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A REMARK ON GELFAND DUALITY

SHU-HAO SUN

In this paper, we prove a Gelfand-Mulvey type of duality for a certain class of
rings which includes the Gelfand rings. We also show that the Maximal Ideal
Theorem (MIT) can be replaced by the Prime Ideal Theorem (PIT) in the original
Gelfand-Mulvey duality.

1. INTRODUCTION

The Gelfand duality theorem states that the functor from the category of com-
pact T2 spaces to the category of commutative C*-algebras, obtained by assigning to
each compact Ti space X the commutative C*-algebra C(X) of continuous complex
functions on X, determines a duality between these categories. The dual functor is
that obtained by assigning to each commutative C*-algebra A the compact T2 space
Max A consisting of the maximal ideals of A endowed with the hull-kernel topology (of
which the subsets of Max A of the form D(a) — {M £ Max .A | a (fc M} for each a £ A
form a basis of the topology). It may be remarked that the maximal ideal space of a
commutative ring A is generally neither T2 nor functorial on the category of commu-
tative rings. The existence of this functor therefore depends on particular preperties of
commutative C7*-algebras. To extend the Gelfand duality to (not necessarily commu-
tative) rings, Mulvey [4] introduced the following notion: a ring A is called Gelfand if
for any two distinct maximal right ideals M and M', there exist elements a (£ M and
a' ^ M' such that aAa' = 0. It was shown in [4] that although the definition might
appear to be that of a right Gelfand ring, the condition would turn out to be equivalent
to that in terms of maximal left ideals and that the maximal ideal space of any Gelfand
ring is compact T2 , and that the assignment to each ring A of the maximal ideal space
Max A is functorial on the category of Gelfand rings and ring homomorphisms. In fact,
Mulvey obtained the following:
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188 S-H. Sun [2]

THEOREM. [4]. Tie functor from the category of compact local ringed spaces to
the category of Gelfand rings, obtained by assigning to each ringed space (X,Ox) the
ring of sections OX(X), determines a duality between these categories.

It may be remarked here that, although Mulvey's definition of Gelfand rings is
sensible only in the presence of the maximal ideal Theorem (MIT) — whose validity
for all rings is logically equivalent to the Axiom of Choice (AC) — it is possible to give
another description of Mulvey's duality by using only the Prime Ideal Theorem (PIT) -
which is strictly weaker than AC. It is also possible to extend Gelfand-Mulvey's duality
to a wider class of rings. These are the main purposes of this paper.

In general, the inverse image of a maximal (right) ideal under a ring homomorphism
need not necessarily be a maximal (right) ideal; for rings which are not commutative,
the inverse image need not even be a prime ideal. For Gelfand rings, Mulvey has shown
that the inverse image of a maximal right ideal determines a unique maximal ideal since
each maximal right ideal is completely prime (an ideal P of a ring R is called completely
prime if ab £ P implies that o 6 P or i 6 P ) and the inverse of a completely prime
ideal under a ring homomorphism is clearly completely prime. But a maximal ideal is
not necessarily completely prime, even for strongly harmonic rings (a ring R is called
strongly harmonic if for any two distinct maximal 2-sided ideals M and M', there exist
elements a fi M and a' £ M' such that aAa' = 0 [2]). However, we shall show that
each ring homomorphism / : -Ri —> R2, where Ri and R2 are strongly harmonic rings
such that each maximal 2-sided ideal contains a symmetric ideal (an ideal I of R is
called symmetric if abc 6 / implies acb E I) induces naturally a continuous mapping
from Max R2 to Max Ri.

2. MAIN RESULTS

Throughout the paper, all the rings are assumed to have identity and are not
necessarily commutative. First we discuss a kind of ring which includes the class of
strongly harmonic rings without using the Axiom of Choice (AC), and is the same
using AC.

DEFINITION 1: Let R be a ring and Id.R the lattice of all 2-sided ideals of R.
Then we say that Id R is normal if for each pair Ii,Iz 6 IdR with /1 +I2 = R, there
exist J\,J2 € IdR such that

h + Ji - R = h + J2 and Ji J2 = 0.

