FINITE GROUPS OF DEFICIENCY ZERO INVOLVING THE LUCAS NUMBERS

by C. M. CAMPBELL, E. F. ROBERTSON and R. M. THOMAS

(Received 23rd September 1987)

Abstract

In this paper, we investigate a class of 2-generator 2-relator groups $G(n)$ related to the Fibonacci groups $\mathrm{F}(2, n)$, each of the groups in this new class also being defined by a single parameter n, though here n can take negative, as well as positive, values. If n is odd, we show that $G(n)$ is a finite soluble group of derived length 2 (if n is coprime to 3) or 3 (otherwise), and order $\left|2 n(n+2) g_{n} f_{(n, 33}\right|$, where f_{n} is the Fibonacci number defined by $f_{0}=0, f_{1}=1, f_{n+2}=f_{n}+f_{n+1}$ for $n \geqq 0$, and g_{n} is the Lucas number defined by $g_{0}=2, g_{1}=1, g_{n+2}=g_{n}+g_{n+1}$ for $n \geqq 0$. On the other hand, if n is even then, with three exceptions, namely the cases $n=2,4$ or $-4, G(n)$ is infinite; the groups $G(2), G(4)$ and $G(-4)$ have orders 16,240 and 80 respectively.

1980 Mathematics subject classification (1985 Revision): 20 F05

1. Introduction

The groups defined by the presentations

$$
\left\langle a, b: a^{2}=b^{n}=a b^{2} a b^{-2} a b^{-1} a b=1\right\rangle
$$

were studied in [2], and shown to be finite of order $2 n g_{n}$ if n is odd, but infinite if n is even with $n \geqq 6$. (The groups with $n=2$ and $n=4$ have orders 4 and 40 respectively). Here g_{n} denotes the Lucas numbers defined by $g_{0}=2, g_{1}=1, g_{n+2}=g_{n}+g_{n+1}$, which are related to the Fibonacci numbers f_{n}, where $f_{0}=0, f_{1}=1, f_{n+2}=f_{n}+f_{n+1}$, via the relation $g_{n}=f_{n-1}+f_{n+1}$. Note that, if $n<0$, then $f_{n}>0$ if and only if n is odd, whereas $g_{n}>0$ if and only if n is even.
The purpose of this paper is to examine the related class of deficiency zero groups $G(n)$ defined by

$$
\left\langle a, b: a^{2}=1, a b^{2} a b^{-2} a b^{-1} a b=b^{n}\right\rangle .
$$

We show that, among these groups, there is an infinite subclass of non-metabelian finite groups, thus adding to the small number of known classes of such groups of deficiency zero; a general survey of finite groups of deficiency zero is given in [5]. The notation used here is standard, and is consistent with that of [2]. Our result is:

Theorem A. Let $G=G(n)$. Then:
(i) If $n=0, G^{\prime}$ is free of rank 2 and G / G^{\prime} is isomorphic to $C_{2} \times C_{\infty}$.
(ii) If n is odd, then G is a finite soluble group of order $\left|2 n(n+2) g_{n} f_{(n, 3)}\right|$, and:

$$
\begin{aligned}
& {\left[G: G^{\prime}\right]=2|n|, \quad\left[G^{\prime}: G^{\prime \prime}\right]=\left|(n+2) g_{n}\right|,} \\
& {\left[G^{\prime \prime}: G^{\prime \prime \prime}\right]=f_{(n, 3)},\left|G^{\prime \prime \prime}\right|=1}
\end{aligned}
$$

(iii) $G(2)$ is semi-dihedral of order 16; $G(-2)$ is the infinite dihedral group; $G(4)$ is metabelian of order 240; $G(-4)$ is metabelian of order 80 ; if n is even, $|n| \geqq 6$, then $\left[G: G^{\prime}\right]=2|n|,\left[G^{\prime}: G^{\prime \prime}\right]=|n+2|\left(g_{n}-2\right)$, and $G^{\prime \prime}$ is infinite.

