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Abstract

Equations are derived which describe the evolution of the mean flow generated by a
progressing water wave packet. The effect of friction is included, and so the equations
are subject to the boundary conditions first derived by Longuet-Higgins [10]. Solutions
of the equations are obtained for a wave packet of finite length, and also for a uniform
wave train. The latter solution is compared with experiments.

1. Introduction

It was shown by Stokes [15] that for an inviscid progressive water wave of small
amplitude a, the fluid particles do not exactly describe closed paths; in addition
to their orbital motion there is an O(a2) drift velocity in the direction of the
wave propagation. For water of mean depth h this Stokes drift velocity is given
by

_s = a*2UK cosh 2K(Z + h) + Q{a% ( u )

sinh2 tc/i

where w is the wave frequency, K is the wavenumber, 4a is the crest-to-trough
amplitude and z is the vertical co-ordinate (measured upwards from the mean
free surface). If u is the mean Eulerian velocity (that is, the mean recorded at a
fixed place), then the mean Lagrangian, or mass transport, velocity is uL = u +
us. In the interior of the fluid, the O(a2) equation governing the mean Eulerian
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|2 | Flows generated by a water wave packet 319

velocity is

du dq d2^ . .

where x is a horizontal co-ordinate in the direction of the waves, / is the time, q
is a mean pressure (independent of z), and v is the kinematic viscosity.

Just over one hundred years after Stokes derived the expression (1.1) for the
drift velocity, Longuet-Higgins [10] showed that viscous effects in the boundary
layers of thickness (v/cS)1^2 at the bottom and free surface profoundly modify
the mean velocity fields. He showed that just outside the bottom boundary layer,
there is a mean Eulerian velocity

,. _ a3uK ., _.
hm « = — - — , (1.3)

*-»-* sinh K/I
while just outside the free surface boundary layer there is a mean Eulerian
velocity gradient

hm — = -—7——. (1.4)
z-»o az tanh K«

These expressions arise due to the action of Reynolds stresses transferring
momentum across the boundary layer, and although dependent on a non-zero
value of v, are independent of the value of v. Equations (1.3) and (1.4) act as
boundary conditions for the interior mean flow equation (1.2). Experiments by
Russell and Onsorio [14] have verified the validity of the bottom boundary
condition (1.3), while experiments by Longuet-Higgins [11] have verified the
free-surface condition (1.4). When u is independent of the time /, Longuet-
Higgins [10] derived the conduction solution to (1.2), (1.3) and (1.4); this
solution with dq/dx determined by the constraint of zero mass transport, gives
qualitative agreement with the experimental results of Russell and Onsorio [14],
although there are some discrepancies (see Figures 1 and 2 in Section 5).
Subsequently Chang [4] and Unliiata and Mei [16] re-derived Longuet-Higgins'
results using Lagrangian co-ordinates a priori. All of these authors assumed a
uniform wave train so that the amplitude a is a constant. Liu and Davis [9]
allowed the amplitude to decay exponentially in time, but their solution contains
some anomalies at certain values of the depth h. Huang [8] attempted to obtain
better agreement with experiment by imposing different stress conditions at the
free surface, and Madsen [12] has considered the effect of an imposed wind
stress, and the inclusion of the Coriolis terms in (1.2). Longuet-Higgins [10] and
Dore [6] have discussed the consequences of including the nonlinear advective
terms in the mean flow equation (1.2).

In this paper we propose to consider the mean flow generated by a wave
packet. Thus the amplitude of the waves is allowed to depend on both x and t,
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320 R. Grimshaw 13]

and the wave amplitude envelope propagates at the group velocity, being
simultaneously attenuated by friction. This has the advantage that we are then
able to consider the initial value problem in which the wave packet is initiated at
t = 0, x = 0 say, and discuss the subsequent evolution of the mean flow when it
is governed by the equations (1.2), (1.3) and (1.4) and an equation for conserva-
tion of mass. In Section 2 we formulate the equations of motion in the
generalized Lagrangian-mean formulation of Andrews and Mclntyre [1]. This
has some conceptual advantages, and considerably simplifies the analytical
treatment of the free surface, although at the expense of some complications in
the viscous terms in the interior. Then in Section 3 we considered a modulated
wave packet and derive the wave action equation to describe changes in the
wave amplitude. In Section 4 we derive the equations for the evolution of the
interior mean flow, which consist of equations (1.2), (1.3), (1.4) and an equation
for the conservation of mass. Then in Section 5 we discuss solutions of the mean
flow equations. We concentrate on two cases, (i) a uniform wave train and (ii) a
wave packet, both initiated by a wavemaker at x = 0 at / = 0. We show that in
case (ii) for a wave packet the interior solution for the Eulerian mean flow is a
depth independent irrotational flow, modified by boundary layers of thickness
(vt)~1/2. For water of finite depth, the frictional decay factor for the wave
amplitude is proportional to v1^2. It is thus appropriate to consider a wave
packet only for times t of O(v~x/2), and the boundary layers remain confined for
these times. By contrast, for case (i) of a uniform wave train, the wave amplitude
is maintained by the wavemaker, and the boundary layers can penetrate to the
interior. Ultimately, for times t of O(h2/i>), the Longuet-Higgins conduction
solution is reached. However, for the experiments of Russell and Onsorio this
diffusive time scale of O(h2 /v) is too long, and instead we compare their
experimental results with the solution of the interior mean flow equations for
times t of O(v~l/2). Our results give reasonably good agreement with the
experiments.

