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ABSTRACT

Let K be a finitely generated extension of Q. We consider the family of f-adic
representations (¢ varies through the set of all prime numbers) of the absolute Galois
group of K, attached to f-adic cohomology of a separated scheme of finite type over
K. We prove that the fields cut out from the algebraic closure of K by the kernels of
the representations of the family are linearly disjoint over a finite extension of K. This
gives a positive answer to a question of Serre.

1. Introduction

Let T' be a profinite group and (I';);e; a family of groups. For every i let p;: I' —T'; be
a homomorphism. Following Serre (cf. [Serl0, p. 1]), we shall say that the family (p;)ier is
independent, provided the homomorphism

I =] m()
1€l
induced by the p; is surjective. Let TV CT' be a closed subgroup. We call the family (p;)ics
independent over I, if p(I'") = [[;c; pi(T). Finally we call the family (p;)icr almost independent,
if there exists an open subgroup I'' C T, such that (p;);cs is independent over I". Of particular
interest is the special case where I' = Galg is the absolute Galois group of a field K, and (p¢)ecr,
is a family of ¢-adic representations of Galg, indexed by the set L. of all prime numbers.

Important examples of such families of representations arise as follows: let K be a field
of characteristic zero and let X/K be a separated K-scheme of finite type. Denote by K an
algebraic closure of K. For every £ €L and every ¢ >0 we consider the representation of the
absolute Galois group Gal(K/K)

P+ Gal(K /K) —> Autg, (H(X, Q)
afforded by the étale cohomology group H?(X, Q¢), and also the representation
P o+ Gal(K /1) — Autg, (H (X gz, Q)

afforded by the étale cohomology group with compact support HE(X 7o Qy). One can wonder in

which circumstances the families (pg]))()g@‘ and (pgq))( Jeel, are almost independent.

In the recent paper [Serl0] Serre considered the special case where K is a number field.
He proved a general independence criterion for certain families of /-adic representations over
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a number field (cf. [Serl0, §2, Théorem 1]), and used this criterion together with results of
Katz—Laumon and of Berthelot (cf. [Ill]) in order to prove the following (cf. [Ser10, §3]).

Let K be a number field and X/K a separated scheme of finite type. Then the families of

representations (péq))()ge]L and (péq)% Jeel. are almost independent.

The special case of an abelian variety X over a number field K had been dealt with earlier
in a letter from Serre to Ribet (cf. [Ser00]). In [Serl0, p. 4] Serre asks the following question.

Does this theorem remain true, if one replaces the number field K by a finitely generated
transcendental extension K of Q%

This kind of problem also shows up in Serre’s article [Ser94, 10.1] and in Illusie’s
manuscript [I11]. The aim of our paper is to answer this question affirmatively. In order to do this
we prove an independence criterion for families of /-adic representations of the étale fundamental
group m1(S) of a normal Q-variety S (cf. Theorem 3.4 below). This criterion allows us to reduce
the proof of the following Theorem 1.1 to the number field case, where it is known to hold
true thanks to the theorem of Serre (cf. [Ser10]) mentioned above. We do take Tate twists into
account. For every £ € I we denote by e,: Galg — Autg, ((im, _ 1) @ Q) C Q, the cyclotomic

character, by 559_1 its contragredient and define for every d € Z
pé?))((d) = pé?))( ® 82861 and pg]))(?c(d) = pl(f))(,c ® 5?‘1.

THEOREM 1.1. Let K be a finitely generated extension of Q. Let X/K be a separated scheme

of finite type. Then for every q € N and every d € 7Z the families (qu))((d))ggL and (pﬁq))( (d)) e
of representations of Galy are almost independent.

Note that outside certain special cases it is not known whether the representations in
Theorem 1.1 are semisimple. Hence we cannot use techniques like the semisimple approximation
of monodromy groups in the proof of Theorem 1.1.

