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1. Introduction 
One of the most striking features of both the magnetic field and the motions observed 
at the Sun is their highly irregular or random character which indicates the presence 
of rather complicated magnetohydrodynamic processes. Of great importance in this 
context is a comprehension of the behaviour of the large scale components of the 
magnetic field; large scales are understood here as length scales in the order of the 
solar radius and time scales of a few years. Since there is a strong relationship 
between these components and the solar 22-years cycle, an insight into the mechan­
ism controlling these components also provides for an insight into the mechanism of 
the cycle. The large scale components of the magnetic field are determined not only 
by their interaction with the large scale components of motion. On the contrary, a 
very important part is played also by an interaction between the large and the small 
scale components of magnetic field and motion so that a very complicated situation 
has to be considered. 

There have been a number of investigations on this within the framework of mean-
field magnetohydrodynamics. This theory developed for magnetohydrodynamic 
phenomena with irregular character supposes that each of the electromagnetic and 
hydrodynamic fields is understood as a superposition of a mean and a fluctuating 
field. The mean fields are defined by taking suitable averages over the original fields 
and correspond, except for some restrictions, to the large scale fields explained 
above. From the usual equations of magnetohydrodynamics, equations are deduced 
governing the behaviour of mean fields in the presence of fluctuations. On this basis a 
dynamo theory of the solar cycle has been developed which reflects and explains 
many of the observed features and, in addition, allows conclusions on parameters 
relating to processes in layers inaccessible for observations. 

In this paper a survey will be given on the fundamentals and some special results 
of mean-field magnetohydrodynamics as far as they are of interest for the dynamo 
theory of the solar cycle. The representation of mean-field magnetohydrodynamics 
is closely related to that in the foregoing papers by Krause (see pp. 305-321). As for 
the dynamo theory itself, only some more general statements will be made. Results 
obtained for special dynamo models of the solar cycle will be summarized and 
discussed in the following paper by Stix (see pp. 367-388). 

The central and furthest developed part of mean-field magnetohydrodynamics is 
the mean-field electrodynamics dealing with the question of how mean elec­
tromagnetic fields are influenced by the motion of the matter but considering this 
motion as given. To begin with, we shall be concerned with mean-field elec­
trodynamics and only then include the influence of the electromagnetic fields on the 
motion, thus arriving at mean-field magnetohydrodynamics per se. 
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2. Mean Field Electrodynamics 

2.1. BASIC FEATURES 

The mean field electrodynamics, as a deductive theory, has been initiated by 
Steenbeck et al (1963, 1966; Radler, 1966; Krause, 1967) and elaborated in 
manifold respect by several authors; for summarizing representations see Krause 
and Radler (1971), Roberts (1971), Roberts and Stix (1971), Roberts and Soward 
(1975). To represent the basic features of this theory we turn our attention to the 
electromagnetic fields in electrically conducting matter carrying out motions which 
are considered to be given. The behaviour of these electromagnetic fields is governed 
by Maxwell's and the corresponding constitutive equations. Accepting the supposi­
tions usual in magnetohydrodynamics we have 

curlE = curlH = j divB = 0 (2.1a, b,c) 
dt 9 

B = fiH j = cr(E+uxB). (2.Id, e) 

Here B and H are magnetic flux density and field strength, E and j electric field 
strength and current density, /x, and a the vacuum permeability and the electric 
conductivity of the matter, and u the velocity of the matter. The equations (2.1) allow 
the determination of B, H, E, and j if, apart from initial or boundary conditions, u is 
given. As is well known Equations (2.1) can be reduced to 

1 dB 
— AB + curl (u x B) = 0 div B = 0 . (2.2a, b) 
fxcr dt 

If then B and u are known, from (2.1) we get immediately H, E, and j . 
With respect to situations in which the electromagnetic fields and the velocity field 

show an irregular character we split each of them into a mean and fluctuating part. 
The mean fields are understoodas averages of the original ones1The average of a 
quantity, say F, is denoted by F, and F - F by F', so that F = F+F ' . The special 
definition of the averaging procedure is unimportant. It has only to ensure that 
Reynolds' averaging rules as well as the commutation rule for averaging and 
derivations or integrations hold. From the theoretical point of view ensemble 
averages are to be preferred for which these rules are clearly justified. In order to 
avoid difficulties in comparing theoretical results with observations, however, aver­
ages taken over certain ranges in space or time should be considered. In this case 
Reynolds' rules are solely approximations for situations in which the averaged 
quantities vary only weakly within each of these ranges. As before the commutation 
rule can easily be justified here. 

We now particularize 

B = B+B' u = u+n' (2.3) 
with the mean magnetic flux density and the mean velocity, B and 0, as well as the 
fluctuations of magnetic flux density and velocity, B' and u'. In most of the cases of 
interest fluctuations as described by B' and u' are specified to represent a turbulence. 
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But the following general considerations apply also in cases where fluctuations with 
certain regular features, e.g. periodicity in space or time, occur. 

The objective of the mean field electrodynamics is the determination of the mean 
electromagnetic fields, B, H, E, and j , if the mean velocity field, fl, and some 
properties of the fluctuating part of the velocity field, u', are given. Taking the 
average of Equations (2.1), with regard to (2.3) we get 

_ n j i _ _ _ 

curlE= curlH = j divB = 0 (2.4a, b,c) 

B = /xH J = cr(E+fl x B +u'xB'). (2.4d, e) 

The formal correspondence between the basic Equations (2.1) and (2.4) for the 
original and the mean fields is disturbed only by Ohm's law, i.e. (2.1e) and (2.4e), 
where in the case of mean fields an additional electromotive force^u' x B', appears. In 
order to determine the mean electromagnetic fields, B, H, E, and j , in addition to the 
mean velocity, fl, this electromotive force u' x B', has to be known. 

Basically, by means of Equations (2.2) and (2.3) the quantity B' can be represented 
as a functional of fl, u', and B. Consequently, the quantity u'xB' is also to be 
considered as a functional of fl, u', and B. After replacing u'x B' by an expression of 
this kind, Equations (2.4) allow the determination of B, H, E, and j from fl and 
quantities depending on u'. 