2. Generalized Lagrangian-mean formulation

The Eulerian equations of motion for an incompressible homogeneous fluid
are

3M.
^ = 0, (2.1a)

and
du dp

( 2 1 b )
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vhere

Here «, are the velocity components, p is the reduced pressure, t is the time and
x[ are Eulerian Cartesian co-ordinates; the Latin index i takes the values 1, 2 or
3 and the summation convention is used; S^ is the Kroneker delta and the
X-axis is the vertical axis. The variables are non-dimensional, based on a length
scale L (a typical wavelength), a time scale wf1 («, is a typical frequency) and
<o,L is the velocity scale; then v is a non-dimensional kinematic viscosity, and
the dimensional kinematic viscosity is uxL?v. It is convenient in the subsequent
analysis to distinguish between horizontal co-ordinates x'a (a = 1, 2) and the
vertical co-ordinates z = x'3 by employing Greek indices for horizontal varia-
bles, while retaining Latin indices for all three co-ordinates; similarly ua are the
horizontal velocity components and w = «3 is the vertical velocity. It will be
assumed that the fluid occupies a horizontal channel, bounded below by a rigid
boundary z' = -h(x^) and above by the free surface z' = l(x'a, t). The boundary
conditions are

oi, = 0 on z ' = -*(*;), (2.2a)

Yt + U ^ = w o n z ' = «<'')>

K K

= 0 on z ' = S(x'a, t), y = 1, 2. (2.2d)

Here g is a non-dimensional gravity (dimensional gravity is co*Lg), n, is a vector
no rma l to the free surface, a n d T,(ir) a r e vectors tangent to the free surface. W e
put

n a = - ^ r > " 3 = 1 . (2.3a)
a

and

<y) = 8ay, T^> = - ^ - . (2.3b)

Thus (2.2c) is the condition that the normal stress vanish at the free surface,
while (2.2d) is the condition that the tangential stress vanish.

To describe a modulated progressing wave packet we introduce a small
parameter e, and define

X'a = ex'a and T = et. (2.4)
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Then, if <j> is any field variable, we put

</>(*;, /) = *{K> T\ z') + *'(X;, T; z', 9% (2.5a)

and

6' = ̂ ®{X^T), (2.5b)

where <£' is periodic in the phase 6' with period 2IT and zero mean. Eulerian
mean, <£, is an 0(a2) quantity which varies in the horizontal, and in time, on the
scale e~', while <£', the Eulerian perturbation, is an O(a) wave-like quantity; here
a is a small parameter which measures the wave amplitude. Consistently with
these hypotheses, we assume that v is also a small parameter and scales with
either e (in the deep water approximation), or e2 (otherwise), while the depth h is
h(X^). Next we note that

*(*/, /) = <*(*/, 0> = y - / % M' (2-6)

defines an averaging operator, which represents a local average over the phase of
the waves. Substitution of expressions like (2.5a) into (2.1) and (2.2) and
linearization would then determine the wave-like quantities, and in particular
the variation of the wave amplitude on the length and time scales e"1. Applica-
tion of the averaging operator to (2.1) and (2.2) gives the equations governing
the Eulerian mean flow, whose forcing terms can be evaluated correct to O(a2).
In both cases boundary layers of thickness p1/2are inserted at z = -h and z = f
to ensure that all the boundary conditions are satisfied. This is essentially the
procedure used by Longuet-Higgins [10] for a uniform wave train, and by Liu
and Davis [19] for an attenuating wave train. The mass transport is found a
posteriori by calculating the Stokes corrections and adding these to the Eulerian
mean flow.

However, instead of using this Eulerian procedure outlined above, we shall
use the generalized Lagrangian-mean flow (GLM) formulation recently pro-
posed by Andrews and Mclntyre [1, 2]. In the present context, a Lagrangian
formulation has some practical and conceptual advantages, although a major
disadvantage is the complicated form that the viscous terms take in Lagrangian
co-ordinates. Chang [4], for deep water waves, and Unliiata and Mei [16] used
the traditional Lagrangian co-ordinates. Grimshaw [7] used the GLM formula-
tion to discuss mean flows induced by internal gravity waves in a shear flow,
and we shall use a very similar formulation here. Let x, be generalized
Lagrangian co-ordinates, and let £,(*> 0 be particle displacements defined so
that

x- = *, + £.. (2.7)

Occasionally we shall distinguish the vertical particle displacement and put
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161 Flows generated by a water wave packet 323

£3 = TJ. We then define a Lagrangian-mean operator by

;*•(*„ 0 = <*(*, + 6 , 0>- (2-8)
In physical terms, <£, the Eulerian mean, is the average over the phase of the
waves taken at a fixed place, while <j>L, the Lagrangian mean, is the average over
the phase of the waves following the fluid motion. As shown by Andrews and
Mclntyre [1], this latter motion is made precise by requiring that

<!,> = 0. (2.9)

Like <j>, <f>L is an O(a2) quantity. Thus xt is a co-ordinate which moves with the
Lagrangian mean velocity us

L whenever the co-ordinate x\ moves with the true
velocity «,. Since £, is wave-like and O(a), it follows from (2.5a, b) and (2.7) that
we may put

*(*„ 0 = V{Xa, T; z) + *(Xa, T; z, 0), (2.10a)

where

n (2.10b)

and

Xa = exa. (2.10c)

Here ij> is periodic in 0 with period 2TT and zero mean. Then we may show that

$ = #+ O(a2), (2.11a)

and

4>L = $+4>S, (2.11b)

where

and <f>s is usually the "Stokes correction". Finally we note the useful property
that, in the GLM formulation,

and so

The next step is to obtain the equations of motion in Lagrangian form. First
we introduce the Jacobian
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Then (2.1a) implies that J is a mean quantity ( / = 0) and

l ^ + Tx~ = 0- ( 2 1 4 )

Substituting (2.7) into (2.13) and expanding in £, it follows that

•jp = O(a2), (2.15a)

and

V = _9_/ ,
9x, 9/

Next, the equation of motion becomes, after multiplying by dx'j/dXj,

IT1 ^T~ + IT ^~T + IT = "IT-lT^h' (216a)
oxj dt dXj dt 9x;. oxj oxkoxk

where

«,. = ul + u,. and u,, = -^. (2.16b)

The right-hand side of (2.16) can be expressed in Lagrangian terms by introduc-
ing KtJ, the i-jih co-factor of / , so that

It may then be shown that

dXj

Hence the viscous force in (2.16) may be put in the form

'£">• (218>

9x; 92»,- _ v dx; 3 IK^K^ du,\

dXj dx'kdx'k J dx, dx,\ J dxs[

Extracting the mean and perturbed parts of (2.16) it follows that

3,2 8x,. dxkdxk

and

duf- dpL 9 V
7- + f - = "a—5- + R"/ 9x 9x9x

(2.20a)

9/

https://doi.org/10.1017/S0334270000002678 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002678


18 ] Flows generated by a water wave packet 325

where

RL = — ( -u-—- ) H ( — uu-) + v( — — )
1 at\JoxiJ dx, \ 2 J JI \ 3x, 3 X ^ 3 ^ J

+ " — ( - ( — + — ) — ) + O(a4), (2.20c)

and

u, = y - + O{a2). (2.20d)

Thus the equations to be solved for the perturbed, wave-like terms are (2.15a)
and (2.20a), while the equations for the Lagrangian mean flow are (2.15b) and
(2.20b).

