
The Journal of Symbolic Logic, Page 1 of 25

BETWEENNESS ALGEBRAS

IVO DÜNTSCH , RAFAŁ GRUSZCZYŃSKI AND PAULA MENCHÓN

Abstract. We introduce and study a class of betweenness algebras—Boolean algebras with binary
operators, closely related to ternary frames with a betweenness relation. From various axioms for
betweenness, we chose those that are most common, which makes our work applicable to a wide range
of betweenness structures studied in the literature. On the algebraic side, we work with two operators of
possibility and of sufficiency.

§1. Introduction. Betweenness relations—well-known from geometry—are prob-
ably the most deeply investigated ternary relations in logic and mathematics. The
origin of the studies can be traced back at least to the works of Huntington and
Kline [20, 21], through the seminal contributions of Tarski [27], up to the results
of Altwegg [1], Sholander [26], Düvelmeyer and Wenzel [11], and Düntsch and
Urquhart [10].

At least as early as in the seminal papers of Jónsson and Tarski [23], the
connection between (n + 1)-ary relations and n-ary operators on Boolean algebras
was established in the form of Jónsson–Tarski duality for Boolean algebras with
operators. The developed techniques turned out to be particularly successful in the
study of modal logics and their algebraic semantics.

The abstract approach of Jónsson and Tarski can be made concrete by focusing
on a relation (or relations) of particular choice, betweenness in the case of the
approach from our work. As observed by van Benthem and Bezhanishvili [3], a
ternary betweenness relation B gives rise to the binary modal operator 〈B〉 whose
relational semantics is given by the following condition:

x � 〈B〉(ϕ,�) :←→ (∃ y, z ∈ U ) (B(y, x, z) and y � ϕ and z � �) ,

where B(y, x, z) is interpreted as point x is between points y and z. Our intention
is to investigate the algebraic properties of 〈B〉 within the framework of Boolean
algebras with operators.

In Section 2 we recall basic facts about possibility and sufficiency operators which
will find their application in the sequel. In Section 3 we commit ourselves to a
particular notion of betweenness by choosing what we see as the core axioms for
the reflexive version of the geometric relation. Section 4 justifies our approach via
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2 IVO DÜNTSCH, RAFAŁ GRUSZCZYŃSKI AND PAULA MENCHÓN

possibility and sufficiency operators as we show that the class of the so-called
betweenness frames is neither modally nor sufficiency axiomatic. In Section 5
rudimentary facts about complex algebras of betweenness frames are established.
These serve as «rôle models» for first-order axioms for what we call betweenness
algebras in Section 6. In Section 7 we prove that the class of betweenness algebras
is closed under canonical extensions, and in Section 8 we examine the connections
between complex and abstract betweenness algebras, in particular, we show where
they differ. Section 9—which rounds off the paper—points to possible extensions of
our work and open problems that we are going to tackle in further installments to
the work we present herein.

In the paper, – X is the set-theoretical complement of X with respect to a
fixed domain. For an element x of an ordered set 〈U,≤〉, ↑ x := {y ∈ U | x ≤ y}.
We assume that unary operators always bind stronger than n-ary operators with
n � 2. Throughout, algebras are assumed to be non-trivial (i.e., have at least two
elements), and 〈A,+, ·, –, 0, 1〉 is a non-trivial Boolean algebra (BA). To avoid
notational cluttering we shall usually identify Boolean algebras with their universe;
in particular, 2U denotes the power set algebra of U. Furthermore, At(A) is the set
of atoms of A and Ult(A) the set of its ultrafilters.

Our general references are [4] for modal logic, [24] for Boolean algebras, and [5]
for universal algebra.

§2. Boolean algebras with operators. Boolean algebras with operators (BAOs)
were introduced by Jónsson and Tarski [23], arising from Tarski’s work on relation
algebras. It turned out later that BAOs were intimately connected to the semantics
of modal logics; for details the reader is encouraged to consult [16, Section 3.3]. An
extensive treatment of duality theories for BAOs was presented by Givant [14].

In this section we shall outline the properties of BAOs as we need them, and
augment them by a theory of sufficiency algebras.

Definition 2.1. A mapping f : An → A (where n � 1) is an n-ary possibility
operator if and only if it satisfies the following conditions:

(P1) If there is i such that 1 � i � n and xi = 0, then f(x1, ... , xn) = 0
(normality).

(P2) If 〈x1, ... , xn〉 and 〈y1, ... , yn〉 are n-termed sequences in A such that
xi = yi for all i 
= k, then f(x1, ... , xk, ... , xn) + f(y1, ... , yk, ... , yn) =
f(x1, ... , xk + yk, ... , xn) (additivity).

Observe that a possibility operator is monotone in each argument.
Suppose that 1 � n and f : An → A is a possibility operator on A. The possibility

canonical frame of A := 〈A,f〉 is the structure Cfp(A) := 〈Ult(A), Qf〉 where Qf is
the (n + 1)-ary relation on Ult(A) defined by

Qf(U1, ... ,Un+1) :←→ f[U1 × ··· × Un] ⊆ Un+1. (1)

The choice of the n + 1st entry as special is arbitrary; any other index would
have done. Indeed, when considering the binary operators on betweenness algebras
arising from ternary relations we shall use the middle component.

https://doi.org/10.1017/jsl.2023.86 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.86


BETWEENNESS ALGEBRAS 3

Suppose that F := 〈U,Q〉 is a frame where Q is an (n + 1)-ary relation on U. We
define an n-ary operator 〈Q〉 :

(
2U

)n → 2U by

〈Q〉(X1, ... , Xn) := {u ∈ U | (∃x1 ∈ X1 ...∃xn ∈ Xn)Q(x1, ... , xn, u)}. (2)

It is well known that 〈Q〉 is a complete possibility operator [23]. The structure
〈2U , 〈Q〉〉 is called the full possibility complex algebra over F, denoted by Cmp(F).
Each subalgebra is called a possibility complex algebra over F. If F is understood we
shall just speak of possibility complex algebras.

The following result is decisive for the theory of BAOs and generalizes Stone’s
theorem of representing Boolean algebras:

Theorem 2.2 [23, Theorem 3.10]. If A := 〈A,f〉 is a Boolean algebra with an
n-ary possibility operator f, then the Stone map h : h ↪→ 2Ult(A), defined by h(x) :=
{U ∈ Ult(A) | x ∈ U} is an embedding of A into Cmp(Cfp(A)).

The algebraCmp(Cfp(A)) is called the possibility canonical extension ofA, denoted
by Emp(A). For details of the origin and theory of BAOs see the survey by Jónsson
[22].

Starting with an (n + 1)-ary frame F := 〈U,R〉 there is also a representation
theorem:

Theorem 2.3. F can be embedded into the canonical frame of its full possibility
complex algebra.

Proof. This is a generalization of [25, Theorem 3.2.7]. Define k : F →
Ult(Cmp(F)) by k(x) := ↑{x}, that is, k(x) is the principal filter of 2U generated
by {x}; clearly, k is injective. We define 〈R〉 as in (2), and Q〈R〉 as in (1).

Let x1, ... , xn+1 ∈ U . Then:

Q〈R〉(k(x1), ... , k(xn+1)) ←→ 〈R〉 [↑{x1}, ... , ↑{xn}] ⊆ ↑{xn+1}
←→ (∀Xi) (xi ∈Xi , 1≤ i≤n→〈R〉(X1, ... Xn)∈ ↑{xn+1})

←→ (∀Xi) (xi ∈ Xi , 1 ≤ i ≤ n → xn+1 ∈ 〈R〉(X1, ... Xn))

←→ (∀Xi)(xi ∈ Xi , 1 ≤ i ≤ n →
(∃ui ∈ Xi)R(u1, ... , un, xn+1)) .

If R(x1, ... , xk+1), we choose ui := xi ; this shows that Q〈R〉(k(x1), ... , k(xn+1)).
Conversely, if Q〈R〉(k(x1), ... , k(xn+1)), choosing Xi := {xi} shows that the tuple
〈x1, ... , xk+1〉 is in R. 

The relational semantics of classical modal logics is limited in expression since it
can talk about (some) properties of a binary relation R but not about properties of –
R. A “sufficiency” counterpart of the modal necessity operator� was independently
suggested by Humberstone [19] with � and Gargov et al. [13] with �.1 The algebraic
properties of such an operator and representation properties were investigated in a
sequence of papers by Düntsch and Orłowska [6, 7] and Düntsch, Orłowska, and
Tinchev [9].

1See also [2, 15] for related work.
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4 IVO DÜNTSCH, RAFAŁ GRUSZCZYŃSKI AND PAULA MENCHÓN

Definition 2.4. A mapping g : An → A is an n-ary sufficiency operator if and
only if g meets the following two constraints:

(S1) If there is i such that 1 � i � n and xi = 0, then g(x1, ... , xn) = 1 (co-
normality).

