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CLIQUES OF IRREDUCIBLE REPRESENTATIONS, 
QUOTIENT GROUPS, AND BRAUER'S THEOREMS ON BLOCKS 

HARALD ELLERS 

ABSTRACT. Assume k is an algebraically closed field of characteristic p and G is 
a finite group. If P is a /^-subgroup of G such that G = PCQ{P), and if H is a normal 
subgroup of G with P < H, then the number of//-cliques of irreducible &[G]-modules 
is the same as the number of///P-cliques of irreducible k[G/P]-modu\es. 

1. Introduction. Let k be an algebraically closed field of characteristic p and let G 
be a finite group. The paper [9] introduced for each normal subgroup H of G a. partition of 
the set of irreducible &[G]-modules into equivalence classes called H-cliques. Irreducible 
&[G]-modules V and W belong to the same //-clique if there is an irreducible k[G]H-
module M which is isomorphic to a summand of Vk[G]H and to a summand of W^H . (This 
is an equivalence relation because there is an analog (Theorem 2.5 in [9]) of Clifford's 
Theorem for the restriction of an irreducible &[G]-module F to k[G]H; as a ^[GJ^-module, 
Vk[G\H is semi-simple with all its summands conjugate in G and all the non-isomorphic 
conjugates of a given irreducible ^[G^-module occurring the same number of times in 
a decomposition of V^py.) When H = G, irreducible modules are in the same //-clique 
if and only if they belong to the same block. When H = 1, irreducible modules are in the 
same //-clique if and only if they are isomorphic. The partition of the set of irreducible 
&[G]-modules into //-cliques is a refinement of the partition of the set of irreducible 
&[G]-modules into blocks. If we imagine starting //off equal to 1 and "moving" / / u p 
along a chain of normal subgroups of G, we should see the blocks of G gradually emerge 
as we look at successively coarser partitions. 

In [9], it was conjectured that for each//, the number of//-cliques of irreducible k[G]-
modules is given by the sum Eg # ( 0 , where Q runs through a set of representatives for 
the G-conjugacy classes of/7-subgroups of G, and where, for each Q, a(Q) is the number 
of (HnNciQ)) -cliques of irreducible k[Nc(Q)]-modules that contain only modules 
with vertex Q. When H = 1 this formula is Alperin's Conjecture [1]; when H = G this 
formula is essentially Brauer's First Main Theorem on Blocks. (Adding Brauer's First 
Main Theorem over all possible defect groups gives this formula.) For a proof of this 
conjecture for any H in the special case when G is /7-solvable, see [10]. To test this 
conjecture, it is necessary to develop a theory of cliques analogous as much as possible 
to the theory of blocks. This paper is part of such a theory. 

In the three stages of what Curtis and Reiner call Brauer's Extended First Main 
Theorem (61.7 in [4]), Brauer associates to a block of k[G] with defect group D first a 
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single block of NG(D) with defect group D, then a A^(^)-class of blocks of DCG(D) with 
defect group D, and finally a NG(D)-c\ass of blocks of (DCG(D)) jD with trivial defect 
group. The formula above (if it turns out to be correct ) may be regarded as a rough 
analog for cliques of the first stage of this theorem. In this paper we prove an analog of 
the third stage. 

The correspondence of the third part of the Extended First Main Theorem in fact 
works for all blocks of DCG(D), even those whose defect group is not D. If G - DCG(D), 
then there is a natural one-to-one correspondence between the blocks of k[G] and the 
blocks of k[G/D], a correspondence that preserves defect groups in the sense that if Q 
is a defect group of a block of k[G], then Q/D is a defect group of the corresponding 
block of k[G/D]. (See Lemma V4.5 in [11].) In this paper, we obtain an analogous 
correspondence for cliques. If P <3 G and V is an irreducible &[G]-module, then P is in the 
kernel of F so V has a well-defined structure as a &[G/P]-module. We call this module 
Vk[G/py The goal of this paper is the following theorem. 

THEOREM 1.1. Let k be an algebraically closed field of characteristic p. Let G be 
a finite group. Let P be a p-subgroup of G such that G = PCG(P). Let H be a normal 
subgroup of G with P < H. Let V and W be irreducible k[G]-modules. Then V and 
W belong to the same H-clique if and only if Vk^GiP^ and Wk^GiP^ belong to the same 
H/P-clique. 

If this theorem had been available at the time [9] was written, it would have simplified 
considerably the induction proof of the main theorem in that paper. 

The proof of this theorem requires the use of the deepest theorems from Dade's 
Clifford Theory, developed in the papers [5], [6], and [7]. 

For the remainder of the introduction, let G, //, P, and k be as in Theorem 1.1. Let V 
be an irreducible &[G]-module. Let e be a centrally primitive idempotent of k[H] such 
that Ve T̂  0. Let b be the block of k[H] corresponding to e. Let cp be the ^-algebra 
homomorphism from k[G] to k[G/P] that sends each g G G to its natural projection in 
GI P. Let e = O(e) and let b = ®(b). 

By Theorem 2.5 of [9], the module Vek[G]He is semi-simple. Since Ker(<&)nk[G]He Ç 
J(k[G]He\ k[G]He and <£>(k[G]He) have essentially the same irreducible modules. We 
can discuss Vek[G^He or Ve^^H^ interchangeably. 

The algebra Q>(k[G]He) is a subalgebra of k[G/P]H/pe. It is sometimes a proper 
subalgebra. (See Section 3.11 for an example.) The proof of Theorem 1.1 is easily reduced 
(in Lemma 4.1) to the problem of showing that nevertheless the module iY^)k\GlP\Hipe *s 

determined by the module (Ve)^k^Hey Since these modules are semi-simple, this means 
we are reduced to studying the relationship between irreducible 0(A:[G]//e)-modules and 
irreducible ^[G/PJ^/^ë-modules. Dade's theory in [7] is ideally suited to this purpose. 

