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RADIAL FUNCTIONS ON COMPACT SUPPORT
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In this paper, radial basis functions that are compactly supported and give rise to positive definite
interpolation matrices for scattered data are discussed. They are related to the well-known thin plate spline
radial functions which are highly useful in applications for gridfree approximation methods. Also,
encouraging approximation results for the compactly supported radial functions are shown.

1991 Mathematics subject classification: 41A05, 41A25, 41A63, 42A82, 65D05, 65D07.

1. Introduction

The theme of this work is the construction of a new class of radial basis functions.
Their special features are compact support and good approximation properties when
they are used for interpolation (or other approximations). Radial basis functions
and their applications have been comprehensively reviewed in several recent papers
([4,6,13], to name just three). Therefore we will not dwell much on explaining radial
basis functions here. Be it sufficient to mention that radial basis function schemes
are multivariate approximations from linear spaces generated by translates of the
form <t>(- - Xj) = <£(|| • -x;||) : R" -+ R, where 4>: R+ -+ R is the radial basis function,
|| • || : R" -y R+ is the Euclidean norm (the modulus function in one dimension)
and Xj e R" are prescribed points (called centres or sometimes knots) in the
underlying space. The usual way to approximate by these functions is through
interpolation at the centres, giving rise to the question of the invertibility of the
interpolation matrix {<£(*, — Xj)}tj that we shall address, among other issues, in this
article. We also call <f> by the name of radial basis function.

In this paper, we will study approximation spaces generated by a novel type of
compactly supported radial basis functions $, in contrast to most of the work
reviewed, for instance, in [4], where globally supported functions are taken. The
advantage of compact support for radial function methods, as studied in the related
papers with different approaches [14] and [19], is, on one hand, that the linear
systems resulting from interpolation from these spaces are easy to solve, and, on the
other hand, that the resulting interpolants can be evaluated very fast. Frequent
evaluation is, indeed, often desired in applications. An example for this is the visual
rendering of two-dimensional functions. The various well-known globally supported
radial functions, such as thin plate splines and multiquadrics, have many good
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34 M. D. BUHMANN

(especially approximation-) properties, but they need much extra attention for solving
the linear systems of interpolation efficiently, because the interpolation matrices are
full and can be badly conditioned.

Further, radial basis functions with compact support are especially interesting in
the context of solving partial differential equations, for example with boundary element
methods, because they can be integrated easily by numerical quadrature since the
integrals involved are finite. On the other hand, several of the globally supported radial
functions are fundamental solutions of elliptic operators. As such they can even be
integrated analytically. For example, the thin plate spline function (j>(r) = rMogr has in
two dimensions the property

Here, r = ||x|| and A is the Laplace operator. Our new functions unite these advantages
because they are in many cases piecewise fundamental solution functions with finite
support. Therefore they are useful for creating the trial spaces for such numerical
methods for differential equations. A further reason for this interest from the
differential equation point of view is the possibility to perform gridfree approximations
for finite elements with radial basis functions (Schwab, private communication). The
assumption of gridded centres just for the convergence analysis in this paper is no
contradiction to this statement, since its precise purpose is the identification of the
general approximational efficacy of the radial function spaces.

To comment further on the work of the two papers mentioned before, Wu [19] shows
how to find compactly supported radial basis functions </) which are positive definite
on ambient spaces of fixed dimension (degree and admitted dimension are interrelated).
Viewed as functions 4>, they are piecewise polynomial functions which have non-
negative, nontrivial Fourier transform, when transformed as functions <f> m K"< This
means, by a famous theorem of Bochner, that the interpolation matrices for
interpolation at the centres are positive definite if the centres are distinct and lie in R\
Therefore they are called positive definite functions. For his purpose, Wu makes
essential use of nonnegativity of the Fourier transform of <j>, if <j> is taken from a set of
certain multiply monotone functions, see also [11,3]. Specifically, he creates positive
definite radial functions <f> in one dimension first, and then uses a certain differentiation
operator, applied to 4>, to lift these univariate functions that give rise to positive
definite interpolation matrices to higher dimensions (and lower smoothness). This
shows how degree, smoothness and dimension are related. It is a fundamental new
contribution in that article to identify differentiation as the link between positive
definite radial functions in spaces whose dimensions differ. In [14] radially symmetric
functions with positive Fourier transform are obtained by convolving characteristic
functions of balls with themselves or by using tensor product splines and radializing
the result, mainly in two and three dimensions (the former are called "Euclid's hats").
Finally, Wendland [17] finds functions that are closely related to Wu's radial basis
functions but proves that these have minimal polynomial degree, given the support
size and the smoothness.
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RADIAL FUNCTIONS ON COMPACT SUPPORT 35