(S2) If 〈x1, ... , xn〉 and 〈y1, ... , yn〉 are n-termed sequences in A such that
xi = yi for all i 
= k, then g(x1, ... , xk, ... , xn) · g(y1, ... , yk, ... , yn) =
g(x1, ... , xk + yk, ... , xn) (co-additivity).

Note that a sufficiency operator is antitone in each argument.
The pairA := 〈A, g〉 is called a sufficiency algebra. While unary possibility algebras

are algebraic models of the logic K, the unary sufficiency algebras are algebraic
models of its counterpart K∗ [28]. The sufficiency canonical frame is the system
〈Ult(A), S〉 where S is the (n + 1)-ary relation on Ult(A) defined by

S(U1, ... ,Un+1) :←→ g[U1 × ··· × Un] ∩ Un+1 
= ∅,

denoted by Cfs(A). Conversely, If F := 〈U,S〉 is an (n + 1)-ary frame we define an
n-ary operator [[S]] on 2U by

[[S]](X1, ... , Xn) := {u ∈ U | X1 × ··· × Xn × {u} ⊆ S}.

The algebra 〈2U , [[S]]〉 is called the full sufficiency complex algebra of F, denoted
by Cms(F). Each subalgebra is called a sufficiency complex algebra over F. If F is
understood we shall omit the reference to F. It is well known that [[S]] is a complete
co-additive operator on 2U [6, Proposition 5]. In analogy to possibility algebras we
have

Theorem 2.5 [6]. (1) If a mapping g is an n-ary sufficiency operator on A, the
Stone map h : A → 2Ult(A) is an embedding of A into Cms(Cfs(A)).

(2) If F := 〈U,S〉 is an (n + 1)-ary frame the map k : F → Ult(Cms(F)) such that
k(x) := ↑{x} is an embedding.

Any algebra A := 〈A,f, g〉 such that A is a BA and f and g are—respectively—a
possibility and a sufficiency operator of the same arity will be called a Possibility–
Sufficiency-algebra (PS-algebra). Since the mappings h and k are the same as in
Theorems 2.2 and 2.3 we can define the PS–canonical frame ofA as 〈Ult(A), Qf, Sg〉
and denote it by Cfps(A). The algebra Cmps(Cfps(A)) is called the canonical
extension of A, denoted by Emps(A). The structure Cfps(Cmps(F)) is the canonical
extension of F denoted by Ceps(F).

From the outset, there is no connection between the possibility operator f and the
sufficiency operator g. To enhance the expressiveness of the combined corresponding
logics, Düntsch and Orłowska [6] introduced the class of mixed algebras (MIAs)
which are PS-algebras A := 〈A,f, g〉 which satisfy the condition Qf = Sg ; in the
unary case this is equivalent to

(∀U1,U2 ∈ Ult(A)) (f[U1] ⊆ U2 ←→ g[U1] ∩ U2 
= ∅) . (3)

It was shown that the class of MIAs is not first-order axiomatizable and that
the canonical extension of a MIA is isomorphic to the full complex algebra
〈2U , 〈R〉, [[R]]〉 of a frame. For an overview and examples of mixed algebras
with unary operators see [25, Section 3.6]. Subsequently, Düntsch, Orłowska, and
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BETWEENNESS ALGEBRAS 5

Tinchev [9] introduced a first-order axiomatizable proper subclass of mixed algebras,
called weak MIAs, which satisfy in the unary case the axiom:

a 
= 0 → g(a) ≤ f(a). (4)

It turned out that the equational class generated by the weak MIAs are the algebraic
models of the logic K ,̃ presented by Gargov et al. [13]. We shall see later that the
axioms of betweenness relations can be algebraically expressed in weak MIAs, but
not by possibility or sufficiency operators alone.

§3. A definition of betweenness. In the sequel, we will focus on relational systems
〈U,B〉 such that B is a ternary relation on a non-empty set U. Such systems will be
called 3-frames.

Definition 3.1. Let 〈U,B〉 be a 3-frame. B is called a betweenness relation if it
satisfies the following (universal) axioms:

B(a, a, a) , (BT0)

B(a, b, c) → B(c, b, a) , (BT1)

B(a, b, c) → B(a, a, b) , (BT2)

B(a, b, c) ∧ B(a, c, b) → b = c . (BT3)

Note that (BT0)–(BT2) are expanding in the sense that they require certain triples
to be in a betweenness relation, while (BT3) is contracting, since it prohibits triples
to be in B.

Definition 3.2. A ternary relation B is a weak betweenness if it satisfies (BT0)–
(BT2) and

B(a, b, a) → a = b . (BTW)

The following example shows that (BTW) is strictly weaker than (BT3):

Example 3.3. Set U := {0, 1, 2} and define

B := {〈a, a, a〉 | a ∈U} ∪ {〈a, a, b〉 | a, b ∈ U} ∪
{〈a, b, b〉 | a, b ∈ U} ∪ {〈0, 1, 2〉, 〈2, 1, 0〉, 〈0, 2, 1〉, 〈1, 2, 0〉} .

Then, (BTW) is vacuously true, and 〈0, 1, 2〉, 〈0, 2, 1〉 ∈ B .

To show the difference consider the following condition:

#〈a, b, c〉 → (〈a, b, c〉 /∈ B ∨ 〈a, c, b〉 /∈ B) . (C)

Here, #〈a, b, c〉 if and only if |{a, b, c}| = 3.

Proposition 3.4. Assume B satisfies (BT2). Then, B satisfies (BT3) if and only if
it satisfies (BTW) and (C).

Proof. (→) For (BTW) consider

B(x, y, x)
(BT2)−→ B(x, x, y)

(BT3)−→ x = y.

If B(x, y, z) and B(x, z, y), then y = z by (BT3), and thus, not #〈x, y, z〉.
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(←) Suppose that B(x, y, z) and B(x, z, y); then, not #〈x, y, z〉 by (C). If y = z,
there is nothing more to show. If x = z, then B(x, y, x), and x = y by (BTW);
hence, y = z. Similarly, if x = y, then B(x, z, x) and therefore x = y = z. 

Definition 3.5. B is a strong betweenness if B meets the following stronger version
of (BT2):

B(a, a, b). (BT2s)

Clearly, (BT2s) implies (BT2). In the presence of symmetry in the form of (BT1),
the axiom (BT2s) is equivalent to Tarski’s axiom 12 from [27].

The choice of the axioms is by no means arbitrary, but embodies what can be
seen as the core axioms for reflexive betweenness. Reflexivity in the form of (BT0)
is equivalent to Axiom 13 of Tarski and Givant [27]. Symmetry, which is (BT1), is
taken as Postulate A by Huntington and Kline [21]2 and Axiom 14 by Tarski and
Givant. (BT2) in the presence of symmetry can be seen as a weakening of Tarski’s
reflexivity axiom (Axiom 12) and is one of the axioms for betweenness obtained
from binary relations (see [1]). (BT3) arises naturally in the context of—again—
betweenness induced by binary relations and has a clear and natural geometric
meaning. (BTW) is present in Tarski’s system as Axiom 6.

For more on the motivation for the choice of (BT0)–(BT3) the reader is invited
to consult [10].

Definition 3.6. A pair F := 〈U,B〉 such that B ⊆ U 3 and B satisfies (BT0)–
(BT3) will be called a betweenness frame or just a b-frame. If we replace (BT3) by
(BTW) then F is called a weak betweenness frame, and in case (BT2s) is substituted
for (BT2), a strong betweenness frame.

§4. Non-definability of betweenness relations. In the algebraic approach to
betweenness, we are going to engage both possibility and sufficiency operators. This
is justified by the fact that betweenness is neither possibility nor sufficiency axiomatic
(i.e., the relation cannot be grasped by means of either possibility or sufficiency
operator alone). We devote this section to the proofs of the aforementioned
phenomena.

4.1. Bounded and co-bounded morphisms. The standard notion of a bounded
morphism for binary relations has a natural generalization to n-ary ones. We restrict
ourselves to 3-frames since this is all we require.

Definition 4.1. If 〈U,R〉 and 〈V,S〉 are 3-frames, then a mapping f : U → V is
a bounded morphism if:

(1) R(x, y, z), then S(f(x), f(y), f(z)) (i.e., f preserves R, i.e., satisfies the forth
condition);

(2) S(f(w), x, y), then (∃u, v ∈ U )(f(u) = x ∧ f(v) = y ∧R(w, u, v)) (i.e., f
satisfies the back condition) [4, p. 140].

f : U → V is called a co-bounded morphism if for all x, y, z ∈ U and t ∈ V :

2It must be said, though, that they work with the strict betweenness.
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(a) – R(x, y, z), then – S(f(x), f(y), f(z)) (i.e., f preserves – R);
(b) – S(f(w), x, y), then (∃u, v ∈ U )(f(u) = x ∧ f(v) = y∧ – R(w, u, v)) (i.e.,

f satisfies the back condition).