As usual, if R is a ring, then Spec R denotes the space of all prime 2-sided ideals
of R endowed with the hull-kernel topology. Define S : Id R —> Id R by
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[3] Gelfand duality 189

for each I E idR. Then it is easy to see that the image 5(Id R) is isomorphic to the
lattice of open sets of SpecR. Thus the topological space SpecR is normal if and only
if for each pair J i ,72 6 idR with 5( / i + I2) = R, there exist Ju J2 €ldR such that

+h) = R = S(J2 + I2) and 5(Ji J2) = 5(0).

Next, we note that if S(I + J) = R and PIT holds, then I + J = R. In fact, if
1 ^ (I + J), then there is a prime ideal P containing (/ + J) which implies that
1 ^ S(I + J). Hence we have:

LEMMA 1. Let R be a ring and suppose PIT holds. Then Spec R is normal if
and only if tor each pair I\,I2 G IdR with I\ + 1% — R, there exist Ji,J2 S Id-R such
that I1 + J1=R = I2 + J2 and 5(Ji)S(J2) C 5(0).

Since S(IJ) = 5(7) n S(J) D S(I)S(J), we immediately have:

COROLLARY. Let R be a ring. If IdR is normal, then SpecR is normal.

THEOREM 1 . Let R be a ring and suppose PIT holds. If Spec R is normal, then
each prime 2-sided ideal is contained in a unique maxima] 2-sided ideal. Moreover, the
maximal 2-sided ideal space MaxR is a non-empty retract of Spec/2.

PROOF: First we show that for each P £ SpecR, there exists a unique maximal
ideal containing it. Define

Then the family Fp satisfies

(i) If h+I2eFp, then either h € FP or I2 € FP.
(ii) If / 6 FP and I C J , then J € FP.

In fact, if h+I2 € Fp, then Ix +(I2 + P) = R by definition. Then by Lemma 1, there
are JX,J2 eldR such that Ji+h = R = J2+I2+P and S(Ji)S{J2) C 5(0). Moreover,
we have either J\ C P or J2 C P since P is prime and hence either Ix + P = R or
I2 + P = R, which implies either I\ £ Fp or I2 £ Fp by the definition of Fp. (ii) is
clear.

Now let

We see that 1 ^ Mp by Property (i); that is, Mp is proper. Since P (£ Fp, it follows
that P C Mp. Next we show that Mp is a maximal ideal: if / $2 Mp, then I £ Fp
and so I + P — R which imlpies that / + Mp = R. Hence we have shown that for
each prime 2-sided ideal of R, there is a maximal 2-sided ideal containing it. Note that
Mp is the unique maximal 2-sided ideal containing P since M' = MJ^I = Mp for each
M' € UaxR with M' D P.
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Now we define a mapping m : SpecR —> MaxR by sending each P 6 Spec R to
Mp <E Max-R. It remains to show that m is continuous. Let 0 / be the set of all
prime 2-sided ideals which do not contain I, where / 6 Id JR. Then Oj is a basic
open subset of Spec R and it is easy to check that 0 / = Os(i) • Choose an 0 / with
m(P) £ Or n MaxJ?. Then m{P) ^ I so that I + P = R, and hence there are
Ji,J2 S idR such that S(J i )S(J 2 ) Q S(0) and Ji + / = R = J2 + P ; this means
J2 <2 P . We claim that

Oj2 C m ^ O / H Max .R).

In fact, if P' 6 Oj2, that is, P> 2 S(J2), then P ' 2 S(Ji) since SiJ^S^) Q 5(0)
and P1 is prime. Thus P' + I = R so that / 6 -Fp/ and / £ m(P'). Hence m is
continuous and this completes the proof. D

COROLLARY 1 . Let R be a ring such that IdR is normal and suppose that PIT
holds. Then each prime 2-sided ideal of R is contained in a unique maximal 2-sided
ideal.

As immediate consequences, each non-empty closed subset of SpecR contains a
maximal ideal and Max R is a non-empty compact T% space.

LEMMA 2 . Let R be a ring such that IdR is normal. If F is a closed subset

of SpecR and 0 is an open subset of SpecR satisfying O 3 (F D MaxR), then PIT

implies O D F.

PROOF: Suppose that P £ F but P £ O. Then the closure {P} of P is disjoint
from O. On the other hand, {P} n i T l Max R ± 0 by Corollary 1, a contradiction. D

THEOREM 2 . If PIT holds, then IdR is normal if and only if R is strongly
harmonic and satisfies MIT.

