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Abstract

We study the initial boundary value problem for a fourth-order parabolic equation with nonstandard
growth conditions. We establish the local existence of weak solutions and derive the finite time blow-
up of solutions with nonpositive initial energy.
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1. Introduction

In this paper, we study the following initial boundary value problem for a parabolic
equation of p(x)-biharmonic type

ut + ∆2
p(x)u = |u|q(x)−2u for all (x, t) ∈ Ω × (0,T ],

u(x, 0) = u0(x) for all x ∈ Ω,

u(x, t) = ∆u(x, t) = 0 for all (x, t) ∈ ∂Ω × [0,T ],
(1.1)

where Ω is a bounded domain of RN (N ≥ 2) with a smooth boundary ∂Ω, and

∆2
p(x)u = ∆(|∆u|p(x)−2∆u).

The functions p : Ω→ [p−, p+] ⊂ (1,∞) and q : Ω→ [q−, q+] ⊂ (1,∞) are measurable,
and

p− = ess inf
x∈Ω

p(x), p+ = ess sup
x∈Ω

p(x), q− = ess inf
x∈Ω

q(x), q+ = ess sup
x∈Ω

q(x).
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In addition, p(x) is log-Hölder continuous on Ω (see [5]), that is, there exists a constant
C > 0 such that, for any x1, x2 ∈ Ω,

|p(x1) − p(x2)| ≤
C

ln(e + |x1 − x2|
−1)

. (1.2)

Recently, differential equations and variational problems with nonstandard growth
conditions have attracted more and more attention (see, for example, [2–4, 8, 9]).
They arise from various physical problems involving anisotropic phenomena such
as nonlinear electrorheological fluids [1, 10] and elastic mechanics [14]. These
applications have been facilitated by the development of Lebesgue and Sobolev spaces
with variable exponents.

In the case p(x) ≡ p, a constant, the differential equation (1.1)1 without source term
becomes

ut + ∆2
pu = 0. (1.3)

Equation (1.3) describes the image intensity, u, in a You–Kaveh model [12], which has
been demonstrated to be effective for the trade-off between noise removal and edge
preservation in image processing. The differential equation (1.1)1 is a generalised
nonlinear version of (1.3). Of course, the nonlinearity comes not only from the source
term but also from the diffusion term.

The stationary equation corresponding to the differential equation (1.1)1 is treated
in [3, 4, 7]. Drábek and Ôtani [7] studied the nonlinear eigenvalue problem for the
p-biharmonic operator with p > 1, that is,

∆2
pu = λ|u|p−2u,

with the Navier boundary condition (1.1)3. They obtained a principal positive
eigenvalue that is simple and isolated and proved that the corresponding eigenfunction
u1 = u1(p) > 0 satisfies ∆u1 < 0 in Ω and ∂u1/∂n < 0 on ∂Ω.

When p(x) is not a constant, the p(x)-biharmonic operator possesses more
complicated nonlinearity than the p-biharmonic operator. The existence of weak
solutions to the equation

∆2
p(x)u = λ|u|q(x)−2u

with boundary condition (1.1)3 was investigated by Ayoujil and El Amrouss when
p(x) = q(x) [3] and when p(x) , q(x) [4].

Our purpose is to seek sufficient conditions for existence and blow-up of weak
solutions to the problem (1.1). The paper is organised as follows. In Section 2, we
display some notation, definitions and known facts on the Lebesgue and Sobolev
spaces with variable exponents and present our main results on problem (1.1). In
Section 3, we prove the local existence of solutions to problem (1.1). Section 4 is
devoted to the proof of finite time blow-up of solutions to problem (1.1).
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2. Notation and main results

We first recall some definitions and basic properties of the Lebesgue and Sobolev
spaces with variable exponents (see [5, 6, 13] for further details).

The variable exponent Lebesgue space Lp(x)(Ω) consists of all measurable real-
valued functions with ∫

Ω

|u|p(x) dx <∞.