Since in the case of betweenness relations the middle argument plays a
distinguished role, we allow ourselves to modify the definition accordingly when
we need it without spelling it out explicitly.

The following two theorems are crucial for the sequel.

Theorem 4.2 [17, Theorem 3]. Let � be a modal similarity type. A first-order
definable class of � frames is possibility definable if and only if it is closed under
taking bounded homomorphic images, generated subframes, disjoint unions, and reflects
ultrafilter extensions.

Theorem 4.3 [6, Section 5]. Let � be a sufficiency similarity type. A first-order
definable class of � frames 〈U,R〉 is sufficiency definable if and only if the class of its
complementary frames 〈U, – R〉 is possibility definable.

4.2. Non-definability. For the first of the two non-definability results (and for
several examples in the sequel), we invoke relevant facts about betweenness relations
obtained from binary ones. If 〈U,R〉 is a binary frame, then it induces a «natural»
ternary relation B on U :

BR(x, y, z) :←→ x R y R z ∨ z R y R x .

For these, we mention only one more definition and two basic facts:

Definition 4.4. A binary relation R on U is called strongly antisymmetric if and
only if

x R y R z R x → y = z.

Proposition 4.5 [18]. A reflexive R ⊆ U 2 is strongly antisymmetric if and only if
BR is a betweenness relation.

Corollary 4.6. If R ⊆ U 2 is a partial order relation, then BR is a betweenness
relation.

Among the betweenness axioms, (BT0) and (BT1) have modal correspondents
which is proved below in Theorem 6.6. However, in general, we have

Theorem 4.7 [8]. The class of weak betweenness relations is not modal axiomatic.

Proof. We are going to show that the class of weak betweenness relations is not
closed under bounded morphisms. To this end, consider the set � of all integers
with the relation B� induced by the standard linear order � on �. By Corollary 4.6
we have that B� is a betweenness relation, and so, Z := 〈�, B�〉 is a b-frame. On
the other hand, F := 〈{w0, w1}, R〉 where w0 
= w1 and R := {w0, w1}3 is not even
a weak b-frame, as R does not satisfy (BTW).

Let f : �→ {w0, w1} be such that

f(x) :=

{
w0, if x is even,
w1, if x is odd.
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8 IVO DÜNTSCH, RAFAŁ GRUSZCZYŃSKI AND PAULA MENCHÓN

Since R is the universal ternary relation on {w0, w1}, f preserves B�, so to show
that f is indeed a bounded morphism all that is left is to prove that f satisfies the
back condition:

R(u, f(x), v) → (∃y, z ∈ �) (B�(y, x, z) ∧ f(y) = u ∧ f(z) = v) .

The proof will be done by cases: SupposeR(u, f(x), v). In casef(x) = w0, we have
that x is even, and there are the following possibilities:

(1) u = v = w0: Set y := x =: z. We have B�(x, x, x) and f(y) = w0 and
f(z) = w0.

(2) u = v = w1: Set y := x – 1 and z := x + 1. Thus B�(x – 1, x, x + 1) and
f(x – 1) = w1 and f(x + 1) = w1.

(3) u = w0 and v = w1: Set y := x and z := x + 1. Thus B�(x, x, x + 1) and
f(x) = w0 and f(x + 1) = w1.

(4) u = w1 and v = w0: Set y := x – 1 and z := x. We have that B�(x – 1, x, x)
and f(y) = w1 and f(z) = w0.

The proof for the case f(x) = w1 is analogous. 
Theorem 4.8. The class of betweenness relations is not sufficiency axiomatic.

Proof. In light of Theorem 4.3 it is enough to show that the class of
complementary 3-frames for betweenness frames is not possibility definable. This
is the same as showing that the class of betweenness frames is not closed under
co-bounded morphisms. Thus, we exhibit two 3-frames 〈U,R〉 and 〈V,S〉 as well
as a co-bounded surjective morphism p : U → V such that 〈U,R〉 is a betweenness
frame and 〈V,S〉 is not.

Let U := {a, b} and R := {〈a, a, a〉, 〈b, b, b〉}; then R is a betweenness relation.
Furthermore, set V := {x} and S := ∅; then – S = {〈x, x, x〉} and S is not a
betweenness relation since it does not satisfy (BT0).

Obviously, there is a unique surjection p : U → V given by p(a) := x =: p(b),
and it is a bounded morphism between 〈U, – R〉 and 〈V, – S〉. It preserves – R as
it is constant, and it satisfies the back condition since if, e.g., – S(x, p(a), x), then
– R(b, a, b) and p(b) = x. 

The proof reflects the fact that reflexivity of a binary relation is not definable by
a unary sufficiency operator.

§5. Complex algebras of b-frames. To motivate the choice of axioms for abstract
algebras of betweenness we will focus on b-frames and their complex algebras. We
are going to show that axioms of b-frames correspond to algebraic properties of
their complex algebras, and the latter will serve in the next section as «role models»
for the axioms expressed within the framework of PS-algebras.

For a 3-frame F := 〈U,B〉 we define its complex operators by

〈B〉(X,Y ) := {u ∈ U | (∃x ∈ X )(∃y ∈ Y )B(x, u, y)} (df 〈B〉)

= {u ∈ U | (X × {u} × Y ) ∩ B 
= ∅},
[[B]](X,Y ) := {u ∈ U | (∀x ∈ X )(∀y ∈ Y )B(x, u, y)} (df [[B]])

= {u ∈ U | X × {u} × Y ⊆ B}.
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BETWEENNESS ALGEBRAS 9

Thus, Cmps(F) = 〈2U , 〈B〉, [[B]]〉 is the full complex algebra of F. We will prove that
the following conditions for complex algebras correspond to relational axioms for
betweenness:

X ⊆ 〈B〉(X,X ) , (BT0c)

〈B〉(X,Y ) ⊆ 〈B〉(Y,X ) , (BT1cf )

[[B]](X,Y ) ⊆ [[B]](Y,X ) , (BT1cg)

Y ∩ 〈B〉(X,Z) ⊆ 〈B〉(X ∩ 〈B〉(X,Y ), Z) , (BT2c)

〈B〉(X, [[B]](X, – Y ) ∩ Y ) ⊆ Y , (BT3c)

[[B]](X,X ) ⊆ X , for all X 
= ∅ , (BTWc)

X ⊆ 〈B〉(X,Y ) , for all Y 
= ∅ . (BT2sc)

Note that all of these are universal, so they hold in all subalgebras of Cmps(F).

Theorem 5.1. Let F := 〈U,B〉 be a 3-frame. Then, F satisfies (BTi) if and only if
Cmps(F) satisfies (BTic), for any i ∈ {0, 1f, 1g , 2, 3,W, 2s}.

Proof. (i = 0) Let F satisfy (BT0) and take x ∈ X . Since B(x, x, x), it is the
case that (X × {x} × X ) ∩ B 
= ∅, as required.

Conversely, given x ∈ U , we have {x} ⊆ 〈B〉({x}, {x}), which means that
B(x, x, x).

(i = 1f) Suppose F meets (BT1). If x ∈ 〈B〉(X,Y ), then (X × {x} × Y ) ∩ B 
=
∅, and from (BT1) we obtain (Y × {x} × X ) ∩ B 
= ∅, i.e., 〈B〉(Y,X ).

For the reverse implication, suppose that A satisfies (BT1cf ). If B(x, y, z), then
({x} × {y} × {z}) ∩ B 
= ∅, i.e., y ∈ 〈B〉({x}, {z}). By (BT1cf ) 〈B〉({x}, {z}) ⊆
〈B〉({z}, {x}), so ({z} × {y} × {x}) ∩ B 
= ∅, and so (BT1) holds for F.

(i = 1g) If z ∈ [[B]](X,Y ), then X × {z} × Y ⊆ B . (BT1) implies that Y ×
{z} × X ⊆ B , and thus z ∈ [[B]](Y,X ).

Assume now that [[B]](X,Y ) ⊆ [[B]](Y,X ) for all X,Y ⊆ U . If B(x, z, y), then
z ∈ [[B]]({x}, {y}), and in consequence z ∈ [[B]]({y}, {x}). Therefore B(y, z, x).