In this paper, we deal first, in the next section, with the creation of a new class of
radial functions that have compact support and positive Fourier transform, thus giving
rise to interpolation matrices which are positive definite for distinct centres. In the
third section, convergence orders for these radial functions which resemble the well-
known thin plate splines, see [8], are discussed. The approximation results obtained rely
on either implementing a scaling of the radial function that is different from the
spacing of the centres, or letting the "degree" of the radial function tend to infinity. In
the latter case, which is studied in the final section, a spectral convergence result is
obtained. At the time of writing and when this work was presented at conferences at
Cancun, Montecatini and Oberwolfach in 1995, it appeared to be the first specific
discussion of approximation orders of compactly supported radial functions. The
author apologizes if this is an oversight.

2. The radial basis functions

We require compactly supported radial basis functions with positive Fourier
transform, and pursue an altogether different tack than [19] to obtain functions related
to the well-known thin plate splines. We want to apply the results in [12] about positive
integrals of Bessel functions. Therefore the radial basis functions we seek are generally
represented by integrals

0(x)= / ( 1 - Wxf/fif+gWdp, xeR" , (2.1)
Jo

where g e CC(M+), the space of compactly supported continuous functions on R+. Thus
the result is clearly of compact support. Similar radial basis functions that are related
to multiply monotone functions and their Williamson representation [18] were already
considered in [11,3], but they were not of compact support there, i.e., the weight g was
not compactly supported. We require 0 > 0 everywhere. The compact support, and
therefore the integrability of (f> and the existence of a continuous (in fact: analytic)
Fourier transform are guaranteed by the compact support of g in (2.1). Our ansatz
yields the following Fourier transform which is amenable to an application of the work
in [12]. In the sequel, C denotes a generic positive constant whose exact value is
immaterial.

4>{x) = C\\x\\l-n/2

= C\\x\rx-/2 f" Ji+n/1(
JoJo

|—2 l
o

rj_l+n/2(0f/2-'+1(iixii2"- t%dt.
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Here we have taken g(J!) = (1 - /?")+• The letter J denotes the Bessel functions [1, p. 358]
of the order according to the index. This Fourier transform is positive by [12,
Corollary 2.4, using items (i), (ii) and (vi)], and the strict inequalities (1.1) and (1.5) in
[9] if 0 < \i s$ \ «$ Q and

n = l , A2si

or

n ^ 2 and AS*±(n-l).

An example is n = \ and g = 1, and we shall further on always take ft = \, whereas
higher powers g are admitted. As a simplifying assumption we suppose A, g e N,
although that is not necessary and entails no limitation to the generality of the results.
We have thus proved

Theorem 1. For g(P) = (l - P")e
+, 0 < n < \ ^g, the Fourier transform of (2.1) is

everywhere well-defined and positive whenever A satisfies one of the two displayed
conditions above. •

3. Properties of the radial basis functions

We study some of the approximation properties of our newly constructed radial
functions in this section. Notably, we discuss in several dimensions and for equally
spaced centres which approximation properties are obtainable, if only the scaling is
chosen judiciously. For this, the scaling of the radial function has to tend to zero at a
different rate than the spacing of the centres. In practice this can be useful when
scattered centres are distributed with unequal density, so that the scaling of the basis
function should be locally adapted. Compact support radial basis functions seem to be
very amenable to this case.

