
Proceedings of the Edinburgh Mathematical Society (1990) 33, 1-10 ©

FINITE GROUPS OF DEFICIENCY ZERO INVOLVING THE
LUCAS NUMBERS

by C. M. CAMPBELL, E. F. ROBERTSON and R. M. THOMAS

(Received 23rd September 1987)

In this paper, we investigate a class of 2-generator 2-relator groups G(n) related to the Fibonacci groups F(2, n),
each of the groups in this new class also being defined by a single parameter n, though here n can take
negative, as well as positive, values. If n is odd, we show that G(n) is a finite soluble group of derived length 2
(if n is coprime to 3) or 3 (otherwise), and order |2n(n + 2)gn/lni3,|, where /„ is the Fibonacci number defined by
/o = °. / i = 1. /n + 2 = /» + /n+ I for " § 0 , and gn is the Lucas number defined by go = 2, g, = 1, gn+2=gn+gn*i for
nSO. On the other hand, if n is even then, with three exceptions, namely the cases n = 2,4 or —4, G(n) is
infinite; the groups G(2), G(4) and G( —4) have orders 16, 240 and 80 respectively.

1980 Mathematics subject classification (1985 Revision): 20F05

1. Introduction

The groups defined by the presentations

were studied in [2], and shown to be finite of order 2ngn if n is odd, but infinite if n is even
with n ^ 6 . (The groups with n = 2 and n = 4 have orders 4 and 40 respectively). Here gn

denotes the Lucas numbers defined by go = 2, gi = l, gn+2=gn+gn+i> which are related
to the Fibonacci numbers/„, where / 0 = 0 , / i = l, /n + 2 = /n + /n+i> y i a t n e relation
gn = fn-i + fn + i- Note that, if n<0, then / n > 0 if and only if n is odd, whereas gn>0 if
and only if n is even.

The purpose of this paper is to examine the related class of deficiency zero groups
G(n) defined by

We show that, among these groups, there is an infinite subclass of non-metabelian finite
groups, thus adding to the small number of known classes of such groups of deficiency
zero; a general survey of finite groups of deficiency zero is given in [5]. The notation
used here is standard, and is consistent with that of [2]. Our result is:
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Theorem A. Let G = G(n). Then:

(i) Ifn = 0,G' is free of rank 2 and G/G' is isomorphic to C2'xCa0.

(ii) Ifn is odd, then G is a finite soluble group of order \2n(n + 2)gnf{n3)\, and:

[G":G"'] = /(n,3,, \G'"\ =1.

(iii) G(2) is semi-dihedral of order 16; G( — 2) is the infinite dihedral group; G(4) is
metabelian of order 240; G(—4) is metabelian of order 80; if n is even, |n |^6, then
[G:G'] = 2|n|, [G':G"] = |n + 2|(gn-2), and G" is infinite. •

Evidence for this result originated from the computer programs mentioned in Section
6, and these were used to prove the results concerning the finite groups G(n) with n
even.

2. First reduction

For the rest of this paper, let G denote the group defined by

where neZ, and let x = ab~lab, y = abab~1, z = b". We start with an elementary lemma:

Lemma 1. (i) axa = x~l, (ii) aya = y~\ (iii) aza = xz~1x~i,

(iv) bxb~l=y-1, (\) byb~l = y~lzx~\ (v\)bzb-l=z,

(vii) b~iyb = x~\ (viii) b~1zb = z, (ix) b~lxb = y-lxz.

Proof. The proofs of (i), (ii), (iv), (vi) and (viii) are immediate.

(iii) aza = b2ab~2ab~laba = ab~iab b~labab2ab~2a b~laba = xz~1x~1.

(v) byb~l = babab~2 = bab~ la ab2ab~2ab~lab b~laba = y~1zx~l.

(viii) From (iv), x = b~ly~lb, and so x" 1 =b~lyb.

(ix) From (v), byb~1=y~lzx~1, and thus

from (vii) and (viii), giving that b~1xb = y~lxz. •

Corollary 2. G' = (x,y,z).
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Proof. This follows immediately, since x = ab~lab, y = abab~1 and z = ab2ab~2,ab~lab
all lie in G', and N = (x,y, z> is normal in G by Lemma 1. •

3. Proof of Theorem A (i)

If n = 0, then z= 1, and the next result follows using Corollary 2:

Lemma 3. G/G' is isomorphic to C2 x C^; G' = <x, y>.

Given this, let c = aba, and let N be the normal subgroup <fc, c> of index 2 in G. Then
has presentation

The second relation is redundant, so introducing d = c~ib and deleting c = bd~1 yields

Introducing e = b~ldb gives

The normal subgroup <d,e> is now seen to be free of rank 2. Since d and e lie in G',
<d,e> = G', and the result follows. •

4. Further reductions

From now on, assume that n^O. First we have:

Lemma 4. (i)[x,z] = l, (ii) aza = z~\ (iii) [y,z] = l,

(iv) bab2ab'l=z(ab)2, (v) yx'1y~1xzn + 2 = l when n is odd,

(vi) zn+2 = 1 when n is even.