(i = 2) Assume (BT2), and let y ∈ Y ∩ 〈B〉(X,Z). This means that there are
x ∈ X and z ∈ Z such that B(x, y, z). By the axiom, B(x, x, y), so x ∈ 〈B〉(X,Y ).
Therefore, [

(X ∩ 〈B〉(X,Y )) × {y} × Z
]
∩ B 
= ∅

and in consequence we have

y ∈ 〈B〉(X ∩ 〈B〉(X,Y ), Z)

as required.
We now assume the inclusion Y ∩ 〈B〉(X,Z) ⊆ 〈B〉(X ∩ 〈B〉(X,Y ), Z) and that

B(x, y, z). Thus y ∈ {y} ∩ 〈B〉({x}, {z}). Thus, it must be the case that

y ∈ 〈B〉({x} ∩ 〈B〉({x}, {y}), {z})
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which in particular means that([
{x} ∩ 〈B〉({x}, {y})

]
× {y} × {z}

)
∩ B 
= ∅ .

On the other hand, this entails that {x} ∩ 〈B〉({x}, {y}) 
= ∅, and thus B(x, x, y).3

(i = 3) Assume (BT3) for F. Let z ∈ 〈B〉(X, [[B]](X, – Y ) ∩ Y ). Then, there are
x ∈ X and a ∈ [[B]](X, – Y ) ∩ Y such that B(x, z, a). Since a is in [[B]](X, – Y ),
for all x′ ∈ X and b /∈ Y it is the case that B(x′, a, b). If z /∈ Y , then B(x, a, z) and
so (BT3) entails that z = a and z ∈ Y . Therefore z ∈ Y as required.

Let A satisfy (BT3c). Assume B(x, y, a), B(x, a, y), and a 
= y. Take X := {x}
and Y :=– {a}. Since {x} × {y} × {a} ⊆ B we have that y ∈ [[B]]({x}, {a})∩ –
{a}. Thus,

a ∈ 〈B〉
(
{x}, [[B]]({x}, {a})∩ – {a}) .

This yields a contradiction, as (BT3c) entails that a ∈– {a}.
(i = W) Let F satisfy (BTW). If y ∈ [[B]](X,X ), then X × {y} × X ⊆ B . But

there is x ∈ X , so B(x, y, x) and by the axiom assumed, we have that x = y, i.e.,
y ∈ X .

If (BTWc) holds for A and B(x, y, x), then {x} × {y} × {x} ⊆ B , so y ∈
[[B]]({x}, {x}) and in consequence y ∈ {x}, as required.

(i = 2s) Assume B(a, a, b). Let x ∈ X . Since there is y ∈ Y and B(x, x, y) by the
assumption, we have that x ∈ 〈B〉(X,Y ), as required.

For the reverse implication, {x} ⊆ 〈B〉({x}, {y}) for any x and y; therefore, we
have that B(x, x, y). 

Complex algebras satisfy a property which connects 〈B〉 and [[B]] and which will
become important in the next section:

Lemma 5.2. If X,Y 
= ∅, then

[[B]](X,Y ) ⊆ 〈B〉(X,Y ) . (wMIAc)

Proof. Suppose that X,Y 
= ∅, and that u ∈ [[B]](X,Y ); then, X × {u} × Y ⊆
B by definition of [[B]]. Since X,Y 
= ∅, there are x ∈ X , y ∈ Y with B(x, u, y).
This shows that u ∈ 〈B〉(X,Y ). 

Let us observe that the betweenness relation of a b-frame F can be characterized
by means of the sufficiency operator of the full complex algebra of F:

Proposition 5.3. If F := 〈U,B〉 is a betweenness frame and Cmps(F) is its full
complex betweenness algebra, then

B =
⋃

〈X,Y 〉∈2U×2U

X × [[B]](X,Y ) × Y .

Proof. (⊆) If B(x, y, z), then y ∈ [[B]]({x}, {z}); hence,

〈x, y, z〉 ∈ {x} × [[B]]({x}, {z}) × {z} .

3We would like to thank Søren Brinck Knudstorp, whose help was crucial to discover this inclusion.
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(⊇) Now assume that X and Y are subsets of U such that

〈x, z, y〉 ∈ X × [[B]](X,Y ) × Y.
Therefore, x ∈ X , y ∈ Y , and z ∈ [[B]](X,Y ). From the last condition we obtain

X × {z} × Y ⊆ B,
which implies B(x, z, y). 

§6. Betweenness algebras. Theorem 5.1 motivates our choice of axioms towards
an abstract algebraization of betweenness, i.e., we translate the counterparts of the
betweenness axioms for 3-frames in the «obvious» way:

Definition 6.1. A PS-algebra A := 〈A,f, g〉 is a betweenness algebra (b-algebra
for short) if A satisfies the following axioms:

x ≤ f(x, x) , (ABT0)

f(x, y) ≤ f(y, x) , (ABT1f)

g(x, y) ≤ g(y, x) , (ABT1g)

y · f(x, z) ≤ f(x · f(x, y), z) , (ABT2)

f(x, g(x, – y) · y) ≤ y , (ABT3)

and

x 
= 0 and y 
= 0 → g(x, y) ≤ f(x, y). (wMIA)

It can be shown that (wMIA) is independent of the other axioms. Moreover, let
us observe that (ABT0) is equivalent to

x · y ≤ f(x, y).

Proof. From (ABT0) we obtain x · y ≤ f(x · y, x · y), and so monotonicity of
f entails that x · y ≤ f(x, y). 

The following example shows that (ABT1f) and (ABT1g) are independent of each
other:

Example 6.2. Consider A1 := 〈A,f1, g1〉 and A2 := 〈A,f2, g2〉 where A is the
four element Boolean algebra with atoms a, b, and f1, f2 and g1, g2 are given by
the tables below:

f1 0 a b 1 g1 0 a b 1
0 0 0 0 0 0 1 1 1 1
a 0 1 1 1 a 1 0 b 0
b 0 1 1 1 b 1 0 b 0
1 0 1 1 1 1 1 0 b 0

f2 0 a b 1 g2 0 a b 1
0 0 0 0 0 0 1 1 1 1
a 0 a a a a 1 0 0 0
b 0 1 1 1 b 1 0 0 0
1 0 1 1 1 1 1 0 0 0

We can see that f1(x, y) = f1(y, x) for all x and y, but g1(a, b) 
= g1(b, a) in
A1, and g2(x, y) = g2(y, x) but f2(a, b) 
= f2(b, a) in A2. This example justifies the
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inclusion of both (ABT1f) and (ABT1g) in the set of postulates for betweenness
algebras. Both axioms are counterparts of the symmetry axiom (BT1).

Definition 6.3. If A satisfies (ABT0)–(ABT2) and

a 
= 0 → g(a, a) ≤ a , (ABTW)

then A is a weak betweenness algebra. If A satisfies (ABT1f), (ABT3), (wMIA), and

b 
= 0 → a ≤ f(a, b) , (ABT2s)

then it will be called a strong betweenness algebra.

Proposition 6.4. Every betweenness algebra is a weak betweenness algebra.

Proof. Let x 
= 0; we will show that g(x, x) ≤ x. It follows from (ABT3) that
f(x, g(x, x)· – x) ≤– x, and by (ABT2) we have

– x · g(x, x) · f(x, x) ≤ f
(
x · f(x, – x · g(x, x)), x

)
≤ f(x· – x, x) = 0 .

Thus, – x · g(x, x) · f(x, x) = 0. Since x 
= 0 by the assumption, we apply (wMIA)
to obtain that g(x, x) ≤ f(x, x). Thus – x · g(x, x) = 0, i.e., g(x, x) ≤ x. 

Proposition 6.5. (ABT2s) entails both (ABT0) and (ABT2); therefore, every
strong betweenness algebra is a betweenness algebra.

Proof. (ABT0): If x = 0, then immediately x ≤ f(x, x). If x 
= 0, then from
the assumption we obtain x ≤ f(x, x).

(ABT2): Fix arbitrary x, y and z. We have two possibilities, either y = 0 or y 
= 0.
In the former, we have 0 = y · f(x, z) ≤ f(x · f(x, y), z). In the latter, directly from
(ABT2s) we obtainx = x · f(x, y) so y · f(x, z) ≤ f(x, z) = f(x · f(x, y), z). 

From Lemma 5.2 and Theorem 5.1 we see that the axioms hold in complex
algebras of b-frames:

Theorem 6.6. If F is a (weak, strong) betweenness frame, then Cmps(F) is a (weak,
strong) betweenness algebra.

The definition of sufficiency operator implies that g(0, a) = g(a, 0) = 1 for all
a ∈ A. Our next result shows under which other conditions g(a, b) = 1 is possible:

Theorem 6.7. Suppose that A := 〈A,f, g〉 is a b-algebra, 0 
∈ {a, b, c} ⊆ A, and
g(a, b) = 1. Then:

(1) |A| = 2 or a · b = 0.
(2) a, b ∈ At(A).
(3) If g(a, c) = 1, then b = c.