To study irreducible modules over the algebra k[G]He, we consider the direct sum 
decomposition 

k[G]He= 0 (k[Gfe)a, 
aeG/H 
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where, for each a G G /H, (k[G]He)a is the intersection of k[G]He with the subspace of 
k[G] generated by the elements of a. This decomposition makes k[G]He into a G/H-
graded algebra, but not necessarily into a fully G//7-graded algebra (see Section 2 for 
definitions). Let (G/H)[b] = {a G G JH : (k[G]He)a contains a unit}. Exploiting the 
fact that (k[G]He)\ is the center of the block k[H]e and is therefore a local ring, Dade 
proves three things about the group (G/H)[b]: if a fi (G/H)[b], then the component 
(k[G}He)G is in J{k[Gfe)- if a G (G/H)[b]9 then (k[G]H e)a/{j((k[G\He){)(k[G]He)^ 
is 1-dimensional, so the algebra 

® (k[G]He)a/ U(k[G]He)x )(k[G]He)a) 
ae(G/H)[b] V 7 

is a twisted group algebra for (G/H)[b]; this twisted group algebra is isomorphic to 
the quotient of k[G]He modulo a two-sided ideal in the Jacobson radical of k[G]He. 
It follows that if we are only interested in semi-simple k[G]He-modu\Gs, we may as 
well study semi-simple modules over this twisted group algebra. (See Theorem 3.2 
for details.) It is tremendously useful to do this, because while the algebra k[G]He is 
somewhat mysterious, there is a rich theory that we can apply to the twisted group 
algebra. 

Of course we can perform the same construction after applying the map O to every
thing, and thus we can replace the algebra k[G/P]H/pë with a twisted group algebra for the 
group ((G J P) I (H / P))[b]. We abbreviate the name of this group to (G/H)[b]. Applying 
O to the old twisted group algebra gives a subalgebra of the new twisted group algebra. 
We are thus reduced to studying the relationship between the two groups (G/H)[b] and 
(G/H)[b]. All of Section 3, the bulk of the paper, is devoted to this study. After we iden
tify (G/H)[b] with its image under the natural isomorphism G/H -> (G/P)/(H/P\ 
(G/H)[b] is a normal subgroup of of (G/H)[b] (see Section 3.1). It may be a proper 
subgroup (see the example in Section 3.11). However, in Theorem 3.5 we show that 
(G/H)[b]/(G/H)[b] is a p-group. It is well known that if K is a normal subgroup 
of a group L with L/K a p-group, then irreducible &[Z,]-modules are determined by 
their restriction to k[K]; the same is true for twisted group algebras.(See Lemma 4.2.) 
Since we have replaced irreducible O^G^^-modules with irreducible modules over 
Dade's twisted group algebra for (G/H)[b] and irreducible k[G/P]H/pë-modxûes with 
irreducible modules over Dade's twisted group algebra for (G/H)[b], it follows that for 
any irreducible &[G]-module V, the module {yè)k\GlP\Hipê ls determined by the module 
iYe)^ik[G]He)- This observation completes the proof of Theorem 1.1 (See Section 4.) 

Studying Dade's group (G/H)[b] directly is difficult. Fortunately, it is not necessary 
to do so. Let D be defect group of b. The tool we use for our comparison of (G/H)[b] 
and (G/H)[b] is a very difficult and deep theorem from Dade's paper [7] which shows 
how to compute (G/H)[b] in terms of a Clifford extension for the conjugacy class of 
irreducible representations of C//(D) associated to b by Brauer's theory. This reduces 
the proof of our theorem to the comparatively mechanical job of comparing two closely 
related Clifford extensions. 
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2. Notation and assumptions. Throughout the paper, p is a prime number and k is 
an algebraically closed field of characteristic p. All algebras in this paper are assumed to 
be algebras over k. 

If K is a subgroup of the group G, k[G]K = {a G k[G] : a* = a for all x G K}. 
Let T be a (possibly infinite) group. A T-gradedalgebra is an algebra^ together with 

a direct sum decomposition of subspaces 

A = KjjAfj 

such that for all a and r in T, 
AaAT L. ^lcrr, 

where vla^ r is the subspace generated by all products xy with JC G Aa and _y G ̂ 4T. The 
subspaces A0 are allowed to be 0. 

h fully Y-graded algebra is a T-graded algebra satisfying the additional condition 

AGAT — AGT 

for all a and r in T. 
Fully T-graded algebras are the same as the graded Clifford systems discussed in 

Dade's earlier papers. For a discussion of the reason for this change in terminology, see 
[8]. 

Let N be a normal subgroup of a finite group G. Let b be a block of k[N]; then 
Gb is defined to be the the inertia group in G of b\ that is, G\, = {x G G : If = b}. 
Let (p be a &[W]-module; then G^ is defined to be the inertia group in G of ip; that is, 
G^ = {xeG:<px^ ip}. 

For all of the paper, assume the following hypothesis. 

HYPOTHESIS 2.1. 1. G is a finite group. 
2. P is ap-subgroup of G such that G = PCG(P). 

3. H is a normal subgroup ofG. 
4. G = G/P. 
5. for any g G G, g is its image under the natural projection onto G/P. 
6. for any subgroup K ofG, K is its image under the natural projection onto G/P. 
7. O: k[G] —> k[G\ is the surjective algebra homomorphism which sends each g in G 

tog. 
8. P<H. 
9. b is a block ofk[H] corresponding to the primitive central idempotent e. 

10. b = Q>(b). 
11. ë = Q>(e). 

Note that by a standard theorem about blocks (see for example V4.6 in Feit[l 1]), e is 
a primitive central idempotent of G corresponding to the block b. 

