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Abstract. A method is described for the construction of a density wave of finite amplitude and in the 
form of a tightly wound spiral in a pressureless, self-gravitating disk of infinitesimal thickness in an 
external gravitational field. Waves of one kind are found for systems in which the law of rotation 
departs only slightly from that of a solid body. Waves of a second kind are found in systems possessing 
appreciable differential rotation; however, such waves can occur only if the self-gravitation of the 
disk is small compared with the external gravitation. The latter waves are to be identified with the 
waves described by linear theories. 

1. Introduction 

This is a report on our first results in a non-linear theory of density waves. We have 
considered the hydrodynamics of a pressureless, self-gravitating disk of infinitesimal 
thickness in a given external gravitational field which is time-independent and axi­
symmetric; and we have constructed spiral waves of finite amplitude in that disk. 

The system envisaged is a model of a galaxy in which the disk represents the sub­
systems of low-velocity stars and interstellar gas which can participate appreciably 
in a density wave whereas the external field is attributed to those subsystems of high-
velocity stars which cannot participate appreciably in the wave. In linear theories of 
density waves a basis for this model is provided by the manner in which the peculiar 
motions of the stars (or the pressure of the gas) tend to inhibit the participation of a 
subsystem in a density wave (see, e.g., Lin et al, 1969). 

2. Construction of Density Waves of Finite Amplitude 

We consider a wave which has a stationary spiral pattern in a uniformly rotating 
frame of reference. In that frame the disk is in a steady state. Its structure and the 
pattern of flow are governed by the hydrodynamical equations of continuity and 
motion and Poisson's equation. Solutions of the linearized form of this problem have 
been described by Fujimoto (1968). 

We assume that the pattern is tightly wound. Our solutions of the basic equations 
are asymptotic solutions of the form of series in powers of a parameter X (<^ 1) whose 
smallness characterizes the tightness of the winding. In order to explain certain 
aspects of our results, we must describe our solution of Poisson's equation in some 
detail. This analysis is a generalization of the asymptotic solution of Poisson's 
equation given by Lin and Shu (1964) in their linear theory of density waves. 

In the absence of the density wave, let the surface density and gravitational potential 
of the disk be <T(CO)(TD) and 93(oo)(a7, Z), respectively, where the system of cylindrical 
polar coordinates (tn, 0, z) is defined in the frame of reference rotating uniformly with 
the angular velocity Q of the pattern, the z-axis is the axis of rotation, and the plane 
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z = 0 contains the disk. To construct the wave, we write the potential of the perturbed 
disk in the form 

where 
S ( m , M ) = R e [ S B ( f l 0 ) ( P , z ) ] , (1) 

P = w + XF(w9 Z,x), (2) 

x = m0 + rlu(m9 z ) , (3) 

and m is an integer equal to the number of arms in the pattern. The functions F 
and u are complex in general. The condition that 93 is a single-valued function of 
position implies that F is periodic in the real part of x with period 2n. 

To make the geometry of the disk that of a tightly wound spiral, we require F a n d u 
to be slowly varying functions of w and z, and we require u to be real in the plane 
z = 0. In that plane, the curves x = constant are the spirals. The spiral component of 
the field diminishes rapidly with distance from the disk. Accordingly, the function 
F is required to vanish at infinity. 

Outside the plane z = 0, the potential is governed by Laplace's equation. We have 
obtained a formal solution by letting 

u (m, z) = u (w ± iz), an arbitrary function, (4) 

and writing F (m, z, x) as a series 

F = F ( 0 ) + A F ( 1 ) + ( 5 ) 

in powers of L The requirement that the potential must satisfy Laplace's equation in 
each order in A separately leads to a hierachy of equations governing F ( 0 ) , F ( 1 ) , etc. 
The solution of the first member of the hierarchy is 

F ( 0 ) ( tz; , z, x) = i V ^ i r ' t o zXT G(w ± iz, X), (6) 

where G (m±iz9 x) is an arbitrary function, and the subscript denotes differentiation 
with respect to w. On each side of the plane z = 0, the ambiguity of sign in Equations 
(4) and (6) can be removed with the aid of the condition that F vanishes at infinity. 

The density distribution which gives rise to this potential is given by 

flr(tu, 0, z) = — lim 93 z (m,0, z) 
2nG z-*o + 

= < 7 < 0 0 ) (w)?-'- lim [ S B i - ) ( m . z ) I m ( « 1 ^ < 0 > ) ] (7) 
znu z-+o + 

+ 0(A), 
where subscripts again denote differentiation. Equation (7) expresses the density as a 
superposition of the unperturbed density and the density of the wave. 

In the lowest order the structure of the wave is characterized by the 'amplitude' 
F(0) (G7, Z, x) and a wave number 

k(m) = rlua(m). (8) 
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The indeterminacy of these functions, arising from the arbitrariness of the functions 
u (w±iz) and G (w±iz9 is reduced in the solution of the hydrodynamical equations. 
We encounter an integrability condition in the form of an equation involving Q, 
k(w), and F(0)(m, z, y). This integrability condition determines the amplitude of the 
wave once the angular velocity of the pattern and the dependence of the wave number 
on w have been chosen. These choices remain arbitrary. 