Proof. 1. Suppose that a · b 
= 0. Then, by (ABTW) and the fact that g is
antitone,

1 = g(a, b) ≤ g(a · b, a · b) ≤ a · b,
which implies a = b = 1. If 0 � d ≤ 1, then 1 = g(1, 1) ≤ g(d, d ) ≤ d which shows
that |A| = 2.

2. If |A| = 2, then a = b = 1 ∈ At(A). Thus, a · b = 0 by 1. above. Suppose
that 0 ≤ d � b; then 0 
= b· – d 
= 0, and hence 1 = g(a, b) ≤ g(a, b· – d ) ≤
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0

1

g g

Figure 1. The situation excluded by Theorem 6.7(3).

f(a, b· – d ) by (wMIA). Furthermore, 1 = g(a, b) ≤ g(a, d ); therefore,
b· – d ≤– d = g(a, d )· – d . Using (ABT3) and the fact that f is monotone, we
obtain

1 = f(a, b· – d ) ≤ f(a, g(a, c)· – d )) ≤– d,

which implies d = 0. It is shown analogously that a is an atom.
3. If g(a, b) = g(a, c) = 1, then both b and c are atoms by 2. above and g(a, b) ·

g(a, c) = g(a, b + c) = 1. Again by 2. above we obtain that b + c is an atom, which
implies b = c (see Figure 1). 

Corollary 6.8. Suppose that A := 〈A,f, g〉 is a b-algebra. Then:

(1) If A has at most one atom, then g–1[{1}] = ({0} × A) ∪ (A× {0}).
(2) If M ⊆ (A \ {0}) × (A \ {0}) and g[M ] = {1}, then M ⊆ At(A)2 and M is

an antichain in the product order of A2.

Example 6.9. With respect to Theorem 6.7(3) we will exhibit a b-algebra A such
that g(a, b) = 1 = g(c, d ), none of the four arguments is zero, and they are pairwise
disjoint, i.e., the theorem is as strong as it can be. To this end, let U := {a, b, c, d},
take all triples

M := {〈a, x, b〉 | x ∈ U} ∪ {〈c, x, d 〉 | x ∈ U},

and close M under axioms (BT0)–(BT3) to obtain B. Such closure does not lead
to a contradiction, that is, no pair of triples 〈x, y, z〉 and 〈x, z, y〉 such that y 
= z
is contained in B. In consequence, F := 〈U,B〉 is a b-frame. In Cmps(A) we have
[[B]]({a}, {b}) = U = [[B]]({c}, {d}). The situation is depicted in Figure 2.

Theorem 6.10. Suppose that 〈A, g〉 is a binary sufficiency algebra which satisfies
(ABTW). If g(a, b) 
= 0, then a · b ≤ g(a, b). If, additionally, a · b 
= 0, then
g(a, b) = a · b and a · b is an atom.
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0

1

g g

Figure 2. As Example 6.9 shows, there may be disjoint pairs of atoms for which g
takes the value 1.

Proof. Assume that a · b 
≤ g(a, b). Then, a · b· – g(a, b) 
= 0, and (ABTW)
implies that

g(a · b· – g(a, b), a· – g(a, b)) ≤ a · b· – g(a, b).

Since g is antitone we obtain

g(a, b) ≤ g(a · b· – g(a, b), a · b· – g(a, b)) ≤ a · b· – g(a, b) ≤– g(a, b),

and thus g(a, b) = 0. If, in addition, a · b 
= 0, then g(a · b, a · b) ≤ a · b by
(ABTW), and thus g(a, b) = a · b.

Finally, suppose that 0 � c ≤ a · b. Using (ABTW) and the fact that g is antitone,
we obtain

0 
= c ≤ a · b ≤ g(a, b) ≤ g(a · b, a · b) ≤ g(c, c) ≤ c.
It follows that c = a · b; thus, a · b is an atom of A. 

Example 6.11. Consider the b-frame F := 〈[0, 1], B�〉 where [0, 1] is the closed
unit interval of the real numbers and B� is induced by the standard order �. In
Cmps(F) we have [[B�]]({0}, {1}) = [0, 1], and clearly {0} and {1} are disjoint
atoms of the complex algebra of F. It is easy to see that if [[B�]](X,Y ) = [0, 1], then
{X,Y} = {{0}, {1}}.

On the other hand, for the subframe F
∗ := 〈[0, 1), B∗

�〉 of F, we have that

[[B∗
�]]–1 [

{[0, 1)}
]

=
(
{∅} × 2[0,1)

)
∪

(
2[0,1) × {∅}

)
,

although F
∗ has uncountably many atoms.

Lemma 6.12. Let A := 〈A,f, g〉 be a PS-algebra. In the presence of (ABT0),
(ABT2), and (ABT3) the axiom (ABTW) is equivalent to

(∀a, b ∈ A)[a · b 
= 0 → g(a, b) ≤ f(a, b)]. (5)
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f 0 1 b ac c ab bc a
0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1
b 0 1 1 1 bc 1 1 ab

ac 0 1 1 1 1 1 1 1
c 0 1 bc 1 1 1 1 ac

ab 0 1 1 1 1 1 1 1
bc 0 1 1 1 1 1 1 1
a 0 1 ab 1 ac 1 1 1

g 0 1 b ac c ab bc a
0 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0
b 1 0 0 0 a 0 0 0

ac 1 0 0 0 0 0 0 0
c 1 0 a 0 0 0 0 0

ab 1 0 0 0 0 0 0 0
bc 1 0 0 0 0 0 0 0
a 1 0 0 0 0 0 0 0

Table 1. A b-algebra satisfying strong b-axioms, (5), but not (wMIA). For
simplicity, xy is x + y.

Proof. (→) Suppose a · b 
= 0. Then, using (ABTW) and (ABT0), we have

g(a, b) ≤ g(a · b, a · b) ≤ a · b ≤ f(a, b) .

(←) Suppose a 
= 0. By (ABT3) it is the case that f(a, g(a, a)· – a) ≤– a, and
(ABT2) entails that

– a · g(a, a) · f(a, a) ≤ f(a · f(a, g(a, a)· – a), a) ≤ f(0, a) = 0 .

Since (5) entails that g(a, a) ≤ f(a, a), we have – a · g(a, a) = 0, as required. 

Clearly, (wMIA) implies (5), but the converse does not hold as the algebra with
atoms a, b, c of Table 1 shows.

Algebras that satisfy (wMIA) are binary instances of the weak MIAs introduced
in Section 2. A remarkable property of such algebras is the fact that they are
discriminator algebras in the sense of Werner [29]. Here, the unary discriminator on
a Boolean algebra A is the mapping d : A→ A such that for all a ∈ A

d (a) =

{
0, if a = 0,
1, otherwise.

As the lemma below demonstrates, the result can be strengthened to a larger class
of PS-algebras in which (wMIA) is weakened to (5).

Lemma 6.13. Suppose that A := 〈A,f, g〉 is a binary PS-algebra. Then d : A→ A
as defined above is the unary discriminator if and only if A satisfies (5).

Proof. (→) Suppose that d is the discriminator, and let a, b ∈ A, a · b 
= 0. Then,
d (a · b) = f(a · b, a · b)+ – g(a · b, a · b) = 1, i.e., g(a · b, a · b) ≤ f(a · b, a · b).
Now,

g(a, b) ≤ g(a · b, a · b) ≤ f(a · b, a · b) ≤ f(a, b),

since g is antitone and f is monotone.
(←) Let a ∈ A, a 
= 0. Then, g(a, a) ≤ f(a, a) by the hypothesis, which implies

that f(a, a)+ – g(a, a) = 1. 
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Furthermore, observe that—due to the facts that g is antitone and f is monotone—
(5) is equivalent to

a 
= 0 → g(a, a) ≤ f(a, a) .

Collecting all the facts above we have the following:

Theorem 6.14. Suppose that A := 〈A,f, g〉 is a PS-algebra that satisfies (ABT0),
(ABT2), and (ABT3). Then, d : A→ A defined by d (a) := f(a, a)+ – g(a, a) is the
unary discriminator if and only if A satisfies (ABTW).

Proof. (→) Suppose that d is the discriminator, and let 0 
= a ∈ A. Then, d (a) =
f(a, a)+ – g(a, a) = 1 which implies g(a, a) ≤ f(a, a). So (5) holds which entails
(ABTW), by Lemma 6.12.

(←) Let a ∈ A, a 
= 0. Then, g(a, a) ≤ f(a, a) by the hypothesis, which implies
that f(a, a)+ – g(a, a) = 1. 

Corollary 6.15. Each weak b-algebra is a discriminator algebra.

Since a discriminator algebra is simple by [29, Theorem 2.2] this implies

Proposition 6.16. The class of weak b-algebras is not closed under products.