3. Behavior of Dade's twisted group algebra under reduction modulo P. For all 
of this section, assume Hypothesis 2.1. 
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3.1. Two twisted group algebras. Our goal is essentially to compare the irreducible 
modules over the two algebras <$>(k[G]H) and k[G]H, which may not be the same. It will 
turn out to be easier to compare instead two slightly smaller algebras, whose importance 
was pointed out by Dade in [7]. In this subsection we define those algebras. 

It is easily checked that ®(k[G]H) C k[Ùf, so 0>{k[G\He) C k[Gffe. See Section 3.11 
for an example in which <b(k[G]He) f k\G~fe. 

Now consider the algebra k[G]He. 

k[Gfe= 0 (k[G]He)ai 
a<EG/H 

where, for each a G G /H, (k[G]He)a is the intersection of k[G]He with the subspace of 
k[G] generated by the elements of a. This decomposition makes k[G]He into a G/H-
graded algebra, but not necessarily into a fully G///-graded algebra. 

Some of the components of k[G]He may be equal to 0. For instance, we have the 
following lemma. 

LEMMA 3.1. Let a be in G JH with a not in Gb/H Then (k[G]He)a = 0. 

PROOF. See Proposition 2.17 in [7]. • 

In his paper Block Extensions [7], Dade identifies an important subgroup (G/H)[b] 
of Gb/H, which is defined as follows. 

(G/H)[b] = {a£ G/H : (k[G]He)a(k[G}He)^ = (k[G}He)x}. 

By Proposition 2.17 in [7], the group (G/H)[b] is a normal subgroup of Gb/H. This 
subgroup is important because of the following theorem. 

THEOREM 3.2 (DADE). The algebra 

0 {k[Gfe)0 
(T£(G/H)[b] 

is a fully (G/H)[b]-graded algebra. The subspace 

1= 0 UikiGfe^YkiGfe)^ 0 (k[G]He)a 
ae{G/H)[b]V y <r£(G/H)\(G/H)[b] 

ofk[G]He is an ideal contained in J(k[G]He). The algebra k[G]He/I, which is isomorphic 
to 

( © (k[G]He)a) / ( 0 j({k[G]He)x){k[Gfe)X 
\e(G/H)[b] J ' \e(G/H)[b] J 

is a fully (G / H)[b]-graded algebra with each component of dimension 1 overk. (In other 
words it is a twisted group algebra.) 
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PROOF. The algebra ®a^G/H)[b](k[G]He)a is fully (G/H)[b]-graded by Theorem 2.10 

in [7]. The algebra (®ae(Gmb](k[G]He)a) / ( e ^ G / f l K n ^ e ) , ) ! ^ ) , ) , is 

fully G///-graded and has all components of dimension 1 by 2.12 of [7]. The subspace 

/ is an ideal contained in the Jacobson radical by Lemma 3.3 of [7]. • 

For us, the value of this theorem is that it allows us to study irreducible modules over 
a twisted group algebra instead of irreducible modules over k[G]He. 

We will need the following lemma about (G/H)[b]. 

LEMMA 3.3. Let obe an element ofG JH. Then a G (G/H)[b] ifandonlyif(k[G]He)a 

contains a unit ofk[G]He. 

PROOF. This follows easily from Theorem 3.2. • 

We can perform the same construction after reduction modulo P to get a subgroup 
(G/H)[b] ofG/H. Let *F: G/H-* G/ / /be the natural isomorphism. If a G (G/H)[b]9 

then ^>((k[G]He)a) contains a unit of k[G]He. Therefore 

V{(G/H)[b]) < (G/H)[bl 

Since ^(Gb/H) = Gh/Hand (G/H)[b] < Gb/H, 

V((G/H)[b])<(G/H)[b]. 

The aim of the first part of this paper is to show that the quotient of these two groups 
has order a power of p. See Section 3.11 for an example in which their quotient is not 
trivial. 

We will need the following elementary lemma. 

LEMMA 3.4. Let Dbea p-subgroup of G with P < D. Then CG(D) < CQ0) and the 
quotient of these two groups is a p-group. 

PROOF. Let a be an element of CQ(D), and let x G G be a member of the coset a. 
Then x E NG(D), so CG{Df = CG(D\ so ~C^pf = C^D). Thus C^D) < Cô0). 

Suppose there is an element of CG(D)/CG(D) of order prime top. Since G = PCG(P), 
there is an element z G CG(P) of order prime to p such that z G CG{D) but z ^ CG(D). 
Then [D,z] Ç P9 and so [D,z,z] C [P,z] = 1. By 5.3.6 in Gorenstein's book [12], it 
follows that [D, z] = 1. This contradicts the fact that z ^ CG(D). m 

THEOREM 3.5. The order of(GlH)[b]l^((GlH)[b§ is a power of p. 

The proof of this theorem requires a careful analysis of several Clifford extensions. 
Before giving the proof, we will define the extensions and give a number of lemmas 
about the relationship between them. 

https://doi.org/10.4153/CJM-1995-048-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-048-x


IRREDUCIBLE REPRESENTATIONS 935 

3.2. Clifford extensions. We need to recall the definition of Clifford extensions. This 
concept was introduced by Dade in [5]. 

Let AT be a (possibly infinite) group and let N be a normal subgroup ofK. Let (p be an 
irreducible (finite dimensional) &|7V]-module. We will now define a central extension 

1 —- k* —> K(<p) —+ KJN —• 1, 

which is called the Clifford extension associated to K and (p. 
Let M((p) be the annihilate in k[N] of (p. Conjugation by elements of K^ fixes 

M(<p); thus klK^Mip) is a two-sided ideal of klK^]. We have the following direct sum 
decompositions. 