The first interesting fact we observe is that, if A and g are integral, n = \ and g > A,

= f (i-\\x\\2/p)\i-/pydp

for ||x|| ̂  1, where p and q are polynomials, the latter of degree A, and p(l) = q(0) = 0.
Since <f> is of compact support and not a piecewise polynomial, its multi-integer

translates, failing to be a partition of unity, cannot generate a space that contains
nontrivial polynomials, as can also be seen from the Strang and Fix conditions for
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polynomial recovery by translates of a function. Hence, by a theorem of Buhmann,
[4, p. 44], approximation orders of cardinal interpolation with these functions and the
usual, stationary scaling cannot be expected. (Other, much more general theorems
delivering this result are available, but we require no more than a special case of that
assertion in the present work.) The stationary scaling is the one which keeps the
relative support of the radial function with respect to the shrinking gridsize constant.

Hence we consider the approximation properties of scales of such radial functions
that are made so as to enlarge the support of the scaled function relative to the spacing
of the translates (i.e., the gridsize h > 0). This growth should be slow, by hTyJr\ say,
where 0 <?C y < 1. We shall see that faster growth gives better approximation orders,
but as we normally intend to keep the support small, it should be as slow as a
reasonable approximation order allows. Therefore, whenever A and g are integral, we
consider here properties of spaces generated by

:-jh)\\2)log\\h-y(x-jh)\\+p{\\h-y(x-jh)\\), j6Z",fc>0. (3.1)

An example is A = g = \,fi = \, which gives q{x) — 2x, p(x) = \ + x2 — | x 3 , i.e.,

f i + | | x | | 2 - f | | x | | 3 + 2||x||2log||x|| i f O ^ | | x | | < l ,

10 otherwise.

Another example is A = 1, g = 4, \i = \, which gives

! Hx||2 - ^ ||x||3 + 3||x||4 - 1 | ||x||5 + \ ||x||6 + 2||x||2 log ||x|| if 0 ^ ||x|| < 1,

rwise.
(3.3)

<̂ .(x) = 15

10 otherwise.

These <f> e C'(R). Indeed this is the smoothness that can be obtained due to the nature
of the Euclidean norm inside the truncated power in the definition of our radial
functions. The idea of studying scales of radial functions not proportional to the
gridsize occurs already in [5], where discrete least-squares approximations from spaces
of radial basis functions scaled by another quantity than the gridspacing were analysed
in much detail (see also [2]).

These radial functions have the additional advantage that they can be integrated
easily against piecewise polynomials. This is important when, for example, inner
products of the radial functions as trial functions against splines as test functions are
required for the numerical solution of differential equations (by finite element or
similar methods). As a simple example just for illustration, we consider their
convolution with constant B-splines, i.e., characteristic functions of the shifted unit
interval. This preserves their general form, but increases the polynomial degree. For
example, using (3.2),
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polynomial + § (x + I)3 log(x +1) if - 1 < x ^ 0,

polynomial — |x3 logx if 0 ^ x < 1,

0 otherwise,

where x € R.
We continue with the convergence analysis for the radial functions of Theorem 1.

Those will be the only ones we deal with. As alluded to above, we must give attention
to the scaling of the radial function which is not going to be the same as the scaling
of the grid of centres we use. The latter we denote by h > 0, the former from now on
by 8 > 0. This generalizes (3.1), where 8 = hr was used. Hence we consider §b = #(j),
the radial function <f> scaled in the described way. As in [13], we call the linear space of
tempered distributions/ that fulfill

m*>:=v^h~fwdx<00 (3-4)
the native space ^ of the (scaled) radial function. Spaces of this type are first
considered in the important work [8] and several later continuations of the seminal
work by Golomb and Weinberger [10]. We also consider T$ = T$x. Note that this norm
is well-defined since (/>s is absolutely integrable due to its limited support, so the
Fourier transform exists, and we may divide by $5 because it is positive by
construction. The theorem we are going to prove is as follows. In its statement we use
the familiar notation D"B/2"'L2(Rn) for F+, where \j/ = \\ • \\~"~2. We note that due to
the Sobolev embedding theorem D""2'1 L2(R") c C(R") for all neN. Moreover, £(•) is
the well-known delta-distribution or, in case of a discrete argument, the Kronecker
delta-function.

