factor (bFGF), an angiogenic factor and 
mitogen that is expressed in increased amounts by astrocytic 
tumours.5860 Since the tumours have also been shown to express 
the bFGF receptors,6162 there is again the potential for an 
autocrine loop. In vitro, bFGF has been shown to increase 
glioma motility63 as well as invasion via an increase in the activ­
ity of MMP-9.64 The molecular mechanism responsible for the 
increased MMP-9 activity may be three-fold. First, bFGF stimu­
lation may induce the transcription of the MMP-9 gene, whose 
expression is increased in glioblastomas.12'13 bFGF signal is, in 
part, transduced downstream by the expression of c-fos and c-
jun oncogenes. Therefore, the bFGF^FGFR autocrine stimula­
tion may induce transcription of MMP-9 via the AP-1 site 
present in the MMP-9 promoter (see Figure 3). Second, the uPA 
gene, which encodes part of the serine protease cascade that 
activates pro-MMP-9, also possesses the AP-1 promoter 
sequence,65 which may explain the potent stimulation of MMP-9 
expression by bFGF66 that is accompanied by an elevation of 
uPA in glioblastomas both in vitron and in vivo.26-61 Thus, the 
coordinate induction of MMP-9 with its proteolytic activator 
(uPA) may synergize to augment MMP-9 activity. 

In addition to EGF and bFGF, other growth factors such as 
PDGF, TGF, and various cytokines also appear to employ tran­
scription factors and specific promoter elements to effect induc­
tion of MMP expression at the level of transcription. However, 
as the MMP-2 gene lacks the promoter elements that facilitate 
gene induction (Figure 3), mechanisms other than transcription­
al up-regulation must underlie the augmented MMP-2 activity 
demonstrated in many cancers,5 , 6 8 6 9 including glioblas­
tomas.2637,39'42 In this regard, there is an example of regulation 
of MMP-2 expression at post-transcriptional level in human 
fibroblasts, in which the increased expression of MMP-2 in 
response to growth factor stimulation is mediated by an increase 
in the stability of its MMP-2 mRNA.70 However, whether such 
post-transcriptional regulation of MMP-2 expression occurs in 
gliomas has not yet been addressed. In contrast, there is exten­
sive evidence demonstrating numerous post-translational modi­
fications in MMP-2 expression. 

MMP Regulation: Post-translational mechanisms of activa­
tion and inhibition 

Figure 1 outlines the various activation/inhibition pathways 
that act on the MMP enzyme. As MMPs, like many other pro­
teases, are initially synthesized in their inactive, pro-enzyme 
form, the primary mode of activation requires the proteolytic 
cleavage of the leader peptide (Step 2 of Figure 1). The prote­
olytic processing of most MMPs is mediated by the serine pro­
tease system of uPA/plasminogen/plasmin. However, as the 
leader peptide of pro-MMP-2 lacks a cleavage site for plasmin, 
the search for another form of activating protease to process 
MMP-2 had been an intense area of research. It was known that 
cell membrane contained the proteolytic activity necessary for 
the processing of pro-MMP-2,30 but it was not until recently that 
this activating protease was identified as an integral plasma 

membrane protein, the first membrane-type MMP (MT-MMP-1) 
to be discovered.34 Shortly after, a second MT-MMP (MT-
MMP-2) was identified by the same group of investigators.43 

The membranous localization of the MT-MMPs effectively con­
centrates the proteolytic activation of MMP-2 in the vicinity of 
the cell surface to facilitate the process of invasion at the 
advancing tumour margin. 