*[^]ftf(y>) = 0 (£ [^ ] )^ (< /0 
creK^/N 

k[K^]/k[Kip]M(<p)= 0 ( t [ ^ ] ) a / ( ( A t ^ ] ) ^ ( ^ ) ) 

The 1-component of this last algebra is k[N]/f\(((p), which is a full n x n matrix algebra 
with entries in k, where n is the dimension of ip over k. Let C be the centralizer of the 
1-component in k\K^\jk\K^\9^{^p). Then it can easily be shown that in the grading 

C — \jp Co-, 
aEK^/N 

each component contains a unit and each component is 1 -dimensional over k. (Thus C 
is a twisted group algebra for K^/N.) We define K(<p) to be the group of all units of C 
that are contained in one of the subspaces of the grading. The embedding À i—•> À1 of A* 
in K((p) makes this a central extension as in the above diagram. 

Note that if L is a subgroup of K with N < L, then L(<p) can be identified with the 
inverse image in K(<p) of L^/N. 

Section 12 of Dade's paper Block Extensions [7] shows how to compute the group 
(G/H)[b] in terms of the Clifford extensions of certain irreducible modules. To use this 
result, we will need to compare several Clifford extensions. 

3.3. The extension NG(D)((p) and the form u. Let D be a defect group of the block 
b. Let /? be a block of DCH(D) that has defect group D and is sent to b by the Brauer 
correspondence. (The block f5 is unique up to conjugacy in NH(D).) There is a unique 
irreducible module in /?; D is in the kernel of that module; let (p be the restriction to 
k[Cn(D)] of that module. (Of course (p is irreducible.) One of the Clifford extensions we 
want to consider is 

1 — ** — NG(D)(ip) —> NG(D)JCH(D) —+ 1. 

To this extension, we associate a "bilinear form" u, which is defined as follows. 
Conjugation of elements of CG{D){(p) by elements of Nn(D){ip) defines an action of 
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NH(D)^ on CG(D)((f) which is trivial on the central subgroup k* and on the quotient 
CG{D)^ J' CH(D). (See the last paragraph of page 201 of Dade's paper [7] for an explana
tion of why the action is trivial on the quotient.) We define UJ by 

UJ:NH(D\ x CG(D)JCH(D) —+ k* 

where 
(yTf = uj{o,r)yT 

for all a G NH{D)^,r G CG(D\ / CH(D\ and yT G CG(D)(ip) such that yT projects 
onto T. (It is easily checked that this does not depend on the choice of yT) The form 
is "bilinear" in the following sense: for all G\ and a2 in N^D)^ and for all r in 
CG{D\/CH(D\ U(<T\(J2,T) = ^i(cri,T)cJi(cr2,r); for all a in NH{D\ and for all n 
andT2 in CG(£%/CH(D\ uj(a,rir2) = u(a,T\)u\(a,T2). 

By the main theorem of Section 12 of Dade's paper [7] (see (0.3b) in the introduction 
of [7]), we can use the form UJ to compute (G/H)[b]. We define the group C^D)^ to 
be the preimage in CciD)^ of the right kernel of UJ; that is, CG(D)U = {a G CG(D)^ : 
u(a,aCH(DJ) = 1 for all a G NH(D\\. Then, by Corollary 12.6 (or statement(0.3b)) of 
[7], 

(G/H)[b] = CG{D)UHIH. 

3.4. The extension Nç(D)((p). Let fi - 0(/3) and let (p be the irreducible module over 
k[CH(D)] corresponding to ip. Note that N^D) = NG(D) and that N^D)^ = NG(L%. 
The second Clifford extension we wish to consider is 

1 — k* —> Nô(D)((p) — Nô0)ê/QÂP) —> 1. 

We now compare the Clifford extensions NG(D)(tp) and Nç(D)(<p). 

LEMMA 3.6. There is a commutative diagram as follows. 

1 —» k* —> #G(Z))(^) — NG(D)JCH(D) —> 1 

1 —» F - ^ 7VÔ(D)(^) — N^D^/CMP) - ^ 1, 

where the vertical arrow on the right is the natural map. 

It should be noted that the second and third vertical arrows are not isomorphisms; 
they both have kernels isomorphic to Pj (P n Z(D)sj. 

PROOF. The map O sends the algebra k[NG(D)^] onto the algebra klN^D)^]. The 
algebra k[NG{D\] is fully NG{D\ /C//(D)-graded and hence is also NG(£% /PCH(D)-
graded; the algebra klN^D)^ is fully 7V^(D)^,/C//(jD)-graded; the map O induces an 
isomorphism from NG(D)^ /PCH(D) to N^D)^ / CH(D) and respects the gradings. 

The map O sends the annihilator M(<p>) of (p in &[C//(Z))] into the annihilator M(p) 
of (p in A:[C//(D)]. Thus O induces a map 
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The 1-component of the left hand side with respect to the A^(^)^/C//(D)-grading is a 
full n x n matrix algebra with entries in k, where n is the dimension of tp over k. The 
1-component of the left hand side with respect to the A^Z^/C/^Z^-grading must be 
mapped into the 1-component of the right hand side with respect to the N^D)^ / CH(D)-

grading. The 1-component of the right hand side with respect to the N^D)^ / CH{D)-

grading is k[CH(D)]/M((p), which is isomorphic to the A>endomorphism algebra of (p. 
Since the dimension over kof (p is the same as the dimension over kof ip, the 1-component 
of the right hand side with respect to the N^ï))^ / CH(D)-gmding is also a full n x n 
matrix algebra with entries in k. Since a full matrix algebra is simple, the 1 -component 
of the left hand side with respect to the AfG(Z))< /̂C//(Z))-grading must be mapped onto 
the 1-component of the right hand side with respect to the ^(5)^/C//(D)-grading. 

Therefore O induces a map that respects gradings from the centralizer in 
k\NG{D\\jk\NG{D\YM.{ip) of the 1-component with respect to the NG(p\jCH(jy)-
grading onto the centralizer in klN^D)^/ k[Nç(D)(p]9\{((p) of the 1-component with 
respect to the A^(D)^/Q/(Z))-grading. The restriction of this map to the appropriate 
groups of units is the center vertical arrow of the diagram. • 

3.5. The extension Nç(D)((p) and the form U2. 

LEMMA 3.7. There is a unique block J3 of k[DC'fj(D)] which covers (3. The block J3 
has the following properties. 