The equations for the Eulerian mean flow may be obtained directly and
simply from (2.1), or with more difficulty by calculating the "Stokes corrections"
from (2.1 lc). Thus, for example,

h O(a4). (2.21)

Then substituting expressions such as (2.11b) for u^ and pL into (2.15b) and
(2.20b) it may be shown that

3x, "'

and

3«, dp 32«,.

Ul I/Ay \)^lf\}Jvi,

where

(2-22b)

Next, the boundary condition (2.2a) becomes

u,L = 0 and $, = 0 on z = -h(xa). (2.23)

The free surface in the GLM formulation is described by z = f L(x, t) with the
Lagrangian perturbation being identically zero. Then the boundary condition
(2.2b) becomes

l | _ = wL + O(a4) on z = 0, (2.24)
of

where we have a s sumed tha t the level z = 0 is chosen so tha t fL is O(a2). T h e
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viscous boundary conditions (2.2c, d) then become

-P +gn + 2»»-jp = O(a2) on z = 0, (2.25a)

and

j j - + ̂  = O(a2) on z = 0, (2.25b)

for the perturbation terms, while the mean flow boundary conditions are

-pL + g$L + 2v^- = 2,1 H H \ + O(a% on z = 0, (2.26a)

and

-h{irrir + iz-Tr) + O(a% onz=0; (2.26b)
dxa 3z 3/

where we have used (2.15a) to simplify (2.26a, b). In Eulerian terms, the free
surface is prescribed by z' = f, where f is decomposed into f + f' of (2.5a).
Then it is readily shown that

7? = f' + O(a2) on z = 0, (2.27a)

and

SL = f + ($, | j - } + O(«4) on z = 0. (2.27b)

In the Eulerian formulation, the boundary conditions for the mean flow are

w, = 0 on z = -h(xa), (2.28a)

< + <9(fl4) o n z " °« (2.28b)

I- O(a4) on z = 0, (2.28c)

and

3T, dup 3 ^

dz \ dxa dxp dxkdxk

+ O(a4) on z = 0. (2.28d)

In summary, the equations to be solved for the perturbation variables are
(2.15a) and (2.20a), with the boundary conditions (2.23) and (2.25a, b). The
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Lagrangian mean flow equations are (2.15b) and (2.20b), with the boundary
conditions (2.23), (2.24) and (2.26a, b), while the alternative Eulerian mean flow
equations are (2.22a, b), with the boundary conditions (2.28a, b, c, d). To this
point we have used the smallness of the amplitude parameter a but have made
no explicit use of the smallness of e, and the equations are exact to all orders in
e.

3. Modulated waves

In this section we shall seek an asymptotic solution to the perturbation
equations (2.15a) and (2.20a), and the boundary conditions (2.23) and (2.25a, b),
of the following form:

% = a{if\Xa, T; z) + e^(Xa, T; z) + 0(e2)}exp(/0) + ex., (3.1a)

p = a{p«»(Xa, T; z) + ep"\Xa, T; z) + O(e2)}exp(/0) + ex.. (3.1b)

Here c.c. denotes complex conjugate and 9 is defined by (2.10b). Equations
(3.1a, b) describe a modulated progressing wave packet whose local frequency w
and local wave number are defined by

<o = - — and K a = — . (3.2)

Also we define K by K2 = icaKa. Substituting (3.1a, b) into (2.15a) and (2.20b) it
follows that

,<« 'X. cosh K(Z + h)

(0) _ sinh K(Z + h)
sinh K/I

and

.(0) co2 cosh K(Z + h)

Here A(Xa, T) is the amplitude of the free surface displacement. We have also
satisfied the boundary condition TJ(0) = 0 at z = -h, as, to O(e), this is the
kinematic and non-viscous part of the boundary condition (2.23). Recalling that
v scales with either e (deep water approximation) or e2 (otherwise), the boundary
condition (2.25a) will be satisfied if and only if

w2 = gK tanh K/I, (3.4)

which is the well known dispersion relation for water waves. Recalling (3.2),
equation (3.4) is here a partial differential equation for the phase 0. At the next
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order in e we obtain the equations

iKaka + —~— = / , (3.5a)

-co2£<'> + iKj^ = Fa, (3.5b)

and

7(1) , 9PO) r. (~ z \
- « V " + -5— = Fy (-»-5c)

3TJ

Here the right-hand sides of (3.5a, b, c) are known in terms of £,(0) and p(0\ and
are given by

(3.6a)

(3.6b)

and

F-j = 2/(0 + i-z—fy . (3.6c)

There is no contribution from the viscous term in (2.20a) as the zero-order
solution (3.3a, b) is irrotational. Further, it may be shown from (3.5b, c) and
(3.6b, c) that the first order solution is also irrotational. Eliminating £,(l) and j5(1)

it follows that

M ) (3.7a)
V dz2 I

where

M = K% + ^ (wa/ + iKaFa). (3.7b)

The full viscous boundary conditions (2.23) and (2.25a, b) cannot be satisfied
by the solution (3.3), which is an inner solution, and must be supplemented by
boundary layer solutions at z = 0 and z = -h. Consider the bottom boundary
layer first. The boundary layer thickness is v1^2, and so we introduce the
boundary layer variables

a n d

Substituting these variables into (2.15a) and (2.20a), the leading terms in the
boundary layer equations are

dx '/2 dX dz* dz*
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112 I Flows generated by a water wave packet 329

^ + M! + _^J^_M: = _ i l ^ 09b)
dt2 dxa »1/2 ™« ^ * dz*2 9' ' V ' }

and

& - • • (3.9C)

The boundary conditions are (2.23), or

£ = 0 and T/* = 0 onz* = 0, (3.10)

and the matching conditions with the interior solutions are

lim {Q,r,*,p*) = lim {l,,r-l/\p}. (3.11)