Theorem 2. Let f e L2(R") n D""2-1 L2(R"). Suppose also Q 5= \n + 3 + In - k. Then
there is a cardinal interpolant for h > 0

, xeR\ (3.5)
;eZ"

from the linear space generated by hL"-translates of (f)^ where the Lagrange functions
are

«M*) = L , **.«*«(* ~Jh ~ **)• * 6 R\ (3.6)

keZ"

and the Lagrange conditions

-• 8(j - k), j , k € IT, (3.7)
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hold. This interpolate satisfies the uniform error estimate

11/ -s||oo^C^-1(5-"/2| |/ | |2 + <5||/||,), *><),*/* 6(0,1). (3.8)

In (3.8), C does not depend on either h, 3, ||/||2 or \\f\\f.

Proof. The existence, uniqueness and other properties of cardinal functions (3.6)
for basis functions of positive Fourier transform have been extensively discussed in the
literature. What interests us here is the existence of the cardinal functions. They can
be expressed in terms of their Fourier transform. According to [7, eqn. (2.1), p. 322],
for instance,

when (5 = 1. This Fourier transform is continuous. It is absolutely integrable too, since
it decays like uj(x) = O(||x|r"~2) for large argument as #(x) does. However, we
postpone the proof of the latter fact to the proof of the next proposition, because we
shall require even more detailed properties of $. Nonetheless, we conclude already at
this point that the Fourier transform (3.9) defines uj which is at a minimum
continuous. The other u*h are just translates ujh = uj(- — jh) thereof. The uj decays faster
than any negative power. This can be seen from the fact that its Fourier transform
(3.9) is infinitely often continuously differentiable, since the compact support of <f>
implies analyticity of 4>. Therefore all tempered distributions/ that are also continuous
functions are admitted into the interpolant (3.5), and, of course, the hypotheses about
/ in the statement of the theorem restrict it to that class. The cardinal functions for
5 ^ 1 are found by simply scaling $ in (3.9) by 8.

For all radial functions with compact support and a Fourier transform that is
positive, the following error estimate holds. This is going to be the basis of the rest of
our proof. It applies to any / for which an interpolant s on hi." by the radial function
in question is well-defined. (We admit in the estimate ||/||04 = oo, so it remains true if
/ g . 7 ^ , but we shall see later that | |/ | |^ < oo under the hypothesis of the theorem.)
The inequality is

(3.10)

as shown in [13, eqn. (4.8)]. Here, F^ is the so-called power functional

FJh)= sup - 2£«$(x)*(x -jh) + J2 E&M^MW* -jh)

In this power functional, t^ can be a priori any function for which the sums are well-
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defined, but if it satisfies the Lagrange conditions, the right-hand side of (3.10) is
minimal because this corresponds to an exact expression of the error functional. A
convergence result can be obtained by estimating the two factors that appear on the
right-hand side of (3.10). Of course the estimate must be such that is tends to zero,
when both 8 and h go to 0, albeit at different rates. We begin with the second one.

It is well-known that the aforementioned power functional in (3.10) is minimized if
u?h are the Lagrange or cardinal functions u*jh from the radial function space spanned
by the /iZ"-translates of <f> ([13], for example; other references are available). We
assume that choice from now on.

Using these facts we can prove the following first result on our way to bounding
(3.10) uniformly from above by a decaying term.

Proposition 3. The quantity in (3.10)

can be uniformly bounded by a fixed multiple ofh/8 so long as h/d e (0,1). The multiplier
is independent of 5 and h, but depends on <p and n.

Proof. We need an auxiliary result to prepare for the proof. A straightforward
generalization of Proposition 6 in [7, p. 328] to general radial functions with positive
Fourier transform (not multiquadric radial functions) and, for our purpose, compact
support, gives

Lemma 4. For the radial functions constructed in Theorem 1, it is true that the
cardinal interpolant to the radial function itself recovers the latter:

jh)u:h(x) = <Kx-jh), xeW, jeZ", h>0.

What we are using here, and what is proved in the proposition in the paper referred
to, is the projection property of radial function interpolants on the scaled integer grid.
As the proof of this fact for our compactly supported radial functions with positive
Fourier transform is even easier than the proof for the multiquadric function, we
omit it.