Since every b-algebra is a weak b-algebra we obtain

Corollary 6.17. Each b-algebra is a discriminator algebra.

§7. Representation of b-algebras. In this section we shall show that the class of
b-algebras is closed under canonical extensions. Suppose that A := 〈A,f, g〉 is a
PS-algebra. Modifying the notation in Section 2 for our purpose we designate the
middle column as special and define canonical relations on Ult(A) by

Qf(U1,U2,U3) :←→ f[U1 × U3] ⊆ U2, (dfQ f)

Sg(U1,U2,U3) :←→ g[U1 × U3] ∩ U2 
= ∅. (dfS g)

So, Cfps(A) = 〈Ult(A), Qf, Sg〉 is the canonical frame of A.
The weak MIA axiom (wMIA) shows that the canonical relations are not

independent:

Lemma 7.1. A satisfies (wMIA) if and only if Sg ⊆ Qf . In particular, S[[B]] ⊆ Q〈B〉
for every Cmps(F) of a b-frame F.

Proof. (→) Suppose thatSg(U1,U2,U3). Then, U2 ∩ g[U1 × U3] 
= ∅, say,x ∈
U1, y ∈ U3 and g(x, y) ∈ U2. We need to show that f[U1 × U3] ⊆ U2. Let s ∈
U1, and t ∈ U3; then, 0 
= x · s ∈ U1 and 0 
= y · t ∈ U3. By (wMIA) we have
g(x · s, y · t) ≤ f(x · s, y · t). Using g(x, y) ∈ U2 and the facts that g is antitone
and f is monotone we obtain

g(x, y) ≤ g(x · s, y · t) ≤ f(x · s, y · t) ≤ f(s, t) ∈ U2.

(←) Let x, y 
= 0 and assume that g(x, y) 
≤ f(x, y), i.e., g(x, y)· – f(x, y) 
= 0.
Choose ultrafilters U1,U2,U3 such that x ∈ U1, y ∈ U3, and g(x, y)· – f(x, y) ∈
U2. Then, g[U1 × U3] ∩ U2 
= ∅, and therefore f[U1 × U3] ⊆ U2, in particular,
f(x, y) ∈ U2. This contradicts – f(x, y) ∈ U2. 
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The crucial observation about canonical frames of b-algebras is the following
result:

Lemma 7.2. If A := 〈A,f, g〉 is a betweenness algebra, then its canonical frame
Cfps(A) = 〈Ult(A), Qf, Sg〉 has the following properties:

Qf(U,U,U) , (BT0Cf)

Qf(U1,U2,U3) → Qf(U3,U2,U1) , (BT1Cff)

Sg(U1,U2,U3) → Sg(U3,U2,U1) , (BT1Cfg)

Qf(U1,U2,U3) → Qf(U1,U1,U2) , (BT2Cf)

Qf(U1,U2,U3) ∧ Sg(U1,U3,U2) → U2 = U3 . (BT3Cf)

If A is a strong betweenness algebra, then Cfps(A) additionally satisfies

Qf(U1,U1,U2) . (BT2sCf)

If A is a weak betweenness algebra, then Cfps(A) meets

Sg(U1,U2,U1) → U1 = U2 . (BTWCf)

Proof. (BT0Cf): Fix an ultrafilter U. If x, y ∈ U, then, since x · y ≤ f(x, y), it
is the case that f[U × U] ⊆ U, as every ultrafilter is closed under meets.

(BT1Cff): By (ABT1f).
(BT1Cfg): Let Sg(U1,U2,U3), i.e., g[U1 × U3] ∩ U2 
= ∅. Pick x ∈ U1 and y ∈

U2 such that g(x, y) ∈ U2. By (ABT1g) it is the case that g(y, x) ∈ U2, and, since
〈y, x〉 ∈ U3 × U1, we have Sg(U3,U2,U1).

(BT2Cf): Suppose that Qf(U1,U2,U3), i.e., f[U1 × U3] ⊆ U2. Let x ∈ U1

and y ∈ U2; we need to show that f(x, y) ∈ U1. Suppose, on the contrary, that
– f(x, y) ∈ U1. First, note that due to monotonicity of f we have

x· – f(x, y) · f(x· – f(x, y), y) ≤ x· – f(x, y) · f(x, y) = 0.

By the assumption, y · f(x· – f(x, y), 1) ∈ U2, but (ABT2) implies

y · f(x· – f(x, y), 1) ≤ f(x· – f(x, y) · f(x· – f(x, y), y), 1) = f(0, 1) = 0,

which is a contradiction. It follows that f(x, y) ∈ U1.
(BT3Cf): Assume f[U1 × U3] ⊆ U2 and g[U1 × U2] ∩ U3 
= ∅. Let x ∈ U2 and

– x ∈ U3. Furthermore, let a ∈ U1 and b ∈ U2 be such that g(a, b) ∈ U3. Since g
is antitone we have that g(a, b · x) ∈ U3. Since also – b+ – x ∈ U3, it follows that
g(a, b · x) · (– b+ – x) ∈ U3, and from (ABT3) we obtain

U2 � f(a, g(a, b · x) · (– b+ – x)) ≤– b+ – x ∈ U2 .

But b · x ∈ U2, a contradiction. So it must be the case that U2 = U3, as required.
(BT2sCf): We need to show that f[U1 × U2] ⊆ U1. If x ∈ U1 and y ∈ U2, then

y 
= 0 and by (ABT2s) we obtain that x ≤ f(x, y). Therefore f(x, y) ∈ U1, as
required.
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(BTWCf): Assume that Sg(U1,U2,U1), that is, g[U1 × U1] ∩ U2 
= 0. Let
y1, y2 ∈ U1 be such that g(y1, y2) ∈ U2. So, from the fact that g is antitone we obtain
that g(y1 · y2, y1 · y2) ∈ U2. If x ∈ U1, then using the property one more time we
obtain that g(x · y1 · y2, x · y1 · y2) ∈ U2. However, x · y1 · y2 
= 0; therefore, from
(ABTW) we obtain

g(x · y1 · y2, x · y1 · y2) ≤ x · y1 · y2 ,

and so x is in U2. Thus, U1 = U2 by maximality of ultrafilters. 

We now have the following representation theorem:

Theorem 7.3. Suppose thatA := 〈A,f, g〉 is a (weak, strong) betweenness algebra.
Then, the Stone map h : A ↪→ Emps(A) is a (weak, strong) betweenness algebra
embedding.

Proof. h : A ↪→ Emps(A) is a PS-algebra embedding by Theorems 2.2 and 2.5,
and we need to show that Emps(A) is a (weak, strong) betweenness algebra; we will
use Lemma 7.2. Suppose that ∅ 
= X,Y,Z ⊆ Ult(A). Let us begin with the proof for
a betweenness algebra A.

(ABT0): Let U ∈ X . By (BT0Cf) we have Qf(U,U,U), and U ∈ X implies that
(X × {U} × X ) ∩Qf 
= ∅. It follows that U ∈ 〈Qf〉(X,X ).

(ABT1f): Let U ∈ 〈Qf〉(X,Y ). Then, (X × {U} × Y ) ∩Qf 
= ∅, say, U1 ∈
X,U2 ∈ Y are such that Qf(U1,U,U2). By (BT1Cff), Qf(U2,U,U1) which shows
that (Y × {U} × X ) ∩Qf 
= ∅, i.e., U ∈ 〈Qf〉(Y,X ).

(ABT1g) Suppose U ∈ [[Sg ]](X,Y ), that is, X × {U} × Y ⊆ Sg . If U1 ∈ Y and
U2 ∈ X , thenSg(U2,U,U1) and this with (BT1Cfg) entail thatSg(U1,U,U2). Since
our choices were arbitrary, we have that Y × {U} × X ⊆ Sg , i.e., U ∈ [[Sg ]](Y,X ).

(ABT2): Let U ∈ Y ∩ 〈Qf〉(X,Z), i.e., U ∈ Y and there are U1 ∈ X,U2 ∈ Z
such thatQf(U1,U,U2). By (BT2Cf) we haveQf(U1,U1,U), so U1 ∈ 〈Qf〉(X,Y ).
Thus, U1 ∈ X ∩ 〈Qf〉(X,Y ). As U2 is in Z, we obtain

U ∈ 〈Qf〉(X ∩ 〈Qf〉(X,Y ), Z),

as required.
(ABT3): Suppose that U ∈ 〈Qf〉(X, [[Sg ]](X, – Y ) ∩ Y ). Then, there are U1 ∈

X,U2 ∈ [[Sg ]](X, – Y ) ∩ Y such that Qf(U1,U,U2). Now,

U2 ∈ [[Sg ]](X, – Y ) ←→ (X × {U2}× – Y ) ⊆ Sg.