We have been able to construct solutions of only two kinds along these lines. 

A necessary condition for the construction of a solution of the first kind is that the 
pattern of the wave must rotate more slowly than the interior of the disk. The wave 
extends from the origin to the radial distance at which the pattern and the disk are in 
corotation; and the amplitude of the wave vanishes at both the origin and the co-
rotation point. In practice, we have been able to construct such a wave only over a 
central region of the disk in which the angular velocity of the unperturbed rotation 
departs only slightly (of the order of 10%) from a constant. Thus, a wave of the first 
kind can extend over a large region of the disk only if the law of rotation in that region 
departs but slightly from that of a solid body. These waves do not possess inner 
Lindblad resonances. 

Solutions of a second kind have been found for waves in disks in which differential 
rotation is appreciable. A necessary condition for the construction of these solutions 
is that 

where 93 ( B ) (m, z) is the external potential. When we interpret the external field in 
terms of subsystems of high-velocity stars which cannot participate in a density wave, 
this conditions implies that a density wave of finite amplitude can occur in a galaxy 
in differential rotation only if the subsystems of gas and low-velocity stars which can 
support the wave make only a small contribution, of order A, to the total mass of 
the galaxy. It further implies that the smaller the fraction of the total mass of a 
galaxy in subsystems which can support a density wave, the more tightly wound 
will be the spiral pattern of the wave. Waves of the second kind are to be identi­
fied with the density waves described by linear theories; when we consider a wave 
of infinitesimal amplitude and linearize our integrability condition in that amplitude, 
we recover the dispersion relation for Q and k(m) which was given by Lin and Shu 
(1964) in the earliest version of their theory. 

An example of a density wave of the second kind is illustrated in Figure 1. Here 
the external field is that of a disk of surface density 

3. Density Waves of the First Kind 

4. Density Waves of the Second Kind 

E<«»(f0, z) = 0[WiB)(m, z ) ] , (9) 

3 / 2 . (10) 
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and the disk which supports the wave has an unperturbed surface density 

3 m ( w2^11 

V ; 2nR2\ R2J ( 1 1 ) 

<j ( o o )(m) - 0 , m> R, 

where 9W, a, and R are constants. In this example, X = 0.15 and R = 3a. We have 
constructed a wave of angular velocity Q given by 

£ 2 = 0.08944 G2R/a 3 ; (12) 

the corotation point is then w = 2a. Outside an annulus in which 

v 2 = m2(Q - QC)2JK2 <v2

0 = 0.49456, (13) 

Fig. 1. Pattern of the density wave in the example described in the text. 

where QC is the angular velocity of the unperturbed disk and K is the epicyclic frequen­
cy, we let k(w) be given by the dispersion relation for linear waves. In accordance 
with the remark at the end of the preceding paragraph, the consequence of this choice 
is that the amplitude of the wave vanishes. Within the annulus, we permit the wave 
to have a finite amplitude by choosing k(w) in the manner 

W = InGo'-'(' " C' " ( ^ " V 2 ) ] ' ( 1 4 ) 

with a = 0.5. (With a = 0, Equation (14) is the dispersion relation for linear waves.) 
Figure 1 shows the spiral pattern of the wave; the boundary of the shaded region is 
a contour of constant density (equal to the central density) in the disk which supports 
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the wave. The amplitude of the wave is typically of the order of 30-40% of the un­
perturbed density. This wave does not possess an inner Lindblad resonance, and the 
outer Lindblad resonance lies outside the annulus to which the wave has been confined. 

5. Concluding Remarks 

A number of problems remains to be investigated in this work. We conclude this report 
by commenting on two of them. 

(1) The role of resonances in non-linear waves is not clear. Within the framework 
of the present analysis, we can avoid the effects of resonances by constructing the 
wave in such a way that it is confined, as in the preceding example, to an annulus 
which does not contain resonance points. In doing so, however, we are probably 
exploiting an artificial property of the asymptotic approximation. For this reason, 
we intend to investigate the role of resonances. 

(2) Leading and trailing spiral patterns are allowed without distinction in the 
present theory. It seems, therefore, that to account for a preference for trailing patterns, 
we would have to distinguish leading and trailing patterns in terms of the circum­
stances of their origin or in terms of their stability. 
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Discussion 

R. Graham: D. J. Carson has carried out an analysis of static non-linear axisymmetric waves in a 
differentially rotating thin stellar sheet. A local approximation is used; it is only valid for moderately 
large amplitude waves. He finds that these static waves have a greater velocity dispersion than static 
(i.e. zero frequency) linear waves of the same wavelength, which suggests that non-linear waves are 
less stable than linear ones. He has also carried out a similar analysis for a differentially rotating 
incompressible fluid sheet, and finds that static non-linear waves exist for sheets thicker than those of 
the corresponding linear waves, which produces a similar suggestion. 
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