Hence, the crucial point of mean-field electrodynamics is the investigation of the 
electromotive force u' x B'. Fortunately some interesting conclusions on u' x B' may 
be drawn even without detailed calculations. From Equations (2.2) and (2.3) follows 
that u'xB', regarded as functional of ii, u', and B, is linear with respect to B. 
Following the usual notation we therefore write 

g = u'xB' = SB + S° (2.5) 
where SB means a linear homogeneous functional of B, and S° a quantity indepen­
dent of B. Obviously, SB can be represented by 

0 0 

(x, t) = | J K^x, t; & r)Bj(xt - T) d | d r (2.6) 
0 

with Kij depending on fl and u' but not on B. Here as well as in the followingJhe 
^-integration is over all space. Since 8B for a given time may not depend on B at 
subsequent times the r-integration is restricted to T >. 0. As far as S° is concerned we 
shall just note that it is zero at least as long as the assumption is justified that B' 
vanishes if B is zero. 

It is to be expected that fluctuating quantities as u' and B' at a given point in space 
and time show no correlation with any quantities at any points far away from the 
considered one. Consequently, SB for a given point depends only on the behaviour 
of fl, u', and B in confined surroundings of it defined by certain characteristic lengths 
and times. For the determination of for given x and f, therefore, fl and u' are 
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needed for such surroundings only, and Ktj can be regarded as zero if f and r 
considerably exceed the characteristic lengths and times. 

We now assume that B varies only weakly in space and time so that its_behaviour in 
the respective surroundings of a given point is already determined by B itself and a 
few of its derivatives in this point. Then SB can be represented as a function of B and 
its derivatives in the point considered. In the simple case in which no other than the 
first spatial derivatives are included we have 

Zf-aM + b^—1 (2.7) 
dXk 

where the coefficients a y and biik are averaged quantities depending on 0 and II'. 
Clearly it holds 

0 0 oo 

<ty = J J K^x, /; £, r) d£dr bijk = - J J KtJ(x, / ; £ , r ) & d £ d r . 

o o (2.8a, b) 
The complete determination of SB requires the khowledge of Kq. Fortunately 

some far-reaching conclusions on 8B can be drawn, even without using Kii9 from 
special suppositions on u and the statistical properties of u'. In this way expressions 
for SB can be given for special situations of interest, and only some factors remain to 
be determined. This will be illustrated below. 

Departing from Equations (2.2) and (2.3) a method was developed for the 
complete determination of SB which especially provides for explicit expressions of 
Ky. In an approximation in which only second order correlations of u' are considered 
and all higher ones are neglected it is found 

(2.9) 
Here Gy denotes Green's functions of Equation (2.2a) with u = u. In the simplest 
case, 0 = 0, one has 

Gtjix, t; T) = SijGilx-gl t-r) (2.10a) 

«">-(£)""-{-'£}• 
Furthermore, Oy is the second order correlation tensor of u' defined by 

Qv(x, t; I r) = l ife 0«K*+fe r + T ) • (2- 1 1) 
The approximation can be improved by adding expressions with higher order 
correlation tensors to the right-hand side of Equation (2.9). 

2.2. ILLUSTRATIVE EXAMPLE 

As a first example mostly the case is discussed in which the motion is supposed to 
have no mean part, ii = 0, but to consist of fluctuations, u\ representing a homogene-
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ous isotropic turbulence. Homogeneity and isotropy mean that all averaged quan­
tities depending on the u' field are invariant against arbitrary translations of this field 
and against arbitrary rotations of it around arbitrary axes. Returning to Equation 
(2.7) for SB and bearing in mind that this especially holds for the coefficients atj and 
bijk we conclude that they are constant in space and have the structures a8tj and Peijk 

so that 
<f B =aB-/3curlB. (2.12) 

Obviously, a is a pseudoscalar but /3 a scalar, both depending on u'. With respect to 
S° we furthermore suppose that, if another excitation of B' than that due to B exists 
at all, the seeds for B' are homogeneously and isotropically distributed. Then we have 
to conclude that S° = 0. In this way Ohm's law (2.4e) becomes 

J=cr T(E + aB) (2.13) 

with 

< 2 i 4 ) 

A homogeneous isotropic turbulence will always be mirror-symmetric too. In this 
context, mirror-symmetry is defined by the invariance of all averaged quantities 
depending on the u' field against reflexions of it on arbitrary planes. Since the 
reflexion of a right-handed screw in the flow pattern produces a left-handed one and 
vice versa, mirror-symmetry means equipartition between right- and left-handed 
helical motions. 

For a homogeneous isotropic and mirror-symmetric turbulence the pseudoscalar a 
turns out to be zero. Then the total influence of turbulence on the mean fields can be 
comprehended as a 'turbulent' conductivity, aT, different from the original one, or. 
This statement is related to conceptions like that of eddy viscosity or turbulent 
diffusion in hydrodynamics. The introduction of a turbulent conductivity has already 
been proposed by Sweet (1950) and Csada (1951). 

For illustration let us consider the electrical current between two assumed 
electrodes with a given potential difference. At first assuming the medium to be at 
rest we envisage a current tube, for which an electrical resistance can be defined. If 
the medium moves, this tube is generally stretched and narrowed so that the 
resistance increases. The pattern of the mean current, however, coincides with that of 
the current occurring in the case of the medium at rest. This picture shows clearly that 
there is a difference between crT and <r, and we can expect that <rT<cr; see also 
Steenbeck etal. (1963). As long as the latter relation holds the turbulence enhances 
the decay of the mean magnetic field. 

The value of the turbulent conductivity, crT, depends on the coefficient j8. In the 
second-order correlation approximation we get 

0 = - H f ^ ^ / ( f i - T ) f d * d T - ( 2 l 5 ) 
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Here / is a longitudinal correlation function defined by 

/(fe T ) = (u'(x, t). i)(u'(x+fe t + T ) • SI? . (2.16) 

Incidentally, since isotropy is supposed here, / does not depend on the direction of fe 
but on £ and r only. Special results for crT, all restricted to second-order correlation 
approximation, has been given by Radler (1966,1968b). Departing from (2.15) and 
(2.16) the relation aT<a can be confirmed for a wide range of suppositions; see 
Krause and Roberts (1973a, b), Roberts and Soward (1975). A comparison between 
theoretical results on <rT and observational data of the Sun is given by Krause (1975). 

Although the case of a homogeneous isotropic turbulence lacking mirror-
symmetry has to be considered as unrealistic it is instructive to be studied. In this way 
a point can be easily seen which is important with respect to more complicated kinds 
of turbulence as to be observed at rotating bodies. There really is a lack of 
mirror-symmetry, i.e. a predominance of either right-handed or left-handed helical 
motions. 

For a homogeneous isotropic non-mirror-symmetric turbulence the coefficient a 
is no longer zero. Then an additional electromotive force, aB, has to be taken into 
account which is parallel or antiparallel to the mean magnetic flux. The occurrence of 
this electromotive force is called 'a-effect'. Within the framework of a deductive 
theory, it has been first discussed by Steenbeck et al. (1966); it should be noted, 
however, that it was already involved in ideas expressed by Parker (1955). 