Assume that U 
∈ Y ; then, Sg(U1,U2,U) and (BT3Cf) implies that U = U2 ∈ Y , a
contradiction.

For a weak betweenness algebra A we need to show that (ABTW) holds
in Emps(A). To this end, suppose that ∅ 
= X ⊆ Ult(A), and U ∈ [[Sg ]](X,X );
then, (X × {U} × X ) ⊆ Sg . Since X 
= ∅, there is some V ∈ X , and Sg(V,U,V).
(BTWCf) now implies U = V, thus, U ∈ X .

Finally, for a strong betweenness algebra A we need to prove (ABT2s) for
Emps(A). Yet this is straightforward, since if ∅ 
= Y ⊆ Ult(A) and U1 ∈ X , then
by (BT2sCf) we have that Qf(U1,U1,U) for some U ∈ Y . This entails that
U1 ∈ 〈Qf〉(X,Y ). 
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What we have proven in this section so far is the following: For any b-algebra4

A := 〈A,f, g〉 its canonical frame Cfps(A) = 〈Ult(A), Qf, Sg〉 behaves in such
a way that the relations Qf and Sg in a certain way «simulate» betweenness
axioms. Furthermore, the standard Stone mapping embeds A into Emps(A) =
〈2Ult(A), 〈Qf〉, [[Sg ]]〉. Nonetheless, neither Cfps(A) is necessarily a b-frame, nor
Emps(A) is necessarily a complex b-algebra. Of course, ifA is an MIA, i.e.,Qf = Sg ,
then we can take the reduct of Cfps(A) to 〈Ult(A), Qf〉 which is a b-frame, and we
can embed A via Stone mapping into the complex b-algebra 〈2Ult(A), 〈Qf〉, [[Qf ]]〉.
The problem is—as we will see in the next section in Theorem 8.7—that there are
no infinite b-algebras that are MIAs.

Unfortunately, the question whether for any given b-algebra A there exists a
b-frame F := 〈U,B〉 such that A can be embedded into Cmps(F) has a negative
answer. This will be proven in the next section in the form of Example 8.4.

§8. B-algebras and b-complex algebras. In this section we will investigate the
connections between b-complex algebras and (abstract) b-algebras and exemplify
some instances in which they differ. Let us start with the following definitions:

Definition 8.1. The class of b-algebras is denoted by Abtw. An algebraA ∈ Abtw
is a b-complex algebra or representable if there exists a b-frame F such that A is
isomorphic to a subalgebra of Cmps(F). The class of b-complex algebras is denoted
by Cbtw. As earlier, A is a full b-complex algebra when it is isomorphic to Cmps(F)
of a b-frame F.

Let us briefly recall the situation. For a b-algebra A we start with operators
f, g which lead to ternary relations Qf and Sg on the ultrafilter frame which, in
turn, lead to operators 〈Qf〉 and [[Sg ]], and the embedding of A into Emps(A) is
straightforward (Section 7). This direction does not involve b-frames.

From frames to algebras we start with a single relation B on U which leads to
a b-algebra on 2U with operators 〈B〉, [[B]] which, in turn, give us two relations
Q〈B〉 and S[[B]] which, in general, are not equal. One might ask into which one, if
any, can we embed our B. The answer is: It does not matter. The reason for this is
the fact that the mapping k : U → Ult(Cmps(F)) of Theorem 2.3 sends points of U
to principal ultrafilters of 2U , and the relation {〈k(x), k(y), k(z)〉 | x, y, z ∈ U} is
isomorphic to B; it is contained in both Qf and Sg . This holds for any 3-frame, so
the observation is not particular to b-relations.

We first describe the b-algebras on the set of constants:

Example 8.2. Suppose that A := {0, 1}, and let a, b ∈ A. If a = 0 or b = 0, then
the values of f(a, b) and g(a, b) are determined by the normality and co-normality
of, respecitvely, f and g; furthermore, f(1, 1) = 1 by (ABT0).

If g(1, 1) = 1, then the corresponding algebra A0 is isomorphic to the smallest full
b-complex algebra: Let F := 〈U,B〉 where U := {x} and B := {〈x, x, x〉}. Then,

〈B〉 ∅ U [[B]] ∅ U
∅ ∅ ∅ ∅ U U
U ∅ U U U U

4Everything that we write about here applies to weak and strong b-algebras as well.
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and Q〈B〉 = {〈{U}, {U}, {U}〉} = S[[B]]. This algebra is special in the sense that it
is not a proper subalgebra of a b-algebra by Theorem 6.10(2).

Finally, let g(1, 1) = 0; then, f and g are as below:

f 0 1 g 0 1
0 0 0 0 1 1
1 0 1 1 1 0

It is easy to see that A1 := 〈A,f, g〉 is a strong b-algebra, andQf({1}, {1}, {1}), but
not Sg({1}, {1}, {1}) as g[{1} × {1}] ∩ {1} = ∅. Obviously, A1 is not isomorphic to
Cmps(F), and so cannot be isomorphic to the full complex algebra of any b-frame.
On the other hand, A1 is a b-complex algebra by Theorem 8.3 below.

Theorem 8.3. Every b-algebraAwith at least four elements contains an isomorphic
copy of the two-element algebra A1 of Example 8.2 as a subalgebra.

Proof. Suppose that A′ := 〈A,f, g〉 ∈ Abtw has at least four elements, and let 2
be the subalgebra of A′ generated by {0, 1}. Then, 2 is isomorphic to A0 or A1 of
Example 8.2, and it is not isomorphic to A0 since A has at least four elements. 

We know from Theorem 6.6 that the full PS-complex algebra of a b-frame is
a b-algebra, i.e., that Cbtw ⊆ Abtw. The natural question arising at this point is
whether the converse inclusion holds, that is, whether every b-algebra is a complex
algebra.5 As the following example shows, this is not necessarily the case.

Example 8.4. Let A be the eight-element Boolean algebra with atoms {a, b, c}
and f and g be as below (for the brevity of presentation we write xy instead of
x + y):

f 0 a b c ab ac bc 1 g 0 a b c ab ac bc 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
a 0 a 1 1 1 1 1 1 a 1 a a 0 a 0 0 0
b 0 1 b bc 1 1 bc 1 b 1 a 0 0 0 0 0 0
c 0 1 bc c 1 1 bc 1 c 1 0 0 0 0 0 0 0
ab 0 1 1 1 1 1 1 1 ab 1 a 0 0 0 0 0 0
ac 0 1 1 1 1 1 1 1 ac 1 0 0 0 0 0 0 0
bc 0 1 bc bc 1 1 bc 1 bc 1 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

A := 〈A,f, g〉 is a PS-algebra, and by routine calculations6 we can check that it is
a b-algebra. We will demonstrate that A cannot be embedded into the full complex
algebra of a b-frame, and therefore it is not a b-complex algebra.

Assume towards a contradiction that it is. Then, there exists a b-frame F = 〈U,B〉
such that A is isomorphic to a subalgebra S of Cmps(F). Let i : A→ S be an
isomorphism of b-algebras. Thus, i(a) 
= ∅, and [[B]](i(a), i(a)) = i(a), that is
[[B]](i(a), i(a)) 
= ∅. It follows from Theorem 6.10 that i(a) is a singleton, i.e.,

5The question is motivated by a similar result for unary weak MIAs and the logic K˜ (see [13,
Important Lemma] and [9, Theorem 8.5]).

6Software assisted, if one wishes, e.g., by UACalc [12].
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there is x ∈ U such that i(a) = {x}. On the other hand, we have 〈B〉(i(a), i(c)) =
U and [[B]](i(a), i(c)) = ∅. We will show that this is not possible because
x ∈ [[B]](i(a), i(c)). Let y ∈ i(c). Since y ∈ 〈B〉(i(a), i(c)), there exists z ∈ i(c)
such that 〈x, y, z〉 ∈ B . By (BT2), 〈x, x, y〉 ∈ B . Thus, i(a) × {x} × i(c) ⊆ B by
arbitrariness of y, and we obtain a contradiction.

The weak MIA axiom (wMIA) implies that Sg ⊆ Qf , and one may ask under
which conditions equality Qf = Sg holds, and, if so, whether Qf is a b-relation;
we shall answer this question below. In analogy to the unary case (3) we say that
A is a mixed algebra (MIA), if Qf = Sg , i.e., f[U1 × U3] ⊆ U2 if and only if
g[U1 × U3] ∩ U2 
= ∅.

Our next result implies that full finite b-complex algebras are MIAs:

Proposition 8.5. Assume that U1,U2,U3 are principal ultrafilters of 2U . Then
Q〈B〉(U1,U2,U3) implies S[[B]](U1,U2,U3). In particular, if U is finite, thenQ〈B〉 =
S[[B]].