Theorem 1.1 has an important consequence for the arithmetic of abelian varieties. Let A/K
be an abelian variety. For every £ € L consider the Tate module T;(A) :=lim, A(K )[¢]], define
Vi(A) :=Ty(A) ®z, Q¢ and let

e Gal(K /K ) — Autg, (Vi(A))

be the (-adic representation attached to A. Then the Q;[Galx]-modules V;(A) and H! (A}{, Qe(1))
are isomorphic, i.e. the representation 7y 4 is isomorphic to ps 4v(1). Hence Theorem 1.1 implies

that the family (1s.4)eer is almost independent. Denote by K(A[¢>°]) the fixed field in K of
the kernel of 1, 4. Then K(A[€*°]) is the field obtained from K by adjoining the coordinates

of the ¢-power division points in A(K). Using Remark 3.1 below we see that Theorem 1.1 has
the following corollary.

COROLLARY 1.2. Let K be a finitely generated extension of Q and A/K an abelian variety.
Then there is a finite extension E/K such that the family (EK(A[(*]))eeL is linearly disjoint
over I.

This paper has an appendix with a more elementary proof of this corollary, which is based

on our Theorem 3.4 below, but avoiding use of étale cohomology.
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Notation and preliminaries

For a field K fix an algebraic closure K and denote by Galg the absolute Galois group of K.
We denote by L the set of all prime numbers.

Let S be a scheme and s € S a point (in the underlying topological space). Then k(s) denotes
the residue field at s. A geometric point of S is a morphism s: Spec(Q2) — S where Q is an
algebraically closed field. To give such a geometric point § is equivalent to giving a pair (s, )
consisting of a usual point s € S and an embedding i: k(s) — . We then let k(5) be the algebraic
closure of i(k(s)) in 2. Now assume S is an integral scheme and let K be its function field. Then
we view S as equipped with the geometric generic point Spec(K) — S and denote by 7 (S) the
étale fundamental group of .S with respect to this geometric point. For a scheme S over a field F’
and an extension F'/F we define Spr := S X Spec(F’). A variety S/F is an integral separated

F-scheme of finite type.

Now let S be a connected normal scheme with function field K. Assume for simplicity that
char(K) =0. If E/K is an algebraic field extension, then S(¥) denotes the normalization of
S in E (cf. [EGAIL 6.3]). This notation is used throughout this manuscript. The canonical
morphism S¥) — § is universally closed and surjective. (This follows from the going-up theorem,
cf. [EGAIL, 6.1.10].) If E/K is a finite extension, then S(¥) — S is a finite morphism (cf. [Mil80,
Proposition I.1.1]). We shall say that an algebraic extension E/K is unramified along S, provided
the morphism S¥) — § is étale for every finite extension E'/K contained in E. We denote
by Kgnr the maximal extension of K inside K which is unramified along S, and by Sy, the
normalization of S in Kg,,. One can then identify m(S) with Gal(Kgn/K). Let E/K be a
Galois extension. If P € S is a closed point and Pisa point in S above P, then we define
DE/K(P) C Gal(E/K) to be the decomposition group of P, i.e. the stabilizer of P under the
action of Gal(E/K).

2. Finiteness properties of Jordan extensions

Let E/K be an algebraic field extension and d € N. We call the extension E/K d-Jordanian,
if there exists a family (K;);er of intermediate fields of E/K such that K;/K is Galois and
[K; : K] <d for all € I and such that F is a (possibly infinite) abelian Galois extension of the
compositum [[;.; K;. The 1-Jordanian extensions of K are hence just the abelian extensions
of K. If K is a number field and E/K is a d-Jordanian extension of K which is everywhere
unramified, then F/K is finite. This has been shown by Serre in [Ser10, Théoréme 2], making
use of the Hermite-Minkowski theorem and the finiteness of the Hilbert class field. The aim of
this section is to derive a similar finiteness property for d-Jordanian extensions of function fields
over Q. In Lemmata 2.6, 2.7 and 2.8 we follow closely the paper [KL81] of Katz and Lang on
geometric class field theory, giving complete details for the convenience of the reader.

If F is any extension field of QQ, then we denote by kg the algebraic closure of Q in FE,
kg :={x € E :x is algebraic over Q},

and we call kg the constant field of E. We say that E/K is a constant field extension, if kg K = E.
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Remark 2.1. Let K be a finitely generated extension of Q. Let E/K be an algebraic extension.
Then there is a diagram of fields as follows.