Equation (3.9c) and the matching condition (3.11) show that/* = p within the
boundary layer where p is evaluated at z = -h. Next, we seek a solution of
(3.9b) for £* which is proportional to exp(/0), and satisfies the boundary
condition (3.10) and the matching condition (3.4). The result is

Q = a{W> exp(/0){ 1 - exp(-yz*)} + ex., (3.12a)

where

y = |w|'/2 exp(--J sign <A (3.12b)

Finally, TJ* is found from (3.9a) and (3.10) which give

T,* = -ancjW exp(/0){z* + y-'[exp(-yz*) - 1]}

^ ^ - exp(-Yz*)} + ex.. (3.13)

In both (3.12a) and (3.13) £<0) is evaluated at z = -h. The matching condition
(3.11) for ij* now shows that

K m V »- t -^ . + ^ i ^ . (3.14)

Thus the outcome of this boundary layer expansion is to supply a bottom
boundary condition for the interior variable TJ(1), which satisfies the interior
equation (3.7a).

Next, the free surface boundary layer variables are defined by

^ a n d fi = flO + vVfrt

(3.15)

where the superscript index (/) denotes the interior solution, defined by (3.1a, b).
The use of the same notation for both boundary layers should cause no
confusion, as the context will make it clear which boundary layer is being
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considered. The boundary layer equations are again (3.9a, b, c) with the omis-
sion of the terms proportional to dh/dXa. The boundary conditions are
(2.25a, b) which, in the boundary layer variables (3.15), become

-vi/2p* + gvq* = a[e(pw — gr/(l)) + vliuK coth ah ,4}exp(/0) on z* = 0,

and <3-16a)

j p = (-a2iKaA)exp(i9) + c.c. (3.16b)

The matching conditions are

lim tfj, i?*,/>*} = 0 . (3.17)
z'—»oo

Equation (3.9c) with the matching conditions (3.17) shows that;?* is O(v). Next,
the solution to (3.9b) which is proportional to exp(/0), and satisfies the boundary
condition (3.16b) and the matching conditions (3.17), is

g = -aliKaA exP(/fl)eXp(YZl>) + c.c. (3.18)

Finally, 77* is found from (3.9a) and (3.7) which give

T,* = _«*!!A exp(i0)exp(yz*) + c . c (3.19)

(0

The boundary condition (3.16a) now shows that

v 4 / &K A

l i m ( p ( ' — CTI( ') = . (3.20)
z->.o e u

This is the free surface boundary condition for the interior variable rjw.
We have now established that the interior variable T)(1) satisfies (3.7a) with the

boundary conditions (3.14) and (3.20). A necessary and sufficient condition that
this inhomogeneous boundary value problem have a solution is the compatibility
condition

= 0 . (3.21)
z - -h

This condition is derived by using the method of variation of parameters to
solve (3.6a) and then applying the boundary conditions (see [7]). If we now
substitute (3.3), (3.6), (3.14) and (3.20) into (3.21) we get

| | + 9 ^ ( ^ f f i ) + ^ = 0 , (3.22a)
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where

&=^~, (3.22b)

and

a = £ l f _ ^ + JL4lc2f (3.22c)
e sinh 2K/I e

and Va is the group velocity, dw/dxa. In the absence of friction, a is zero, and
(3.22a) is the equation for conservation of wave action (see [7], where the same
equation is derived in more general circumstances); & is the complex wave
action. The coefficient a is the frictional decay factor [13]; if bottom friction
dominates v scales with e2 and only the first term in (3.27c) is required; in the
deep water approximation v scales with £ and only the second term in (3.22c) is
required. The universality of the conservation of wave action as the principle
for determining the modulation of the wave amplitude is well known [2, 3]. In
the context of water waves the Lagrangian method of deriving equation (3.22a)
is relatively unusual although, as Andrews and Mclntyre have pointed out, there
is a very close connection between Lagrangian concepts and wave action.

4. Evolution of the mean flow

Now that the perturbation variables are known to O(a) from (3.3), with the
amplitude A determined from (3.22a), the forcing terms in the mean flow
equations may be evaluated to O(a2). The mean flow equations are either
(2.15b) and (2.20b), with boundary conditions (2.23), (2.24) and (2.26) in the
Lagrangian formulation, or (2.22) with boundary conditions (2.27) in the
Eulerian formulation. Because the perturbation flow is irrotational in the interior
it is more convenient to use the latter formulation. Indeed, when ut is irrota-
tional, the forcing term /?, (2.22c) becomes

and the mean flow equation (2.22b) is simply

' -"TTinr- (4-2)

Thus, in the interior, the effect of the waves on the Eulerian mean flow is simply
an adjustment of the mean pressure field [1]. Since the mean flow depends only
on Xa, T and z, the leading terms in the interior mean flow equations (2.22a)
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and (4.2) are

TfiF + I T = 0, (4-3a)
6Xa az

(4.3b)
dT dXa e 922

f = 0, (4.3c)

and

_ = _ + aVcosh2.(z . ..„,.,
sinh (c/i

Here we have replaced w by e>v as the continuity equation (4.3a) implies that vv
is O(e) relative to ua. The continuity equation (4.3a) is also valid in both
boundary layers; combined with the boundary condition that w = 0 at z = -h
(2.27a), it serves to specify w completely. Note that equation (4.3c) shows that q
is independent of z to leading order in e. To find the mean flow, it is necessary
to calculate the "Stokes corrections". For instance, from (2.21), it follows that

«/ = -
sinh2 K/J

and

_, 9 / a\ sinh 2K(Z + h)\A\2\ d I a2o>Ka sinh 2K(Z + h)\A\2

W ~ dT\ s i n h 2 ^ J 3*a\ Ksinh 2 ^

(4.4b)

In the bottom boundary layer, the forcing terms are no longer irrotational,
and are given instead by (3.12a) and (3.13). Evaluating R, using (2.22c) we find
that, to leading order,

{<WU> ^O (4-5a)

and

R3 = O(aV/2). (4.5b)

Recalling, from (3.8), that in the bottom boundary layer TJ, and here H>, is
O(vl/2), we see that Ra is O(a2). Hence the mean flow equations in the bottom
boundary layer are