Equipped with the norm

‖u‖p(x) := ‖u‖Lp(x)(Ω) = inf
{
µ > 0

∣∣∣∣∣ ∫
Ω

∣∣∣∣∣uµ
∣∣∣∣∣p(x)

dx ≤ 1
}
,

Lp(x)(Ω) is a separable and reflexive Banach space, and

min{‖u‖p−p(x), ‖u‖
p+

p(x)} ≤

∫
Ω

|u|p(x) dx ≤ max{‖u‖p−p(x), ‖u‖
p+

p(x)}.

We denote the dual space of Lp(x)(Ω) by Lp′(x)(Ω), where the conjugate exponent is
p′(x) = p(x)/(p(x) − 1).

The Sobolev space with variable exponents is defined by

Wk,p(x)(Ω) = {u ∈ Lp(x)(Ω) | Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where k ≥ 1, α = (α1, α2, . . . , αN) is a multi-index, |α| =
∑N

i=1 αi, and Dαu is the αth-
weak partial derivative of u. Equipped with the norm

‖u‖k,p(x) := ‖u‖Wk,p(x)(Ω) =
∑
|α|≤k

‖Dαu‖p(x),

Wk,p(x)(Ω) is also a separable and reflexive Banach space. If q(x) ≤ p∗(x), the variable
exponent Sobolev embedding Wk,p(x)(Ω) ↪→ Lq(x)(Ω) holds for any u ∈ Wk,p(x)(Ω),
where

p∗(x) =


N p(x)

N − kp(x)
if kp(x) < N,

∞ if kp(x) ≥ N.

We denote by Wk,p(x)
0 (Ω) the closure of C∞0 (Ω) in Wk,p(x)(Ω). From (1.2), C∞0 (Ω) is

dense in Wk,p(x)
0 (Ω). We writeW := W1,p(x)

0 (Ω) ∩W2,p(x)(Ω) equipped with the norm
‖u‖W = ‖u‖1,p(x) + ‖u‖2,p(x). Then ‖u‖W, ‖u‖2,p(x) and ‖∆u‖p(x) are equivalent.

Throughout the paper, for the sake of simplicity, we denote Ω × [0, T ] by QT , the
norm ‖ · ‖Lp(Ω) by ‖ · ‖p, the norm ‖ · ‖2 by ‖ · ‖ and

∫
Ω

uv dx by (u, v).

Definition 2.1. A function u ∈ L∞(0,T ;W) with ut ∈ L2(0,T ; L2(Ω)) is called a weak
solution to problem (1.1) if u(0) = u0 and

(ut, v) + (|∆u|p(x)−2∆u,∆v) = (|u|q(x)−2u, v)

for any v ∈ C∞0 (Ω) and almost all t ∈ (0,T ].
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We define the energy functional associated with problem (1.1) by

E(u) =

∫
Ω

|∆u|p(x)

p(x)
dx −

∫
Ω

|u|q(x)

q(x)
dx. (2.1)

Our main results can now be stated as follows.

Theorem 2.2. Assume that u0(x) ∈W and p−, p+, q−, q+ satisfy

(A)
2N

N + 2
< p− < N, p+ < q−, 2 < q+ <

N p−
N − p−

.

Then there exists a constant T > 0 such that problem (1.1) admits a solution u with
u ∈ L∞(0,T ;W) and ut ∈ L2(0,T ; L2(Ω)). Moreover, we have the energy inequality

E(u(t)) +

∫ t

0
‖uτ(τ)‖2 dτ ≤ E(u0). (2.2)

Theorem 2.3. Suppose that (A) holds and p− ≥ 2. Assume that u0(x) ∈ W and
E(u0) ≤ 0. Then the solutions to problem (1.1) blow up in finite time.