The a-effect becomes plausible if we consider the deformation of originally 
straight magnetic flux tubes by helical motions. Due to the magnetic field being at 
least partially frozen in the medium it is clear that situations as those in Figure 1 
occur. Roughly speaking, in addition to the originally straight flux tubes, annular flux 

Fig. 1. Deformation of originally straight magnetic flux tubes by helical motions. The magnetic flux tubes 
are represented by the heavy lines, the electric currents are indicated by arrows, and the motions by the 

thin lines. 

tubes result, which are accompanied by currents crossing the latters' planes. Since 
these planes do not coincide with the plane of the drawn figure there are components 
of these currents parallel or antiparallel to the original magnetic flux. If there is an 
equipartition between right- and left-handed helical motions we have also an 
equipartition between components parallel and antiparallel to the original flux and, 
therefore, on average no current. However, if this equipartition is disturbed we have 
on average a current parallel or antiparallel to the magnetic flux depending on 
whether left- or right-handed helical motions predominate. 
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In the second-order correlation approximation we have 

oo 

0 
= "111 G(& T),l*(f' ~T) d^dT (217) 

0 

with correlation functions, ft and ft*, defined by 

T) = (U'(X, r)x u'(x+f, r + r)) • (2.18a) 

ft*(£ T) = u'(x, 0 • curl u'(x+£ r + r) (2.18b) 
Obviously, ft and ft* are measures for the occurrence of helical motions. As proposed 
by Moffatt (1970a), ft*(0, 0) is called 'helicity'. Further, ft* is positive or negative if 
right or left-handed helical motions predominate. Accordingly, a is positive or 
negative and, consequently, aB parallel or antiparallel to B if we have preferably 
left- or right-handed motions, respectively. 

The most important feature of the a-effect is that it allows the regeneration and 
the growth of mean magnetic fields. In order to demonstrate this let us consider the 
situation in an infinitely extended medium where the mean fields satisfy the 
Equations (2.4) with Ohm's law as specified by (2.13). Then we have the equations 

1 _ aB 
^ B f a c u r l B = 0 divB = 0 (2.19a, b) 

allowing solutions 

B = (C cos (k • x) ± (C x | ) sin (k • x)) exp { - =F afc) f) (2.20) 

with arbitrary vectors C and k satisfying C • k = 0. Obviously, such B modes are 
stationary if juaja/k = ±1, and there are always B modes which grow with time if 
/jurT\a\/k>l. 

2.3. REMARKS ON THE APPLICABILITY TO THE SUN 

If we want to apply this general conception to conceive electromagnetic phenomena 
at the Sun, especially in its convection zone, some points have to be reconsidered. 

The first point concerns the split-up of fields into mean fields and fluctuations 
defined on the basis of an averaging procedure. By reasons already mentioned, 
averages over space or time are to be considered. Furthermore, the averaging 
procedure should be compatible with the conception used in all previous work too 
that, e.g., differential rotation is considered as mean motion whereas all convection 
occurs as fluctuation. Finally, the validity of Reynolds rules supposed above has to be 
ensured. As mentioned also by Krause (1975) and Stix (1975), averages taken over a 
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spatial volume hardly show the properties required. Such averages cannot even 
separate differential rotation and convection as far as large convection cells are 
considered; the reason is that the orders of length scales of the two do not clearly 
differ. A similar difficulty arises with the magnetic fields. A way out could be to 
replace the average over a volume by an average over longitude as used by Braginski 
(1964). Then all requirements mentioned are fulfilled automatically. But we have to 
put up with the restriction to axisymmetric mean fields; all non-axisymmetric parts of 
the original fields occur as fluctuations. Following Stix (1975) again we consider it 
best to use averages over a time span in the order of about one or two years. In this 
case the requirements formulated above are satisfied at least in a certain approxima­
tion. This is due to the fact that the spectrum of characteristic times observed at the 
Sun shows a gap for times in the order of one or two years. 

For the next point to be discussed the magnetic Reynolds number, Rm, and the 
Strouhal number, S, both in relation to fluctuations, are of interest. They are defined 
by 

Rm = nxru'ckc S = u'cTc/kc (2.21a, b) 

where u'c represents a characteristic value of the fluctuating velocity, e.g. and A. 
and r c are characteristic length and time, e.g., correlation length and time. It holds 
lX=47rx 10~7 Vs A - 1 m"1, and we accept cr = 103 Q~l m _ 1 . With respect to granules 
we take u'c = 2x 103m s"1, Ac = 2x 10 m, and r c = 3x 102 s. Then we have Rm « 
5 x 106 and S « 3 x 10 _ 1 . If we consider supergranules and choose i ic = 4xl0 2ms~~\ 
Ac = 3 x 107 m, and r c = 5 x 104 s it results Rm « 2 x 107 and S « 7 x 10"1. 

We reconsider now the transition from the general to the special expression of 8B 

given by (2.6) and (2.7) and ask whether other derivatives of B have to be included. 
As mentioned above, can be regarded to be zero if £ and r considerably exceed 
certain characteristic values, say A* and rK. From the expressions of Ky it can easily 
be read that 

A K = A C tk = /xorAc for RJS« 1 (2.22a) 

AK = ^rc/fi(T tk = tc for RJS»1 . (2.22b) 
The contributions to 8B due to higher derivatives of B are, e.g., in the order of 
rK(dB/dt) or kltfB/dXidXj); see also Radler (1968b). Since always RJS » 1 , with 
the data of granules we have A K « 5 x l 0 2 m and T K « 3 X 1 0 2 S , with the data of 
supergranules A K « 6 x l 0 3 m and T k

S 5 : ; 5 X 1 0 4 S . Therefore, those contributions 
seem to be negligible. 

Finally we deal with the validity of the above-mentioned second-order correlation 
approximation for the coefficients occurring in special expressions of 8s. This is of 
interest because higher order approximations require very lengthy calculations 
which have been done up to now only in a few exceptional cases. A simple sufficient 
condition for the validity, which can easily be read from the deductions, is 

min(#m , S)« 1 . (2.23) 

With the data used above this is scarcely fulfilled. It must be noted, however, that 
(2.23) is not a necessary condition. The values of the turbulent conductivity which 
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have been obtained within the frame of the second-order correlation approximation 
fit very well to observational data; see Krause (1967, 1975), Radler (1968b), 
Steenbeck and Krause (1969), Krause and Riidiger (1975). In this way, there is at 
least some reason to believe that the results obtained from the approximation are 
reliable for the solar convection zone. 

