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Abstract

We analyze the automorphism group for the norm closed quiver algebras T +(Q). We begin by focusing
on two normal subgroups of the automorphism group which are characterized by their actions on the
maximal ideal space of T +(Q). To further discuss arbitrary automorphisms we factor automorphism
through subalgebras for which the automorphism group can be better understood. This allows us to
classify a large number of noninner automorphisms. We suggest a candidate for the group of inner
automorphisms.
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Building on work of Davidson and Pitts [3], we analyze the automorphism group of
the norm closed quiver algebras T +(Q). We use the maximal ideal space and the
underlying directed graph to make a first pass at the automorphism group of T +(Q).
After this we use a finer analysis and graph subalgebras to describe large classes of
automorphisms.

One thing that comes out of this paper is a clearer understanding of when questions
concerning continuity of automorphisms arise for the quiver algebras. In particular, if
the graph has a source and a sink and an infinite number of cycleless paths between a
source and a sink then continuity of automorphisms is not guaranteed.

We begin by describing two normal subgroups of Aut(T +(Q)): the component
fixing automorphisms, CF(Q), and the Gelfand fixing automorphisms, GF(Q). Both
CF(Q) and GF(Q) are related to how the automorphism acts on the maximal
ideal space of T +(Q). The quotient of Aut(T +(Q)) by the component fixing
automorphisms CF(Q) is in one-to-one correspondence with the group v-Aut(Q), a
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176 B. L. Duncan [2]

subgroup of the automorphism group of the graph. Lastly the natural quotient yields a
split exact sequence of groups.

The subgroup of Gelfand fixing automorphisms is more complicated. Here the
natural quotient does not form a split exact sequence. However, the quotient, as in
[3], is a direct sum of copies of Aut(Bn) the conformal automorphisms of the unit ball
of Cn .

We also see that every Gelfand fixing automorphism factors through graph
subalgebras arising from consecutive vertices. We then analyze such subgraphs and
their automorphism groups completely. A further refinement is then made to look at
those automorphisms which factor naturally through subalgebras arising from loopless
cycles. This analysis relies on the paper of Alaimia [1]. We are then left with a normal
subgroup, MIF(Q), which we conjecture is equal to Inn(T +(Q)).

The weak operator topology closed free semigroupoid algebras are slightly more
complicated in the sense that continuity of automorphisms is less tractable. However,
proper modifications of the results in this paper, in particular the techniques, will apply
in most cases to the free semigroupoid algebras.

1. Directed graphs and their algebras

We begin with definitions and terminology. We can view a directed graph Q as a
four-tuple (V (Q), E(Q), r, s) given by a pair of sets, V (Q) and E(Q), and a pair of
maps r : E(Q)→ V (Q) and s : E(Q)→ V (Q). We assume, of course, that V (Q) is
nonempty and where it will not cause confusion we often write V for V (Q) and E for
E(Q). We call the set V the vertices of Q and the set E the edges of E . The maps r
and s are called the range map and source map, respectively. Given a pair of vertices
v, w denote by Ev,w the edges e with s(e)= w and r(e)= v.

In this paper we assume that both V and E are countable. A vertex v is a source
if r(e) 6= v for all e ∈ E and we say a vertex v is a sink if s(e) 6= v for all e ∈ E . We
say that the graph Q has no sources if the range map is onto and we say that Q has no
sinks if the source map is onto. We say that Q is infinite in one direction if either the
range map or the source map is onto.

A finite pathw in a directed graph is a finite sequence of edgesw = e1e2 · · · en such
that r(ei )= s(ei−1) for all i ≥ 2. The length of the finite path w will be the number
of edges in the sequence; we denote this number by l(w). A vertex can be considered
a path of length zero; we call these degenerate paths when used in this way. We say
that a path w = e1e2 · · · en is a cycle if s(en)= r(e1). We call a cycle nontrivial if the
length of the cycle is greater than one. If the length of a cycle is one we call the cycle
a loop. We say that a vertex v supports the path w if there is ei in the path w such that
s(ei )= v.

Given a directed graph Q we let `2(Q) denote the Hilbert space of sequences
indexed by the finite directed paths in Q. Here we are including the degenerate paths.
Now consider the left regular representation of Q acting on `2(Q) by concatenation
of paths. The vertices v ∈ V (Q) give rise to a family of orthogonal projection Pv
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which sum to the identity. Every edge e gives rise to a partial isometry Le such that
L∗e Le = Ps(e) and

∑
e:r(e)=v Le L∗e = Pr(e). The norm closed nonselfadjoint algebra

generated by {Le, Pv : e ∈ E, v ∈ V } will be denoted T +(Q). Although it is not
addressed in this paper one can also look at the weak operator topology closure of
this algebra, denoted L Q . This latter algebra is called the free semigroupoid algebra
associated to Q. We refer the reader to [6] and [7] for more information about these
algebras.

An important aspect of these algebras is that given X ∈ T +(Q) there is a unique
‘Fourier series’ associated to X . In particular,

X =
∑
w

awLw

where aw is a complex scalar and w varies over all possible finite paths in Q. Of
course, the Fourier series of a product is the usual convolution product of the two
Fourier series. In addition, given any n ≥ 0 there is an ideal

T +(Q)n =:
{

X =
∑

awLw | aw = 0 for all w with l(w) < n

}
.

In the case of n = 1 this ideal is generated by {Le | e ∈ E}.
Lastly, given a Banach algebra A we denote by Aut(A) the set of continuous

automorphisms of A. We use Inn(A) to denote the set of those automorphisms on
A given by X 7→ zXz−1 where z is invertible in A, the so-called inner automorphisms.

2. Directed graph automorphisms

We begin by analyzing directed graph automorphisms with an eye to using these
to study the automorphisms of T +(Q). If Q1 and Q2 are directed graphs then by a
directed graph homomorphism θ : Q1→ Q2 we mean a pair of maps θV : V (Q1)→

V (Q2) and θE : E(Q1)→ E(Q2) such that the following diagrams commute.

E(Q1)
r1 //

θE
��

V (Q1)

θV
��

E(Q2) r2
// V (Q2)

and E(Q1)
s1 //

θE
��

V (Q1)

θV
��

E(Q2) s2
// V (Q2)

In other words s2(θE (e))= θV (s1(e)) and r2(θE (e))= θV (r1(e)) for all edges
e ∈ E(Q1). Here ri and si are the range and source maps on the respective graphs.
We refer to θV as a vertex map and θE as an edge map. As expected we say that
θ is a directed graph isomorphism if both θV and θE are one-to-one and onto. If
θ : Q→ Q is an isomorphism we call it a directed graph automorphism. We find it
useful to study the directed graph automorphisms in our analysis of the automorphisms
of quiver algebras.
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We begin with some elementary lemmas for which the reader can readily provide
proofs. We start by noting that the map id : Q→ Q given by idV (v)= v and
idE (e)= e is an automorphism. Further, given two automorphisms θ1 and θ2 we write
θ1 ◦ θ2 to denote the composition of the respective vertex and edge maps.

LEMMA 2.1. If θ is an automorphism of Q, then there exists an automorphism θ−1

such that
θ ◦ θ−1

= θ−1
◦ θ = id.

Note that to define θ−1 we need only look at the reverse set maps θ−1
V and θ−1

E
which are well defined because θV and θE are both one-to-one and onto. The proof
consists of verifying that these new maps give rise to the appropriate commutative
diagrams. The next lemma is now trivial.