Evidence for this result originated from the computer programs mentioned in Section 6 , and these were used to prove the results concerning the finite groups $G(n)$ with n even.

2. First reduction

For the rest of this paper, let G denote the group defined by

$$
\left\langle a, b: a^{2}=1, a b^{2} a b^{-2} a b^{-1} a b=b^{n}\right\rangle
$$

where $n \in \mathbf{Z}$, and let $x=a b^{-1} a b, y=a b a b^{-1}, z=b^{n}$. We start with an elementary lemma:

Lemma 1. (i) $a x a=x^{-1}$,

(ii) $a y a=y^{-1}$,
(iii) $a z a=x z^{-1} x^{-1}$,
(iv) $b x b^{-1}=y^{-1}$,
(v) $b y b^{-1}=y^{-1} z x^{-1}$,
(vi) $b z b^{-1}=z$,
(vii) $b^{-1} y b=x^{-1}$,
(viii) $b^{-1} z b=z$,
(ix) $b^{-1} x b=y^{-1} x z$.

Proof. The proofs of (i), (ii), (iv), (vi) and (viii) are immediate.
(iii) $a z a=b^{2} a b^{-2} a b^{-1} a b a=a b^{-1} a b \cdot b^{-1} a b a b^{2} a b^{-2} a \cdot b^{-1} a b a=x z^{-1} x^{-1}$.
(v) $b y b^{-1}=b a b a b^{-2}=b a b^{-1} a a b^{2} a b^{-2} a b^{-1} a b b^{-1} a b a=y^{-1} z x^{-1}$.
(viii) From (iv), $x=b^{-1} y^{-1} b$, and so $x^{-1}=b^{-1} y b$.
(ix) From (v), $b y b^{-1}=y^{-1} z x^{-1}$, and thus

$$
y=b^{-1} y^{-1} b b^{-1} z b b^{-1} x^{-1} b=x z b^{-1} x^{-1} b
$$

from (vii) and (viii), giving that $b^{-1} x b=y^{-1} x z$.

Corollary 2. $G^{\prime}=\langle x, y, z\rangle$.

Proof. This follows immediately, since $x=a b^{-1} a b, y=a b a b^{-1}$ and $z=a b^{2} a b^{-2} \cdot a b^{-1} a b$ all lie in G^{\prime}, and $N=\langle x, y, z\rangle$ is normal in G by Lemma 1 .

3. Proof of Theorem A (i)

If $n=0$, then $z=1$, and the next result follows using Corollary 2 :

Lemma 3. G / G^{\prime} is isomorphic to $C_{2} \times C_{\infty} ; G^{\prime}=\langle x, y\rangle$.
Given this, let $c=a b a$, and let N be the normal subgroup $\langle b, c\rangle$ of index 2 in G. Then N has presentation

$$
\left\langle b, c: c^{2} b^{-2} c^{-1} b=b^{2} c^{-2} b^{-1} c=1\right\rangle
$$

The second relation is redundant, so introducing $d=c^{-1} b$ and deleting $c=b d^{-1}$ yields

$$
\left\langle b, d: b^{-2} d b^{2}=d \cdot b^{-1} d b\right\rangle
$$

Introducing $e=b^{-1} d b$ gives

$$
\left\langle b, d, e: b^{-1} d b=e, b^{-1} e b=d e\right\rangle .
$$

The normal subgroup $\langle d, e\rangle$ is now seen to be free of rank 2 . Since d and e lie in G^{\prime}, $\langle d, e\rangle=G^{\prime}$, and the result follows.

4. Further reductions

From now on, assume that $n \neq 0$. First we have:

Lemma 4. (i) $[x, z]=1$,
(ii) $a z a=z^{-1}, \quad$ (iii) $[y, z]=1$,
(iv) $b a b^{2} a b^{-1}=z(a b)^{2}$,
(v) $y x^{-1} y^{-1} x z^{n+2}=1$ when n is odd,
(vi) $z^{n+2}=1$ when n is even.