2.4. OHM'S LAW FOR THE SOLAR CONVECTION ZONE 

2.4.1. Elaborating the mean-field electrodynamics for the Sun we have to consider 
that, in contrast to the simple example discussed above, there are firstly a non-
vanishing mean motion, at least the differential rotation, and secondly fluctuating 
motions, like the convection, which can no longer be treated as a homogeneous 
isotropic turbulence. Already the intensity of these fluctuating motions shows a 
radial dependence, and there are significant differences between the velocity compo­
nents in radial and horizontal directions. In addition, these motions are subjected to 
Coriolis forces. Taking all this into account, the homogeneity is disturbed, and 
instead of isotropy we have to take into consideration that in each point at least two 
preferred directions exist, namely a radial and an axial one. Finally, there must be 
deviations from mirror-symmetry because of the preference of these directions. 

Studying now Ohm's law for the mean fields we first consider the cases in which 
only the radial or only the axial direction is preferred and then pass over to the case 
where both are included. Furthermore, we first deal only with effects described by the 
electromotive force 8B in the form given in (2.7), and we neglect S° which will be 
discussed later. 

2.4.2. Let us now suppose that isotropy and mirror-symmetry of the fluctuating 
motions are disturbed only by the preference of the radial direction. More precisely, 
all averaged quantities depending on the fluctuating velocity field are considered to 
be invariant under rotation of this field around a given radius and under reflexion of it 
at planes containing this radius. By similar arguments as used above 8B can readily 
be specified, and Ohm's law for the mean fields becomes 

j = o-T(E+uxB 

- y g x B 

- Tig(g • curl B) - y 2 g x (g • grad)B - y 3 g x (g • grad B) (2.24) 

where g is the unit vector in radial direction and (g-gradB), means gjdBj/dXi. 
Incidentally, the last three terms within the brackets can be rewritten to be 

- M ( y i - 7 2 ) g ( g i ) - M r 2 J - ( y 2 + r3)gx(g- gradB). (2.25) 
Again, a turbulent conductivity, crT, was introduced for which (2.15) and also 

(2.16) hold. 
Beside the Lorentz force, u x B, an electromotive force, - ygx B, appears where 

the part of mean velocity, u, is played by a vector quantity, — yg, antiparallel or 
parallel to the radial direction. Just as the Lorentz force, this electromotive force 
corresponds to a transport of magnetic flux. Such transport different from that due to 
a mean motion is sometimes called 'pumping of magnetic flux.' 
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Within the frame of second-order correlation approximation we have 
oo 

r = 4 j I ^ ^ < M I > - ' ' ) + * 2 ( e , - T ) ) d € d T (2.26) 
0 

with correlation functions, k\ and k2, defined by 

*i(fc T ) = (u '(x, f ) -g ) (u ' (x+&f + T ) . g ) / f (2.27a) 

Mfc T ) = (u '(x, t) • g ) ( u ( x + £ t + r) • ©/*. (2.27b) 
For a turbulence deviating only by a gradient of the mean intensity from a 
homogeneous isotropic and mirror-symmetric turbulence, more detailed results on 
the electromotive force under consideration and especially on the coefficient y have 
been given by Radler (1966,1968b, 1969a). It turns out that there is a tendency to 
push out the mean magnetic flux from the regions of high turbulence intensity. 
Therefore, this effect is sometimes denoted as 'turbulent diamagnetism'. A similar 
situation occurs if the gradient of intensity is replaced by, e.g., a gradient of 
correlation length; see Radler (1969a), Krause and Radler (1971). In a turbulent 
layer like the solar convection zone a gradient in intensity, the direction of which 
must change within the layer, pushes the magnetic flux from the inner regions to both 
boundaries whereas a gradient in correlation length may push it from one boundary 
to the other. If the fluctuating motions are specified to represent convective cell 
motions the electromotive force under consideration describes the effect of 'topolog­
ical pumping of magnetic flux' discussed by Drobyshevski and Yuferev (1974). In this 
case, a pumping from one boundary to another only occurs for higher than second-
order correlation approximations. 

In addition to the electromotive force discussed there are others connected with 
spatial derivatives of B. A part of them may be described by means of an anisotropic 
turbulent conductivity too. It shows that (2.27) is equivalent to 

j = OY(E + u x B - y g x B - ( y 2 + y3)gx(g • grad B) (2.28) 
with a conductivity tensor, <rT, given by 

077; = 7 7 7 T 7 T T +turfYi)8ij - M t f r ( ? i - y-dMj)- (2-29) 
( l + / x a y y 1 ) ( l + ^ O Y y 2 ) 

In the second-order correlation approximation we have 
0 0 

Y l = ~\\ I ̂ i f^tffc -T>*+3Mfc ©)d€dr (2.30a) 
0 

oo 

0 

(2.30b) 
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7 3 = \ 11 + 3 * i & " * • ) < § * © ) d * d T ( 2 - 3 0 c ) 

with /, and k2 as given above. In this context we refer to the results obtained for 
the extreme case of a homogeneous two-dimensional turbulence with no motion in 
the preferred direction; see Krause and Rudiger (1975). They can easily be formu­
lated in terms of an anisotropic turbulent conductivity; in this case kx and k2 turn out 
to be zero. For the above-mentioned turbulence with a gradient of mean intensity, 
the second-order correlation tensor is linear in this gradient; see Radler (1966, 
1974). Therefore, in the applied approximation yu y2 and y3 vanish; see Radler 
(1966, 1968b). 

2.4.3. Now we pass over to the case in which isotropy and mirror-symmetry of the 
fluctuating motions are violated only by the influence of Coriolis forces, which occur 
as a consequence of the rotation. Then the averaged quantities dependent from the 
fluctuating velocity field have to be invariant under rotation of this field around axes 
parallel to the rotational axis and under reflexions at planes perpendicular to it. For 
simplicity we suppose the influence of Coriolis forces as weak enough in order to 
neglect in the following all quantities of higher than first order with regard to the 
angular velocity. In the same way as above we get 

j = o- T(E+iixB-ft(& • grad)B- ftgrad (co • B)) (2.31) 

where A is the unit vector parallel to the rotational axis. If we relinquish linearity in 
the angular velocity, four other terms have to be added at the right-hand side of this 
equation. The last two terms within the brackets in (2.31) can be rewritten to be 

Mft&x j - ( f t + ft) grad (to • B). (2.32) 
As before, a turbulent conductivity, aT, appears for which (2.15) and (2.16) hold. 
The most interesting feature of this result is, however, the occurrence of an 

electromotive force, ptftcox j , often called 'cox j-effect\ It reminds one of the Hall 
effect. This to xj-effect can be described in terms of an anisotropic turbulent 
conductivity too. From (2.31) and (2.32) immediately follows 

J= o- T (E+uxB-(f t + ft) grad (co • B)) (2.33) 

with a turbulent conductivity tensor, trT, given by 

2 

aTij =TTf S~v*(*v ~/^7ft£//jA + (^o-jfix) <Oi<ok). (2.34) 

Contrary to (2.29) it contains an antisymmetric part. The electromotive force 
- (J31+ft) grad (to • B) plays a minor part. As far as 0 x + ft does not depend on space 
this force may always be compensated by that part of E which results from space 
charges. 