LEMMA 2.2. The set of automorphisms of a directed graph, call it Aut(Q), is a group
under composition, with identity element id.

DEFINITION 2.3. Let VF(Q) denote the set {θ ∈ Aut(Q) | θV = idV }. We call this set
the vertex fixing automorphisms of Q.

PROPOSITION 2.4. The set VF(Q) is a normal subgroup of Aut(Q).

PROOF. Note that VF(Q) is closed under composition, id ∈ VF(Q), and if θV = idv ,
then θ−1

V = idV and, hence, VF(Q) is a subgroup of Aut(Q). Now note that if θ is an
arbitrary element of Aut(Q) then

θV ◦ idV ◦ θ
−1
V = θV ◦ θ

−1
V = idV

and, hence, VF(Q) is normal inside Aut(Q). 2

DEFINITION 2.5. Let v-Aut(Q) denote the quotient Aut(Q)/VF(Q) and call this
group the vertex automorphisms of Q.

For concreteness we now present some examples.

EXAMPLE. Let Q be the graph

• // •

��~~
~~

~~
~

// •

��@@
@@

@@
@

•

OO

•

__@@@@@@@
•oo

and note that the automorphism group is the trivial group.

EXAMPLE. Let Q be the graph

• // •

��@@
@@

@@
@

•

OO

•oo •oo

and note that while Aut(Q)∼= Z5 the subgroup VF(Q) is trivial.
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EXAMPLE. As a final example let Q be the graph

• // ��
?? •

and note that Aut(Q)∼= VF(Q)∼= S3.

For the rest of the paper we only need v-Aut(Q) but for the interested reader we
complete our description of Aut(Q) for a countable directed graph Q. Let Ev,w denote
the set of edges in Q such that r(e)= v and s(e)= w, note that we do not require that
v 6= w. Now assign to each Ev,w a total ordering. In other words if there are n edges
in Ev,w label them as e1, e2, . . . , en . Note that an automorphism will map Ev,w to
Ev′,w′ for some vertices v′ and w′ and note that the cardinality of Ev,w will be equal
to the cardinality of Ev′,w′ . We say that an automorphism θ preserves order at (v, w)
if θE (ei )= fi , for all ei ∈ Ev,w. Let OP(Q) denote the set automorphisms which
preserve order at (v, w) for all pairs (v, w) ∈ V × V .

PROPOSITION 2.6. The group v-Aut(Q) is isomorphic to OP(Q).

PROOF. Let θ ∈ Aut(Q) and define θ ′ ∈ OP(Q) by θ ′V (v)= θV (v) for all vertices v.
Furthermore, for ei ∈ Ev,w, let θ ′E (ei )= fi , where fi ∈ EθV (v),θV (w), then it is clear
that θ ′ is an automorphism and θ ′ ∈ OP(Q).

Now for [θ ] ∈ v-Aut(Q) define the map 3 | v-Aut(Q)→ OP(Q) by 3([θ ])= θ ′.
We first verify that this map is well defined. Let θ1 ◦ θ

−1
2 = σ ∈ VF(Q). Then note

that θ1 ◦ θ
−1
2 (v)= v. It follows that (θ1)V = (θ2)V and, hence, θ ′1 = θ

′

2 and 3 is well
defined.

Next note that 3([id])= id′ = id and, finally,

3([θ ] ◦ [σ ])=3([θ ◦ σ ])= (θ ◦ σ)′.

Now (θ ◦ σ)V = θV ◦ σV and, hence, (θ ◦ σ)′ = θ ′ ◦ σ ′ and the map 3 is a
homomorphism.

Now θ ′ ∈ Aut(Q) and 3[θ ′] = θ ′ making 3 onto. We need only verify that τ is
one-to-one. So let 3([θ ])=3([σ ]). Then, in particular, θV = σV so θV ◦ σ

−1
V = id.

It follows that [θ ] = [σ ] and the result follows. 2

If we look at the map 3 we note that in v-Aut(Q), [θ ] = [θ ′] and hence the group
Aut(Q) splits as

VF(Q)⊕ v-Aut(Q).

We can also analyze the group VF(Q) to obtain more information about Aut(Q).
Recall that the symmetric group Sn is the group of permutations on an n-element set.

PROPOSITION 2.7. The group VF(Q) is isomorphic to⊕
(v,w)∈V×V

Snv,w ,

where nv,w is the number of edges e with r(e)= v, s(e)= w.
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PROOF. If θV (v)= v, then θE (Ev,w) is just a permutation of Ev,w. If we let Pv,w
denote the automorphisms which are the identity on V and on Ev′,w′ where v′ 6= v and
w′ 6= w. Then Pv,w is a normal subgroup of VF(Q). Further, if v′ 6= v and w′ 6= w,
then Pv,w ∩ Pv′,w′ = {id}. Lastly, if θ ∈ VF(Q), then for (v, w) ∈ V × V let θv,w be
that element of VF(Q) such that θv,w(e)= θ(e) for all e ∈ Ev,w and θv,w(e)= e for
all e 6∈ Ev,w. Then note that θ =

∏
(v,w)∈v×V θv,w. In other words,

VF(Q)=
∏

(v,w)∈v×V

Pv,w,

and hence VF(Q) is the direct product of the Pv,w. It is easy to see that Pv,w = Snv,w
and the result follows. 2

Summarizing the above we have the following theorem.

THEOREM 2.8. Let Q be a directed graph, then

Aut(Q)∼= v-Aut(Q)⊕
( ⊕
(v,w)∈V×V

Snv,w

)
where nv,w is the number of edges e with r(e)= v, s(e)= w.

The importance of graph automorphisms is encoded in the following easy
proposition.

PROPOSITION 2.9. Let θ : Q→ Q be a graph automorphism, then there exists a
continuous automorphism θ̃ : T +(Q)→ T +(Q).

PROOF. This is actually just a corollary of [2, Corollary 3.2] by noting that the left
regular representation of a directed graph is pure and that θ induces a relabeling of Q
with respect to the left regular representation. 2

There are, of course, many automorphisms of T +(Q) which do not come from
Aut(Q). We look at these in the following.

3. The maximal ideal space of a quiver algebra

An important invariant for the algebras T +(Q) is the space of multiplicative linear
functionals, the maximal ideal space MQ . This was studied in [5] in analyzing
isomorphisms of directed graph operator algebras. We go through the description here
and work through the properties that are necessary for what follows.

Let v be a vertex in Q, then the projection associated with v, call it Pv , is orthogonal
to the projections Pw associated to different vertices w. As Pv is a projection, the
image of Pv under a multiplicative linear functional must be equal to zero or one.
Note that if it is equal to one, then by orthogonality, every other projection Pw must be
sent to zero. Hence, the first thing to know about the maximal ideal space is that MQ
has a distinct component for each vertex in Q.
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Now fix v ∈ V (Q) and let e be an edge in E(Q). Let π be a multiplicative
linear functional that sends Pv to 1. Then if r(e) 6= v or s(e) 6= v, then π(Le)= 0.
Let Ev,v = {e1, e2, . . . , en} and note that |(π(Le1), π(Le2), . . . , π(Len ))| ≤ 1 since
π must be completely contractive. Similarly if λ := (λ1, λ2, . . . , λn) is an element
of Cn such that |λ| ≤ 1, then the map which sends Pv to 1 and Lei to λi defines a
multiplicative linear functional on T +(Q).