3. Proof of Theorem 2.2

Choose an orthonormal basis {w j(x)}∞j=1 of L2(Ω) and consider approximate
solutions

un(x, t) =

n∑
j=1

ξ jn(t)w j(x) for n = 1, 2, . . .

satisfying

(unt,w j) + (|∆un|
p(x)−2∆un,∆w j) = (|un|

q(x)−2un,w j) for j = 1, 2, . . . , n, (3.1)

un(x, 0) =

n∑
j=1

ξ jn(0)w j(x)→ u0(x) inW. (3.2)

The approximate problem (3.1), (3.2) can be reduced to an ordinary differential
system in the variables ξ jn(t). In terms of the standard theory for ordinary differential
equations, there exists a classical solution un.

Multiplying (3.1) by ξ jn(t) and summing over j gives

1
2

d
dt
‖un‖

2 +

∫
Ω

|∆un|
p(x) dx =

∫
Ω

|un|
q(x) dx. (3.3)

Since ∫
Ω

|un|
q(x) dx ≤ ‖un‖

q+

q+
+ |Ω|,

we deduce from the Gagliardo–Nirenberg interpolation inequality that there exists a
constant C1 > 0, independent of un, such that∫

Ω

|un|
q(x) dx ≤ C1‖∇un‖

θq+

p− ‖un‖
(1−θ)q+ + |Ω|,
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where
θ =

N p−(q+ − 2)
q+(N p− + 2p− − 2N)

.

It is easy to see that ∫
Ω

|un|
q(x) dx ≤ C2‖∆un‖

θq+

p− ‖un‖
(1−θ)q+ + |Ω|,

which together with Young’s inequality with ε gives∫
Ω

|un|
q(x) dx ≤ C2(ε‖∆un‖

p−
p− + C(ε)‖un‖

β) + |Ω|,

where
β =

2N p− + 2p−q+ − 2Nq+

N p− + 2p− − Nq+

.

Consequently, from

‖∆un‖
p−
p− ≤

∫
Ω

|∆un|
p(x) dx + |Ω|,

we have ∫
Ω

|un|
q(x) dx ≤ C2

(
ε

∫
Ω

|∆un|
p(x) dx + C(ε)‖un‖

β
)

+ (εC2 + 1)|Ω|. (3.4)

Taking ε = 1/C2 and substituting (3.4) into (3.3), we obtain

1
2

d
dt
‖un‖

2 ≤ C3(‖un‖
β + 1),

for some sufficiently large C3. Hence there exists T0 such that

‖un‖ ≤ C1(T ) (3.5)

for all t ∈ [0, T ] with T < T0, where C1(T ) stands for a constant that is independent of
un but depends on T .

Multiplying (3.1) by ξ′jn(t) and summing over j, we obtain

‖unt‖
2 +

d
dt

∫
Ω

|∆un|
p(x)

p(x)
dx =

d
dt

∫
Ω

|un|
q(x)

q(x)
dx.

Integrating both sides of this equality with respect to t,∫ t

0
‖unτ‖

2 dτ +

∫
Ω

|∆un|
p(x)

p(x)
dx

=

∫
Ω

|un|
q(x)

q(x)
dx −

∫
Ω

|un(0)|q(x)

q(x)
dx +

∫
Ω

|∆un(0)|p(x)

p(x)
dx. (3.6)

Note that ∫
Ω

|∆un|
p(x)

p(x)
dx ≥

1
p+

∫
Ω

|∆un|
p(x) dx,
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and ∫
Ω

|un|
q(x)

q(x)
dx ≤

1
q−

∫
Ω

|un|
q(x) dx.

It follows from (3.4)–(3.6) that∫ t

0
‖unτ‖

2 dτ ≤ C2(T ),
∫

Ω

|∆un|
p(x) dx ≤ C3(T ). (3.7)

From (3.7), there exist u, χ and a subsequence of {un} (we shall always relabel
subsequences as the same sequence), such that, as n→∞,

un ⇀ u weakly star in L∞(0,T ;W) and un → u almost everywhere in QT , (3.8)

unt ⇀ ut weakly in L2(0,T ; L2(Ω)),

|∆un|
p(x)−2∆un ⇀ χ weakly in Lp′(x)(QT ).