PROOF: Suppose that R is strongly harmonic and satisfies MIT. First we shall
show that for any two disjoint non-empty closed subsets JFi and i*2 of SpecjR, there
exist J\ and J2 in IdR such that JFi C 0jx , F2 C Oj2 and JiJ2 — 0. By Corollary
1, we see that Max.R is compact T2 and that Pi (~l MaxR and P2 D MaxR are two
non-empty disjoint closed subsets of MaxiZ and hence are non-empty compact subsets
of Maxi?. Fix an M e Pi n Max/2. Then for each M' £ P2 D Max.R, we have
IMi <J. M' and JM % M with IM'JM = 0. By the compactness of P2 fl Max R, we
can find a finite number of 2-sided ideals, say / i , / 2 , . . . ,In, J i , J 2 , . . . , Jn, such that
M e 0 J 1 J 2 . . . J - B and P 2 n M a x f l C O(J l + j : + . . . + / n ) and /<Ji = 0, (i — 1,2,... ,n). Hence

Furthermore, by Lemma 2, we have P2 C 0(/1+/2-| |_/n). Repeating the above proce-
dure, we finally find I,J eld R such that / / = 0, F1 C Oj and P2 C Oj.
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Now we are going to show that IdR is normal. For this, let Ii,l2 6 IdR with
h + I2 = R and for i = 1,2, let

Du = {P £ Spec R | PDIi}-

Then Djt and Dj2 are disjoint closed subsets of SpecR and so there are Ji , J2 £ IdR
such that Ojx D D ^ , Oj2 2 £>/, and Ji J2 = 0. We claim that h + Ji = R = I2 + h •
If 1 ^ /1 + Ji, then there is a prime 2-sided ideal P with P 3 J1 + J i , which implies
that P € Djx since P D I i . Since 0.^ D D^ , thus P e Ojx which means P ^ Ji > a

contradiction. Hence Ji + Ji = -R. Similarly 72 + J2 = R.
The other implication follows from Theorem 1. This completes the proof. D

In a similar way, we obtain:

THEOREM 3 . (see [9, Theorem 2.3]) It PIT holds, then the lattice Idr R of right
ideals of R is normal if and only if R is Gelfand and satisfies MIT.

As an immediate consequence, the maximal right ideal space Maxr R of R is a
non-empty retract of the spectrum Specr R of right ideals of jR.

Now we study the tinctorial property of the assignment to each strongly harmonic
ring of its maximal ideal space. Recall that an ideal I of a ring R is symmetric if
abc £ / implies acb £ I for any a,b,c £ R. Then a ring R is called feebly symmetric if
each maximal ideal (if it exists) of R contains a symmetric ideal.

Clearly a Gelfand ring is strongly harmonic, and since its maximal right ideal is
symmetric, it is also feebly symmetric.

The existence of the sheaf representation of a strongly harmonic ring was estab-
lished first by Koh [2] and then by Simmons [7]. We shall use the description provided
by Simmons. Let R be a ring. Then / G IdR is called uniformly virginal if for each
ael

I + Ann {aR) = R,

where Ann (X) denotes the right annihilator of X. We denote by i&R the set of all
such ideals. It was shown by Simmons [7, Theorem 2.4] that \tiZ is a subframe of IdR.
Now for each / £ IdR, we write Wir (I) the greatest uniformly virginal ideal contained
in / . Then

LEMMA 3 . [7, Theorem 5.3] Let R be a ring. Tien tie following conditions are
equivalent:

(i) R is strongly harmonic.
(ii) For eaci I £ Idii and M £ Maxi*, Wir (I) C M implies I CM.

(iii) If I, J £ Id.R with 1 + J = R, then Wir (/) + Wir (J) = R.
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REMARK 1. We note that if R is a ring with Id R normal, then properties (ii) and (iii)
in Lemma 3 remain true, by using only PIT.

REMARK 2. These results can be generalised to a more general setting called right
unital quant ales (for the details, see [10]). Also we can extend the result in Theorem 2
as follows: A ring R is strongly harmonic if and only if for any two distinct maximal
2-sided ideals M and M' of R, there exist I\,h 6 idR such that h <£ Mi, I2 £ M2

and Ii PI I2 = 0 if and only if for any 7i, I2 £ Id R with I\ + I2 = R, there exist
J\iJi £ Id R such that Ii + Ji = R = I2 + J2 and Ji PI J2 = 0. Similar results hold
for G elf and rings.