Proof. (i) $y z y^{-1}=a b a b^{-1} z b a b^{-1} a$

$$
\begin{aligned}
& =a b a z a b^{-1} a \\
& =a b x z^{-1} x^{-1} b^{-1} a \quad \text { by Lemma } 1 \text { (viii) } \\
& =a b x b^{-1} b z^{-1} b^{-1} b x^{-1} b^{-1} a \\
& =a y^{-1} z^{-1} y a
\end{aligned} \quad \text { by Lemma } 1 \text { (iii) }
$$

so that $z=x z x^{-1}$ as required.
(ii) This follows immediately from (i) and Lemma 1 (iii).
(iii)

$$
\begin{aligned}
z & =x z x^{-1} & & \text { by (i) } \\
& =a b^{-1} a b z b^{-1} a b a & & \\
& =a b^{-1} a z a b a & & \text { by Lemma } 1 \text { (vi) } \\
& =a b^{-1} x z^{-1} x^{-1} b a & & \text { by Lemma 1 (iii) } \\
& =a y^{-1} x z z^{-1} z^{-1} x^{-1} y a & & \text { by Lemma 1 (viii) \& (ix) } \\
& =a y^{-1} z^{-1} y a & & \text { by (i) } \\
& =y x z x^{-1} y^{-1} & & \text { by Lemma 1 (ii) \& (iii) } \\
& =y z y^{-1} & & \text { by (i). }
\end{aligned}
$$

(iv) From $a b b a b^{-2} a b^{-1} \cdot a b=z$, we have

$$
\begin{aligned}
b a b^{-2} a b^{-1} & =b^{-1} a z b^{-1} a \\
& =b^{-1} a b^{-1} z a \quad \text { by Lemma } 1 \text { (viii) } \\
& =b^{-1} a b^{-1} a z^{-1} \quad \text { by (ii) }
\end{aligned}
$$

and hence $b a b^{2} a b^{-1}=z(a b)^{2}$.
(v)

$$
\begin{aligned}
b^{-1} a b^{-1} a z a b a b & =b^{-1} a b^{-1} z^{-1} b a b & & \text { by (ii) } \\
& =b^{-1} a z^{-1} a b & & \text { by Lemma } 1 \text { (viii) } \\
& =b^{-1} z b & & \text { by (ii) } \\
& =z & & \text { by Lemma } 1 \text { (viii), }
\end{aligned}
$$

so that $\left[z,(a b)^{2}\right]=1$. Then we have

$$
\begin{aligned}
z^{n}(a b)^{2 n} & =b a b^{2 n} a b^{-1} \quad \text { by (iv) } \\
& =b a z^{2} a b^{-1}
\end{aligned}
$$

$$
=z^{-2} \text { by (ii) and Lemma } 1(\mathrm{vi})
$$

so that $z^{n+2}(a b)^{2 n}=1$. Assume n is odd, and let $m=(n+1) / 2$. Similar to the above, we have

$$
\begin{aligned}
z^{m}(a b)^{2 m} & =b a b^{2 m} a b^{-1} \\
& =b a z b a b^{-1} \\
& =z^{-1} b a b a b^{-1} \quad \text { by (ii) and Lemma } 1 \text { (viii), }
\end{aligned}
$$

and hence $b a b a b^{-1}=z^{m+1}(a b)^{2 m}$, so that $b a b a b^{-2} a=z^{m+1}(a b)^{n}$. We then have

$$
\begin{aligned}
\left(b a b a b^{-2} a\right)^{2} & =z^{m+1}(a b)^{n} z^{m+1}(a b)^{n} \\
& =(a b)^{2 n}
\end{aligned}
$$