E——QEF
KRE kK @K
KK K

The field kg is a nlimber field and kg /K is an algebraic extension. If ELK iSNGalois, then kg /KK,
kpK/K and QE/QK are Galois as well, and the restriction maps Gal(QE/QK) — Gal(E/kgK)
and Gal(kpK/K) — Gal(kg/kK) are both bijective.

The aim of this section is to prove the following proposition.

PROPOSITION 2.2. Let S/Q be a normal variety with function field K. Let d € N. Let E/K be
a d-Jordanian extension which is unramified along S. Then E/kpK is a finite extension.

Note that in the situation of Proposition 2.2 the extension kp/kx may well be infinite
algebraic. The proof occupies the rest of this section.

LEMMA 2.3. Let S/Q be a normal variety with function field K. Let d € N. Let E/K be an
algebraic extension which is unramified outside S. Assume that there is a family (K;);c; of
intermediate fields of E/K such that each K;/K is Galois with [K;: K] <d and such that
E =[lic; Ki. Then E/kpK is finite and Gal(kg/kk) is a (possibly infinite) group of exponent
<d!.

Proof. The Galois group Gal(E/K) is a closed subgroup of [[..; Gal(K;/K). By Remark 2.1
Gal(kp/krK) is a quotient of Gal(E/K), hence Gal(kp/kx) has exponent <d!. Again by
Remark 2.1 it is now enough to show that QE/QK is finite. The Galois group Gal(QE/QK) is

a quotient of 771(5@), and 7T1(S@) is topologically finitely generated (cf. [SGA7, 11.2.3.1]). Hence

there are only finitely many intermediate fields L of QE/QK with [L:QK]<d (cf. [FJO5,
16.10.2]). This implies that QE/QK is finite. O

LEMMA 2.4. Let K be a finitely generated extension of Q. Let E/K be a (possibly infinite)
Galois extension. Assume that Gal(E/K) has finite exponent. Let X = (X1,...,X,) be a
transcendence base of K/Q and R the integral closure of Z[X] in E. Then the residue field
k(m) = R/m is finite for every maximal ideal m of R.

Proof. Let R’ be the integral closure of Z[X]| in K. Let m be a maximal ideal of R. Define
m :=mN R and p=mNZ[X]. There are diagrams of fields and residue fields

QX)——K——FE and k(p) k(m’) k(m).

By the going-up theorem p is a maximal ideal of Z[X], and k(p) =Z[X]|/p is a finite field.
Furthermore R’ is a finitely generated Z[X]-module (cf. [Mil80, Proposition I.1.1]). This implies
that k(m’) is a finite field. The extension k(m)/k(m’) is Galois and the Galois group G :=
Gal(k(m)/k(m’)) is a subquotient of Gal(E/K). Hence G is of finite exponent. On the other
hand G must be procyclic, because it is a quotient of the Galois group 7 of the finite field k(m').
It follows that G is finite and that k(m) is a finite field. O
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LEMMA 2.5. Let K be a finitely generated extension of Q. Let E/K be a (possibly infinite)
Galois extension. Let X = (Xy,..., X,) be a transcendence base of K/Q and R the integral
closure of Z|X| in E. Let f € R be a non-zero element. Then there exists a natural number N
(depending on f) such that for every prime number p not dividing N there exists a maximal
ideal m C R which satisfies f ¢ m and char(k(m)) = p.

Proof. Let f € R be a non-zero element and consider the closed set V(f) = {p € Spec(R) : f € p}.
The canonical morphism 7 : Spec(R) — Spec(Z[X]) is closed (cf. [EGAII, 6.1.10]), hence 7 (V' (f))
is a closed subset of Spec(Z[X]). It is also a proper subset of Spec(Z[X]). It follows that
there is a non-zero polynomial g € Z[X] such that D(g) N7(V(f)) =0, where by definition
D(g) = {p € Spec(Z[X]) : g ¢ p}. Choose a € Z" with g(a) # 0 and define N := g(a). Now let p

be a prime number not dividing g(a). Consider the maximal ideal p = (p, X1 — a1, ..., Xn — an)
of Z[X]. Then p € D(g). Finally let m be a prime ideal of R such that m(m) =p. Then f ¢ m and
char(k(m)) = p as desired. O

We now show that a weak form of the Mordell-Weil theorem holds true over finitely generated
extensions of fields like the field kg in Lemma 2.3. If B is a semiabelian variety over a
field K, then we define T'(B) =[], Te(B) and T'(B)yp = [Ierypy Te(B) (for p € L), where

Ty(B) = lim, B(K)[(1] is the Tate module of B for every ¢ € L. If M is a compact topological
Galg-module, then we define the module of coinvariants Mga), of M to be the largest Hausdorft
quotient of M on which Galg acts trivially.