Just as the a-effect occurring with homogeneous isotropic non-mirror-symmetric 
turbulence, the co x j-effect is also caused by helical motions, but it does not require a 
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predominance of right-or left-handed helical motions. A similar illustration as given 
for the a-effect by means of Figure 1 is possible for the co x j-effect too. In this case, 
the anisotropy of the motions has to be taken into account. Furthermore, due to the 
gradient in the mean flux density two flux tubes as in Figure 1 may differ in flux 
density. Therefore the helical motions, despite the equipartition of both types, can 
produce a mean current. 

Within the second-order correlation approximation we have 
0 0 

0 
oo 

t) 

+ 5 / 2 ( € , - T ) £ ) d £ d T (2.35b) 

where h is defined as above and l\ and l2 are given by 

/ i ( f c T) = ((u'(x, r)xu ' (x+fcf+T))-A) (2.36a) 

h i t T) = (u,(x, t) • © ( ( • ' ( « + « , * + T)XCO) Q/f. (2.36b) 
For an originally homogeneous isotropic and mirror-symmetric turbulence in an 
incompressible medium subject to Coriolis forces explicit expressions of ft and ft 
have been given by Radler (1969a, b), and by Roberts and Soward (1975). 

2.4.4. Finally, we deal with the situation in which the fluctuating motions are 
characterized by the simultaneous occurrence of the two preferred directions 
considered above. Extending the hitherto used conception to this more complicated 
situation, a rather complex result occurs. Restricting ourselves again to linearity in 
the angular velocity which is responsible to the Coriolis forces we have 

j = O Y ( E + U X B 

-ygXB 

- 7 iftd • c u r l *) - y2g x (g • grad)B - y 3g x (g • grad B) 
-ft(co • grad)B-ft grad (to • B) 
- « i ( g • c b ) B - a 2 ( g * B ) < b - a 3 ( t o • B ) g - a 4 ( g • to)(g • B)g 
-or 5(g ' grad (to • B))g-a 6(to • (g • grad B))g 
-a7(g • to)(g • grad (g • B))g-a 8 (g • grad (g • B))to 
- a 9 ( g • to)(g • grad)B-a 1 0(g • to)(g • grad B)). (2.37) 

Again, other representations are possible too. We especially refer to (2.25) and 
(2.32), and we add that the terms in the last line can also be written in the form 

M«9(g • to)gx j - ( < * 9 + a io)(g • co)(g • grad B). (2.38) 
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The electromotive forces in the first four lines of (2.37) are to be expected from the 
foregoing discussion, and all relations given in this connection apply here too. But 
there are further terms in which both preferred directions, i.e. g and a>, appear 
simultaneously. In all previous representations of this matter the simplifying assump­
tion of linearity in both g and A was introduced. In this way, the last term of the fifth 
line and all following terms did not occur. For a number of reasons this assumption 
seems rather problematic. 

Just as in the case of a homogeneous isotropic and non-mirror-symmetric turbul­
ence we have an electromotive force proportional to the mean magnetic flux density, 
namely -ai(g-w)B, i.e. an a-effect. In contrast to that case, however, this elec­
tromotive force is accompanied by the other ones given in thefifth line of (2.37). We 
shall speak of 'idealized a-effect' as long as only - a ^ g • a>)B is considered, and of 
'real a-effect' if the other contributions are included. 

In accordance with the a-effect occurring with homogeneous isotropic non-
mirror-symmetric turbulence, and in contrast to the <oxj-effect, the a-effect 
considered here is due to the predominance of right- or left-handed helical motions. 
The illustration given in the case of homogeneous isotropic non-mirror-symmetric 
turbulence can easily be modified to fit to the situation under discussion. 

In the second-order correlation we have 
0 0 

«,(g-A) = | J J d-^^(h(Z,-T)-m1&-T)^)dZdT (2.39) 
0 

with ft as defined above and mi given by 

mi(fc T) = ((u'(x, f)xu'(x+€,f + T)) • g. (2.40) 

Due to assumptions introduced here, (2.39) provides for a value of ot\ independent 
of g and o>. In contrast to the coefficient a given by (2.17), the coefficient a\ depends 
not only on correlations described by the function ft or, what is the same, by the 
function ft*, but is a more complicated quantity. The corresponding expressions for 
a 2 , a 3 , and a 4 , which are rather complicated too, will not be given here. 

Departing from various conceptions on the structure of the fluctuating motions 
several investigations have been carried out which provide for special results on 
ai, a 2 , . . . or related quantities. The motions in the solar convection zone are 
influenced in a high degree by the stratification of the medium. Investigations which 
include the effect of stratification were performed by Steenbeck etal. (1966) and by 
Krause (1967). Furthermore, with other assumptions on the motions, special results 
were presented by Radler (1969a), Moffatt (1970a), Krause and Radler (1971), and 
Roberts and Soward (1975). 

The electromotive forces connected with derivatives of B given in the last three 
lines of (2.37) have not been investigated in detail up to now. 

2.4.5. So far we have taken into account the electromotive force SB only, but have 
not considered S° which can be unequal zero under conditions which allow B' to be 
unequal zero even though B vanishes. Since in the solar convection zone the 
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magnetic Reynolds number responsible for fluctuations, Rm is much larger than 
unity we cannot exclude without further investigation that some parts of the 
fluctuating motion give rise to iocal dynamos', i.e. dynamos restricted to the scales 
of fluctuations, which contribute to B' also in absence of B. This is related to ideas by 
Batchelor (1950) and Kasantsev (1967). According to the fact that the fluctuating 
motions vary rapidly, each such dynamo will have a short lifetime only, and the 
corresponding part of B' excited by some kind of seed will reach only small values and 
then decay again. Of course, 8° depends on assumptions about the seeds. For 
simplicity we suppose the seeds to be isotropically distributed. From the assumptions 
used above for the fluctuating motions including weak influence of Coriolis forces we 
can now conclude 

<?° = K g + A g X c b (2.41) 

with some coefficients K and A. Taking into account arbitrary strength of Coriolis 
forces, a term proportional to a> has to be added. Unfortunately there does not exist 
any investigation which provides for more detailed information on 8° or coefficients 
K and A. 