by (ii) and Lemma 1 (viii) since n is odd. Since $z^{n+2}(a b)^{2 n}=1$, this gives that $\left(b a b a b^{-2} a\right)^{2}=z^{-(n+2)}$, so that

$$
\begin{aligned}
z^{-(n+2)} & =\left(a b a b^{-2} a b\right)^{2} \quad \text { by Lemma } 1 \text { (viii) } \\
& =(y a x)^{2} \\
& =\text { yaxaayax } \\
& =y x^{-1} y^{-1} x \quad \text { by Lemma } 1 \text { (i) \& (ii), }
\end{aligned}
$$

which yields the result.
(vi) Assume n is even, say $n=2 m$. As in (v), we have

$$
\begin{aligned}
z^{m}(a b)^{2 m} & =b a b^{2 m} a b^{-1} \\
& =b a z a b^{-1} \\
& =z^{-1} \quad \text { by (ii) and Lemma } 1(\mathrm{vi}),
\end{aligned}
$$

so that $z^{m+1}=(a b)^{-2 m}$. Conjugating by a gives

$$
\begin{aligned}
z^{-(m+1)} & =(b a)^{-2 m} \\
& =b(a b)^{-2 m} b^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =b z^{m+1} b^{-1} \\
& =z^{m+1} \text { by Lemma } 1(\mathrm{vi}) .
\end{aligned}
$$

So $z^{2 m+2}=1$, i.e. $z^{n+2}=1$ as required.

Notation. For convenience in the following, we let u denote z^{n+2}.

Lemma 5. (i) $u=1$ for n even,
(ii) $u^{2}=1$ for n odd.

Proof. (i) This is just a restatement of Lemma 4 (vi).
(ii) Assume n is odd. By Lemma 4 (v), $y x^{-1} y^{-1} x u=1$. Conjugating by b and using Lemma 1 (iv), (v) and (vi) gives that $y^{-1} z x^{-1} y x z^{-1} y y^{-1} u=1$, which, on using Lemma 4 (i) and (iii), gives that $y^{-1} x^{-1} y x u=1$, i.e. $x^{-1} y x u y^{-1}=1$, i.e. $u y^{-1}=x^{-1} y^{-1} x$. But, by Lemma 4 (iii) and (v) we have $u^{2}=y u y^{-1} u=y . x^{-1} y^{-1} x, u=1$ as required.

Lemma 6. If s and t are integers, then:
(i) $y^{s} x^{t}=x^{t} y^{s} u^{s t}$,
(ii) $b y^{s} b^{-1}=x^{-s} y^{-s} z^{s} u^{s(s+1) / 2}$.

Proof. (i) By Lemma 4 (v), $y x^{-1} y^{-1} x u=1$, and, by Lemma 4 (i) and (iii), $[x, u]=[y, u]=1$, so that $y x=x y u$, and the result follows.
(ii) We first consider the case where s is positive, and proceed by induction on s, the result being clear for $s=0$. So assume that

$$
b y^{i} b^{-1}=x^{-i} y^{-i} z^{i} u^{i(i+1) / 2}
$$

for $0 \leqq i \leqq s$. Then

$$
\begin{array}{rlrl}
b y^{s+1} b^{-1} & =b y b^{-1} x^{-s} y^{-s} z^{s} u^{s(s+1) / 2} & \\
& =x^{-1} y^{-1} z u x^{-s} y^{-s} z^{s} u^{(s+1) / 2} & & \text { by (i) and Lemma } 1 \text { (v) } \\
& =x^{-1} y^{-1} x^{-s} y^{-s} z^{s+1} u^{s(s+1) / 2+1} & & \text { by Lemma } 4 \text { (i) \& (iii) } \\
& =x^{-1} x^{-s} y^{-1} u^{s} y^{-s} z^{s+1} u^{s(s+1) / 2+1} & & \text { by (i) } \\
& =x^{-(s+1)} y^{-(s+1)} z^{s+1} u^{(s+1)(s+2) / 2} & & \text { by Lemma } 4 \text { (i) \& (iii) }
\end{array}
$$

as required.