1. ft has defect group D. 
2. J3R = b. 
3. Let (p be the restriction to k[Cff(D)] of the unique irreducible module in f3. Then 

(p is the unique irreducible k[Cff(D)]-module covering (p. 

PROOF. Since DCff(D)/DCH(D) is ap-group (by Lemma 3.4), it follows from V3.5 
of Feit's book [11] that there is exactly one block of DC^(D) covering /?. Let this block 
be£. 

First, we show that ft has properties 1 and 2. Recall b is a block of k[H] with defect 
group D. By Brauer's First Main Theorem on Blocks, there is a unique block B of 
k[Nn(D)] with defect group D such that BH = b. The block (3 was chosen from the unique 
N//(X>)-conjugacy class of blocks of DCH(D) covered by B. Necessarily D is a defect 
group of j3. Now consider blocks of k[H]. The block b has defect group D and the block B 
(= <3>(B)) is the unique block of k[Nfj(D)] with defect group D such that W - b. Since B 
covers /3, B covers ft. It follows that at least one of the members of the À^(Z))-conjugacy 
class of blocks of k[DCfj(D)] covered by B must cover J}. This block must be J3, so ft has 
defect group D and f3H - b. 

Now we show 3. Let (p be defined as in 3. Because D is in the kernel of the unique 
irreducible module in J3, <p is irreducible. Clearly (p covers (p. Since Cfj(D)/CH(D) is 
a/7-group (by Lemma 3.4), 1113.15 in Feit's book [11] shows that there is no other 
irreducible &[C#(Z))]-module covering (p. • 
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Since (p is the unique irreducible &[C#(£>)]-module covering (p, N^D)^ < Nff(D)^ 
and N^D)^ < N^D)^. By (0.1b) of [5] (or by an easy calculation), Nn(D)^ = 
Nttp^Ctfp) and N&0)i = N^D^C^D). 

The third Clifford extension we want to consider is 

1 —» k* —> NG(D)(£) — NçiD^/CûiD) —» 1. 

To this extension we associate a "bilinear form" UJI, which is defined as follows: 
Conjugation of elements of Cç(D)((p) by elements of Nfj(D)((p) defines an action of 
Nfj{D)(p on Cg{D){(p) which is trivial on the central subgroup k* and on the quotient 
CQ{D)(PIC£J{D). (See the last paragraph of page 201 of Dade's paper [7] for an explana
tion of why the action is trivial on the quotient.) We define o?2 by 

uti-.NrtP)!, x CoiD^/C^D) —» ** 

where 
(z7)a = u2{oc,l)z1 

for all a G A^(£))<^,7 G CG(D)^/Cff(D\ and z7 in CQ(D){(P) such that z7 projects 
onto 7. 

Again, by the main theorem of Section 12 of [7] (see (0.3b) in the introduction of 
[7]), we can use the form u2 to compute (G/H)[b]. 

We define the group C^D)^ to be the preimage in CQ(D)^ of the right kernel of a;; 
that is, Cà(D)U2 = {a G CÔ(D)^ : UJ2(a,aC^D)) = 1 for all a G N^D)^}. Then, as 
before, 

(G/H)[b] = CS(DUH/H. 

3.6. The isomorphic extensionsNç(D)((p)/Q andNQ{D){(P){^)). The group TV^D)^) 
has a subgroup C^0)((p) which is a central extension of C^D)^ /CH{D) by &*. Since 
Cff(D)(p/CH(D) is a/7-group and A: is of characteristic /?, it follows from III 10.2 in [2] or 
from Remark 7 in [3] that this central extension splits; the group Cft(D)((p} is an internal 
direct product k* x Q where Q is a/?-group isomorphic to C^(Z))^/C//(D). 

The fourth extension we want to consider is 

1 — k* — N0(D)((p)/Q — Nô(p)ê/Cû0)ç> — 1. 

Let T/; be the 1-dimensional &[&* x g]-module on which g acts trivially and elements 
of the group &* act by ordinary scalar multiplication. Since ip is stable in Nç(D)(ip), we 
have the Clifford extension 

1 — ** —» NG(D)(<p){rl,) —» NG{D){ip)ICftP){ip) — 1. 

Since Cfj{D)((p) is the preimage of C^D)^ in NQ(D)((P) under the map NQ(D)(Ç>) —> 
NQ{D)(P in the diagram above, there is a natural isomorphism NQ(D)((P)/Cfj(D)((p) -
NG0)*/CH(P)<P. 
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LEMMA 3.8. Consider the diagram 

1 — A* _ NG(D)($)/Q —+ NâiD^/C^D^ —-> 1 

I ! I 
i —-> k* —> NQ(D){$m — Ntfpm/cMip) — i 

where the arrow on the right is the natural isomorphism described above. There is an 
isomorphism to replace the dotted arrow so that the diagram commutes. 