*. = 0. (4.6a)
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and

•jTT = 0- ( 4 6 b >

These equations are to be solved subject to the boundary condition (2.27a) or

t7a = 0 on z* = 0. (4.7)

Equation (4.6b) shows that p is constant throughout the boundary layer, and so
is given by (4.3d) evaluated at z = -h. Then ua is found by integrating twice
with respect to z*, applying the boundary condition (4.7) and the matching
condition dua/dz* -»0 as z* -> oo; this latter condition is required since dua/dz
is O(a2) in the interior, but equals i>~i/2diia/dz* in the boundary layer. The
result is

a2o>Ka\A\2

«„ = {-yz* exp(-yz*) + [2 + i sign to][1 - exp(-z*)]
sinh2 nh

— ^[1 - exp(-(Y + Y ) Z * ) ] + c.c.}. (4.8)

Next, letting z* —» oo in (4.8) and matching with a limit as z - • -h from the
interior, we deduce that

a23o)Ka\A\2

lim Ua = ~f-i-. (4.9)
*-»-* sinh K/I

Equation (4.9) provides the bottom boundary condition for the interior mean
flow equations (4.3), and was first derived by Longuet-Higgins [10]; an explana-
tion of how the Reynolds stress <wwo> is responsible for the transfer of
momentum across the boundary layer has been given by Longuet-Higgins in an
appendix to the paper by Russell and Onsario [14]. The Stokes velocity u / can
be computed from (2.21), (3.12a) and (3.13). Then the Lagrangian mean velocity
is found from the sum of ua and uf:

_L = a<*Ka\A\ | 5 _ 4 e x p ( _ y z t ) + 3 e x p ( _ ( Y + y)z*) + c x . j . (4.10)
sinh K/I

For the free surface boundary layer, the forcing terms are evaluated from
(3.18) and (3.19). For this boundary layer it is more convenient to first calculate
the Lagrangian mean flow. Following the method used for the perturbation
variables, we put

ua
L = ««*> + ua

L' and pL = pW + pL\ (4.11)

where, as in (3.15), the superscript index (/) denotes the interior solution. Next,
evaluating Rt

L from (2.20c), (3.3), (3.18) and (3.19), we find that, to leading
order,

ex.)}, (4.12a)
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and

RL = o(a2), (4.12b)

and so the boundary layer equations are

(/) = 0, (4.13a)
oz~~

and

^p- = 0- (4.13b)

The matching conditions with the interior solution are that

lim {Ha
L',pL'} = 0. (4.14)

The boundary conditions are (2.24) and (2.26a, b). In boundary layer variables
the latter two are

-PW) ~ PL' + g£L = 0 on z* = 0 (4.15a)

and

^ + " - 1 / 2 ^ T = 0 onz* = 0. (4.15b)

Now (4.13b) shows that/?^* is constant throughout the boundary layer and, from
the matching conditions (4.14), we see that it is 0(aV/2). Equation (4.12a)
shows that u£' is O{a2vl/2); integrating (4.13b), and using the matching condi-
tions (4.14), it follows that

Application of the boundary condition (4.15b) now shows that

*.&-**=%?. (4.,,)
z->o dz tanh KH

where we have now omitted the superscript (/) as the limit process refers to a
limit from the interior. Equation (4.17) is one of the free surface boundary
conditions for the interior mean flow equations and was first derived by
Longuet-Higgins [10, 11]. The present Lagrangian method of deriving (4.17) is
similar to that employed by Unliiata and Mei [16]. The remaining boundary
conditions (2.24) and (4.15a) may be combined into

limi^ - gwL) = 0,
z-,0\ 01 ]

(4.18)

which is the second free surface boundary conditions for the interior mean flow
equations.
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Since the interior mean flow equations (4.3) are cast in Eulerian variables, we
must convert the boundary conditions (4.17) and (4.18) into their Eulerian
counterparts. The interior Stokes velocity is given by (4.4a) and it is readily
shown that (4.17) is replaced by

. i ^ = ^ . (4.19)
z-»o oz tanh m

Next, using (4.3d) and (4.4b) and evaluating/5 from (2.11c), it follows that
(4.18) is replaced by

dq _ 3 I a22gK\A\2} 3 ( a22g\\A\2\

ar ~ l!^ gw = ar( sinh2^ ) ~ ^ d « )• (420)

Also, it may be shown that the mean Eulerian displacement of the free surface is
given by

Finally we note that the reason the free surface boundary layer is more readily
analysed in Lagrangian terms is because the boundary layer correction u£' is
O(i>1/2). This is not the case for the corresponding Eulerian boundary layer
correction u*, and consequently a treatment of the free surface boundary layer
in Eulerian terms necessitates calculating Ra to two orders of magnitude.

5. Solutions of the interior mean flow equations

The interior mean flow equation is (4.3b) with the boundary conditions (4.9),
(4.19) and (4.20). For the convenience of the reader we shall display these
equations again

-jjy + -jjy = - — f f o r - / j < z < 0 , (5.1a)

where

"a = —. , 7° , on z = -h, (5.1b)
sinh m

dz tanh nh

and

3rl *-^inh^j + 3^1V^ Z + « ' - a (5' ld)
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This last equation is obtained from (4.20) after solving for w from (4.3a). In
these equations to and Ka are known functions determined from (3.2) and (3.4),
while the amplitude A is determined from (5.Id). The dependent variables are ua

and q, which is independent of z. From (4.4a) it may be shown that the second
term in brackets in (5.Id) is the mass transport

Recalling that f is given by (4.21), it follows that (5.Id) may be written in the
form

+ = 0 (53)
dT dXa

 K '
Thus (5.Id) is simply the integrated equation for conservation of mass.

A steady solution of these equations is found by assuming that w, Ka and A
are independent of T, and seeking a solution for which ua and q are also
independent of T. We find that

^ f a'3mW', (5.4a,
h

2v dXa
v" ' ' " tanh

and

9 f e ,3 dq
tdXa [ 3i> dXa tanh xh sinh2

 Kh «

(5.4b)

The quantity in brackets in (5.4b) is the mass transport Ma. If it is further
supposed that w, Ka and A are also independent of Xa (which means neglecting
the frictional decay factor a (3.22c)) and hence constants, and also equation
(5.4b) is satisfied by equating Ma with zero, then (5.4a) is Longuet-Higgins' [10]
conduction solution. For steady flows equating Ma with zero is appropriate
when the waves are contained in a wave tank with a wave absorber at one end;
however, in an infinite wave tank or in the ocean it may be more appropriate to
satisfy (5.4b) by equating Ma with a non-zero constant (Unliiata and Mei [16]).