If $s<0$, let $t=-s$ and apply (i) to $b y^{8} b^{-1}=\left(b y^{t} b^{-1}\right)^{-1}$.
Notation. Let

$$
e_{i}= \begin{cases}1 & \text { if } i \equiv 4 \text { or } 5(\bmod 6) \\ 0 & \text { otherwise }\end{cases}
$$

Note that, for the Fibonacci numbers f_{n} :

$$
f_{i} \equiv \begin{cases}0(\bmod 4) & \text { if } i \equiv 0(\bmod 6), \\ 1(\bmod 4) & \text { if } i \equiv 1,2 \operatorname{or} 5(\bmod 6), \\ 2(\bmod 4) & \text { if } i=3(\bmod 6) \\ 3(\bmod 4) & \text { if } i \equiv 4(\bmod 6)\end{cases}
$$

The following result is easily checked:

Lemma 7. For $i \geqq 0$, we have:
(i) $f_{i}\left(f_{i}+(-1)^{i}\right) / 2 \equiv e_{i+2}(\bmod 2)$,
(ii) $f_{i} f_{i+1} \equiv e_{i+1}+e_{i+2}+e_{i+3}(\bmod 2)$.

We then have:

Lemma 8. For $i \geqq 0, b^{i} x b^{-i}=x^{j} y^{k} z^{l} u^{m}$, where

$$
j=(-1)^{i} f_{i-1}, \quad k=(-1)^{i} f_{i}, \quad l=(-1)^{i+1} f_{i-2}-1, \quad m=e_{i} .
$$

Proof. If $i=0$, the result is clear. Assume the result is true for i; we then have

$$
\begin{aligned}
b^{i+1} x b^{-(i+1)} & =b\left(x^{j} y^{k} z^{l} u^{m}\right) b^{-1} & & \\
& =b x^{j} b^{-1} \cdot b y^{k} b^{-1} \cdot z^{l} \cdot u^{m} & & \text { by Lemma } 1 \text { (vi) } \\
& =y^{-j} \cdot x^{-k} y^{-k} z^{k} u^{k(k+1) / 2} \cdot z^{l} \cdot u^{m} & & \text { by Lemmas } 1 \text { (iv) \& } 6 \text { (ii) } \\
& =x^{-k} y^{-j} u^{k j} y^{-k} z^{k+1} u^{m+k(k+1) / 2} & & \text { by Lemma } 6 \text { (i) } \\
& =x^{-k} y^{-(k+j)} z^{k+l} u^{m+k j+k(k+1) / 2} & & \text { by Lemma } 4 \text { (iii) }
\end{aligned}
$$

where j, k, l, m are as in the statement of the lemma. Now

$$
\begin{gathered}
-k=(-1)^{i+1} f_{i} \\
-(k+j)=(-1)^{i+1}\left(f_{i-1}+f_{i}\right)=(-1)^{i+1} f_{i+1}
\end{gathered}
$$

$$
k+l=(-1)^{i+2}\left(f_{i}-f_{i-2}\right)-1=(-1)^{i+2} f_{i-1}-1
$$

and, using Lemma 7 (i) and (ii), we have

$$
\begin{aligned}
m+k j+k(k+1) / 2 & =e_{i}+f_{i-1} f_{i}+f_{i}\left(f_{i}+(-1)^{i}\right) / 2 \\
& \equiv e_{i}+e_{i}+e_{i+1}+e_{i+2}+e_{i+2}(\bmod 2) \\
& \equiv e_{i+1}(\bmod 2)
\end{aligned}
$$

The result follows from Lemma 5.