PROOF. Let M be the maximal ideal of k[k* x Q] corresponding to tjj. Since 
k[k* x Q]/M is 1-dimensional, the centralizer in k[Nô0)(<p)]/(Mk[Nô0)((p)]) of 
k[k* x Q]/M is all of k[Nô0){(p)]/(Mk[Nô0)((p)]). Thus No0)((p)(ij) is just the 
group consisting of all those units of k[Nç0)((p)]/ (Mk[NQ0)((p)ty that are in one of 
the subspaces of the grading 

klNâiDX^KMklNâiD)^)]) = 0 A:[^(D)(^)]/(MÂ:[^(D)(^)])a. 
*eAfc(D)(^/C/KD)<£) 

The map Nç0)((p) —> NQ0){(Ç){^)) that sends each group element to its projection 
modulo Mk[Nç(D)((p)] is a group homomorphism with Q in its kernel. The correspond
ing group homomorphism NQ0)(<P) / Q —* Nc0)((p)(il;) makes the diagram of the 
lemma commutative if we put it in the place of the dotted arrow. By the Short Five 
Lemma (Lemma 13.1 in Mac lane's book[13]), this group homomorphism is in fact an 
isomorphism. • 

3.7. The isomorphism between NQ0)(<P) and NQ0){(P)(\I)). NOW we will use the 
main theorem from Dade's paper [5] to compare NQ0)((P)(XIJ) andNg0)((p). Note that 
CH(D) and Cfj0) are normal subgroups of NQ0) with CniP) < Cfj0), and recall that 
Cp is the unique irreducible £[C#(î>)]-module that covers the k[Cn(D)]-module (p. Also 
note that ty is the unique irreducible k[k* x g]-module on which the elements of the group 
k* act by scalar multiplication and recall C^0)((p) = k* x Q. Therefore \jj corresponds 
to (p under the Clifford correspondence. (The Clifford correspondence is a one-to-one 
correspondence, described in the introduction and in Section 8 of [5], between the set of 
irreducible k[Cff(D)] -modules covering (p and the set of irreducible representations of the 
Clifford extension Cfj0)(ip) on which elements of the central subgroup k* act by scalar 
multiplication.) By (0.1b) in [5], N^0)^ = N^D^C^D). Thus there is a natural iso-
morphismN^/C^D) -> NG0)((p) /Q(D)(^>. (Recall that Na0){^)/C^D)^) 
is naturally isomorphic to N^D^/C^D)^ = Nô0){p/{Cff(D)nNù0)(p).) The main 
theorem from [5], described on page 236 (the first page of the paper), tells us that 
there is an isomorphism Nç0)((p) —> NQ0){(P){^}) such that the following diagram is 
commutative (where of course the arrow on the right is the natural isomorphism). 

1 — A* —> Ntfpm —» Na(D)JCû&) —> 1 

I I I 
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3.8. The big diagrams. Assembling the diagrams from Sections 3.4, 3.6, and 3.7, we 
obtain a commutative diagram as follows. 

— k* —• Na(D)(tp) —> NG(D)JCH(D) —> 1 

I I I 
— ** — NG{D)(ip) —> NG(D)t/CH(D) —» 1 

I I I 
_ ^ k* _ _ Nc&m/Q — NG(D)ç/Cfi(D)ç, — 1 

— F —> JVÔ(Z>)<£) —> NG(D)t/Cf,(D) — 1. 

Next, we will consider a diagram that is a subdiagram of this one in the sense that all 
the groups are subgroups of the groups of this diagram and all the arrows are restrictions 
of the arrows in this diagram. 

LEMMA 3.9. There is a commutative diagram as follows, in which all the vertical 
arrows are isomorphisms and all the arrows are restrictions of the arrows in the diagram 
above. 
1 —* k* — CG(D)(<p) — > CG(D)JCH(D) — 1 

1 — k* — Qm(q>) — C^D)^/QÂD) —+ 1 

1 — ** — CdD)((p)Q/Q —+ CdBj^C^D^/C^D)^ — 1 

I I I 
1 —+ ** —> (CG(D)C#(D))<Ê) — CGiD^CrfpyCfiiP) — I-

PROOF. First, we show that all the maps in the right column are isomorphisms. 
They are all clearly surjective; we need to check that they are injective. First, consider 
the top map. The natural map NG(P\ —> A^(ï))^ / CH(P) has kernel PC//(D), so the 
kernel of the natural map CG(D)^ —> CG(D)^/C//(£>) is PCH(D) D CG(£%; to see that 
PCH(D) H CG(£% = C//(D), we observe that P < / / and so PCH{D) n CG(£% Ç 
PCH(D) H CG(D) Ç HH CG(D) = C//(/)). Next we examine the middle map. The kernel 
of the natural map QÂD)^ -> ~C^D)^CR(D){p/Cff(D)Ç) is Q ^ H Crfp)<p. Suppose 
A G CG(D)^ D Cfj{D)(p. Then there is an x G CG(D)^ which projects onto <z. Since x 
projects onto an element of Q/(D)^, JC certainly projects onto an element of H; since 
P < H, it follows that x G //; since also x G CG(£%, it follows that x G CH(D). 
Therefore a G CH(D). It follows that the middle map of the right column is injective. 
Next we examine the bottom map of the right column. To see that it is injective, it is only 
necessary to observe that CG(D)^Q/(Z))^ n C^D) = C (̂D)< .̂ 

Next, we show that all the maps in the center column are isomorphisms. It is first 
necessary to check that the appropriate maps in the first big diagram actually send 
CG(D)(<p) into CdP)((p) and G^D){(p)Q/Q into (C^5)Q(D))((^). This follows 
easily from the commutativity of the first big diagram and the fact that CQ{D){(Ç)QIQ 

is the preimage in Nc0){(p)/'Q of CG(Z))^C^(D)^ / C^D)^. The maps in the center 
column are isomorphisms by the Short Five-Lemma. • 
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3.9. The forms Q. and Q2, and their relationship to the forms uo and 0J2. We use the top 
and bottom rows of the two big diagrams above to define two forms. 

First, we consider the top rows of the diagrams. 
The group NH(D)((p) acts by conjugation on CG(D)((f) to produce an action of 

NH{D\ / CH(D) on CG(D)((f). Recall it is the associated action of 7V/,(Z))̂  on CG(D)((f) 
that produces the form UJ\ NH{D\ x CG(D\ / CH(D) -» k*. 

LEMMA 3.10. Let K be thepreimage in NG(D) ofCfj(D). Then K^/CniD) is in the 
kernel of the action 6>/Af//(D)^/C//(Z)) on CG(D)((p). 