Alternatively, suppose that w and na are constants and A is independent of Xa.
Then, from the wave action equation (3.22a), \A\2 = (constant)exp(-ar). Liu
and Davis [9] obtained a solution of (5.1) under these hypotheses by further
supposing that ua = (functions of z)exp(-oT). However, their solution contains
some anomalies because at certain depths no solution could be found. It is also
difficult to see how a solution of this kind can be set up from a realistic initial
state.

In general, the wave action equation (3.22a) shows that the amplitude A will
be a function of Xa and T, and we must accordingly seek solutions of (5.1) for
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which ua and q are likewise functions of Xa and T. In this case it will facilitate
subsequent discussion if we put

"a = g j - + °« + Ua> ( 5 5 a )

and

9 = - | | + a (5.5b)

where <p(Xa, T) is independent of z and satisfies the equation

8 (a22Kg\A\2\ , 3 /a22g2Ka|^|2\
= " a r i sinh2K// ) ~dX~a[ a ) ' { }

dT2 dxa\* ax,

while va satisfies the equations

- —f for -h < z < 0, (5.7a)

where

v = — on z = -h, (5-7b)
sinh ah °x

a

and

dv a &UKK \A\
— = —-—r——— on z = 0. (5.7c)
3z tanh xh

Equations (5.1) will then be satisfied if we choose Ua to satisfy the equations

where

Ua = 0 on z = - /J , (5.8b)

^ = 0 on z = 0, (5.8c)
az

and

Here the potential <p represents the inviscid irrotational solution to (5.1) (that is,
the solution which puts v = 0, and ignores the boundary conditions (5.1b, c));
since <$> is independent of z, the term d<j>/dXa in (5.5a) describes a depth-in-
dependent velocity field in the interior of the fluid. Hence <j> is completely
determined by equation (5.6), together with initial and boundary conditions. For
the case where w, KO and h are constants, equation (5.6) agrees with the result of
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Davey and Stewartson [5] who considered the equations governing the evolution
of modulated water waves in the inviscid case. The term va represents the
viscous correction to this inviscid solution which accounts for the boundary
conditions (5.1b, c); equations (5.7) describe the diffusion of vorticity from the
boundaries. We shall show below that on time scales T of 0(1), or / of 0(e~'), va

is confined to boundary layers of thickness (i>/e)i/2. However, there is a
non-zero mass transport associated with va and so the terms Ua and Q are
needed to satisfy the mass transport equation. The sequence for solving these
equations is, first, to find </> from (5.6), after which va can be determined from
(5.7), and finally Ua and Q can be found from (5.8).

Before describing the solutions to (5.6), (5.7) and (5.8) we shall consider
briefly the deep water approximation for which K/I —* oo, the boundary condi-
tions at z = -h are ignored, and v scales with e. In this approximation the
solution of (5.6) is

• ^ ; ( 5 - 9 )

and so <£ is O((nh)~l). Then va is determined from (5.7a) and (5.7c) alone, while it
may be shown from (5.8d) that Ua and Q are O((K/I)~'). Thus va is the dominant
term in ua, and equations (5.7a, c) show that no steady solution is achieved as
vorticity diffuses further and further into the fluid (see Longuet-Higgins, [11]).
The solution for va determined from (5.7a, c) is given below in equation (5.17b).
Ultimately, of course, the diffusing vorticity will reach the lower boundary, and
the deep water approximation fails.

When the deep water approximation is not made, v scales with e2. In order to
keep the analysis simple we shall consider only the case when w, <c and the depth
h are constants, Ka = 0, and the amplitude A is given by

\A \2 = F( r*)exp(- ^ ) with T* = T - | , (5.10)

where X — Xx, V is the Ar
l-component of group velocity, T* is a co-ordinate

moving with the wave packet, a is the frictional decay factor (3.21c), and F(T) is
a specified function of T. Equation (5.10) describes the generation of a one-
dimensional wave packet at X = 0, which (assuming V is positive) propagates in
the positive A'-direction, and has a spatial rate of decay of a/ V. We shall further
suppose that F(T) -> 0 as T-> -oo so that the wave packet is set up from a state
of rest. In the sequel we shall illustrate our results with two special cases,

(i) F(T)=H(T) (5.11a)

or

(ii) F(T) = S(T), (5.11b)
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where H(T) is the Heaviside function (that is, zero for T < 0 and one for
T > 0), while 8(T) is the Kroneker delta function. Case (i) represents the
initiation of a uniform wavetrain at T = 0, X = 0, and is a simple model of a
wave tank. Case (ii) is a crude but representative model of a wave packet of
finite length.

We turn first to equation (5.6) for <j>. This is simply the inhomogeneous wave
equation and may be solved by a number of classical methods. We shall employ
a Laplace transform in time, using the initial conditions that </>—»0 and d<f>/dT
—> 0 as T —> -oo, and the boundary conditions that <J> exp(oX/ V) is bounded for
all T as X —» ± oo. Then it may readily be shown that the solution of (5.6) is

t> = J-J £(4>)exp(*r) ds, (5.12a)

where

e(F)exp{- °*V'X), a,2gKS a W < , + s) ,

exp^j asT-̂ oo, (5.13a)

expf-^) asr»-oo. (5.13b)