MT-MMP-mediated activation of MMP-2 has been demon­
strated in numerous malignancies (reviewed in 71), including 
those of lung,72 gastric,73 and breast44 origin. Furthermore, 
Yamamoto et al. have recently reported the correlation between 
MT-MMP-mediated activation of MMP-2 and the invasiveness of 
human glioblastomas in vivo.40 In addition to their key role in 
mediating tumour invasion, MMP-2 and its activator, MT-MMP, 
may further complement the process of tumourigenesis by facili­
tating angiogenesis, as MT-MMP-mediated activation of MMP-2 
has also been characterized in endothelial cells.4 5 , 7 4 

Interestingly, in the brain, MT-MMP expression has recently 
been found to be predominantly concentrated in the white matter 
microglia.75 We postulate that this may, in part, underlie the rea­
son why gliomas tend to infiltrate through white matter tracts; 
MT-MMPs expressed by the microglia may contribute to the pro­
teolytic activation of glioma-derived pro-MMP-2 molecules, 
thereby serving as a substrate permissive to infiltration. 

In addition to the secretion of MMPs and their subsequent 
activation, cells simultaneously produce inhibitors (TIMPs; tis­
sue-derived inhibitors of metalloproteinases), which can bind to 
the MMPs and inactivate their proteolytic function.70,76"79 

Therefore, the net proteolytic, and thus invasive, potential of a 
tumour in part reflects a balance between the two opposing 
mechanisms. While TIMP-1 and TIMP-2 bear approximately 
40% sequence homology and are capable of binding to all forms 
of MMPs,79,80 they do display a degree of selectivity (Table 3), 
with TIMP-1 being more specific for MMP-9 while TIMP-2 
acts more selectively on MMP-2.79,81 

As inhibitors of MMPs, the prediction would be that increas­
es in TIMP levels would be associated with a decrease in inva­
siveness. In keeping with this prediction, the anti-invasive 
effects of TIMPs have been demonstrated in numerous malig­
nancies in vitro (reviewed in 82), including gliomas.41,83,84 The 
in vivo efficacy of TIMPs have been reported by DeClerck et al., 
in which the down-regulation of MMP activity in tumours trans-
fected with TIMP-2 greatly diminished local invasion as well as 
partially suppressing hematogenous metastasis in nude mice.85 

In gliomas, overexpression of TIMP-1 into an invasive glioma 
cell line (low TIMP levels prior to transfection) decreased the 
in vitro invasiveness by >60%.83 Similarly, in vivo, TIMP levels 
were lowest for glioblastomas in contrast to lower grade gliomas 
or normal brain, which had relatively higher TIMP levels.86 

Immunohistochemical data support this, in that glioblastomas 
demonstrated relatively weaker labelling for TIMP-1 compared 
to the stronger labelling observed in non-infiltrative tumours, 
such as meningiomas and neurinomas.9 

However, high TIMP levels are not always associated with 
inhibition of invasiveness. In a survey of nine glioma cell lines, 
the most invasive cell line demonstrated a high MMP:TIMP 
ratio and the least invasive line exhibited the lowest MMP:TIMP 
ratio; however, for the remaining seven cell lines, the 
MMP:TIMP ratio did not correlate with invasiveness.41 

Furthermore, in a study of non-Hodgkin's lymphomas, high 
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TIMP-1 levels surprisingly correlated with the more aggressive 
phenotype.87-88 Similarly, enhanced stromal expression of TIMP-
2 in breast carcinomas correlated with tumour recurrence.89 In 
this regard, there is recent evidence that TIMP-2 may actually 
participate in the activation of MMP-2, in which the proteolytic 
activation of MMP-2 by the membrane-type MMP (MT-MMP) 
requires TIMP-2 as a "cofactor" necessary for the activation 
process.46 In this model, MT-MMP must first bind TIMP-2, fol­
lowing which the MT-MMP:TIMP-2 complex is then able to 
bind the pro-MMP-2 on the cell surface where the activation 
will take place. The dual role of TIMP-2 in both the activation 
and inhibition of MMP activity may be concentration-depen­
dent, in which low-to-moderate levels of TIMP-2 may facilitate 
MMP-2 activation, whereas higher TIMP-2 levels lead to inhibi­
tion of MMP activity. This may, in part, explain the observation 
that in order to cause protease inhibition, the stoichiometry 
between a TIMP and its respective MMP is higher for the 
TIMP-2:MMP-2 pair (stoichiometry of 2:1)90 compared to the 
1:1 stoichiometry required for TIMP- LMMP-9.82 