Proof, (i) yzy~l=abab~lzbab~ia

= abazab~la by Lemma 1 (viii)

= abxz~1x~lb~la by Lemma 1 (iii)

= ay'lz~lya by Lemma 1 (iv) & (vi)
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= yxzx ~ ly ~ xby Lemma 1 (ii) & (iii),

so that z = xzx~l as required.

(ii) This follows immediately from (i) and Lemma 1 (iii).

(iii) z = xzx~1 by (i)

= ab~labzb~1aba

— ab~lazaba by Lemma 1 (vi)

= ab~ixz~lx~lba by Lemma 1 (iii)

= ay~1xzz~iz~lx~1ya by Lemma 1 (viii) & (ix)

— ay~lz~iya by (i)

= yxzx ~1y~1 by Lemma 1 (ii) & (iii)

= yzy~i by (i).

(iv) From ab.bab~2ab~l ab = z, we have

= b~iab~1za by Lemma 1 (viii)

= b-lab-xaz~l by(ii)

and hence bab2ab~l=z(ab)2.

(v) b-1ab-lazabab = b-1ab-lz-1bab by(ii)

= b~iaz~xab by Lemma 1 (viii)

= b~lzb by(ii)

= z by Lemma 1 (viii),

so that [z,(a6)2]= 1. Then we have

zn(ab)2n = bab2nab'1 by(iv)

= baz2ab-i
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= z~2 by (ii) and Lemma 1 (vi),

so that zn + 2(ab)2" = 1. Assume n is odd, and let m=(n+l ) /2 . Similar to the above, we
have

zm(ab)2m = bab2mab~l

= bazbab~l

= z~ibabab~l by (ii) and Lemma 1 (viii),

and hence babab'1 =zm + l(ab)2m, so that babab-2a = zm+x(ab)n. We then have

{babab ~ 2a)2 = zm + \ab)"zm+J (ab)n

by (ii) and Lemma 1 (viii) since n is odd. Since z" + 2(ab)2"= 1, this gives that
2a)2 = z-*+2\ so that

"«"+2> = (abafc" 2ai))2z"«"+2> = (abafc" 2ai))2 by Lemma 1 (viii)

= yaxaayax

= yx~1y~ix by Lemma 1 (i) & (ii),

which yields the result,

(vi) Assume n is even, say n = 2m. As in (v), we have

zm{ab)2m = bab2mab-i

= bazab~l

= z~l by (ii) and Lemma 1 (vi),

so that zm + 1 =(ab)~2m. Conjugating by a gives
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= bzm+1b~1

= zm+1 by Lemma 1 (vi).

= l, i.e. z"+2 = l as required. •

Notation. For convenience in the following, we let u denote z"+2.

Lemma 5. (i) w = 1 for n even,
(ii) u2 = 1 for n odd.

Proof, (i) This is just a restatement of Lemma 4 (vi).
(ii) Assume n is odd. By Lemma 4 (v), yx~1y~1xu = 1. Conjugating by b and using

Lemma 1 (iv), (v) and (vi) gives that y~1zx~1yxz~1yy~1u = \, which, on using Lemma 4
(i) and (iii), gives that y~1x~1yxu—l, i.e. x~1yxuy~i =*> •*. uy'1 = x~iy~lx. But, by
Lemma 4 (iii) and (v) we have u2 = yuy~lu = yx~1y~lxu— 1 as required. •

Lemma 6. If s and t are integers, then:

(0
(ii)

Proof, (i) By Lemma 4 (v), yx~1y~1xu= 1, and, by Lemma 4 (i) and (iii),
[x, u] = [_y, M] = 1, so that yx = xyu, and the result follows.

(ii) We first consider the case where s is positive, and proceed by induction on s, the
result being clear for s = 0. So assume that

ib-l=x-'y~iziui(i+l)l2
byib-l=x-'y~iziu

for Ogi^s . Then

= x - V V * ~ s . T s z V ( s + 1 ) / 2 by (i) and Lemma 1 (v)

= x-ly-lx-sy-szs+1
 u

s(s+1)/2 + 1 by Lemma 4(i) & (iii)

by (i)

by Lemma 4(i) & (iii)

as required.
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If s<0, let t= - s and apply (i) to b/b'i=(by'b-lyl. •

Notation. Let

(1 ifis4or5(mod6),
[0 otherwise.