The sheaf representation OMIX R obtained is that of which the stalk of each M £
Max A is the factor ring R/Wii (M): the canonical isomorphism from R to the ring
of sections is that which assigns to each a 6 R the section obtained by taking the
canonical image <ZM £ R/Wir (M) of a 6 R, for each M £ Maxil.

DEFINITION 2: A ringed space (X,Ox) is called quasi-local if each stalk of Ox
has a unique maximal 2-sided ideal and is called feebly symmetric if each stalk is feebly
symmetric.

Following Mulvey [4] and [6], we have:

THEOREM 4 . Let (X, Ox) be any ringed space and let R be the ring of the global
sections of (X,0x)- If (X,Ox) is compact and quasi-local, then IdR is normal. In
addition, if each stalk of (X, Ox) is feebly symmetric, then R is feebly symmetric.

PROOF: The existence of maximal 2-sided ideals of R follows from the fact that
the ringed space (X, Ox) is compact and quasi-local. Then suppose that M and M'
are distinct maximal 2-sided ideals of R. By the compactness theorem [5, Theorem
2.3] for ringed space, there exist x,x' 6 X such that

M D {o € R I ax = 0} and M' D {a £ R | ax, = 0}.

Since the ringed space (X, Ox) is quasi-local, the stalk of Ox at each x £ X has a
unique maximal 2-sided ideal. Moreover, at any x £ X, the stalk of Ox is isomorphic
to the ring- R of global sections factored by the ideal {a £ R | ax = 0}. The elements x
and x' in X corresponding to two distinct maximal ideals are therefore distinct. Since
X is compact and T2, there exist two disjoint open neighbourhoods U and U' of x
and x' in X, respectively. By the compactness of the ringed space (X,Ox), there
exist a, a' £ R having supports in U and U' respectively, and such that ax — 1 and
axi = 1 [5, Theorem 1.2]. Then a ^ M and a' ^ M'. Furthermore, any product of
elements of R which contains both a and a' in its expression must be zero, and so
aRa' = 0. Hence R is strongly harmonic and satisfies MIT and so Idi? is normal,
using Theorem 2. Now, suppose in addition that (X, Ox) is feebly symmetric and
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M e MaxiZ. Then there is x £ X such that M D {a £ R \ ax = 0} and hence the
stalk Ox,x is isomorphic to the ring R factored by the ideal {a £ R \ ax = 0} . Since
each stalk is feebly symmetric, it follows that M contains a symmetric ideal of R so
that R is feebly symmetric. This completes the proof. U

The converse is also true. We need the following results where we need to use
Zorn's Lemma:

LEMMA 4 . Let R be a ring with Id R normal. If I is a symmetric ideal of R, then
the minimal prime 2-sided ideal containing I is completely prime and every maximal
2-sided ideal containing I contains a completely prime ideal which contains I.

PROOF: Since R/I is a symmetric ring, each minimal prime 2-sided ideal of R/I
is completely prime (see [8, Lemma 3.2], [1] or [3]). The existence of minimal prime
ideals is guaranteed by Zorn's Lemma. U

THEOREM 5 . If R is a ring satisfying IdR is normal, then the ringed space

(Max. R, OMB.X R) is compact and quasi-local. In addition, if R is feebly symmetric,

then Zorn's lemma implies that each stalk of (Maxil , OMUXR) is feebly symmetric.

PROOF: First we note that MaxiZ is a non-empty compact T2 space. Next, for
any two distinct Mi and Mi in Maxi l , we have, by Lemma 3(iii),

Wir (Af i )+Wir (M2) = R.

Hence there are ai £ Wir (Mi) and a.2 £ Wir (M2) with ai +02 = 1 and so 02 = 1 -a i
is a unit in R/Wir (Mi) , whence ( 0 2 ) ^ = 1. On the other hand, {02)Mi = 0 since
02 £ Wir (M2). Hence (MaxiZ, OM&XR) is a compact ringed space. The fact that
(MaxR,O\iaxR) is a quasi-local follows from the fact that each maximal ideal of R

contains the ideal Wir (M) for a unique M 6 MaxiZ by Lemma 3(ii).