PROOF. By Lemma 3.4, C#(D)/C//(Z)) is a p-group; therefore, K^/CH(D) is a/?-
group. Let y be an element of CG(D)((p) and let r be an element of the subgroup 
K^/CH(D) of NniD)^/CH(D). T h e n / = ay for some a £ k*. Since K^/C^D) is a 
p-group, the order of r is a power of/?; thus of" = 1 for some n so a = 1. • 

As a consequence of this lemma, the conjugation action ofNH(D)((f) on CG(D)((p) 
gives rise to an action of NH(D){f/K(f on CG(D)((p), an action which is trivial on the 
central subgroup &* and on CG{D)^ / CH(D). Thus we get a "bilinear form" 

n.NH(D)jK^ x CG(D)JCH(D) —-> ** 

given by 
(VTy = n(p,r)yT 

for all p G NH{D)^IK^,T G CG{D)^/CH(D\ andj/T G CG(D)(ip) such that j r projects 
onto r. 

The form Q differs from the form u) only in the inessential way that we have obtained 
Q from UJ by taking the quotient of the left hand side by a subgroup in the left kernel of 
UJ. In particular, the two forms have the same right kernel. 

Next, we examine the bottom rows of the big diagrams. The reader should now 
look again at the definition of uj2 above. The form U2 arises from the conjugation ac
tion oîNfj{D){(p) on CQ{D){(Ç). The group k* is in the kernel of this action so there 
is an associated action of NfjiD^/C^D) on CG(D)((p). By (0.1b) of [5], N^D)^ = 
N^D^tpCfjib). Thus, via the natural isomorphism, there is an associated action of 
NH(Dhl(NfI{D)t H Cff(D)) = NffiD^/CfjiD)^ on Câ(D){(p). As in the definition 
of u)2, this action gives rise to a "bilinear form" 

ûZ:Nû(D)ê/CtfP)<p x CçiD^/CûiD) —> k\ 

The form ûJï differs from the original form uj2 only in the inessential way that we have 
replaced the left hand side by a group that is naturally isomorphic to the quotient of the 
original side modulo a subgroup in the left kernel of the original form. In particular, the 
forms 0J2 and uj2 have the same right kernel. 

Now we define a form associated to the last rows of the big diagrams above. Note 
that C^çCiAD)/Cn(D) is a subgroup of CG(D)^/C„(D). Let 

Q 2 : i V # ) J C # ) ^ x CdP\Cn(D)IC-H{D) —> ** 
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be the restriction of ÛJî. 
The forms Q. and Q2 have left hand sides and right hand sides that are naturally iso

morphic. Because of the commutativity of the big diagrams, they can be obtained from 
each other via those natural isomorphisms. The forms Q and UJ have the same right ker
nels. The right kernel of Q2 is the intersection of the right kernel of 002 with the right hand 
side of Q2- Note that therefore if g is in CdD)^ then its image in CG( / ) )^C#( / ) ) /C#(Y) ) 

is in the right kernel ofuJ2 if and only if its image in CciD)^ / CH{D) is in the right kernel 
ofuj. 

3.10. Proof of Theorem 3.5. 

PROOF. We will show that every element of (G///)[6]/¥((G///)[6]) has order a 
power of p. Recall from Sections 3.3 and 3.5 that (G/H)[b] = CdD^H/H and that 
(G/H)[b] = Cç(b)U2H/K 

Let a G C<j{D)U2HlH. Since Ca(D)^ = Q(D)^C^(£)), and since C^D)^ C C0(D)^ 
and Cfj(D) Ç //, the coset a has a representative x in CQ(D)^ , an element x whose natural 
image in C^(Z))^C^(£))/C#(Z)) is in the right kernel of uoi. Since CQ(D)/CH(D) is a 
/?-group, there is a positive integer n such that x^ G CG(D)^. Of course the natural image 
of xf in CG(D)^)Cf{(D)/Cff(D) is also in the right kernel of uoi- Let g be an element 
of CG(P)^ that projects onto xp". Then the natural image of g in Cc(D)lpCfI(D)/CfI(D) 
is in the right kernel of 6o>2, so by the last sentence of Section 3.9, the natural im
age of g in CciP)^ I CH{D) is in the right kernel of a;. Therefore g G CG(D)U. Since 
^(gH/H) = xPnH/H, it follows that x^H/H G ^{CciD^H/H) = ¥'((G/H)[b]), so 

a? eV({G/H)[b]). 

3.11. An example. We give an example in which Q>(k[G]He) ^ k[G]He and 
V((G/H)[b])¥(G/H)[b]. 

LEMMA 3.11. Assume in addition to Hypothesis 2.1 that H is a p-group. Let b be the 
unique block of H. Then (G/H)[b] = CG(H)H/H. 

PROOF. Since b is the unique block of k[H], the corresponding central idempotent 
e is equal to 1, so k[G]He - k[G]H. There is a basis for k[G]H consisting of all the 
elements of k[G] of the form Ylxec*, where C is an //-conjugacy class in G. Let M 
be an irreducible £[G]-module and let C be an //-conjugacy class in G. Since H is a 
/?-group, H is in the kernel of M;hence every element of C acts in the same way on M. 
Since the order of C is a power of/?, it follows that Exec* acts as 0 on M unless the 
order of C is 1, i.e., unless C = {x} with x G CG(H). Theorem 2.5 in [9] (the analog of 
Clifford's Theorem for the restriction of irreducible &[G]-modules to k[G]H) implies that 
J(k[G]H) = J(k[G\) H k[G\H\ therefore Exec* is in the Jacobson radical of k[G]H unless 
C={x}withjcG CG(H). 