LEMMA 2.6. Let K be a finitely generated extension of Q. Let E/K be a Galois extension.
Assume that Gal(E/K) has finite exponent. Let B/E be a semiabelian variety. Then T(B)gal,
is finite.

Proof. Let E'/E be a finite extension over which the torus part of B splits. Then there exists a
finite Galois extension L/K such that LE D E’, and Gal(LE/K) has finite exponent again. The
group T'(B)gal, is a quotient of T'(B)gal, ,- Hence we may assume right from the beginning that
B is an extension of an abelian variety A by a split torus ng - Then there is an exact sequence
of Galg-modules 7

0 —=T(Gm)? T(B) T(4) 0.

As the functor —gal, is right exact, it is enough to prove that T'(A)ga, and T(Gy)gal, are
both finite. We may thus assume that either B is an abelian variety over £ (case 1) or B =Gy, g
(case 2). We shall prove the finiteness of T'(B)gal,, in both cases.

Choose a transcendence base X = (X1, ..., X,,) of K/Q and let R be the integral closure of
Z[X] in E. In case 1 there is a nonempty open subscheme U C Spec(R) such that B extends to
an abelian scheme B over U. In case 2 we define U = Spec(R) and put B:= G, 7. Let m be a
maximal ideal of R contained in U, define p = char(R/m), and denote by B = B xy; Spec(k(m))
the special fibre at m. Let n be a positive integer which is coprime to p. Then the restriction of
B[n] to S:=U[1/n] is a finite étale group scheme over S and m € S. Let my, be a closed point

of Sy over m. Taking a projective limit over the cospecialization maps B[n|(E) = B[n](k(my,)),
we obtain an isomorphism

T(B)zp =T(B)zp,
which induces a surjection T(E)#p,GaIF — T'(B)+p,Gal,, where we have put F = k(m). The field
F is finite by Lemma 2.4 and B is either an abelian variety over F (case 1) or the multiplicative

group scheme over F (case 2). In both cases it is known that T'(B).p Gal, is finite (cf. [KL81,
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Theorem 1 (ter), p. 299]). This shows that T'(B)p cal,, is finite, whenever there exists a maximal
ideal m of R contained in U with char(k(m)) = p. Now it follows by part (b) of Lemma 2.5 that
there are two different prime numbers p; # pa such that T'(B)xp, Gal, and T(B)xp, Gal, are
finite, and the assertion follows from that. a

Let Ky be a field of characteristic zero and S/K( a normal geometrically irreducible variety
with function field K. There is a canonical epimorphism p: m1(5) — Galg, (with kernel 71 (S ))
and, following Katz—Lang [KL81, p. 285], we define K(S/Kjy) to be the kernel of the map
m1(S)ab — Galg, ap induced by p on the abelianizations. If we denote by Kg b the maximal
abelian extension of K which is unramified along S, then there is a diagram of fields

KS,nr,ab I%Ks,nr,ab
Ko ab KoK ——— KoK
Ko————K

(cf. [KL81, p. 286]) and the groups Gal(Kgnrab/Koabf) and Gal(lfi)Kg’nr,ab/[/{oK) are both
isomorphic to K(S/Kp). The main result in the paper [KL81] of Katz and Lang is: if Ky is finitely
generated and S/Ky a smooth geometrically irreducible variety, then K(S/Ky) is finite. On the
other hand, if Kj is algebraically closed and S/ Ky is a smooth proper geometrically irreducible
curve of genus g, then K(S/Ky) = 7?9 is infinite, unless g = 0. In order to finish up the proof
of Proposition 2.2 we have to prove the finiteness of (S/Kj) in the case of certain algebraic
extensions Ky/Q (like the field £z in Lemma 2.3) which are not finitely generated but much
smaller than Q.