For the solar cycle we conjecture that the electromotive force 8B, the magnitude 
of which depends on that of B, is always large compared with 8° so that the latter can 
be neglected. This seems to follow already from the argument given above in favour 
of the small efficiency of the local dynamos producing B'. 

We are faced with a completely different situation when B is zero at a given time. 
Then 8B is zero too, and if the local dynamos lead to a non-vanishing 8°, we have to 
expect that B grows. Especially the part of 8° proportional to g x <*> gives rise to a B 
field of dipole type. Thus, as a consequence of small scale magnetic fields, a large-
scale field can occur. 

3. Kinematic Dynamo Theory of the Solar Cycle 

3.1. BASIC FEATURES 

In order to discuss the general principle of the dynamo theory of the solar cycle we 
consider the Sun as a sphere of electrically conducting matter with a mean motion 
like differential rotation and with turbulent motions in the outer layers, and we 
suppose the mean motion as well as the distribution of the turbulence to be 
symmetric with respect to both the rotation axis and the equatorial plane, and to be 
stationary. Furthermore, we understand the solar cycle, which should be com­
prehended theoretically here, substantially as an interplay between a poloidal and a 
toroidal mean magnetic field, both supposed to be axisymmetric too but antisymmet­
ric with respect to the equatorial plane. In a rough picture, the poloidal field is of 
dipole type, and the toroidal field consists of two oppositely oriented belts, one in 
each hemisphere. Both fields generate and attenuate each other so that an oscillation 
with a period of 22 years results. Compared with the poloidal field the toroidal one 
reaches much higher amplitudes and is responsible, e.g., for the appearance of 
sunspots. 

https://doi.org/10.1017/S0074180900008287 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900008287


A B A S I S O F S O L A R D Y N A M O T H E O R Y 337 

We have first to discuss how a poloidal field can generate a toroidal one and vice 
versa. Provided a poloidal field exists, a toroidal one must already occur due to 
differential rotation. Accepting that for the generation of the toroidal field the 
differential rotation is more effective than the turbulence, we may neglect all effects 
of turbulence except that represented by the turbulent conductivity. Departing from 
a toroidal field, however, a poloidal one can be generated neither by differential 
rotation nor by any other axisymmetric motion but only by turbulence. Parker (1955) 
was the first to recognize that the poloidal field can occur as a consequence of cyclonic 
convection. Within the frame of mean-field electrodynamics the effect of cyclonic 
convection he pointed out is reflected by the a-effect. 

Let us consider in more detail this crucial point of the dynamo theory of the solar 
cycle, the generation of a poloidal field from a toroidal one. Having in mind that a 
poloidal field is connected with toroidal currents we have to ask for electromotive 
forces caused by turbulence which induce toroidal currents from toroidal fields. Only 
three of the electromotive forces occurring in (2.37) show this property. With respect 
to (2.32) and (2.38) we note them in the form 

/xftcoxj, -«!(§• co)B, /xa9(g-cb)gxj. (3 . 1 ) 

Even if we relinquish linearity in cb no other terms occur here. 
In addition to differential rotation at least one of the electromotive forces given in 

(3.1) is required to have indeed an interaction between poloidal and toroidal 
magnetic fields. It remains to be scrutinized whether this interaction actually allows a 
dynamo, i.e., prevents that the magnetic fields vanish in course of time, and whether 
and under which conditions alternating magnetic fields occur. Unfortunately, the 
questions arising here can be answered only on the basis of either analytical 
calculations for extremely simplified models or lengthy numerical calculations for 
more realistic models. 

As the first of the electromotive forces listed in (3.1) we consider that given by 
-ai(g • a>)B, i.e. the idealized a-effect. In conjunction with differential rotation it 
actually allows dynamos, called aw-type dynamos, for both stationary and alternat­
ing magnetic fields. The dynamo mechanism suggested by Parker (1955) already 
before the elaboration of mean-field electrodynamics can be understood as being of 
<*6>-type, generating alternating fields; however, he did not investigate spherical 
dynamo models. Departing from the conception of mean-field electrodynamics 
Steenbeck and Krause (1969) elaborated spherical dynamo models of the aoMype 
for alternating fields. They presented numerical results on excitation conditions, 
space and time structure of the fields etc. and compared them with observational 
material as the butterfly diagram. Meanwhile numerous investigations of such 
models with alternating fields have been carried out; see, e.g., Deinzer and Stix 
(1971), Roberts and Stix (1972), Roberts (1972), Ruzmaikin and Ivanova (1975), 
Jepps (1975). Also non-axisymmetric fields were considered; see Stix (1971), Krause 
(1971), Roberts and Stix (1972). It has been proved by Levy (1972) that dynamos of 
the «6>-type are also able to generate stationary fields; see also Stix (1973) and 
Deinzer et al. (1973, 1974). 

Next we consider the electromotive force described by /xfttox j , i.e. the coxj-
effect. In combination with differential rotation this effect too allows dynamos. In 
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other words, differential rotation and a special type of anisotropic electric conductiv­
ity can lead to dynamos. In the first investigations of models of that kind carried out 
by Radler (1969c, 1970) and by Roberts (1972) only stationary fields were found. 
Dealing with the possibility of alternating fields Roberts (1972) got numerical results 
which suggest that such fields exist too, but because of some convergency difficulties 
he regarded these results as not quite convincing. Recent results by Radler (1975) 
confirm that alternating fields can occur. Some details will be given in the appendix. 

As the last of the electromotive forces listed in (3.1) we consider that described by 
fjux9(g • <b)gx j . Since it is very similar to jjlPx&x j we have good reason to assume 
that it together with differential rotation can give rise to dynamos too. 

3.2. REMARKS CONCERNING THE FURTHER ELABORATION OF MODELS OF THE 
SOLAR CYCLE 

Many efforts have been devoted to the elaboration of dynamo models for the solar 
cycle which reflect as many features of observations as possible. Suppose the basis is 
correct, one may, when fitting the models to observations, draw some conclusions on 
parameters inaccessible for direct observations, e.g. on the radial dependence of 
angular velocity or on parameters characterizing the fluctuating motions. 