Here £(F) is the Laplace transform of F(T), and T is a contour parallel, and to
the right of, the imaginary .s-axis. In case (i), (5.1 la), £(F) is s'\ £(<£) has a pole
at the origin and, evaluating <j> from (5.12a), it follows that

a22gKV

who

or

9</> o22gK
Jx wV

More generally, if F(T) -> 1 as T^> oo, then £(F) -> s~l as s -> 0, and (5.13a, b)
follow. Equation (5.13b) is readily seen to be the steady solution of (5.6).
Further, since d<p/dX is the inviscid part of the steady solution (5.5a), substitu-
tion into (5.2) shows that the mass transport of the inviscid part of the solution
tends to zero as T* —» oo. Note that, although d<i>/dX is the inviscid part of the
solution, the result (5.13a, b) is crucially dependent on the frictional decay factor
a being non-zero. In case (i), if o is zero, it is readily shown from (5.12a, b) that

d<f> 1

,_4
V2

Ksinh2K/I

which agrees with the inviscid result of Davey and Stewartson [5], and may be
established directly from (5.6). Equation (5.14) multiplied by exp(-oX/ V) also
describes the solution for case (i) when a is non-zero as 7* —• 0 + . Thus, at the
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front of the wave packet (7"* —»0 + ), d<j>/dX is given by the inviscid solution
(5.14) multiplied by exp(-oX/V), but behind the front d<j>/dX decays as
T* -> oo to the solution (5.13b). The instantaneous solution (5.14) is associated
with a non-zero mass transport, but the ultimate solution (5.13b) is associated
with a zero mass transport. In case (ii), (5.11b), £(F) is 1 and, evaluating </> from
(5.12a, b), it follows that

exp
aX
V

2
v (

_gh
V

oVgh T* 1

- - 1

- y)\ a22gK

sinh 2K/Z uvgh
H(T*)

oX_
V

oVgh T*
{Wh + V)

+ 1
sinh 2K/I «V eh

7/(7-). (5.15)

When T* -+ oo, <j> and d<j>/dX -»0; as T* -> 0 + , d<j>/dX is again given by (5.14)
multiplied by exp(-oX/ V), with the Heaviside function replaced with the
8-function. Thus the instantaneous solution at the front of the wave packet is
analogous to case (i), but behind the front 9<£/9Ar -» 0. Finally we note that the
complete solution for case (i) may be obtained from (5.15) by integrating with
respect to T*.

With </> determined, we may turn to equations (5.7) to find va. With \A\2

specified by (5.10), and the initial condition that va -» 0 as T -> -oo, the solution
can be found using a Laplace transform in time. With v2 = 0, and denoting u,
by v, the Laplace transform of v is

sinh

sinh^/,

(5.16)

and v is then found from an inversion formula analogous to (5.12a). However,
since v scales with e2, Vv /e is a small parameter of O(e), and on time scales T*
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of O{\), the formula (5.16) may be simplified by replacing expressions such as
cosh{(se/p)l/2h} with ^ Q\p{(se/i>)i/2h) and so on. The Laplace inversion may
then be performed explicitly, and the result is

v ~ vj + vh, (5.17a)

where

^ , tanhicA

(5.17b)

vh = I K(T* - T ,Zh)-—l — . exp —— - — (T ,X)\ dT ,
J-co OJ [ sinh2 K/I \ V I 6X j

(5.17c)

, Z) = - ^ - r°° e~x2 d\, (5.17d)
W •/Z/2Vf

•/Z/2Vf

and Zh = ( f ) / ( z + h). (5.17e)

Here /(T(r, Z) is the complementary error function, and Zf and ZA are boundary
layer co-ordinates at the free surface and bottom, respectively. The expression Vj
(5.17b) can be recognized as the solution of (5.7a) which satisfies only the
boundary condition (5.7c) and describes the diffusion of vorticity from the free
surface boundary layer; on a time scale T* of 0(1), vf is only O(V(»'/e) ) and
the vorticity has penetration only a distance of O(\/(v/e) ) into the interior.
Note that Vy is also the total solution for v in the deep-water approximation.
Similarly, the expression vh (5.17c) is the solution of (5.7a) which satisfies only
the bottom boundary condition (5.7b) and describes diffusion from the bottom
boundary layer, the penetration distance again being O(V'(V/E) ). For case (i),
(5.1 la), we may show that, for T* > 0,

(5.18a)

and

(5.18b)

In (5.18b) the error terms arise due to the fact that we have replaced d<j>/dX by
its asymptotic expression (5.13b) and error terms. Of course, these expressions
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are valid only for time scales 7* of 0(1). In order to determine the limit as
T* —> oo we must return to (5.16). Clearly the limit T* -* oo for v takes place on
time scales T* of O(h2/'v), and is related to the time for the free surface vorticity
to penetrate to the bottom boundary. Evaluating £(t>) by (5.16) as s -» 0, with
£(F) equal to s~\ and inverting the Laplace transform we find that

exp -

tanh K/I

as 7 ^ oo. (5.19)

Note that the second term in (5.19) is also the limit as T* -» oo of vh (5.18b). The
reason for this is that the steady part of vh is independent of z and so satisfies
the free surface boundary condition as well; like dtj>/dX, vh becomes steady on
time scales T* of 0(1). By contrast, Vj (5.18a) is not steady on these wave packet
time scales, and requires the longer time scale of O(eh2/v) to become steady.
Huang [8] has drawn attention to the apparent paradox that the Longuet-Hig-
gins conduction solution for the free surface velocity (Z = 0) increases linearly
with depth when K/I » 1. This situation appears in (5.19a). However, the paradox
is only apparent as (5.19a) holds only in the limit T* -» oo with h fixed; in other
words the deep water approximation K/I » 1 for the mean flow holds only for
times T* significantly less than eh2/v. A related apparent paradox occurs in
(5.18a) which shows that the free surface velocity for times T* of 0(1) is
proportional to V'(vT*/e) which increases indefinitely for large times. Again,
the paradox is only apparent as (5.18a) holds only for times 7"* of 0(1), or, more
precisely, T* significantly less than eh2/v. In shallow water, for which v scales
with e2, the contribution of (5.18a) to the free surface velocity is very small
compared to (5.13b). For case (ii), (5.11b), we may show that, for T* > 0,

tanh K/I y/^ j *

and

vh =

(5,0a,

sinh2 K/I ul
(5.20b)

Both vf and vh —> 0 as T* -» oo, and do so on time scales T* of 0(1). Due to the
finite length of the wave packet there is insufficient time for the diffusion
processes to penetrate further than a distance O({v/e)l/2) into the interior.