Finally, if, in addition, R is feebly symmetric, then for the last assertion, it suffices
to show that each maximal 2-sided ideal of R contains a completely prime ideal, the
fact of which follows from Lemma 4. This completes the proof. U

REMARK. If R is a ring satisfying the lattice Idr.R of right ideals of R is normal, then
PIT suffices to imply that (Max R, OM*XR) is a compact local ringed space, in the sense
of Mulvey [4].

Thus, using AC, we then can show that the assignment to each ring R of its
compact quasi-local ringed space (MaxiZ, OM&XR) determines a functor from the dual
of the category of strongly harmonic rings to the catogory of compact quasi-local ringed
spaces. However, to show that the restriction of the above assignment to the subcategory
consisting of those rings R such that Idr R is normal, determines a functor, we need
to use only PIT. To do this, we need one more notion. For each maximal 2-sided ideal
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M (if it exists) of R, we write QM for the union of all completely prime ideals (if any
exists) of R contained in M. Using Lemma 4, we immediately have:

LEMMA 5. Let R be a ring and M a maximal 2-sided ideal. Then each union of
symmetric ideals contained in M is contained in QM •

Now for a given ring R, let Qcp R be the collection of all non-empty unions of
completely prime ideals which is contained in some proper ideals of R. For I £ IdR,
we define

Oi = {P e Qcp R | / £ P},

and consider the collection

to be a subbase of a topology on Qcp R. Then the subspace Cspec R of Qcp R,
consisting of all completely prime ideals of R is precisely the subspace of SpecR.
Moreover, we have:

LEMMA 6. Let R be a ring and suppose that Id R is normal. Then Max R is a
retract of Qcp R.

PROOF: Define fi : Qcp R —» Maxil by assigning each element Q of Qcp R, the
unique maximal 2-sided ideal containing Q. We need to prove that fi is continuous.
Let T be a closed subset of Maxi2. Then we have to show that fi~1(J7) is closed in
Qcp R. For this purpose, let

F=f){Me F\MeMzxR} and / = f]{Q £ Qcp R \ fiQ £ T}.

Then we observe that

/ = pj{P G Cspec R | fi{P) £ T}.

Let Q D / where Q £ Qcp R; we have to show that fi(Q) £ T'. We first observe that
if Q is a prime 2-sided ideal and

QQB = [){M \M £T},

then the unique maximal 2-sided ideal containing Q is in T. In fact, we see that Q + F
is an ideal contained in B; hence there is a maximal 2-sided ideal M which contains
Q + F. Since M D F and !F is closed, thus M £ T. Moreover, M is the unique
maximal ideal containing Q.

Now we want to find a prime 2-sided ideal P which is contained in QflB (and
hence fiP = fiQ is in T, as required). Consider the multiplicative system

5 = {sitis2t2 • • sntn | Si £ B,U £ Q,i = 1,2, . . . ,n, n £ N}.
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We claim that S does not contain 0. Suppose that 5i<iS2̂ 2 • • • sntn — 0 6 <S. Put t —
iih -in- Then t $ Q, since Q 6 Qcp R. Hence there exists P' 6 Cspec RHfJ,'1^)
such that t (fc P1. Since P' C B, it follows that each a,- £ P ' , and since P' is a
completely prime ideal, we conclude that S1S2 • • • sn 4- P' J a contradiction. Hence there
exists a prime ideal P disjoint from the multiplicative system, and so, in particular,
P C Q l~l B. The continuity of \i now follows. D

LEMMA 7 . Let f : Rx —> R2 be a ling homomorphism. Then

4> = r 1 •• Qcp -R2 -> Qcp Ri

is a continuous mapping.

PROOF: First we note that <j> sends each completely prime ideal of JR2 to a com-
pletely prime ideal of Ri, and thus sends each union of completely prime ideals of R2
to a union of completely prime ideals of R\ . Hence <j> is well-defined.

Now for each non-empty open set Oj of Qcp Ri, we shall show that <f>~1{Oi) is
open in Qcp R2 . In fact, this follows from

D
LEMMA 8. The assignment ij) to each maximal ideal M of the union QM of

all completely prime ideals contained in M, is a continuous mapping from Max R to
QcpR.

PROOF: Let T be a closed subset of Qcp R, and put

F = r){P | P e T} and / = f|{M | QM G F).