In fact, the following proposition is essentially Corollary 3.3 of [5] with the
following notation. The nonnegative integer n(v) denotes the number of loop edges
supported by v and Bn(v) denotes the unit ball in Cn(v), if n(v) > 0 and {0} if n(v)= 0.

PROPOSITION 3.1 (Katsoulis–Kribs [5]). If Q is a countable directed graph, then MQ
is a locally compact Hausdorff space with a connected component corresponding
to each vertex v ∈ V (Q) and each connected component is of the form Bn(v).

Implicit in this statement is that the w∗-topology on a connected component of MQ
corresponds to the usual topology on Cn(v). Note that if v is a sink or a source, then
the component corresponding to v is {0}. In fact, the component corresponding to v
is {0} if and only if v does not support a loop edge. The following is a strengthening
of a standard fact for Banach algebras. In particular, if an automorphism of a Banach
algebra is continuous, then the result follows immediately. We use the special structure
of the algebra T +(Q) to see that continuity is not necessary.

THEOREM 3.2. Let θ be a (not necessarily continuous) automorphism of T +(Q),
then θ induces a homeomorphism Mθ : MQ→ MQ .

The proof begins with a few lemmas.

LEMMA 3.3. Let X ∈ T +(Q)1 such that X2
= X, then X = 0.

PROOF. Let X ∈ T +(Q)1, then

X =
∑

l(w)≥1

awLw.

Let m = inf{l(w) | aw 6= 0}. Now looking at

X2
=

∑
l(w)≥1

bwLw

we see that n = inf{l(w) | bw 6= 0} ≥ 2m. Thus, if X2
= X , then m =∞ and n =∞

and, hence, aw = 0 for all finite paths w. 2

LEMMA 3.4. Let v be a vertex in Q and θ a (not necessarily continuous) auto-
morphism of T +(Q). Then there exists a unique vertex v′ such that θ(Pv)= Pv′ + X
where X ∈ T +(Q)1 .

PROOF. Note that (Pv)2 = Pv and, hence, (θ(Pv))2 = θ(Pv). We know by the
preceding lemma that θ(Pv) 6∈ T +(Q)1 and, hence, θ(Pv)=

∑
w∈V awPw + X ,
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where X ∈ T +(Q)1. We also know that aw ∈ {0, 1} for all w ∈ V , otherwise
(θ(Pv))2 6= θ(Pv). Now, if v1 ∈ V with v1 6= v, then PvPv1 = 0= Pv1 Pv and, hence,
if aw = 1, then writing θ(Pv1)=

∑
w∈V bwPw + Y with Y ∈ T +(Q)1 we know that

bw = 0.

Now note that if r(e) 6= s(e), then L2
e = 0 and, hence, θ((Le))

2
= 0. However,

if θ(Le) 6∈ T +(Q)1, then θ(Le) 6= 0 which is a contradiction. If r(e)= s(e)= v the
situation is more complicated, we have to allow for the possibility (which can certainly
happen) that θ(Le)=

∑
w∈V αwPw + Z where Z ∈ T +(Q)1. Writing θ(Pr(e))=∑

w∈V awPw + Xe, then since Le Pr(e) = Le = Pr(e)Le we know that αw 6= 0 only if
aw 6= 0. Further since L2

e − Le = Le(Le − Pr(e)) we have

∑
w∈V

(α2
w − αw)Pw + Z1 = θ(L

2
e − Le)

= θ(Le)θ(Le − Pr(e))

=

(∑
w∈V

αwPw + Z

)(∑
w∈V

(αw − aw)Pw + Z2

)
=

∑
w∈V

(α2
w − αwaw)Pw + Z3

=

∑
w∈V

(α2
w − aw)Pw + Z3

where Z1, Z2, Z3 ∈ T +(Q)1. Hence, if there is some w with αw 6= 0, then
(α2
w − αw)= (α

2
w − aw) for all w and, hence, αw = aw for all w ∈ V .

It follows that if there exist v′ and v′′ such that av′ = av′′ , then neither Pv′ nor Pv′′
are in the range of θ contradicting the fact that θ is an automorphism. 2

We say that a path w = e1e2 · · · en in Q is vertex acyclic if r(ei ) 6= r(e j ) for all
i 6= j . We say that a vertex v is sinking if for every finite path w with s(w)= v we
have that w is vertex acyclic. Denote the set of sinking vertices by Vs . Let Q0 denote
the graph obtained from Q be removing all vertices in Vs and all edges with r(e) ∈ Vs .
Let Qs denote the graph obtained by removing all vertices not in Vs and all edges with
s(e) 6∈ Vs . The following lemma follows trivially from the description of the maximal
ideal space MQ as corresponding to vertices.

LEMMA 3.5. Let Q be a directed graph then MQ0 is homeomorphic to a locally
compact Hausdorff subspace of MQ . Here MQs is homeomorphic to a locally
compact Hausdorff subspace of MQ . The two subspaces are disjoint and under this
identification MQ = MQ0 ∪ MQs .

We now come to the central lemma which yields the homeomorphism induced by θ .
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LEMMA 3.6. Let θ be a (not necessarily continuous) automorphism of T +(Q), then
θ induces a bijective mapping θ̂ : MQ→ MQ such that θ̂ |MQ0

is a bijective mapping

onto MQ0 and θ̂ |MQs
is a bijective mapping onto MQs .

PROOF. This follows since T +(Q) can be written in lower triangular form as[
A 0
C D

]
where A ∈ T +(Q0), D ∈ T +(Qs), and X ∈ C implies X2

= 0. It follows that if
v ∈ VS , then θ(Pv)= Pw + X where w ∈ Vs and similarly for v 6∈ Vs . 2

We are now ready to prove the theorem.

PROOF. Note that θ̂ |MQs
is a homeomorphism since MQs is a countable set of points

with the discrete topology. Now let

i : T +(Q0)→ T +(Q)

be the inclusion map which is continuous. Furthermore, let

P0 =
∑
v 6∈Vs

Pv

and note that θ̃ := P0θ(i(X)) is an automorphism of T +(Q0) onto the subalgebra
T +(Q0)⊂ T +(Q). As T +(Q0) has no sinks we know that θ̃ is continuous [5, 3.15]
and, hence, induces a homeomorphism on MQ0 . However, note that θ̂ |MQ0

is the same

as the map induced by θ̃ on MQ0 . So we know that θ̂ |MQ0
is continuous and, hence, θ

induces a homeomorphism on MQ . 2

We use this homeomorphism to define our first class of automorphisms. We say
that an automorphism θ is component fixing if the induced homeomorphism Mθ fixes
connected components of the maximal ideal space. In other words, if X is a connected
component of the maximal ideal space, then Mθ (X)= X . We denote the set of all
component fixing automorphisms of T +(Q) by CF(Q).

THEOREM 3.7. The set CF(Q) is a normal subgroup of Aut(T +(Q)). Furthermore,

Aut(T +(Q))/CF(Q)∼= v-Aut(Q) and Aut(T +(Q))∼= CF(Q)⊕ v-Aut(Q).