Finally, we may turn to equations (5.8) for Ua and Q. We again employ
Laplace transforms in time. With U2 = 0, and denoting (/, by U, the Laplace
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transforms of U and Q are given by

cosh \\ — '
1

cosh — h

343

(5.21a)

and

S2

g

tanhU —l'/2A
h -

(ff
(5.21b)

The right-hand side of (5.21b) is known explicitly by substituting from (5.16).
The equation (5.21b) can readily be solved explicitly, and £((?) found; substitu-
tion into (5.21a) gives £(t/) explicitly. On time scales T* of 0(1), the formulae
for the Laplace transforms simplify considerably and may be inverted. We find
that the leading terms are

u -fT{\-K(T- T',Zh)}^(T',X)dT', (5.22a)

where

and

m\

~ u) - m(X

v f 8UK2\A\2 3UK\A\2

h \ tanh xh tanh2 K/I

u)}du,

(5.22b)

(5.22c)

Here the dominant term in U is the irrotational term for which 9(7/37' =
-dQ/dX, and the dominant term in m is

8

-h

note that m also contains a correction due to a bottom boundary layer contribu-
tion to J°hU dz. As T* -» oo, it may be shown that for, case (i), (5.11a),

±f\Vf+Vh)dz; (5.23)
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equations (5.22a, b, c) reduce simply to

hdQ 2 / " \ 1 / 2 1 f 3(OK ^2gk) I aX

~ F a l J • ( + | e xT
3w/c

tanh Kh tanh2
 Kh

and

+ - ^ j exp f -^ r ) as T* -> oo, (5.24a)
w/r J V r /

7"* \ ' / 2

)—

/i e [ tanh Kh ' /, sinh2 */,

,2

(5.24b)

Equation (5.24a) for hdQ/dX is simply m (5.22b) as T* - • oo; then from (5.22a)
and (5.24a) it follows that equation (5.24b) for U is associated with zero mass
transport for the sum v + U. These formulas are valid only for wave packet
time scales when T* is 0(1). On the longer diffusive time scales, when T* is
O(eh2/i>), the limit as T* —»oo must be found from the exact expression
(5.21a, b). For case (i), (5.1 la), we find that

and

e
a

h3uK , 2gK ] I aX\
1- - 2 - >exp -—--

nh 2
 Kh « j V K /

5v dZ { tanh Kh s m h 2
 KA « J

(5.25b)

Thus, on the diffusive time scale, the total solution T* —» oo is the sum of
(5.13b), (5.19) and (5.25b), which may be recognized as the Longuet-Higgins
conduction solution, with zero mass transport. For case (ii), (5.11b), it is
sufficient to calculate Q and U for T* of 0(1), and the solutions may be
obtained from (5.22a, b) by differentiating with respect to T. For this case of a
wave packet of finite length, U and Q remain 0(V(p/e) ) uniformly in T* as
r*->oo.

Russell and Onsorio [14] conducted a series of experiments in a wave tank on
the generation of mean flows by a uniform wave train. Their observations were
made over a period of from one to seven hours after the initiation of the wave
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train. For a time of one hour the penetration distance of a boundary layer,
v(vej , is 6cm; after four hours it is 12cm. Since the depth of their wave tank

was 50.8cm, this suggests that their observations were made on the wave packet
time scale when T* is 0(1). In this case the approximate solution to describe
their experimental results for the mass transport velocity is

aX (5-26)

where us is the Stokes velocity (4.4a), d<j>/dX is given by (5.13b), v is given by
(5.18a, b), and U is given by (5.24b). Here d<j>/dX, v and U have been evaluated
on wave packet time scales, but using the limit as T* -» oo; this can be regarded
as intermediate between the wave packet time scale and the diffusive time scale
for which T* is O(eh2/'v). It can be shown that using the asymptotic expressions
(5.13b), (5.18a, b) and (5.25b) rather than the exact expressions (5.12b),
(5.17b, c) and (5.22b) is justified for times / greater than \ hour for the two cases
described in Figs. 1 and 2 below. A more direct method of checking whether
(5.27) is an adequate description of the experimental results is to compute

7/I
i

"-*-—.£

o-i 1
1*1'

Figure 1. Graphs of the Lagrangjan mean flow (5.26) for K/I = 0.5 in a channel of depth h — 50.8cm.
the present analysis at t = j hour (y/(vt) = 3cm.),
the present analysis at / = 1 hour (V(«'0 = 6cm.),
the present analysis at 1 = 4 hours (V(»'0= 12cm.),
the conduction solution of Longuet-Higgins (1953) (I = oo).

X, data of Russell and Onsorio [14] for an amplitude of 11.7cm.
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* R

0-2 0 3

Figure 2. As for Fig. I, with Kh= 1.25.

3uA/3z and dU/dz at z = 0, and vf at z = -h, as (5.27) would be exact if all
these terms were zero; we find that they have relative errors of 0(1(T7) for a
time / = 1 hour; however, at t = 4 hours, Vj at z = -A has a relative error of
15%, while dvh/dz and dU/dz at z = 0 have relative errors of 0(1 (T3). Also
since (us + d<j>/dX) and (v + U) both separately produce zero mass transport,
the solution (5.26) has zero mass transport, and is thus consistent with the
experimental situation in a wave tank. The solutions considered in this section
are for an infinite range of A', - o o < A r < o o ; a more exact analysis for
0 < X < L and condition of zero mass transport at X = 0 and X = L has been
performed by us, and we can show that, as L —» oo, the results agree with those
described by (5.26). Figs. 1 and 2 show graphs of the solution (5.26) for the two
cases h = 0.5 and 1.25 respectively, at the various times t = \ hour, 1 hour and 4
hours; also shown are the Longuet-Higgins conduction solution and the experi-
mental points of Russell and Onsorio [14]. The graphs show that the experimen-
tal points generally lie closer to the graph (5.26) at times t = 1 hour or / = 4
hours, than to the graph of the Longuet-Higgins conduction solution. Russell
and Onsorio [14] commented that the mean flow was observed to be steady after
about one hour, whereas the theoretical curves in Figs. 1 and 2 are still evolving
to the Longuet-Higgins conduction solution. However, the theoretical curves at
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1 = 1 hour and / = 4 hours are quite close together, and the discrepancy may be
due to experimental scatter. In the case of Fig. 2, where the experimental points
show significant departure from all the theoretical curves, the discrepancy may
be due to the neglect of the nonlinear advective terms in the mean flow
equations (the mean flow Reynolds number, although small in both cases, was
larger in the case of Fig. 2 than in Fig. D.
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