5. Proof of Theorem A (ii)

Assume that n is odd, $n>0$, and let H be the subgroup $\langle x, y, z, u\rangle$ of G. From Lemma 4 (i) and (iii), we have

$$
b^{n} x b^{-n}=x, \quad b^{n} y^{-1} b^{-n}=y^{-1}, \quad b^{n}\left(x y z^{-1}\right) b^{-n}=x y z^{-1}
$$

Using Lemma 8 and $x^{-1} b^{n} x b^{-n}=1$, we have

$$
\begin{equation*}
x^{j} y^{k} z^{l} u^{m}=1 \tag{1}
\end{equation*}
$$

where

$$
j=-f_{n-1}-1, \quad k=-f_{n}, \quad l=f_{n-2}-1, \quad m=e_{n}
$$

Since $b x b^{-1}=y^{-1}$ by Lemma 1 (iv), $b^{n+1} x b^{-n-1}=y^{-1}$, and Lemma 8 yields

$$
\begin{equation*}
x^{p} y^{q} z^{r} u^{s}=1 \tag{2}
\end{equation*}
$$

where

$$
p=f_{n}, \quad q=f_{n+1}+1, \quad r=-f_{n-1}-1, \quad s=e_{n+1}
$$

With this notation, we get the following presentation for H :

$$
\left\langle x, y, z, u:[x, z]=[y, z]=1, z^{n+2}=u, u^{2}=1,[x, y]=u, x^{j} y^{k} z^{l} u^{m}=x^{p} y^{q} z^{r} u^{s}=1\right\rangle .
$$

Let $K=\langle u\rangle$. Then H / K is an abelian group with order

$$
\left|\begin{array}{ccc}
-j & -k & -l \\
p & q & r \\
0 & 0 & n+2
\end{array}\right|=(n+2)\left|\begin{array}{cc}
-j & -k \\
p & q
\end{array}\right|
$$

$$
\begin{aligned}
& =(n+2)\left(f_{n-1} f_{n+1}+f_{n-1}+f_{n+1}+1-f_{n}^{2}\right) \\
& =(n+2)\left(f_{n-1}+f_{n+1}+1+(-1)^{n}\right) \\
& =(n+2) g_{n}
\end{aligned}
$$

since n is odd. Conjugating relations (1) and (2) by a and using Lemma 1 (i) and (ii) and Lemma 4 (ii) yields

$$
\begin{align*}
& x^{-j} y^{-k} z^{-l} u^{-m}=1, \tag{3}\\
& x^{-p} y^{-q} z^{-r} u^{-s}=1 . \tag{4}
\end{align*}
$$

From (1) and (3) we have

$$
\begin{equation*}
x^{j} y^{k}=y^{k} x^{j} \tag{5}
\end{equation*}
$$

and, from (2) and (4),

$$
\begin{equation*}
x^{p} y^{q}=y^{q} x^{p} . \tag{6}
\end{equation*}
$$

Using Lemma 6 (i), (5) becomes $x^{j} y^{k}=x^{j} y^{k} u^{j k}$, and (6) becomes $x^{p} y^{q}=x^{p} y^{q} u^{p q}$, so that $u^{i k}=u^{p q}=1$. If $n \equiv 1(\bmod 3)$, then f_{n-1} is even and f_{n} odd, so that $j k=\left(f_{n-1}+1\right) f_{n} \equiv 1$ $(\bmod 2)$. On the other hand, if $n \equiv 2(\bmod 3)$, then $p q=f_{n}\left(f_{n-1}+1\right) \equiv 1(\bmod 2)$. So, if $(n, 3)=1$, then we have $|K|=1$.