PROOF. Clearly the identity automorphism is in CF(Q). If θ1, θ2 ∈ CF(Q), then for a
connected component X ∈ MQ we have Mθ1◦θ2(X)= Mθ1(X)= X and, hence, CF(Q)
is closed with respect to products. Also if Mθ−1(X)= X , then Mθ−1(X)= X and,
hence, CF(Q) is a subgroup of the automorphism group.
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Now if θ ∈ Aut(T +(Q)) and θ ′ ∈ CF(Q), then for a connected component X ⊆ MQ
we have

Mθ◦θ ′◦θ−1(X) = Mθ◦θ ′(Mθ−1(X))

= Mθ (Mθ−1(X))

= Mθ◦θ−1(X)

= Mid(X)

= X.

Denote by Sv the closed subspace of `2(P(Q)) onto which Pv is the projection.
Since each of the Pv are orthogonal and

∑
Pv = I we know that

`2(P(Q))=
⊕

v∈V (Q)

Sv.

Now note that for a vertex v, Sv is either one-dimensional (if V does not support a
nontrivial cycle) or Sv has countably infinite dimension.

Let Bn(v) be the connected component of MQ associated to the vertex v. Then
note that if θ is an automorphism of T +(Q), then the induced map on MQ will send
Bn(v) to some component Bn(v′) and note that n(v)= n(v′). For such θ note that
the dimension of Sv will be equal to the dimension of Sv′ and, hence, there is an
(not necessarily unique) isomorphism τ : Sv→ Sv′ . For each pair (v, v′) associated
to θ fix an isomorphism between Sv and Sv′ and call it Iv,v′ and note that the map
Uθ :=

∑
v∈V (Q) Iv,v′ is a unitary. We can assume without loss of generality that

if v = v′, then Iv,v′ is the identity isomorphism. Further, if θ and θ ′ are distinct
automorphisms with the same pair (v, v′), then we assume (once again without loss of
generality) that Iv,v′ will be the same in both circumstances. We can do this beforehand
by taking all possible pairs (v, v′) where Sv and Sv′ have the same cardinality and
defining our Iv,v′ without reference to the automorphism.

Now note that Ad(Uθ )(x)=Uθ xUθ ′ is an automorphism of T +(Q) and further a
quick calculation tells us that Ad(Uθ ) ◦ θ ∈ CF(Q).

In particular, we have a split exact sequence

0 // CF(Q) // Aut(T +(Q))

q
++

Aut(T +(Q))/CF(Q)

[θ ]7→Uθ

kk
// 0,

where q is the quotient map. Of course, we still must verify that the map [θ ] 7→Uθ is
well defined, but since the Iv,v′ are independent of θ this is trivial. Further, following
this map by q will clearly induce the identity map on Aut(T +(Q))/CF(Q).

It only remains to verify that Aut(T +(Q))/CF(Q) is isomorphic to v-Aut(Q).
We do this by making reference to a construction in [5]. There it is shown that
given a directed graph algebra the directed graph Q is an invariant of the algebra.

https://doi.org/10.1017/S1446788708081007 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708081007


[11] Automorphisms of graph algebras 185

In particular, they use MQ and the two-dimensional nest representations of T +(Q)
to construct the graph Q. One uses this construction to see that an automorphism
θ will yield a graph automorphism of Q. Denote by τθ the graph automorphism
associated to θ . We now claim that the map Uθ 7→ (τUθ )

′ is an isomorphism between
v-Aut(Q) and Aut(T +(Q))/CF(Q). That this map is a homomorphism follows from
basic considerations of the map Uθ and its relationship to τUθ . That the map is onto
comes from constructing, given a fixed order-preserving automorphism of Q, call it τ ,
an automorphism of T +(Q) by letting Pv 7→ Pτ(v) and Le 7→ Lτ(e) for all vertices v
and edges e.

We must finally verify that the homomorphism is one-to-one. However, note that
if (τUθ1

)′ = (τUθ2
)′, then τUθ1U−1

θ2
fixes the vertices of Q and, hence, (τUθ1U−1

θ2
)′ is the

identity map. The result now follows. 2

We note from the proof that the automorphisms which do not fix connected
components of the maximal ideal space are implemented by unitaries in B(`2(P(Q)))
and, in particular, are continuous. We now look to analyze the group CF(Q).

4. Gelfand fixing automorphisms

Let θ be an automorphism with associated homeomorphism Mθ on MQ . We say
that θ is Gelfand fixing if Mθ is the identity homeomorphism.

DEFINITION 4.1. Let GF(Q) denote the set of all continuous Gelfand fixing
automorphisms of T +(Q).

Note that if θ is Gelfand fixing, then, in particular, θ is component fixing. We see
that more is true.

PROPOSITION 4.2. The set GF(Q) is a normal subgroup of Aut(T +(Q)).

PROOF. Clearly, the identity automorphism is an element of GF(Q). Further if
θ ∈ GF(Q), then Mθ−1 = (Mθ )

−1
= id−1

= id and, hence, GF(Q) is closed under
inverses. Next note that if θ1 and θ2 are both in GF(Q), then

Mθ1◦θ2 = Mθ1 ◦ Mθ2 = id ◦ id= id

and, hence, GF(Q) is a subgroup of Aut(T +(Q)).
Now if τ ∈ Aut(T +(Q)) and θ ∈ GF(Q), then

Mτ◦θ◦τ−1 = Mτ ◦ Mθ ◦ Mτ−1

= Mτ ◦ Mθ ◦ (Mτ )
−1

= Mτ ◦ id ◦ (Mτ )
−1

= id

and, hence, τ ◦ θ ◦ τ−1 is an element of GF(Q). 2
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We now want to analyze the relationship between CF(Q) and GF(Q). Note that if
a vertex supports no loop edges, then the component of MQ corresponding to v is a
one-point space. Hence, if θ is in CF(Q), then θ will be the identity homeomorphism
on the component corresponding to v. We call such components trivial components.
We see that the only components which can possibly give rise to automorphisms in
CF(Q)\GF(Q) are the nontrivial components.

Now fix a component X ∈ MQ which corresponds to a vertex v with n loop edges
supported on v. Let FX denote the set of those automorphisms θ ∈ CF(Q) such that
Mθ is the identity homeomorphism on X .

PROPOSITION 4.3. If X is a component of MQ , then FX is a normal subgroup of
CF(Q).

PROOF. Note that if θ ∈ FX , then Mθ−1 |X = id= Mθ |X and, hence, FX is closed with
respect to inverses. Furthermore, if θ1 and θ2 are in FX , then θ1 ◦ θ2 induces the trivial
homeomorphism on X and, hence, FX is closed with respect to composition. It follows
that FX is a subgroup.

Now if θ ∈ FX and σ ∈ CF(Q), then

Mσ◦θ◦σ−1 |X = (Mσ ◦ Mθ ◦ Mσ−1)|X

= Mσ |X ◦ Mθ |X ◦ Mσ−1 |X

= Mσ |X ◦ Mσ−1 |X

= id

and, hence, FX is normal. 2

Note that if X is a trivial component, then FX = CF(Q). Furthermore, if X is the
only nontrivial component of MQ , then FX = CF(Q).

PROPOSITION 4.4. Suppose that {X i }
∞

i=1 are the mutually disjoint set of all nontrivial
components of MQ , then

∞⋂
i=1

FX i = GF(Q).