TIMPs have also been reported to exhibit growth-promoting 
effects in a wide variety of cells.91"97 These multiple and appar­
ent dichotomous effects of TIMPs may be a consequence of the 
multiple-domain structure of these molecule.82 While one 
domain of a TIMP molecule may mediate the interaction with 
its respective MMP to cause protease inhibition, other TIMP 
domains, likely acting through receptors on the cell surface, may 
mediate the non-inhibitory effects of TIMPs.93 

While the experimental support for the premise that a high 
MMP:TIMP ratio correlates with invasiveness is not absolute, 
high MMP activities are generally associated with tumour inva­
siveness. As such, reciprocal regulation of MMP and TIMP 
(increase MMP, decrease TIMP) should achieve a greater 
degradative activity than that obtained by increases in MMP 
expression alone. Examples for this kind of reciprocal regulation 
are rare. In models of bone resorption, Concanavalin A or 
retinoic acid can induce MMP-2 while TIMP is downregulated, 
leading to a highly degradative state.98 Whether reciprocal regu­
lation of MMP and TIMP occurs in gliomas remains to be deter­
mined. For the most part, growth factors and oncogenes that 
induce MMP expression tend to coordinately induce the corre­
sponding TIMP, likely due to the fact that the TIMP promoter 
contains the AP-1 element which is also present in many MMP 
genes as well (except MMP-2). How co-induction of a MMP 
species with its inhibitor translates into increased invasiveness 
remains speculative, with the possibility that the co-induction is 
not equal but rather balanced in favour of the MMP. 

In summary, the net proteolytic, and thus invasive, potential 
of a given tumour cell may be dependent on the interplay of at 
multiple enzymatic processes. While the principal effector of 
glioma invasion may be MMP-2 activity, this activity is depen­
dent upon its activation by MT-MMPs which is counterbalanced 
by the inhibitory effects of TIMP. 

MMP regulation: potential role for protein kinase C (PKC) 

Protein kinase C (PKC) is a phospholipid-dependent serine-
threonine kinase that functions as an intermediary in the trans­
duction of signals from the cell-surface to the level of the 
nucleus.99 Various growth factor signals, in part, funnel through 
PKC; these include PDGF, EGF, and IGF. As a convergence 
point for growth factor signals, abnormalities in PKC activity 

have been found to contribute to the tumourigenesis of a wide 
variety of neoplasms.100 In this regard, we have previously 
reported that high grade gliomas are characterized by high levels 
of PKC activity and that inhibition of this second messenger 
system can dramatically reduce glioma growth in v/rro.101106 

Furthermore, growth of malignant gliomas in vivo have also 
been shown to be decreased by antisense oligonucleotides 
directed against PKC.107-108 

Based on these previous results and the observations impli­
cating PKC in the invasiveness of a variety of peripheral 
tumours,100109"3 we decided to investigate the possibility that 
the abnormally high PKC activity in high grade gliomas con­
tributes to the invasive characteristics of these cerebral malig­
nancies. In a recent report, we demonstrated that the 
invasiveness of human glioma cells in vitro correlates with the 
activity of MMP-2, which in turn, may be regulated by signal 
transduction through PKC.39 In this regard, the treatment of 
highly invasive glioma cells with calphostin C, a selective 
inhibitor of PKC, led to a decrease in the MMP-2 activity with a 
concomitant reduction in glioma invasiveness. Conversely, non-
transformed human astrocytes, which are poorly invasive, could 
be stimulated by a phorbol ester (activator of PKC) to signifi­
cantly increase their MMP-2 activity and their degree of inva­
siveness. 