In this context we must have in mind that each of the electromotive forces 
occurring in Ohm's law (2.37) can influence the excitation conditions and the space 
and time behaviour of the magnetic fields. We have to scrutinize carefully which of 
these electromotive forces should be taken into account and which of them could be 
neglected. In most of the hitherto discussed dynamo models for the solar cycle only 
the idealized a-effect and the turbulent conductivity were involved, i.e. only effects 
which are already known from the case of homogeneous isotropic turbulence, and all 
other effects of turbulence were cancelled. The possible influence of these effects 
should be discussed in more detail, otherwise the conclusions of the kind mentioned 
above are only of restricted value. 

Considering again the generation of the poloidal from the toroidal field we have to 
clarify which of the electromotive forces listed in (3.1) should be taken into account. 
It seems that the a-effect plays the most important part indeed. As for orders of 
magnitude, the ratio of the idealized a-effect to the cox j-effect is given by <xi\.b/Pu 
where A B is a characteristic length for the variation of the magnetic field. Provided 
(2.35a) and (2.39) determine the orders of magnetic of ot\ and fii even when only h 
is involved and lx and mx are cancelled, this ratio can be replaced by A B / A K with kK as 
given in (2.22). It is to be expected that A B / A K » 1 ; for according to the above-
mentioned estimates XK is hardly bigger than 104 m. In this way the <o x j-effect turns 
out to be of minor importance, and the same can be concluded for the related effect 
proportional to (g*«o)gxj. These arguments, however, should undergo a more 
detailed examination. Some investigations of dynamo models in which beside the 
differential rotation both the a-effect and the <ox j-effect are included have been 
carried out by Radler (1975). 

The behaviour of the toroidal field can be influenced by some of the electromotive 
forces occurring in (2.37) even without the assistance of the poloidal field. Using 
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( 2 . 2 5 ) we write these electromotive forces in the form 

- y g x B , -M,0yi-y 2)g(g- J)> ~ Mi\ - ( 3 . 2 ) 
The first of them, which can act in the same way as a diamagnetism of the matter, can 
strongly influence the dynamo mechanism. This becomes clear from the dynamo 
models investigated by Ruzmaikin and Ivanova ( 1 9 7 5 ) in which diamagnetism is 
included, even though in a manner which does not correspond exactly to the 
conception of mean-field electrodynamics outlined here. The last two electromotive 
forces in ( 3 . 2 ) , which can be interpreted in terms of an anisotropy of the turbulent 
conductivity, have not been investigated in this respect up to now. 

Finally we have to consider the generation of the toroidal from the poloidal field 
and that influence on the poloidal field which occurs without the assistance of the 
toroidal one. All the electromotive forces due to turbulence which have to be 
discussed here, are induced by the poloidal field. As long as the poloidal is small 
compared with the toroidal field, they should be small compared with those given in 
( 3 . 1 ) and ( 3 . 2 ) . Therefore, they are presumably of minor importance for dynamo 
models as considered here. 

As indicated above, our considerations are restricted to axisymmetric magnetic 
fields. If non-axisymmetric ones should be included some points have to be 
rediscussed. 

4. The Influence of the Mean Magnetic Field on the Motions 
and its Consequences for the Dynamo Mechanism 

4 . 1 BASIC IDEAS 

Up to now we have dealt with the question of how mean electromagnetic fields in 
electrically conducting matter are influenced by the motions of the matter but we 
did not pay attention to the fact that the motions can be influenced by the 
electromagnetic fields. Within the frame of such considerations, dynamo mechan­
isms turn out to be possible which allow the mean magnetic fields to grow incessantly. 
In accordance with that, the kinematic dynamo theory of the solar cycle allows 
arbitrary mean-field amplitudes. However, if a magnetic field grows we have to 
expect that also its back reaction to the motions due to Lorentz forces becomes 
stronger and, finally, provides for a limitation of the field strength. In this way also the 
mean-field amplitude in the solar cycle is controlled. 

Already this point gives rise to extend the foregoing considerations so that this 
influence of the electromagnetic fields on the motions is included. Doing so we 
overstep the bounds of mean-field electrodynamics and are confronted with much 
more complicated aspects of mean-field magnetohydrodynamics. Only some of the 
problems arising here have been tackled up to now. 

To begin with, we have to complete the basic electrodynamic Equations ( 2 . 1 ) by 
hydrodynamic equations. We want to demonstrate only some basic features. For this 
purpose we restrict ourselves to incompressible media. Then only the Navier-Stokes 
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equation and the continuity equation have to be added which read 

p(ir+(u ' = ~&ad P + P * + j x B (4.1a) 

div u = 0. (4.1b) 
Here p is the mass density, which is to be regarded as a constant, p is the 
hydrodynamic pressure, and f denotes viscous or other body forces. Finally, jxB 
represents the Lorentz force which is responsible for the influence of the elec­
tromagnetic fields on the motion. In the same way as with the Equations (2.1) we take 
the average of the Equations (4.1) thus obtaining 

Just as observed with Ohm's law, the formal correspondence between the Navier-
Stokes equation for the original and the mean fields is disturbed by additional forces, 
-p(u' • grad)u' and j' x B', appearing with the mean fields. The first of them is already 
known from the theory of hydrodynamic turbulence; it can be interpreted in terms of 
Reynolds stresses. 

This consideration shows that within the mean-field magnetohydrodynamics of 
incompressible media in addition to the electromotive force, u' x B', the two forces, 
—p(u' • grad)u' and j'xB', have to be investigated. As far as u'xB' is concerned all 
general relations discussed above hold also when 0 and u' and, consequently, Ktj are 
specified to depend on B. Of course, then u' x B' is no longer linear in B. A part of the 
methods by which u'xB' was determined can be used also to determine 
-p(u' • grad)u' and j'xB'. 

If we remove the restriction to incompressible media, some details become more 
complicated; e.g. correlations between p' and u' have to be considered. 

4 . 2 SOME SPECIAL RESULTS 

The dynamo models of the solar cycle are determined by assumptions on both the 
mean motion and the electromotive force caused by the fluctuating motions. 
Since there is no observational evidence for a substantial variation of the mean 
motion during the cycle it is reasonable to suppose u to be independent of B. There 
are, however, several reasons to assume that the fluctuating motions are considerably 
influenced by the magnetic field, so that for the electromotive force, u'xB', a 
non-linear dependence on B has to be expected. 