PROOF. Clearly every automorphism in GF(Q)will fix the components X i and, hence,
GF(Q)⊆

⋂
∞

i=1 FX i . Now if θ ∈
⋂
∞

i=1 FX i , then Mθ will be the identity on every
component and, hence, θ ∈ GF(Q). 2

Now for a nontrivial component X ⊆ MQ let G X be the normal subgroup⋂
Y 6=X FY , where Y ranges over the set of nontrivial components in MQ . Note that

G X = CF(Q)/FX via the natural map. If we analyze the situation of a single graph
with n vertices, as was done in the weakly closed case in [3], we can actually figure out
what G X/GF(Q) looks like where X is a nontrivial component of MQ . We remind the
reader that Bn denotes the open unit ball of Cn and let Aut(Bn) denote the conformal
automorphisms of Bn .
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THEOREM 4.5. Let X be a component corresponding to the vertex v which supports
n loop edges. Then there is a short exact sequence

0→ GF(Q)→ G X → Aut(Bn)→ 0.

This exact sequence does not split. However, there is a group of unitaries UX which
implement automorphisms in G X and such that there is a group isomorphism of UX
onto Aut(Bn).

PROOF. For this proof we take each subalgebra which is generated by a single vertex
and all of the loops attached to that vertex and use the arguments of [3]. The unitaries
are then applied to the whole algebra treating each component separately. 2

The following corollary is now an easy computation.

COROLLARY 4.6. The group CF(Q)/GF(Q) is homeomorphic to

⊕{G X | X ⊆ MQ, X nontrivial connected component}.

PROOF. Note that if X and Y are disjoint connected components of MQ , then
G X ∩ GY = GF(Q), by Proposition 4.4. Furthermore, if θ ∈ CF(Q) let u X denote the
unitary in UX which implements the automorphism in (CF(Q)/FX )/GF(X) which is
isomorphic via the natural map to G X . Now define a unitary vX in B(`2(Q)) by letting
vX act as the identity on the subspace ⊕{Sv | v does not correspond to X} and letting
vX |Sw = u X , where w is the vertex corresponding to X . Then note that

θ =
∏

X∈MQ

Ad(vX ).

As each group G X is normal the result now follows. 2

In the remainder of the paper we look at the group GF(Q). We can see, by using
the unitaries we have already discussed, that if θ is an automorphism of T +(Q), then
θ = θ1 ◦ θ2 where θ2 is continuous and θ1 ∈ GF(Q). This is used later in discussing
continuity of automorphisms. In particular, θ is continuous if and only if θ1 is
continuous.

5. Factoring automorphisms through subalgebras

We use ideas from [4] to look at automorphisms. In particular, let π : T +(Q)→ A
be a completely contractive representation of T +(Q) onto a subalgebra A ⊆ T +(Q).
We say that an automorphism θ of T +(Q) factors through A via π if there is an
automorphism θA of A such that θA(a)= (π ◦ θ)(a) for all a ∈ A.

PROPOSITION 5.1. Let π : T +(Q)→ A be a completely contractive representation
of Q into a subalgebra A ⊆ T +(Q). Then an automorphism θ ∈ Aut(T +(Q) factors
through A via π if and only if θ induces an automorphism on ker π .
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PROOF. Clearly if θ factors through A, via π , then the image of ker π under θ is a
subset of ker π otherwise θA will not be well defined. Now if the image of ker π under
θ is equal to ker π , then the map θA : A→ A is given by θA(a)= π ◦ θ(b), where b
is any element of T +(Q) such that π(B)= a, and θA is well defined. Furthermore,
θA will be onto since θ and π are onto, and θA will be one-to-one since π ◦ θ(x)=
π ◦ θ(y) if and only if θ(x − y) ∈ θ(ker π) which implies x − y ∈ ker π . 2

In this language the results of our preceding section can be restated. If θ ∈ CF(Q),
then θ factors through the subalgebra ⊕

v:n(v)≥1

An(v)

via the homomorphism generated by sending every nonloop edge and every vertex not
supporting a loop edge to zero and leaving loop edges and loop supporting vertices
alone. The normal subgroup GF(Q) are those automorphisms which are quasi-inner,
in the language of [3]. In this case, however, because there may be edges which are
not loops the normal subgroup GF(Q) may contain quasi-inner automorphisms which
are clearly not inner. We want to discuss such automorphisms now. To do so we look
at how automorphisms factor through two types of subalgebras.

The first class of subalgebras are those generated by subgraphs given by a pair of
vertices v1, v2 and all edges e with s(e)= v2 and r(e)= v1. Note that this subalgebra
will be isomorphic to the graph algebra T +(T (n)2 ) where T (n)2 is the graph with two
vertices and n directed edges between them, all with the same source. If n = 1 this
algebra is isomorphic to the upper triangular 2× 2 matrices.

The second class of subalgebras are given by choosing a nontrivial cycle in Q, call
it w = enen−1 · · · e2e1, such that n ≥ 2. We also assume that s(ei ) 6= s(e j ) for all
i 6= j . In this case the subgraph with vertex set {s(ei )} and edge set {ei } generates a
subalgebra isomorphic to A(Cn) where Cn is a cycle of length n ≥ 2.

Let us now define our first representation. Let v1 and v2 be distinct vertices in Q
and let {ei }

n
i=1‘ be the set of edges with source being equal to v2 and range being equal

to v1. We now want to define a representation πv1,v2 : T +(Q)→ T +(T (n)2 ). Begin by
sending Pv to 0 for all vertices v 6= vi for any i , and Le to 0 for all edges e 6= e j for

any j . Then map Pv1 to the projection of the range vertex in T +(T (n)2 ) and Pv2 to the

other vertex projection in T +(T (n)2 ). Lastly, map Lei to the distinct partial isometries

in T +(T (n)2 ) corresponding to the edges in T (n)2 . That this map extends to a completely
contractive representation of T +(Q) follows from [2, Proposition 1.3] since the left
regular representation of T +(T (n)2 ) is pure. An interesting thing to note is that the
representation is unital.

We now claim that if θ ∈ GF(Q), then θ factors through T +(T (n)2 ) via the defined
representations.

PROPOSITION 5.2. If θ ∈ GF(Q), then given two distinct vertices v1 and v2 in V (Q),
θ factors through T +(T (n)2 ) via πv1,v2 .
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PROOF. Let a ∈ ker πv1,v2 , then a is in the ideal generated by {Pv | v 6= v1, v2} and
{Le | r(e) 6= v1, or s(e) 6= v2}. However, note that as θ is in GF(Q) we know that
θ(Pv) ∈ ker πv1,v2 for all vertices v 6= vi . It follows that θ(Le) ∈ ker πv1,v2 for all
edges e with r(e) 6= vi or s(e) 6= vi .

Now if e is an edge with r(e)= v1, then πv1,v2(θ(Le))= 0 since θ is in GF(Q).
Similarly if s(e)= v2, then θ(Le) ∈ ker πv1,v2 and, hence, θ(ker πv1,v2)⊆ ker πv1,v2 .
As the same argument tells us that θ−1(ker πv1,v2)⊆ ker πv1,v2 we obtain that θ is an
automorphism of ker πv1,v2 and, hence, θ factors through πv1,v2 . 2

In fact more is true. It is not hard to see that if θ ∈ CF(Q), then θ factors through
T +(T (n)2 ). However, when we factor θ in this way we lose all of the information
about what θ does to the components of MQ and, hence, we focus only on those
automorphisms in GF(Q).