The mechanism by which PKC modulates MMP-2 activity 
and invasiveness of gliomas is not yet clear. While PKC activity 
leads to the formation of the Jun/Fos transcription factor,114 

MMP-2 cannot be induced in this manner, as its gene lacks the 
promoter sequence elements (AP-1) required for induction by 
Jun/Fos (see Figure 3). Therefore, PKC's regulation of MMP-2 
activity is likely to be post-transcriptional and/or post-translational. 

Based on our previous data,39 we hypothesize that the 
increased MMP-2 activity in human gliomas may be secondary 
to a PKC-mediated stimulation of the membrane-type MMP 
(MT-MMP), the enzyme which proteolytically activates MMP-
2. Data that suggest this postulate are four-fold. First, as we 
have reported, PKC activity in gliomas is abnormally high101106 

and selective PKC inhibitors can reduce invasion in parallel with 
a reduction in MMP-2 activity.39 Second, stimulators of PKC 
activity phorbol esters enhance MMP-2 activation in fibro­
blasts"5 and in astrocytes.39 Third, mRNA levels of MT-MMP 
increase in response to PKC agonists in breast carcinoma cells,44 

fibrosarcoma cells ,"6 and in endothelial cells,45 which are 
accompanied by increased MMP-2 activation. 

Preliminary data from our laboratory suggest that MT-MMP 
activity, and thus the proteolytic activation of MMP-2, may be 
under PKC control. Using reverse-transcription polymerase 
chain reaction (RT-PCR) techniques to analyze MT-MMP tran­
scripts, we have demonstrated that calphostin C (PKC inhibitor) 
treatment leads to a >50% decrease in the level of MT-MMP 
mRNA in glioblastoma cell lines (unpublished data). Given that 
calphostin C does not alter the level of MMP-2 transcripts 
(unpublished data), the observed decrease in MMP-2 activity 
following calphostin C treatment may, therefore, be a conse­
quence of post-translational mechanisms, in which decrease in 
MT-MMP levels may lead to a decrease in the proteolytic acti­
vation of pro-MMP-2. Conversely, it would be of interest to 
determine if the observed increase in MMP-2 activity and inva­
siveness of non-transformed astrocytes upon treatment with 
phorbol ester (PKC activator)39 is a consequence of up-regulated 
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MT-MMP transcription induced by PKC stimulation. These 
experiments, as well as investigations into identifying which 
PKC isoform(s) modulates MT-MMP transcription, are current­
ly underway in our laboratory. 

In addition to its effect on MT-MMP and MMP-2 activity, 
PKC may also influence the activity of other proteases as well. 
In non-neurologic tumours, PKC activity has been correlated 
with the expression of other metalloproteinases such as MMP-1 
and M M P - 3 , " 7 M M P - 9 , " 8 - " 9 and stromelysin-1 . '2 0 

Furthermore, PKC activity also stimulates the expression of the 
serine-proteases (uPA/plasminogen/plasmin) that are required to 
proteolytically activate most MMPs.30-121 As well, cathepsin B, a 
cysteine protease, has also been shown to be induced by PKC 
activation.122 While presence of these proteases has been 
demonstrated in gliomas,2829 the role of PKC in modulating 
their expression patterns is not known at this time. 

PKC's strategic positioning in the signal transduction path­
way renders this enzyme system a potentially important target 
for therapeutics of gliomas. As a mediator of signals from the 
cell surface, PKC plays a central role in transducing mitogenic 
signals induced by the multitude of growth factors and receptors 
that are frequently mutated in high grade gliomas. In addition to 
growth promotion, PKC can affect the activity of proteases, as 
antagonists of PKC result in a decrease in MMP-2 activity with 
a parallel reduction in glioma invasiveness.39 Furthermore, the 
role of PKC in the expression of MMPs in endothelial cells 
implicates PKC in the process of angiogenesis.123127 High PKC 
activities in gliomas may also protect the tumour cell from 
undergoing programmed cell death (apoptosis), as the downreg-
ulation of PKC with pharmacologic inhibitors'28129 and isoform-
specific antisense oligonucleotides'30 can induce apoptosis of 
glioma cells in vitro. Thus, therapies that target PKC may have a 
global impact on numerous aspects of glioma biology, encom­
passing cell proliferation, invasiveness, as well as the neovascu­
larization process that is required to permit tumour growth. 