There are several investigations of u' x B' in which this non-linear dependence on 
B is considered. Unfortunately, in most cases suppositions were used which 
scarcely apply to the solar convection zone; nevertheless, the results may be 
suggestive here too. 

Especially the a-effect was considered which occurs with an originally homogene­
ous isotropic non-mirror-symmetric turbulence under the influence of a homogene­
ous mean magnetic field. As long as this influence is weak one may easily conclude 
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that a, now understood as a function of B, has the form 
a = a0(l~aB2) (4.3) 

with some coefficients a0 and a; see Krause and Radler (1971). Using second order 
correlation approximation and supposing JRm « 1 as well as incompressibility of the 
medium, Rudiger (1974) computed the value of a. Within the same frame he 
discussed a for large B too and found that it vanishes as B~3 if B ->oo. Interesting 
relations for a have been derived by Vainshtein and Zeldovich (1972). 

Furthermore, u 'xB' has been studied in detail, especially with respect to its 
dependence on B, for a random superposition of inertial waves in a rotating fluid by 
Moffatt (1970b, 1972) and Soward (1975). Comprehensive calculations for an 
inhomogeneous turbulence in a rotating fluid have been carried out by Roberts and 
Soward (1975). 

Finally, first investigations on the consequences of an a-effect which is non-linear 
in B for dynamo mechanisms of the aw-type have been presented by Stix (1973) and 
Jepps (1975). 

Appendix to Section 3.1 

We give here an example of a dynamo model which works on the basis of differential 
rotation and the cox j-effect and allows alternating magnetic fields. The model 
consists of a sphere of conducting moving matter. The mean motion is supposed to be 
a differential rotation with an angular velocity, <o, given by 

(o=< 

<D0 

Aco „ 3n V = 5(JC-0.5) 

for 0 ^ J C ^ 0 . 3 

for 0 .3^x^0.7 

for 0 . 7 ^ x ^ 1 . 
(A.1) 

As for the electromotive forces induced by turbulence, only the <ox j-effect is 
involved with a coefficient, ft, specified by 

0! = 

f 0 

16 

I ftmax 

(8 + 15t> - 10t; +3tT) v = 5(JC -0.8) 

for 0 ^ x ^ 0 . 6 

for 0 . 6 ^ x ^ 1 

f or x = 1. 
(A.2) 

Here a)0, Aa> and pimax are constants, and x is the normalized radius of the sphere 
with x = 1 at its surface. Figure 2 shows the profiles of (o/a)0 and j3i/j3imax. The 
surroundings of the sphere are supposed to be a vacuum. Again, only axisymmetric 
magnetic fields are considered. For the generation of the toroidal field from the 
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Fig. 2. Profiles of the normalized angular velocity, o>/a>0, and the normalized o> x j-coefficient, (3i/ph 

poloidal one only the differential rotation is taken into account, and the o> x j-effect is 
neglected. The generation of the poloidal field from the toroidal one is, however, due 
to the a> x j-effect. As one can easily see from the equations governing this model, the 
condition of excitation of magnetic fields can be expressed by a dynamo number, P, 
given by 

P = H2a2Aa>l3LMAXR2 (A3) 

where R is the radius of the sphere. Since /3im a x may be supposed to be positive, P > 0 
corresponds to A<o > 0, i.e. an inward decreasing angular velocity, and P < 0 corres­
ponds to Aw <0, i.e. an inward increasing angular velocity. Furthermore, a dimen­
sionless frequency, fl, of the mean fields is used for which the time is measured in 
units of IAXTR2. 

By means of a representation of the magnetic field by spherical harmonics the 
partial differential equations governing this model were reduced to an infinite set of 
ordinary differential equations. But only the first harmonics up to a certain order, say 
N, were taken into account, and the solutions of the corresponding truncated sets of 
equations were computed numerically for different N. In the case of convergency of 
these solutions for growing N, the solutions for sufficiently high N were regarded as 
such of the original equations. 

TABLE I 
Marginal dynamo numbers, P, dimensionless frequen­

cies, /} , and the types of the respective solutions 

p n Type of solution 

- 2 347 16.6 dipole 
- 2 216 6.5 quadrupole 
+4 914 35.5 quadrupole 

+19 268 73.4 dipole 
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For both P > 0 and P < 0 solutions were found which correspond to magnetic fields 
of dipole as well as of quadrupole type. In Table I the marginal values of P which 
were found within the region -2500 . . . +20 000 and the respective values of Q were 
listed. Table II shows one example illustrating the convergency of the solutions of the 
truncated equations. 

TABLE II 
Marginal dynamo numbers, P, and dimen­
sionless frequencies, O, for related solu­
tions of the truncated equations in depen­

dence on the truncation parameter, N 

N P n 
4 5 014.7 35.48 
6 4 912.5 35.47 
8 4913.5 35.47 

10 4913.5 35.47 
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DISCUSSION 

Vainshtein: There is a-effect without rotation caused only by magnetic forces. It is a nonlinear effect. I 
think that you must take it into account. In this case a ~ B • curl B . 

Krause: In a paper by Roberts and Soward (Roberts, P. H. and Soward, A. M.: 1975, Astron. Nachr. 
296) it was shown that in the first approximation no a-effect is caused by the helicity of a mean magnetic 
field. More detailed, writing down a = a • ( B • curl B ) , the factor a will prove to be zero in the first 
approximation in B . I checked this result to be correct. My question is, in what approximation you found 
the constant a to be unequal zero. 

Vainshtein: The term ( B • curl B ) appears in the first nonlinear approximation. 
Stix: If the coefficients of the various electromotive forces are difficult to obtain, can you at least obtain 

information about the sign of the coefficients? In particular what is the sign of pu the coefficient of the 
caxj term? 

Radler: In all calculations I know the coefficient ft turned out to be positive. For a certain range of 
suppositions, departing from Bochner's theorem, it can be shown that Pi must necessarily be positive. 

Notes added in proof concerning chapter 3 

Strictly speaking, the factor at in (3.1) has to be replaced by al-(a9^-a10)/ry and y in (3.2) by 
J ~ (72 + 73)/r> where r is the radial coordinate. With respect to the foregoing discussions, however, this is 
of minor importance. 

The above-mentioned estimation of the ratio ax\B/Pi implies a special assumption on h. Obviously, ax 

depends only on the symmetric and pi only on the antisymmetric part of h where symmetry with respect to 
(<o • | ) is considered. Only if both parts are of the same order of magnitude ai\B/pi may be replaced by 
ABAJC- However, this assumption and, consequently, the conclusion on the minor importance of the 
o>x j-effect are questionable. 
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