6. Automorphisms of T +(T (n)
2 )

We now analyze automorphisms of the graph algebra T +(T (n)2 ) with an eye toward
understanding how automorphisms of general quiver algebras factor through these
subalgebras. We begin by fixing some notation. Let P1 and P2 denote the projections
associated to the range and source projections, respectively. Let L i denote the partial
isometry associated to the i th edge. Note that P1L i = L i = L i P2 for all i . Further
L i L j = 0 for all i 6= j . It follows that every element of T +(T (n)2 ) can be written as

αP1 +

n∑
i=1

αi L i + βP2,

where α, β and αi are complex numbers.

LEMMA 6.1. Let θ : T +(T (n)2 )→ T +(T (n)2 ) be an automorphism. Then there exist αi
such that θ(P1)= P1 +

∑n
i=1 αi L i and θ(P2)= P2 −

∑n
i=1 αi L i .

PROOF. We know that θ(P1)= αP1 +
∑n

i=1 αi L i + βP2 for some α, β, and αi . Now
θ(P2

1 )= θ(P1) and hence

αP1 +

N∑
i=1

αi L i + βP2 = (α)
2 P1 + (α + β)

n∑
i=1

αi L i + (β)
2 P2.

It follows that α and β are idempotents, hence zero or one. If α and β are both one,
then

∑
i=1 αi L i = 0 and, hence, θ(P1)= P1 + P2 which is the identity which yields

a contradiction.
Note that α cannot be zero or otherwise we would have an automorphism which

does not fix components of the maximal ideal space, which is not possible with this
graph. It follows that α = 1 and β = 0. The first part of the result is established. Next
note that the same calculation for θ(P2) and noting that P1 + P2 = id we obtain that
θ(P2)= P2 −

∑
∞

i=1 αi L i and the result follows. 2
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We now focus on what an automorphism can do to the partial isometries associated
to edges.

LEMMA 6.2. Let θ be an automorphism of T +(T (n)2 ) with θ(P1)= P1 +
∑n

i=1 αi L i .
There exists βi, j such that θ(L i )=

∑n
j=1 βi, j L j .

PROOF. Assume that θ(L i )= ai P1 +
∑n

j=1 αi, j L j + bi P2. We know that θ(L i )=

θ(P1)θ(L i )θ(P2) and, hence,

ai P1 +

n∑
j=1

αi, j L j + bi P2 =

(
P1 +

n∑
i=1

αi L i

)
θ(L i )

(
P2 −

n∑
i=1

αi L i

)

=

(
P1 +

n∑
i=1

αi L i

)(
ai P1 +

n∑
j=1

bi, j L j + bi P2

)

×

(
P2 −

n∑
i=1

αi L i

)

= −ai

n∑
i=1

αi L i +

n∑
j=1

bi, j L j +

n∑
i=1

αi bi L i .

Letting βi,i =−ai
∑n

i=1 αi + bi,i +
∑n

i=1 αi bi and βi, j = bi, j for i 6= j the result
follows. 2

So, in effect, every automorphism of T +(T (n)2 ) has associated to it an n-tuple
(α1, α2, . . . , αn) and an invertible linear map L i 7→

∑n
j=1 βi, j L j . It is clear that

every such tuple and invertible linear map gives rise to an automorphism of T +(T (n)2 ).
We write the linear map as a matrix in the obvious way. Note that the automorphism
will be continuous if and only if the matrix gives rise to a continuous linear operator.
If n is finite this is always true. However, in the case of infinite directed edges between
two vertices the matrix may not give rise to a continuous linear operator. This fact, on
a certain level, is where continuity of automorphisms of T +(Q) can break down when
there is a sink and a source in the graph. The next question that arises is which of these
automorphisms are inner. To discuss this we need to describe the invertible elements
of T +(T (n)2 ).

PROPOSITION 6.3. An element x := αP1 +
∑n

i=1 αi L i + βP2 is invertible if and
only if α and β are invertible; if so, x−1

= α−1 P1 − α
−1β−1 ∑n

i=1 αi L i + β
−1 P2.

PROOF. If x is invertible, then there exists y = a P1 +
∑n

i=1 ai L i + bP2 such that
xy = P1 + P2. However, note that xy = αa P1 +

∑n
i=1(βai + aαi )L i + βbP2. The

result follows by setting βai =−aαi and solving for ai . 2

A simple calculation now yields the following description of inner automorphisms
of T +(T (n)2 ).
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PROPOSITION 6.4. An automorphism θ , of T +(T (n)2 ), is inner if and only if the matrix
of the associated linear map is a nonzero multiple of the identity.

PROOF. For the forward direction we need only see what the inner automorphism θ

does to L i . So let x = αP1 +
∑n

i=1 αi L i + βP2 be invertible and note that

x L i x
−1
=

(
αP1 +

n∑
i=1

αi L i + βP2

)
L i

(
α−1 P1 − α

−1β−1
n∑

i=1

αi L i + β
−1 P2

)
= βα−1L i

which is independent of i .
Assume that θ(P1)= P1 +

∑n
i=1 ai L i and if the associated linear map is λIn with

λ 6= 0, then let x = λ−1 P1 + λ
−1 ∑n

i=1 ai + P2, so x is invertible and x L i x−1
= λL i .

In addition xθ(P1)x−1
= P1 +

∑n
i=1 ai L i and, hence, x induces the same map as θ

and the result follows. 2

We denote the normal subgroup of GLn(C) given by multiples of the identity as λIn .
This subgroup is normal because every element of λIn commutes with every element
of GLn(C).

PROPOSITION 6.5. Every automorphism θ of T +(T (n)2 ) can be written as θ1 ◦ θ2,
where θ1 is inner and θ2(Pi )= Pi .

PROOF. Assume that θ(P1)= P1 +
∑n

i=1 αi L i . Then let x = P1 +
∑n

i=1 αi L i + P2.
Note that x is invertible. Now let θ1 = Ad(x) and let θ2 = θ

−1
1 ◦ θ . Note that θ1 is inner

and θ2(P1)= θ
−1
1 ◦ θ(P1)= θ

−1
1 (P1 +

∑n
i=1 αi L i )= P1 and the result follows. 2

It is clear that θ1 is unique. However, it is not the case that θ2 is not inner. We
do know, however, that if θ2 is inner, then the invertible mapping giving rise to θ2

is of the form λ1 P1 + λ2 P2. To finish this description denote by Inn(T +(T (n)2 )) the

normal subgroup of Aut(T +(T (n)2 )) of all the inner automorphisms. Further, denote

by Out(T +(T (n)2 )) the group Aut(T +(T n
2 ))/Inn(T +(T (n)2 )). For θ ∈ Aut(T +(T (n)2 ))

we denote its equivalence class in Out(T +(T (n)2 )) by [θ ].

THEOREM 6.6. The group Out(T +(T (n)2 )) is isomorphic to GLn(C)/λIn .

PROOF. By the previous proposition we know that given an automorphism θ there is
associated to [θ ] a unique element of GLn(C). This is because after fixing the vertices,
as in the proposition, the element of GLn(C) associated to θ must be unique. We
can now assume that [θ ] comes from an automorphism which fixes the Pi . Note that
λIn is a normal subgroup which is in one-to-one correspondence with all of the inner
automorphisms which fix the Pi . The result now follows. 2

We know that every Gelfand fixing automorphism of T +(Q) will factor through
the various copies of T +(T (n)2 ). We see, however, that we cannot take arbitrary
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automorphisms of T +(T (n)2 ) and piece them together. Norm considerations will force
restrictions on the way they fit together.