Therefore the power functional can be reexpressed by

= sup
,/eZ"

(3.11)

In the notation for this equation we have replaced | by /i for reasons of notational con-
venience. The back substitution at the end of the proof of the proposition will be trivial.
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An application of the Poisson summation formula, [15, p. 252], transforms the
expression inside the modulus signs in (3.11) into a multiple of

, D P(/M(^^yQ dt.

Using the form of uj's Fourier transform (3.9), we get that this is the same as

f (3.12)

We require an auxiliary result in order to bound this expression. The following lemma
which is a consequence of Lemma 7 in [3] shows that we get <j>(t) ~ (1 4- \\t||)~n~2.

Lemma 5. Suppose we are given q e N and £ e C(R>0), and suppose that for J e N
we have the asymptotic expansion

^W = lAEdP + W'-'*' t ^0,0 <Q^q,

with real numbers dj and reals e0 < el < • • • < e,, where eQ > — v — 1 and where
v = k + \n, A>0, qSslej + v + 2. Let

= r—x'2 f° h(rp)f(p) dp, r > 0,
Jo

where {h(t) = Jv(t) Jt | t > 0} and where

f(/J) = 2-*IjT'/W). P > 0,

be well-defined for every positive r. Then it satisfies for any 0 < e < 2min(e0 + v + 1,
e} — e,_,, ^ v) the asymptotic expansion

E r / - V ^ r^oo. (3.13)
]=o ' v ei>

For our purpose, we invoke Lemma 5 with q = Q - \ ^ 2ex + v + 2, J = 1, flo = 1,
e0 = —k, e{ = p — A and £QS) a constant multiple of the compactly supported function
g(P)P~l- It follows that (p(t) = 0(||t|r"'2) for large p| | . Moreover, we see that the
Fourier transform can be bounded below for sufficiently large argument by a small
constant multiple of IMP"'2: Indeed, a consequence of (3.13), that is,
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for a small positive e implies for large enough r

This means that #(t) ~ (1 + ||t||) " 2, because we already know that 0 > 0 always. The
asymptotic estimate will help us with the rest of the proof.

To continue, we remark that (3.12) can be bounded above by a constant multiple of

it

<h2i y > .

v-n-2

dt

The right-hand side expression is for h < 1 at most

h2 j 51 (* + ||t - 2nk\\r-\h + \\t\\r"-2 — -n-2

(* + ||2*fc|)—2<Cfe2 ]T \\2nk\r~2 = O(h2),
*eZ"\(0)

as required. D

According to (3.10) we are now only left with bounding ||/| |^ uniformly in order

to prove the convergence result. There is a small constant C such that

0 \\x\\ it C||x|| $s d ,

1 if C||x|| ^ 6~\

Therefore we can use the dominated convergence theorem to estimate

2|/(x)|2dx = C\\f\\\ + C^

This, in connection with the previous proposition and our assumptions about/ in the
statement of the theorem, proves the assertion. D

An application of the theorem we just proved shows that, if for instance
h = 0(<53n/2+3), then we get convergence order O(/i2/3) for the approximant in any

https://doi.org/10.1017/S0013091500019416 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019416


RADIAL FUNCTIONS ON COMPACT SUPPORT 43

dimension. Faster decay of h relative to 5 results in higher rates of approximation,
and we might also increase 5 instead of letting it tend to zero. In other words, the
support size is in competition with the accuracy, and the approximation order stated in
Theorem 2 cannot, incidentally, match the orders obtainable with the globally
supported radial functions, e.g., reviewed in [4]. In fact, O(h) is the best obtainable
order (for 5 = 1) if we want to keep 5 bounded.

However, it should be noted that the estimate in the last display also means that
the native space of our radial functions is not a "small" space, in the sense that the
weight function in the definition of its semi-norm does not increase fast. (In particular,
the weight in the semi-norm | | | |^ has no singularities since the Fourier transform, by
which we divide, has no zeros, in contrast to the transforms of the radial functions in
[19].)