(3.9)

From the monotonicity of the operator s 7→ |s|p−2s and the mean value inequality in
[11], χ = |∆u|p(x)−2∆u by arguments similar to the proof of [2, Lemma 3.5]. Therefore,
we can pass to the limit in the approximate problem (3.1) and (3.2). Thus u(t) is a
solution to problem (1.1) in the sense of Definition 2.1.

Next we prove (2.2). Indeed, from (3.8), (3.9), (3.6) and (3.2), it follows that∫ t

0
‖uτ‖2 dτ +

∫
Ω

|∆u|p(x)

p(x)
dx ≤ lim inf

n→∞

( ∫ t

0
‖unτ‖

2 dτ +

∫
Ω

|∆un|
p(x)

p(x)
dx

)
= lim inf

n→∞

( ∫
Ω

|un|
q(x)

q(x)
dx −

∫
Ω

|un(0)|q(x)

q(x)
dx +

∫
Ω

|∆un(0)|p(x)

p(x)
dx

)
=

∫
Ω

|u|q(x)

q(x)
dx −

∫
Ω

|u(0)|q(x)

q(x)
dx +

∫
Ω

|∆u(0)|p(x)

p(x)
dx.

Thus the proof of Theorem 2.2 is complete.

4. Proof of Theorem 2.3

Let u be a solution to problem (1.1) and let Tmax be the maximum existence time
of u(t). Next we prove that Tmax < ∞. If it is false, then Tmax = ∞. We consider the
auxiliary function

M(t) =
1
2

∫ t

0
‖u‖2 dτ.

A direct calculation gives
M′(t) = 1

2‖u‖
2,

and
M′′(t) = (u, ut) = −

(∫
Ω

|∆u|p(x) dx −
∫

Ω

|u|q(x) dx
)
. (4.1)

Recalling (2.1), we see that

E(u) ≥
q− − p+

p+q−

∫
Ω

|∆u|p(x) dx +
1
q+

(∫
Ω

|∆u|p(x) dx −
∫

Ω

|u|q(x) dx
)
.
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Hence ∫
Ω

|∆u|p(x) dx −
∫

Ω

|u|q(x) dx ≤ −
(q− − p+)q+

p+q−

∫
Ω

|∆u|p(x) dx + q+E(u),

which together with (2.2) gives∫
Ω

|∆u|p(x) dx −
∫

Ω

|u|q(x) dx ≤ −
(q− − p+)q+

p+q−

∫
Ω

|∆u|p(x) dx + q+E(u0)

− q+

∫ t

0
‖uτ‖2 dτ.

Combining this with (4.1),

M′′(t) ≥
(q− − p+)q+

p+q−

∫
Ω

|∆u|p(x) dx − q+E(u0) + q+

∫ t

0
‖uτ‖2 dτ.

Thus

M′′(t) ≥ q+

∫ t

0
‖uτ‖2 dτ. (4.2)

Now, it is easy to see that there exists a t0 > 0 such that M′(t) ≥ M′(t0) > 0 and
M(t) ≥ M′(t0)(t − t0) + M(t0) for all t ∈ [t0,∞). Consequently,

lim
t→∞

M(t) =∞. (4.3)

On the other hand, we deduce from (4.2) and the Cauchy–Schwarz inequality that

M(t)M′′(t) ≥
q+

2

∫ t

0
‖u‖2 dτ

∫ t

0
‖uτ‖2 dτ

≥
q+

2

(∫ t

0
(u, uτ) dτ

)2

=
q+

2
(M′(t) − M′(0))2.

Hence there exists a γ > 0 such that

M(t)M′′(t) ≥ (1 + γ)M′(t)2.

It is easy to verify that M−γ(t) > 0 is decreasing and concave on [t0,∞), which
contradicts (4.3). Hence Tmax <∞. Thus the proof of Theorem 2.3 is complete.
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