It follows that in the grading 

k[G]H = © (k[G]%, 
a£G/H 
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the component (k[G]H)a contains a unit if and only if the coset a contains an element of 
CQ(H). NOW Lemma 3.3 completes the proof. • 

Let p = 2, G = (x,y : x2 = / = \,xyx = y3), H = (y),and P = (y2). Then 
P = Z{G) so certainly G = PCG(P). Let b be the unique block of k[H]. By Lemma 3.11, 
(G/H)[b] = CG(H)H/H = H/H = 1, while G(= G/P) is abelian so (G/H)[b] = G/H, 
which is of order 2. 

An elementary calculation shows that in the same example <&(k[G]He) f k[G\Hë. 

4. Behavior of cliques under reduction modulo P. Let G be a finite group and 
let H be a normal subgroup of G. Let M be an irreducible ^[GJ^-module, and let e be a 
centrally primitive idempotent of k[H], Then multiplication by e is a ^G^-endomorphism 
of M, so Me = M or Me = 0. Since the distinct centrally primitive idempotents of k[H] 
are mutually orthogonal, it follows that there is a unique centrally primitive idempotent 
e of k[H] with Me = M. 

LEMMA 4.1. Let V and W be irreducible k[G]-modules. Let e be a primitive central 
idempotent of k[H] such that Ve f 0. Then there is a (non-zero) irreducible k[G]H-
moduleXsuch thatX\ Vk^H andX\ W^H if and only if there is a (non-zero) irreducible 
k[G]He-module Y such that Y\ Vek^He and Y\ Wek^He. 

PROOF. Suppose there is an irreducible ^[G^-module X such that X\ Vk[G]H a n d 
X\ Wk[G]H. Recall that Vk[G]H is semi-simple, that all G-conjugates of X are summands of 
Vk[G\H> a n d t n a t every irreducible summand of V^H is conjugate in G toX. Since Ve 7* 0, 
there is a conjugate Zof Xsuch that Ze f 0. Then Ze = Z, Zk[G]He is an irreducible k[G]He-
module, and Zk^He\Vek^He. Since also Wk^H is semi-simple and all G-conjugates of 
X are summands of Wk^H, and since X\ W^H, it follows that Z\ Wk[G^H. Hence We ^ 0 
™dZk[G]He\Wek[G]He. 

Conversely, suppose there is an irreducible k[G]H e-modu\e Y such that Y\ Vek^He 

and Y\ Wek^Gyie. Since e is a central idempotent of k[G]H, we have the decomposition 
k[G]H = k[G]He 0 k[G]H(l — e\ where the two summands on the right are two-sided 
ideals. It follows that we can make 7into a ̂ [GJ^-module by simply having all elements of 
k[Gf(\-e) act as 0; call this k[G]H-modu\e Yk[G]H. Since Vk[G]H = Vek[G]H®V(\-e)k[G]H, 
and Wk[G]H = Wek[G]H 0 W{\ - e)k[G]H, it follows that Yk[G]H\ Vk[G]H and Yk[G]H\ Wk[G]H. m 

LEMMA 4.2. Let F and I be finite groups with E <3 Y and T/S a p-group. Let A be a 
twisted group algebra for T with a grading A = ©7Grv47 in which each subspaceA1 is 
l-dimensional over k. Let A' = ®aezAa. Let V and W be irreducible A-modules. Then V 
and W are isomorphic if and only if VA> and WA> are isomorphic. 

PROOF. LetT' = {u eA : wisaunitandw €^ 7forsome7 G r} .Let£ ' = {u G A : u 
is a unit and ueAa for some a G I } . Then E' <3 T and V / ! ' & T/Z. 

Let M be an irreducible ^'-module. Let ty be the associated irreducible representa
tion of Z'. There is a one-to-one correspondence, called the Clifford Correspondence 
(described in the introduction and in Section 8 of [5]), between the set of irreducible A-
modules lying over M and the set of irreducible representations of the Clifford extension 
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r ; (^ ) on which elements of the central subgroup k* act by scalar multiplication. Note 
that Tf(ip) is a central extension of the p-group F^/E' by k*\ therefore, by III10.2 in [2], 
Y'(i)) splits as the direct product of £* and a;?-group Q isomorphic to F^/X'. Since gis 
ap-group and k is of characteristic/?, Q acts trivially on every irreducible representation 
of T'fy), so there is exactly one irreducible representation of F^i/;) on which k* acts 
by scalar multiplication. Therefore, by the Clifford Correspondence, there is exactly one 
irreducible ^-module lying over M. The lemma follows. • 

THEOREM 4.3. Let V and W be irreducible k[G]-modules. Then V and W belong to 
the same H-clique if and only if Vk^ and Wk^ belong to the same H-clique. 

PROOF. Since <3>(k[G]H) Ç k[Gf*, it is clear that irreducible &[G]-modules in the 
same //-clique belong to the same //-clique. The remainder of the proof is devoted to 
demonstrating the converse. 

Let 

A' = ( 0 <WG\Hë)a) I ( 0 j(^(k[G]He){)^(k[Gfe)a) 
XoeV((G/H)[b]) J ' Ve4>((G///)[Z>]) / 

and let 

A=( 0 (k[Gf-e)a)/( 0 j{{k[Gfë)x){k[Gfë)a). 
ya£(G/H)[b] ' ' KaÇL(G/H)[b] 

By Theorems 3.2 and 3.5, the algebras À and A1 are related in the same way as the 
algebras of Lemma 4.2. 

Assume that V and JFbelong to the same //-clique. Let b be a block of k[H] covered by 
the block B of k[G] that contains Fand W\ let e be the central primitive idempotent of k[H] 
corresponding to b. By Lemma 4.1, Vek^He and Wek[G]He share an (isomorphism type of) 
irreducible submodule. By Theorem 3.2 Ve^ and We A' share an irreducible submodule. 
By Lemma 4.2, V&A and WêA share an irreducible submodule. By Theorem 3.2, Vëkv^né 

and Wëkr^Hé share an irreducible submodule. By Lemma 4.1, Vk^ and Wk^ are in the 
same ^-clique. • 
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