7. Automorphisms of T +( Q) factoring through T +(T (n))
2 )

It is known that if Q is a graph which is infinite in one direction and θ : T +(Q)→
T +(Q′) is an algebraic isomorphism, then θ is automatically continuous, see [5]. In
particular, every automorphism of T +(Q) is automatically continuous. We now use
information on how an automorphism factors through T+(T (n)2 ) to discuss the general
question of continuity.

Let Q be a directed graph. We say that (v1, v2, . . . vn) is a finite path of vertices
in Q if for 1≤ i ≤ n − 1 there exists an edge ei such that s(ei )= vi+1 and r(ei )= vi .
Unless stated otherwise such a path of vertices will be denoted by V and its length will
be Vn . For such a path of vertices let n(i) denote the number of directed edges with
s(e)= vi+1 and r(e)= vi .

If θ ∈ GF(Q), then for every finite path of vertices, V in Q, θ will factor through
T +(T (ni )

2 ) for all 1≤ i ≤ Vn − 1. Now associated to each pair of adjacent vertices
vi , vi+1 ∈ V there is from the previous section a matrix Mi ∈ GLn(i)(C).

LEMMA 7.1. Let θ be an automorphism of T +(Q). If θ is continuous, then

M := sup{‖M1 M2 · · · MVn−1‖V is a finite path of vertices in Q}<∞.

PROOF. Certainly ‖θ‖ ≥ M and the result follows. 2

REMARK 7.2. Note that if v1, v2, . . . vn are consecutive edges in a cycle, then

M(vn,vn−1)M(vn−1,vn−2) · · · M(v2,v1)M(v1,vn)

must have norm less than or equal to one, otherwise continued finite paths around
the cycle would lead to an unbounded sequence of matrices which is excluded by the
proposition.

Let T2Inn(Q) denote the set of those automorphisms in GF(Q) such that, for every
V , a finite path of vertices in Q and every 1≤ i ≤ Vn − 1 the matrices Mi will be in
λ · In(i).

PROPOSITION 7.3. If Q is a directed graph, then T2Inn(Q) is a normal subgroup of
GF(Q).

PROOF. If θ1, θ2 ∈ T2Inn(Q), then the matrices associated to θ1 ◦ θ2 will just be the
product of the matrices associated to θ1 and θ2, respectively. Now the product of
two matrices in In(i) will still be in In(i) and, hence, T2Inn(Q) will be closed under
composition. That T2Inn(Q) is closed under inverses is trivial and, hence, T2Inn(Q)
is a subgroup of GF(Q).
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Next, let θ1 ∈ T2Inn(Q) and θ2 ∈ GF(Q), then for every pair of adjacent vertices θ2
will have a matrix in GLn(C) associated to it. However, the matrix associated to θ1 will
be a multiple of the identity and, hence, will commute with the matrices associated to
θ2. It follows that θ2 ◦ θ1 ◦ θ

−1
2 ∈ T2Inn(Q) and, hence, T2Inn(Q) will be normal. 2

Let GL(Q) denote the set of uniformly bounded finite sequences of automorphism
matrices associated to finite paths in Q. We denote by λGL(Q) the normal subgroup
of GL(Q) given by finite sequences in which each matrix in the sequence is a multiple
of the identity on the appropriate space.

PROPOSITION 7.4. Given a directed graph Q the groups GF(Q)/T2Inn(Q) and
GL(Q)/λGL(Q) are isomorphic.

PROOF. We first show that every sequence of matrices in GL(Q) gives rise to an
automorphism in GF(Q). The remainder is then just a restatement of Proposition 7.3
in the context of general graph automorphisms by looking at the factorizations
through T2.

So let {M(v,w)}(v,w)∈V×V denote a set of matrices in GL(Q). We want to show
the existence of an automorphism which gives rise to this set of matrices. Define
θ(Pv)= Pv for all vertices v ∈ V (Q). Define θ(Le)= Le for all loops e ∈ E(Q).
Lastly, for every pair of vertices (v, w) place an ordering on the set E(v,w) and apply
M(v,w) to E(v,w) to calculate what θ(Le) will do for e ∈ E(v,w). Now θ will extend to
an automorphism in GF(Q) with matrix set {M(v,w)}, hence, θ will be a continuous
automorphism in GF(Q). 2

THEOREM 7.5. For Q a directed graph, GF(Q) splits as

T2Inn(Q)⊕ (GF(Q)/T2Inn(Q)).

PROOF. We know that we have the short exact sequence

0 // T2Inn(Q) // GF(Q) // GF(Q)/T2Inn(Q) // 0.

We only need to show that it splits. Now, for every adjacent pair of vertices,
put an ordering on the edges between them. Note that [θ ] ∈ GF(Q)/T2Inn(Q)
has associated to each adjacent pair of vertices (v, w) a matrix M(v,w). Now for
[θ ] ∈ GF(Q)/T2Inn(Q) define j ([θ ]) to be the automorphism induced by sending Pi
to Pi , Le to Le if e is a loop edge, and for fi between the adjacent pair (v, w) have the
automorphism send L fi to the linear combination of the edges between v and w given
by applying M(v,w) to the column matrix for L fi in the natural way.

It is easy to see that j ([θ ]) defines an automorphism of T +(Q) and further
that j ([θ ]) ∈ GF(Q). A quick calculation tells one that q ◦ j is the identity on
GF(Q)/T2Inn(Q) where q is the natural quotient. The result now follows. 2
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8. The group T2Inn( Q)

We now want to analyze those automorphisms in T2Inn(Q). Once again we factor
these automorphisms through a subalgebra. In this case, however, the subalgebra will
be those corresponding to directed cycles. Recall that for a positive integer k, Ck is the
graph with k vertices and k edges forming a single directed cycle. Letw = e1e2 · · · en ,
with n ≥ 2, denote a cycle in Q such that r(ei ) 6= r(e j ) for i 6= j . We call such a cycle
a proper cycle. Let W denote the set of all proper cycles and note that every w ∈W
gives rise to a finite sequence of vertices in Q. Let w(n) denote the length of the cycle
w ∈W . Note that such a w yields a subalgebra of T +(Q) which is isomorphic, via
graph isomorphism, to T +(Cw(n)); call this algebra T +(Cw). Fixing a proper cycle
in Q we now define a representation of πw : T +(Q)→ T +(Cw(n)). This follows by
sending Pv and Le to 0 whenever v or e does not support w and sending Pv and Le to
the appropriate projection, or partial isometry, in the cycle algebra. One then extends
this map to a completely contractive unital representation of T +(Q).

Unlike the automorphisms which factor through T +(T(n)2 ) it is not the case that
every Gelfand fixing automorphism will factor through T +(Cn). Instead we have the
following proposition.

PROPOSITION 8.1. If an automorphism θ ∈ GF(Q) is in T2Inn(Q), then θ factors
through the subalgebra T+(Cw) for every cycle w ∈W .