LEMMA 2.7. Let K be a finitely generated extension of Q. Let E/K be a (possibly infinite)
Galois extension. Assume that Gal(E/K) has finite exponent. Let C/E be a smooth proper
geometrically irreducible curve and S the complement of a divisor D in C. Then K(S/FE) is
finite.

Proof. There is a finite extension E’/E such that S has an E’-rational point and D is E’-
rational. There is a finite extension E”/E’ which is Galois over K. Then Gal(E"”/K) must have
finite exponent (because Gal(F/K) and Gal(E”/FE) do). Furthermore K(Sg»/E") surjects onto
K(S/E) (cf. [KL81, Lemma 1, p. 291]). Hence we may assume from the beginning that S has
an F-rational point and D is E-rational. The generalized Jacobian J of C with respect to the
modulus D is a semiabelian variety. (If S = C, then J is just the usual Jacobian variety of C.)
Furthermore there is an isomorphism

m1(S5)ab = T(J).

On the other hand 71 (S%)ab,qaly, is isomorphic to K(S/E) (cf. [KL81, Lemma 1, p. 291]). Hence
it is enough to prove that T'(J)qgal, is finite. But this has already been done in Lemma 2.6. O

LEMMA 2.8. Let K be a finitely generated extension of Q. Let E/K be a (possibly infinite)
Galois extension. Assume that Gal(E/K) has finite exponent. Let S/E be a normal geometrically
irreducible variety. Then IC(S/E) is finite.
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Proof. There is a finite extension L/E and a sequence of elementary fibrations in the sense of
Artin (cf. [SGA4, Exposé XI, 3.1-3.3))

Spec(L)=Up <2ty <, <L ... Iy, c s,

where U, is a non-empty open subscheme of Sy, and dim(U;) =i for all i. There exists w € L
such that L = F(w). The extension K (w)/K is finite, hence contained in a finite Galois extension
K'/K. Then EK'/K is Galois, EK'/F is finite and L C FK'. Replacing L by EK' we may
assume that L/K is Galois, and then Gal(L/K) must be of finite exponent.

Let L; be the function field of U;. Then the generic fibre S;11 := Uj+1 Xy, Spec(L;) of fi+q is
a curve over L; which is the complement of a divisor in a smooth proper geometrically irreducible
curve Cjy1/L;. The extension L;/L is finitely generated (of transcendence degree 7). Hence
L; = L(uq, ..., us) for certain elements uy, . .., us € L;. Let us define K; := K(uq, ..., us). Then
there is a diagram of fields

K; L
K—E—1L
Q

such that the vertical extensions are all finitely generated and L; = K;L. The extension L;/K;
is Galois because L/K is Galois, and the restriction map Gal(L;/K;) — Gal(L/K) is injective.
Hence Gal(L;/K;) is a group of finite exponent and Kj is finitely generated.

Lemma 2.7 implies that K(S;;1/L;) is finite for every i € {0, ..., n — 1}. By [KL81, Lemma 2]
and [KL81, (1.4)] it follows that /C(U, /L) is finite. Then [KL81, Lemma 3] implies that (S, /L)
is finite, and [KL81, Lemma 1] shows that /C(S/F) is finite, as desired. O

Proof of Proposition 2.2. Let S/Q be a normal variety with the function field K. Let E/K be
a d-Jordan extension contained in the extension Kg /K. There is an intermediate field L of
E/K such that E/L is abelian and L is a compositum of Galois extensions of K, each of degree
<d. By Lemma 2.3 L/k K is a finite extension. We have the following diagram of fields.