Consider now the case $(n, 3)=3$. By Lemma $5,|K| \leqq 2$, so we only need to show that K is non-trivial here. Let $c=a b a, N=\langle b, c\rangle$, so that N is normal in G of index 2 with presentation

$$
\left\langle b, c: c^{2} b^{-2} c^{-1} b=b^{n}, b^{2} c^{-2} b^{-1} c=c^{n}\right\rangle .
$$

Since H / K is abelian of order $(n+2) g_{n}$, and since $n+2$ is odd and $g_{n} \equiv 4(\bmod 8)$ for $n \equiv 3$ $(\bmod 6), H / K$ is a direct product $O \times S$, where O has odd order and S is elementary abelian of order 4. Also, N / K is an extension of H / K by C_{n}. We can form a new group N_{1} by replacing S with a quaternion group T of order 8 , so that N_{1} is an extension of $H_{1}=O \times T$ by C_{n}, with the action of N_{1} / H_{1} on H_{1} reducing to the action of N / H on H / K if we factor out the central involution. If $|H|<\left|H_{1}\right|$, i.e. if $|K|=1$, then the Schur multiplier $M(N)$ is non-trivial, a contradiction, as N has deficiency zero (see [6]). So K is non-trivial, as required.

If $n<0$, put $h=-n$. Repeating the above arguments with h in place of n, except in the relation $z^{n+2}=u$, yields the result.

6. Proof of Theorem A (iii)

It is immediate that $\left[G: G^{\prime}\right]=2|n|$. The results concerning the three finite groups in
the cases $n=2,4$ or -4 may be obtained using computer implementations of various group theory algorithms. We used a Todd-Coxeter program, to which the second author has added a Reidemeister-Schreier routine based on [3] and the Tietze transformation program described in [4]. Alternatively, algebraic proofs for all these cases may be found in [1], as well as some further details about the groups $G(n)$.

If $n=-2$, we have the presentation

$$
\left\langle a, b: a^{2}=1, a b^{2} a b^{-2} a b^{-1} a b=b^{-2}\right\rangle
$$

so that $b a b^{2} a\left(b a b^{2}\right)^{-1}=b^{-2} a$, giving that $\left(\mathrm{b}^{-2} a\right)^{2}=1$, and hence $a b^{2} a=b^{-2}$. The presentation now reduces to

$$
\left\langle a, b: a^{2}=1, a b a=b^{-1}\right\rangle,
$$

and we have the infinite dihedral group.
If $|n| \geqq 6$, then, arguing as in Section 5 and using the fact that n is even, we obtain

$$
\left[G^{\prime}: G^{\prime \prime}\right]=|n+2|\left|\begin{array}{cc}
f_{n-1}+1 & f_{n} \\
f_{n} & f_{n+1}+1
\end{array}\right|=|n+2|\left(g_{n}-2\right) .
$$

Since we know the G is an infinite group by [2, Theorem 6.1], we must have that $G^{\prime \prime}$ is infinite.

Acknowledgement. The third author would like to thank Hilary Craig for all her help and encouragement during the preparation of his paper.

REFERENCES

1. C. M. Campbell, E. F. Robertson and R. M. Thomas, On finite groups of deficiency zero related to (2,n)-groups Part I (Technical Report 4, Department of Computing Studies, University of Leicester, 1987).
2. C. M. Campbell and R. M. Thomas, On (2,n)-groups related to Fibonacci groups, Israel J. Math 58 (1987), 370-380.
3. G. Havas, A Reidemeister-Schreier program, Proc. Second Intern. Conf. Theory of Groups, Canberra 1973 (Lecture Notes in Mathematics 372, Springer-Verlag, Berlin, 1974), 347-356.
4. G. Havas, P. E. Kenne, J. S. Richardson and E. F. Robertson, A Tietze transformation program, Computational Group Theory (Academic Press, London, 1984), 69-73.
5. D. L. Johnson and E. F. Robertson, Finite groups of deficiency zero, Homological Group Theory (London Math. Soc. Lecture Notes 36, Cambridge University Press, 1979), 275-289.
6. I. Schur, Untersuchungen uber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85-137.

Mathematical Institute
University of St Andrews
St Andrews KY16 9SS

[^0]
[^0]: Department of Computing Studies University of Leicester
 Leicester LE1 7RH