Proof. Let U1 = ↑{x},U2 = ↑{y},U3 = ↑{z}, and Q〈B〉(↑ {x}, ↑ {y}, ↑ {z}).
Then 〈B〉[↑ {x}× ↑ {z}] ⊆↑ {y}, in particular, 〈B〉({x}, {z}) ∈ ↑{y}, which
implies B(x, y, z). It follows that y ∈ [[B]]({x}, {z}); hence, [[B]]({x}, {z}) ∈
↑{y}, and therefore [[B]][↑ {x}× ↑ {z}] ∩ ↑{y} 
= ∅, i.e., S[[B]](↑ {x}, ↑ {y},
↑ {z}). 

On the other hand, there are finite b-complex algebras in which the equality
Qf = Sg fails such as the algebra A1 of Example 8.2. Our next example exhibits an
infinite full complex b-algebra which is not an MIA. Theorem 8.7 below shows that
this is no accident.

Example 8.6. By Corollary 4.6, the relation B� obtained from the natural
ordering � of � is a betweenness relation, i.e., N := 〈�,B�〉 is a b-frame. Let
X,Y ⊆ � be infinite; then, both X and Y are cofinal, i.e., for every n ∈ �
there are k ∈ X,m ∈ Y such that n � k,m. Hence, n ∈ 〈B�〉(X,Y ) if and only
if minX � n or minY � n, and it follows that 〈B�〉(X,Y ) = ↑min(X ∪ Y ). In
particular, 〈B�〉(X,Y ) is cofinite, and therefore 〈B�〉[U1 × U2] ⊆ U for all free
ultrafilters U1,U2,U of �. On the other hand, [[B�]](X,Y ) = ∅. Assume that
k ∈ [[B�]](X,Y ). SinceX,Y are cofinite, there are n ∈ X,m ∈ Y such that k < n,m
which implies that 〈n, k,m〉 
∈ B , a contradiction. ThereforeQ〈B�〉 
= S[[B�]], and the
full complex algebra of N is not an MIA.

Let us point out an analogy holding between N and the standard ultrafilter
extension of the binary frameN2 := 〈�,�〉. In case of the latter, principal ultrafilters
correspond to the natural numbers, and free ultrafilters are clustered at infinity, in the
sense that every free U is accessible from every principal U′, and the accessibility
relation is universal on the set of free ultrafilters. In case of N the situation is
somewhat analogous, since as we have seenQ〈B�〉 is universal on free ultrafilters, and
for any n,m ∈ � such thatm � n, and any free U we have Q〈B�〉(↑ {m}, ↑ {n},U).
Indeed, as we have seen above, 〈B�〉(X,Y ) = ↑min(X ∪ Y ), and sincem ∈ X ∪ Y ,
min(X ∪ Y ) � n. Therefore, n ∈ ↑min(X ∪ Y ), as required. Thus Q〈B�〉 may be
viewed as a relation that puts a large cluster of free ultrafilters at infinity in case of
the 3-frame N.
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Theorem 8.7. No infinite b-algebra is an MIA.

Proof. We will proceed in three steps:
(1) No infinite full b-complex algebra is an MIA: Let U be a free ultrafilter on

2U . Then,Q〈B〉(U,U,U) by Lemma 7.2. Assume that S[[B]](U,U,U). Then,
there are X,Y ∈ U such that [[B]](X,Y ) ∈ U. Since X ∩ Y ∈ U and U is a
free ultrafilter, X ∩ Y is infinite. This contradicts Theorem 6.10.

(2) No infinite subalgebra of a full b-complex algebra is an MIA: Let S :=
〈D, 〈B〉D, [[B]]D〉 be an infinite subalgebra of Cmps(F), and U be a free
ultrafilter of D. Observing that Abtw is a universal class, we see that S is a
b-algebra, and therefore Q〈B〉D (U,U,U), again by Lemma 7.2.

Assume that S[[B]]D (U,U,U), i.e., [[B]]D [U × U] ∩ U 
= ∅. Let X,Y ∈ U
be such that [[B]]D(X,Y ) ∈ U; then, [[B]]D(X,Y ) 
= ∅ and X ∩ Y is infinite.
[[B]]D(X,Y ) = [[B]](X,Y ), so again, we have a contradiction with Theorem
6.10.

(3) No infinite b-algebra is an MIA: Suppose A := 〈A,f, g〉 is an infinite MIA.
Then Qf = Sg , and the reduct of Cfps(A) to 〈Ult(A), Qf〉 is a b-frame by
Lemma 7.2. Hence, Emps(A) is a full b-complex algebra, and by Theorem
7.3, A is isomorphic to a subalgebra of Emps(A). It follows from the previous
results that A is not an MIA.

This concludes the proof. 
The next example is an algebraic explanation of the non-definability result of

Theorem 4.7.

Example 8.8. LetZ := 〈�, B�〉 be as in Theorem 4.7 and consider its full complex
algebra Cmps(Z). Let E and O be the sets of even and odd integers, respectively.
Then, A := {∅, E,O,�} is a Boolean subalgebra of 2�, and we shall show that it is
a PS-subalgebra of Cmps(Z). If x ∈ �, then there are even and odd numbers below
and above x which shows that 〈B〉(E,E) = 〈B〉(E,O) = 〈B〉(O,E) = 〈B〉(O,O) =
�. Furthermore, there are odd and even numbers strictly greater than x, and it
follows that [[B]](E,E) = [[B]](E,O) = [[B]](O,E) = [[B]](O,O) = ∅. Thus,A :=
〈A, 〈B〉, [[B]]〉 is a PS-subalgebra of Cmps(Z).

On the other hand consider the full complex algebra of the frame 〈U,R〉, where
R is the ternary universal relation onU := {w0, w1}. There, [[R]](X,Y ) = U for all
X,Y ⊆ U , contrasting the considerations above.

The algebra Cmps(Z) has yet one more interesting property. Since for any
X,Y ∈ 2U , [[B]](X,Y ) is always finite, if [[B]][U1 × U2] ∩ U 
= ∅, U must be a
principal filter, i.e., for some x ∈ U , U =↑ {x}. Therefore, Q〈B〉(U,U,U) and not
S[[B]](U,U,U) for all free ultrafilters of 2�.

As can be seen from the proof above, the only property of 〈�,�〉 that was needed
to obtain both conclusions was its order type, which is �∗ + �.

Example 8.9. In Example 8.8 we saw a full complex algebra for which the relation
S[[B]] is empty on the set of triples of free ultrafilters. We will show now that this
does not have to be the case. To this end, consider the strong b-frame Q := 〈�, B�〉
induced by the standard dense linear order � on the set of rational numbers �.
Consider three intervalsX := (– ∞, 0), Y := [0, 1] andZ := (1,+∞). Let UX ,UY ,
and UZ be free ultrafilters containing the respective intervals. In this case we have
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that [[B]](X,Z) = Y and so [[B]][UX × UZ ] ∩ UY 
= ∅. Generally, for any pair
U1,U2 of free ultrafilters such that (r, p) ∈ U1, (q, s) ∈ U2, and r < p < q < s
there is a free ultrafilter U such that S[[B]](U1,U2,U), i.e., any such ultrafilter which
contains the open interval (p, q).

§9. Summary and further work. We have put forward—well justified—axioms for
an algebraic treatment of reflexive betweenness relations. The resulting class Abtw
of b-algebras turned out to have some «good» properties such as closure under
canonical extensions, and some «bad» ones, too, such as non-b-representability. In
the context of the latter, the most pressing questions now are the following:

(1) Is there for any b-algebra A a 3-frame F := 〈U,R〉 such that A is embeddable
into the complex PS-algebra of F? We know from Example 8.4 that F cannot
be a b-frame, but it may be possible that there is a larger class of 3-frames
that can give us representability. Basically we ask if we can prove an analog
of Theorem 8.5 from [9] or the Important Lemma from [13].

(2) Which, if any, axioms can we add to (ABT0)–(ABT3) and (wMIA) to obtain
a subclass of Abtw that is b-representable?

We also investigated properties of the possibility and sufficiency operators in the
context of b-algebras, and although initially it seemed that our axioms say little
about g, we were able to prove—especially in Section 6—quite a number of strong
properties, some of them limiting in nature. Also, we knew that f and g should be
bounded by certain axioms to cooperate fruitfully, but to our surprise, it turned
out in Theorem 8.7 that the cooperation cannot be too strong. Still, we believe that
there are new connections to be discovered, which will result in further insights into
algebraic aspects of betweenness.

What we entirely left out of this paper—but by no means neglected—are problems
of axiomatizations of various subclasses of Abtw such as Cbtw. These we are going
to pursue in future installments of the work presented here.
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