RE HEK K,EL E KS,nr
KL kK L
KK K

Now S(X) is the normalization of the geometrically irreducible xp-variety
SHLK) — 6 %, Spec(kr)

in the finite extension L/k; K. Hence S (L) is a geometrically irreducible variety over 7. (The
crucial point is that S(X) is of finite type over £r.) The extension E/L is abelian and unramified
along S("). Hence Gal(E/kgL) is a quotient of K(S) /k). The field ki is a number field and
Gal(kr/kK) is a group of exponent < d!, because it is a quotient of Gal(L/K) (cf. Remark 2.1).
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Hence Lemma 2.8 implies that (S /k1) is finite. It follows that E/kgL is a finite extension.
Now kgL/kpK is finite, because L/kp K is finite. It follows that F/kpK is finite, as desired. O

3. Representations of the fundamental group

We start this section with two remarks and a lemma about families of representations of certain
profinite groups. Then we prove an independence criterion for families of representations of the
étale fundamental group m;(S) of a normal Q-variety S (cf. Theorem 3.4). This criterion is
the technical heart of the paper.

Remark 3.1. Let K be a field, /K a Galois extension and I C N. Let (I';);er be a family of
profinite groups. For every i € I let p; : Gal(2/K) — I'; be a continuous homomorphism. Let K;
be the fixed field of ker(p;) in Q. Then the following conditions are equivalent.

(i) The family (p;);cs is independent.
(ii) The family (Kj;);cs of fields is linearly disjoint over K.

(iii) If s> 1 and i1 <ig <---<ig41 are elements of I, then

K, '--KZ‘SQKZ‘SJFIZK.

Proof. As the homomorphisms p; induce isomorphisms Gal(K;/K) = im(p;), (i) is satisfied if and
only if the natural map Gal(Q/K) — [[;c; Gal(K;/K) is surjective, and this is in turn equivalent
to (ii) (cf. [FJ05, 2.5.6]). It is well-known that (ii) is equivalent to (iii) (cf. [FJ05, p. 36]). O

Remark 3.2. Let I' be a profinite group and n € N. For every £ € L let I'y be a profinite group
and pg: I' = I’y a continuous homomorphism. Assume that for every ¢ € L there is an integer
n € N such that I'; is isomorphic to a subquotient of GL,(Zy).

(a) Let I C T be an open subgroup. If the family (py)ser is independent, then there is a finite
subset I C IL such that the family (pg)ser s is independent over IV.

(b) The following conditions (i) and (ii) are equivalent.

(i) The family (p¢)ser is almost independent.
(ii) There exists a finite subset I C LL such that (p¢)eers is almost independent.

Proof. Let p: T'— [[,cr, T'v be the homomorphism induced by the p,. To prove (a) assume
that p(T') = [[ser pe(T'). The subgroup p(IY) is open in [],op pe(I'), because a surjective
homomorphism of profinite groups is open (cf. [FJ05, p. 5]). It follows from the definition of the
product topology that there is a finite subset I C L such that p(I") D [ {1} X [Iser. s pe(T).
This implies that (pg)ecr-s is independent over I and finishes the proof of part (a). For part
(b) see [Serl0, Lemme 3]. O

Let K be a field, n € N and /K a fixed Galois extension. For every ¢ € L let I'y be a profinite
group and p;: Gal(Q2/K) — I'y a continuous homomorphism. Assume that I'y is isomorphic to a
subquotient of GL,(Zy) for every ¢ € L. Denote by K, the fixed field in Q of the kernel of py.
Then K, is a Galois extension of K and py induces an isomorphism Gal(K,;/K) = p,(Gal(Q/K)).
For every extension E/K contained in § and every ¢ € L we define Gy g := p;(Gal(Q2/FE)) and
Ey:= EK,. Then Gy g is isomorphic to a subquotient of GL,,(Z,) and p; induces an isomorphism

Gal(Eg/E) = Gg,E.
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Furthermore we define GZE to be the subgroup of G g generated by its ¢-Sylow subgroups. Then
G/ is normal in Gy . Finally we let Ef be the fixed field of pzl(GZE) N Gal(2/E). Then E;

is an intermediate field of E¢/E which is Galois over E, the group Gal(Ey/E,") is isomorphic to
G, and Gal(E/ /E) is isomorphic to Gy p/G 5.

LEMMA 3.3. Let E/K be a Galois extension contained in K and let (€ L.

(a) The extension E,/E is a finite Galois extension, and Gal(E, /E) is isomorphic to a
subquotient of GL,,(Fy).