4. Spectral convergence orders

Another point of interest is the result of letting X -*• oo in the construction of <j> given
in the penultimate section and not scaling. We contend that the radial function
becomes an approximate identity, meaning its Fourier transform tends to a nonzero
constant, whence the radial function, as a distribution in the real domain, to a multiple
of the 5-distribution. As such, approximations with its translates by the centres on
HZ", say, can provide at a minimum local uniform convergence of best uniform
approximations to continuous functions, when the "degree" X goes to infinity in
tandem with h -> 0. The reason for this is that the ^-distribution is the identity
operator with respect to convolution. Approximations from shifts of the radial function
can then be viewed as a discretization of the approximand / convolved with the radial
function. In fact, we can even show a spectral convergence result for that continuous
convolution, i.e., exponential convergence, the radial function still staying unsealed.
For the reader's convenience, we outline the argument before embarking on the proof
of the next theorem.

The key ingredient is that, when X -> oo, Bessel functions satisfy the convergence
estimate

, t > 0, (4.1)
n/2)

uniformly [16, p. 225]. Still setting g(fi) — (1 - /?")+, one concludes that the limiting
expression of the suitably normalized Fourier transform <£A, where we here and
subsequently denote its dependence on X by the index, is a multiple of

r—2 / W l - f2"r-2")̂  dt = /V+1(1 - e% dt, r 5= 0, (4.2)
Jo Jo

due to (4.1). This integral is constant and independent of r. Thus, remembering the

https://doi.org/10.1017/S0013091500019416 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019416


44 M. D. BUHMANN

work of Section 2, 4>x must tend to a multiple of the 5-distribution. This statement is
made precise in the following theorem, where the separation radius of {Xj} c R" is
h = 2 sup^H- infj ||x — Xyll̂  which we assume to be positive and finite. Observe that this
means there are infinitely many centres. The separation radius, e.g., for hZ" is h.

Theorem 6. Every continuous function f: R" -*• R can be arbitrarily closely, locally
uniformly approximated by linear combinations of (f>x{- — Xj), if h and A"1 are small
enough, where <f>x is the radial function of Theorem 1 and h is the separation radius of the
centres.

We immediately state another result that will follow from the proof of Theorem 6,
where * denotes convolution.

Corollary 7. Suppose fe Ll(R") n C(R") with N B V > n and that all off's derivatives
are integrable up to total order v. Then

\\9x *f - / I L =

where y is arbitrary and gx is defined in (4.3).

Proof of Theorem 6. Let a y e N be given. Our first assertion is that there exists a

01 = c1(l+<*I + d, + . . . + d M )6 l (4.3)

with cx, dt e R so that for any / e L'(R") with integrable Fourier transform

Il0i * / - / I L = O ( n (= "(I)). * -»- oo. (4.4)

To prove this, we take Fourier transforms and estimate by Holder's inequality

l0i(O - HI/WI *rs f l

\f(t)\dt sup 1^(0-11.

Now, according to [16, p. 225], (4.1) can be stated more precisely as

where a, are real coefficients. This, (4.2) and the penultimate display imply that (4.4)
can be obtained by judicious, A-dependant choice of each d,, where cx is a fixed
constant multiple of exp(-A - n/2)^/n(2X + n)l+l"2+1/2. Indeed
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- II = \Ccx(l + <*,+••• + d^r-2 r - W O ^ - ^ O - fr-^l dt - 1|
J

JH-1

^cr7, A-+00,

can be obtained. When y = 3, for instance, our choices for dx and d1 are — x™n and

\ , respectively. This establishes (4.4).

Because / can be locally uniformly approximated by / with the required properties
up to any desired accuracy, the theorem follows now from (4.4) through application of
any suitable quadrature rule that uses the x{ as points to evaluate the integrand to
the (finite) integral gx */ . •

Proof of Corollary 7. The same arguments as in the previous proof apply, except
that we may directly take/ instead of/, because our assumptions imply, by a standard
argument using integration by parts, |/(x)| = O(||x|r"~') for ||x|| -*• oo, i.e.,/ e L'(R"). •

Remark. The convergence of the approximant from linear combinations of x;-shifts
of <bx can also be formulated in a distributional sense, using the notion of weak
convergence. This is straightforward since <j>x tends to the ^-distribution, and it is
therefore not detailed here.
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