PROOF. Assume that Pv ∈ ker πw, then note that, as θ is in GF(Q), θ(Pv) ∈ ker πw.
Now if Le ∈ ker πw, then there are two cases. If r(e)= s(e), then θ(Le) ∈ ker πw
as θ(Pr(e))= θ(Ps(e)). Otherwise, we assume that r(e) 6= s(e) in which case
π(r(e),s(e))(θ(Le))= λLe. It follows that θ(Le) ∈ ker πw if and only if Le ∈ ker πw.
Now as ker πw is generated by those Pv and Le in ker πw the result follows. 2

That the converse is not true follows by looking at a graph with no cycles which has
multiple edges sharing their source vertex and range vertex. In particular, the graph
T (n)2 has noninner derivations which do not factor through any T+(Cw) for any loops
since there are no loops. We have the following partial converse.

PROPOSITION 8.2. Let Q be a graph such that if e is an edge, then either e lies on a
cycle or there is no other edge f with r( f )= r(e) and s( f )= s(e). If θ ∈ GF(Q), then
if θ factors through the subalgebra T+(Cw) for every cyclew ∈W , then θ ∈ T2Inn(Q).

We now remind the reader of the paper [1] where the automorphisms of T+(Cn)

were analyzed. The following is just a restatement of the results of [1] in language
consistent with this paper, the proof can be found there.

PROPOSITION 8.3. Let θ be an automorphism of T +(Cn) which is in CF(Cn). Then
the set MIF of those automorphisms which fix maximal ideals of T +(Cn) is a normal
subgroup of CF(Cn) and every such automorphism θ can be written as θ1 ◦ θ2 where
θ1 ∈MIF and there exists a λ ∈ T such that for every pair of vertices vi , vi+1, the
automorphism θ2 factors through T2 via the map L i 7→ λL i .
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In other words the diagonal ‘matrices’ (in this case they are scalars because there
is at most one edge between a pair of vertices) associated to θ will all be the same.
We are now in a position to piece all of these together for a general graph. If e is
an edge, then let We denote the cycles in W supported on e. Define a relation on
W by saying w1 ∼ w2 if there exists a finite sequence of edges e1, e2, . . . en such that
Wei ∩Wei+1 6= ∅ andw1 ∈We1 ,w2 ∈Wen . We say two cyclesw1, w2 ∈W are disjoint
if they are not related via this relation.

PROPOSITION 8.4. The relation ∼ is an equivalence relation on W .

PROOF. Clearly if w ∈W , then any edge supporting w will serve to make w ∼ w.
Next, if w1 ∼ w2, then by reversing the sequence of edges we obtain w2 ∼ w1. Lastly
assume that w1 ∼ w2 and w2 ∼ w3. By concatenating the two sequences of edges we
obtain that w1 ∼ w3. Hence, ∼ is an equivalence relation on W . 2

Let W1, W2, . . . , Wm denote the equivalence classes of W via this equivalence
relationship. We now have the following proposition.

For each 1≤ j ≤ m and µ ∈ T define 3 j,µ by 3 j,µ(Pv)= Pv for all v ∈ V (Q),
3 j,µ(Le)= Le for all edges not lying in a cycle in W j , and λ j,µ(L f )= µL f for all
edges f lying on a cycle in W j .

PROPOSITION 8.5. For each 1≤ j ≤ m and each µ ∈ T the map 3µ, j extends to a
continuous automorphism of T +(Q).

Let MIF(Q) denote the set of those automorphism in T2Inn(Q) which, for each
w ∈W , factor through T +(Cw) as maximal ideal fixing automorphisms of T +(Cw).

PROPOSITION 8.6. The group MIF(Q) is a normal subgroup of T2Inn(Q) and every
element of T2Inn(Q) can be written as θ1 ◦ θ2 where the automorphism θ1 is in
MIF(Q) and for each equivalence class W j of W there exists a µ j such that

θ2 =
∏

1≤ j≤m

3 j,µ j .

PROOF. Let θ1 and θ2 be in MIF(Q) and assume θ ∈ T2Inn(Q). Now let M be a
maximal ideal in T +(Cw). Then θ1 ◦ θ2(M)= θ1(M)= M so θ1 ◦ θ2 ∈MIF(Q).
It is clear that θ−1

1 (M)= M and, hence, MIF(Q) is a subgroup of T2Inn(Q).
Now note that θ(M) will be a maximal ideal and, hence, θ ◦ θ1 ◦ θ

−1
∈MIF(Q).

Hence, the subgroup is normal. The remainder of the proposition follows by applying
the description of the automorphisms of T +(Cw) to this context. 2

In particular, we have the following theorem that describes the quotient group
T2Inn(Q)/MIF(Q).

THEOREM 8.7. For Q a directed graph with equivalence classes of W given by W j
we have that

T2Inn(Q)/MIF(Q)∼=
∑

1≤ j≤m

T.
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9. Inner automorphisms

If θ is an inner automorphism of T +(Q), then we know that θ is continuous. We
now look at how θ fits into the classification we have described above.

PROPOSITION 9.1. Let θ be an inner automorphism of T +(Q), then θ ∈MIF(Q).

PROOF. We first see that θ ∈ GF(Q). This follows by noting that associated to every
element of MQ is a unique maximal ideal. Further any inner automorphism will fix
maximal ideals and hence will fix elements of MQ .

Now since θ ∈ GF(Q) it will factor through T +(T n
2 ) whenever T (Q) factors

through GF(Q). Further, as θ is inner, it will factor through T +(T (n)2 ) as an inner
automorphism, in particular θ ∈ T2Inn(Q).

Similarly we know that θ will factor as an inner automorphism through T +(Cn)

whenever T +(Q) does. However, the inner automorphisms of T +(Cn) fix the maximal
ideals and, hence, θ ∈MIF(Q). 2

Lastly, recalling the conjectures of [3] and [1] concerning when an automorphism
of special cases are inner, we suggest the following conjecture, one direction of which
is established in the preceding section.

CONJECTURE. An automorphism θ ∈ Aut(T +(Q)) is inner if and only if
θ ∈MIF(Q).

References

[1] M. Alaimia, ‘Automorphisms of some Banach algebras of analytic functions’, Linear Algebra
Appl. 298 (1999), 87–97.

[2] K. Davidson and E. Katsoulis, ‘Nest representations of directed graph algebras’, Proc. Lond. Math.
Soc. 92(30) (2006), 762–790.

[3] K. Davidson and D. Pitts, ‘The algebraic structure of non-commutative analytic Toeplitz algebras’,
Math. Ann. 311(2) (1998), 275–303.

[4] B. Duncan, ‘Finite dimensional point derivations for graph algebras’, Illinois J. Math. 52(2)
(2009), 419–435.

[5] E. Katsoulis and D. Kribs, ‘Isomorphisms of algebras associated with directed graphs’, Math. Ann.
330 (2004), 709–728.

[6] D. Kribs and S. Power, ‘Free semigroupoid algebras’, J. Ramanujan Math. Soc. 19 (2004), 75–114.
[7] P. Muhly, ‘A finite dimensional introduction to operator algebras’, in: Operator Algebras and

Applications (SAMOS, 1996) (Kluwer Academic, Dordrecht, 1997), pp. 315–354.

BENTON L. DUNCAN, Department of Mathematics, NDSU Department # 2750,
PO Box 6050, Fargo ND 58108-6050, USA
e-mail: benton.duncan@ndsu.edu

https://doi.org/10.1017/S1446788708081007 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708081007