Note that, for the Fibonacci numbers /„:

0 (mod 4) if j = 0(mod6),
.1 (mod 4) if i = 1, 2 or 5 (mod 6),

• ' ' "1 2 (mod 4) ifi = 3(mod6),
3 (mod 4) ifi = 4(mod6).

The following result is easily checked:

Lemma 7. For i ̂  0, we have:

(i) /,(/, + (-1)0/2 = e,+2 (mod 2),

We then have:

Lemma 8. For i^O, h'xft-' = xjyz'um, where

J = (- l )7«-i . * = (-!)'/«. / = ( - l ) ' + 1 /< -2 - l , « = «i.

Proof. If i = 0, the result is clear. Assume the result is true for i; we then have

bi+ixb-<i+l) = b(xiykzlum)b-1

= bxib~\bykb~\zlum by Lemma 1 (vi)

= y~j
 x-

ky-kzkuk{k+1)/2.z' um by Lemmas 1 (iv) & 6 (ii)

by Lemma 6 (i)

b y L e m m a 4 (iii)

where j , k, I, m are as in the statement of the lemma. Now
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and, using Lemma 7 (i) and (ii), we have

ei+2 (mod2)

= ei+l (mod 2).

The result follows from Lemma 5.

5. Proof of Theorem A (ii)

Assume that n is odd, n > 0, and let H be the subgroup <x, y, z, «> of G. From Lemma
4 (i) and (iii), we have

Using Lemma 8 and x~1bnxb~n = 1, we have

xiykz'um=l, (1)

where

= en.

Since bxb~l=y~1 by Lemma 1 (iv), bn + lxb~"~l =y~i, and Lemma 8 yields

where

(2)

With this notation, we get the following presentation for H:

<x, y, z, u: [x, z] = [>, z] = 1, z" + 2 = u, u2 = 1, [x, y] = u, xVz'"m = x ' / z ' u ' = 1 >.

Let /C = <M>. Then ////C is an abelian group with order

-j -k -I
p q r

0 0 n + 2
= (n + 2)

-j -k

p q
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since n is odd. Conjugating relations (1) and (2) by a and using Lemma 1 (i) and (ii) and
Lemma 4 (ii) yields

x~Jy-kz''u-m = l, (3)

x-py-<<z-'u-* = \. (4)

From (1) and (3) we have

x V = /xJ ' , (5)

and, from (2) and (4),

xpyq = fx". (6)

Using Lemma 6 (i), (5) becomes xJyk = xJykuJk, and (6) becomes xpy" = xpyqu'"', so that
uJk = uM=l. If n=\ (mod 3), then fn_Y is even and /„ odd, so that j k = ( / n . 1 + l ) / , 5 l
(mod 2). On the other hand, if n = 2 (mod 3), then pq = /„(/„_ x +1) = 1 (mod 2). So, if
(n,3) = 1, then we have |X| = 1.

Consider now the case (n, 3) = 3. By Lemma 5, |K|<2, SO we only need to show that
K is non-trivial here. Let c = aba, iV = <b,c>, so that N is normal in G of index 2 with
presentation

Since H/K is abelian of order (n + 2)gn, and since n + 2 is odd and gns4(mod 8) for n = 3
(mod 6), H/K is a direct product 0 xS, where 0 has odd order and S is elementary
abelian of order 4. Also, N/K is an extension of H/K by Cn. We can form a new group
Nt by replacing S with a quaternion group T of order 8, so that Nt is an extension of
Hi = OxT by Cn, with the action of N , /# i on Hj reducing to the action of N/H on
H/K if we factor out the central involution. If |,W| -<:|̂ f ,.|, i.e. if |K| = 1, then the Schur
multiplier M(N) is non-trivial, a contradiction, as N has deficiency zero (see [6]). So K
is non-trivial, as required.

If n<0, put h= —n. Repeating the above arguments with h in place of n, except in the
relation zn+2 = u, yields the result. •

6. Proof of Theorem A (iii)

It is immediate that [G:G'] = 2|n|. The results concerning the three finite groups in
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the cases n = 2, 4 or —4 may be obtained using computer implementations of various
group theory algorithms. We used a Todd-Coxeter program, to which the second
author has added a Reidemeister-Schreier routine based on [3] and the Tietze
transformation program described in [4]. Alternatively, algebraic proofs for all these
cases may be found in [1], as well as some further details about the groups G(n).

If n= — 2, we have the presentation

so that bab2a(bab2)'1=b~2a, giving that (b~2a)2 = l, and hence ab2a = b~2. The
presentation now reduces to

and we have the infinite dihedral group.
If |n|^6, then, arguing as in Section 5 and using the fact that n is even, we obtain

':G"] = |« + 2| /„ = |n + 2|(gn-2).

Since we know the G is an infinite group by [2, Theorem 6.1], we must have that G" is
infinite. •
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