CLINICAL PERSPECTIVES 

The invasive process is truly a cascade of events. The invad­
ing cell may ignite the chain of events by exploiting the 
autocrine stimulation derived from its mutated growth factor and 
receptor systems (Figure 1). These growth factors utilize the 
intracellular signaling pathways, such as PKC, to ultimately 
effect the induction of proteases capable of degrading the ECM. 
While some proteases function as activators, others, such as 
MMP-9 and MMP-2 may be directly responsible for the ECM 
proteolysis. Unlike most other MMPs, MMP-2 lacks the regula­
tory DNA sequences necessary for transcriptional induction by 
growth factors signals. Rather, MMP-2 is likely constitutively 
expressed as pro-enzyme that is proteolytically processed to its 
active state by MT-MMP, which by virtue of its membranous 
localization permits concentration of the enzyme activity at the 
cell surface. When the balance between activation and TIMP-
mediated inhibition favours proteolysis, ECM degradation 
ensues. 

Each step in the chain of events represents a potential target 
for anti-invasive therapy. While genetically dominant mutations 
such as EGFR amplifications are not easily amenable to inter­
vention, more downstream signal transduction pathways such as 
PKC may offer more hope for therapeutics,'02'30'34 especially 

given PKC's apparent central positioning downstream from cell-
surface signaling systems. Promising results in vitrom~'31 have 
led to studies in patients using pharmacologic agents that 
demonstrate anti-PKC effects (Tamoxifen) which demonstrated 
clinical and radiological improvements, albeit in a limited subset 
of glioma patients. '34138 Furthermore, the use of antisense 
oligonucleotides that are complementary to the mRNAs encod­
ing specific PKC isoforms have also demonstrated striking 
results against gliomas in animal models.107108 Compared to 
pharmacologic inhibitors, antisense approach permits selective 
targeting of specific PKC isoforms, of which at least 10 have 
been identified to date.131 This is an important consideration 
with respect to potential toxicity in vivo, especially since various 
PKC isoform are expressed in many normal cells of the nervous 
system, including astrocytes, oligodendrocytes and neurons. As 
to which PKC isoform mediates MMP expression and invasive­
ness is not known; such information may be invaluable in the 
design of more selective antisense therapeutics. 

As expression of ECM-degrading proteases constitute a char­
acteristic that is virtually universal to all malignant tumours, the 
targeting of proteases makes intuitive sense with respect to anti-
invasive therapy. Fortuitously, Nature has provided key clues in 
TIMPs, the natural inhibitors of matrix-metalloproteinases. The 
biochemistry and biophysics of the TIMP:MMP interaction have 
been the foundation for the strategies underlying the develop­
ment of synthetic inhibitors of MMPs.82-85 An example of an 
agent that has generated a great deal of interest is BB-94 (bati-
mastat), a broad spectrum MMP inhibitor whose mechanism of 
action is likely related to its high affinity binding via the 
hydroxamate group to the Zn++ pocket of MMPs.23 Encouraging 
results demonstrating the efficacy of batimastat in reducing the 
invasiveness and metastasis of ovarian-, lung-, and colon-carci­
nomas in animal models2223 have led to clinical trials in patients 
with malignant ascites.23'39 While a favourable response was 
observed in batimastat-treated patients, the poor oral bioavail­
ability of batimastat may limit its use clinically. In this regard, a 
related MMP inhibitor, marimastat, may represent a major 
advance in the development of orally active compounds; prelim­
inary results from a phase I healthy volunteer study showed that 
plasma levels of marimastat can reach levels >250 times the IC50 

for MMP-2 inhibition.139 

While these agents are in the early stages of development, 
the encouraging preclinical- and clinical data lend optimism to 
possibility that MMPs of gliomas as well as in other malignan­
cies may be one day amenable to therapeutics. However, at least 
two issues illustrate possible sources of skepticism. 