We have to show that if M £ Max.R with M D I, then QM € T. First we see that
F C. I and F is a union of symmetric ideals since it is the intersection of unions of
prime symmetric ideals. Now let M be a maximal ideal containing I. Since F C I,
M contains F so that PM 2 F by Lemma 5 and hence PM 6 T since T is closed.
Thus the proof is completed. u

THEOREM 6 . Let R be a feebly symmetric ring satisfying IdR is normal. Then
the mapping tp defined in Lemma 8 is a homeomorphism from MaxR to a subspace
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of Qcp R, consisting of those completely prime ideals with the form QM for some
M E MaxR.

PROOF: It is clear that r/> is injective since each prime ideal is contained in a
unique maximal ideal. The restriction of the mapping fi, defined in Lemma 6, is the
continuous inverse of ip. This completes the proof. U

By Theorem 6, we can then identify Maxi? as a subspace of Qcp R.
Now for each ring homomorphism f : Ri —» R2, define

Pf - /*/~V»

where /x and t/> are as given in Lemmas 6 and 8, respectively. The induced mapping from
Max #2 to Maxili is continuous, by Lemmas 6, 7 and 8. Therefore this determines
a functor from the dual of the category of feebly symmetric rings satisfying Id R are
normal and ring homomorphisms to the category of compact Hausdorff spaces and
continuous mappings.

THEOREM 7 . The assignment to each ring of the maximal ideal space MaxiZ
is functorial on the category of feebly symmetric rings, with IdR normal, and ring
homomorphisms.

PROOF: Let

Ri^R2
I> Rs

be ring homomorphisms. We have to show that

pgf — pfpg : Max R3 —> Max Ri,

or equivalently;

In fact, for each M 6 Max #3, fi2g~1il's{M) is the unique maximal ideal containing
9~1/ll>3{M), which is a union of completely prime ideals; and •02/i25~1V'3(-^) is the
union of all completely prime ideals contained in fj,2g~1ij}3(M), so that

Hence

Now the conclusion follows from the fact that each prime 2-sided ideals is contained in
a unique maximal ideal. D
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[11] Gelfand duality 197

DEFINITION 3: A ring homomorphism / : iZj —> R2 is called fibered if for any
Mi 6 Max iZi and for any a £ Wir (Mi), we have f(a) 6 Wir (M2), for each M2 6
Maxi?2 with p/(M2) = Mi .

In [5], it was shown that if Ri and R2 are Gelfand then each ring homomorphism
is fibered. Hence we have the following generalisations of Gelfand-Mulvey duality.

THEOREM 8 . (i) The functor from the category of compact quasi-local ringed
spaces to the category of feebly symmetric strongly harmonic rings and fibred ring ho-
momorphisms, obtained by assigning to each ringed space {X, Ox) the ring of sections,
determines a duality between them.

(ii) The restriction of the above functor to the subcategory consisting of those
compact local ringed spaces to the category of those rings R such that ldTR is normal
and ring homomorphisms, determines a duality between them and in this case we need
to use only PIT.

REMARK. We still do not know whether a feebly symmetric strongly harmonic ring is
Gelfand.

REFERENCES

[1] K. Koh, 'On functional representations of a ring without nilpotent elements', Canad.
Math. Bull. 14 (1971), 345-352.

[2] K. Koh, 'On a representation of a strongly harmonic ring by sheaves', Pacific J. Math.
41 (1972), 459-68.

[3] J. Lambek, 'On the representation of modules by sheaves of factor modules', Canad.
Math. Bull. 14 (1971), 459-466.

[4] C. Mulvey, 'A generalization of Gelfand duality', / . Algebra 56 (1979), 499-505.
[5] C. Mulvey, 'Compact ringed spaces', J. Algebra 52 (1978), 411-436.
[6] C. Mulvey, Representations of rings and modules, Lecture Notes in Mathematics 753,

1979.
[7] H. Simmons, 'Sheaf representations of strongly harmonic rings', Proc. Royal Society of

Edinburgh 99A (1985), 269-275.
[8] S-H. Sun, 'Noncommutative rings in which every prime ideal is contained in a unique

maximal ideal', J. Pure Appl. Algebra 76 (1991), 179-192.
[9] S-H. Sun, 'Rings in which every prime ideal is contained in a maximal right ideal', J. Pure

Appl. Algebra 78 (1992), 183-194.
[10] S-H. Sun and C. Mulvey, 'Compact representations', (in preparation).

Department of Pure Mathematics
University of Sydney
New South Wales 2006
Australia

https://doi.org/10.1017/S0004972700011825 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011825