First, in addition to the pathologic functions mediated by 
MMPs, they are also critical to innumerable physiologic pro­
cesses (Table 2), thereby raising justifiable concerns about 
potential toxicity and side effects. However, there is already 
strong precedence of successful targeting of MMPs in the treat­
ment of hypertension, in which the inhibitors of angiotension 
converting enzyme (ACE), a metalloproteinase, are associated 
with minimal side effects. Furthermore, while the long term 
effects remain to be fully evaluated, broad-spectrum MMP 
inhibitors such as marimastat appear to be well tolerated in pre­
liminary phase I/II studies. 

Second, while the principal objective of anti-protease therapy 
has been to target tumour invasion, glioblastomas, like many 
malignancies, have already infiltrated surrounding structures by 
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the time that they are detected, thereby potentially limiting the 
application of anti-invasive therapeutics. However, anti-invasive 
agents would help to limit tertiary spread, metastases from 
metastasis, a process that clearly has significant impact on 
patient morbidity.140 Following surgical debulking of a glioblas­
toma, inhibition of further infiltration by remaining tumour cells 
into surgically inaccessible or "eloquent" areas such as the 
motor- or speech-regions may represent an important contribu­
tion to patient-outcome. Furthermore, protease inhibitors affect 
not only invasiveness, but impact upon other facets of glioma 
biology, including growth and angiogenesis.123127 In this way, 
MMP inhibitors may limit the growth of micro-invasive lesions 
that require an angiogenic response for macroscopic develop­
ment. Used in this way, MMP inhibitors may represent potential 
agents to complement cytotoxic therapies. 

CONCLUSIONS 

Despite many therapeutic strategies undertaken in the treat­
ment of glioblastoma multiforme, the survival rate for patients 
afflicted with this aggressive cerebral malignancy remains 
poor.15 Even with combinations of different therapeutic modali­
ties, a good prognosis is extremely rare, as remaining cells infil­
trating the normal brain tissue inevitable lead to tumour 
recurrence.14 The invasive process thus constitutes the most 
lethal property of high grade gliomas and is therefore a neces­
sary focus of further research. 

As proteases constitute the final effectors of tumour invasive­
ness, they, as well as their upstream regulators, represent viable 
targets for anti-invasive therapeutics. Modulation of MMP activ­
ity may impact upon the malignant phenotype of glioblastomas 
in several ways. First, they may block invasion. Second, block­
ade of protease function can change tumour growth characteris­
tics by effectively altering the tumour's interaction with the 
ECM. Third, inhibition of angiogenesis may limit tumour size to 
a microscopic mass, making it more difficult for the tumour to 
overwhelm cytotoxic agents. 

Synthetic inhibitors of MMPs as well agents that target 
upstream regulators of MMPs, such as PKC inhibitors, have 
shown promise in vitro and in vivo as potential therapeutic agents. 
With further refinements, such agents will hopefully become 
important complements to other chemotherapeutic regimens. 
However, despite their demonstrated efficacy, it is likely too opti­
mistic and naive to believe that they will lead to a cure for malig­
nant brain tumours. While such agents may not be able to achieve 
a "cure," extended prolongation of survival afforded by the block­
ade of tumour infiltration and growth by anti-invasive agents will 
hopefully be successful in converting this lethal disease into more 
of a "chronic disease" with which the patient may be able to live 
longer. While it may represent a compromise, the potential benefit 
for patient-outcome will be greatly welcomed. 
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