1s linite an : 1s not divisible by £, then = an = .
b) If E/K is finite and [E : K] i divisible by ¢, then G| , = G, and EK; = E/

Proof. The profinite group Gy g is a closed normal subgroup of Gy g, and Gy i is isomorphic
to a subquotient of GL,(Z,). Hence there is a closed subgroup Uy of GL,(Zs) and a closed
normal subgroup V; of U, such that there is an isomorphism ¢ : G¢ g — U/ Vp. Furthermore there
is a closed normal subgroup UZr of Uy containing V; such that i(GZK) = Uj /Vp. The group
Ue/ UZF is isomorphic to Gy i/ GZE. Its order is coprime to £. The kernel of the restriction map
r: GLy(Z¢) — GLy,(Fy) is a pro-£ group; hence the intersection of this kernel with Uy is contained
in U,". This shows that r induces an isomorphism U, /U," — r(Uy)/r(U,"). Altogether we see that

Gal(Ef /B) 2 Gy /G 5 = Uy /U = r(U) /r(Uf)

and part (a) follows, because 7(Up)/r(U,") is obviously a subquotient of GLy, (Fy).

Every (-Sylow subgroup of Gy g lies in an /-Sylow subgroup of Gy x, hence GZE - GZK.
Assume from now on that [E : K] is finite and not divisible by ¢. Then every ¢-Sylow subgroup
of Gy must map to the trivial group under the projection Gy x — Gy x/Ge E, because the
order of the quotient group is coprime to £. Hence every ¢-Sylow subgroup of Gy i lies in Gy g.
This shows that GZK = GZE. The Galois group Gal(E;/EK,) is GZK NGy g and the Galois
group Gal(Ey/EK) is Gf . As G e = Gy it follows that Gal(E,/EK}") = Gal(E¢/E;"), hence
EK}/ =E}. O

Let S be a normal Q-variety with function field K. We shall now study families of
representations of the fundamental group 7(S) (viewing S as a scheme equipped with the
generic geometric point Spec(K) — K). Recall that we may identify 71 (S) with Gal(Kg n/K).

THEOREM 3.4. Let S/Q be a normal variety with function field K. Let P, € Sy be a closed
point. For every ¢ € IL let 'y be a profinite group and py: w1 (S) — I'y a continuous homomorphism.
We make two assumptions.

(a) Assume there is an integer n € N such that for every ¢ €L the profinite group Ty is
isomorphic to a subquotient of GLy,(Zy).

(b) Assume that there exists an open subgroup D' of the decomposition group D . /i (Pur)
such that the family (pg)ecr, is independent over D'.

Then the family (pg)ecr, is almost independent.

The proof of Theorem 3.4 occupies the rest of this section. From now on all the assumptions of
Theorem 3.4 are in force, until the proof is finished. For every algebraic extension E/K contained
in Kgnr we define Gy g = po(Gal(Kgn/E)), GZE’ E; and EZF exactly as before. Furthermore we

shall write Pg for the point in S (E) helow Pyr.
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We tacitly assume in the following that @ denotes the algebraic closure of K inside K. Then
already Kg nr contains Q, because the constant field extensions of K are unramified along S. The

structure morphism Sy, — Spec(Q) factors through Spec(Q), because Sy, is normal. It follows
in particular that k(P ) = Q.

LEMMA 3.5. There is a finite Galois extension E/K contained in K g, and a finite subset I C L
such that the following statements about E and I hold true.

(a) For all ¢ € L\ I the extension E, /E is a constant field extension, that is: k E;E =E/.

(b) The point P is a kg-rational point of ().
(¢) The family (pe)rer~1 is independent over D . /p(Par)-

Proof. Let L := ], K; be the composite field of all the K;. By Lemma 3.3, for each £ € L, the
group Gal(K, /K) is isomorphic to a subquotient of GL,(F;), and |Gal(K, /K)| is not divisible
by ¢. By [Ser10, Théoréme 3’] (which is a generalization due to Serre of the classical theorem
of Jordan) it follows that there is an integer d (independent of ¢) such that for every ¢ € L the
group Gal(K, /K) has an abelian normal subgroup A, of index [Gal(K, /K): A/ <d. Let K},
be the fixed field of A, in K, . Then K’ :=[],. K} is a compositum of Galois extensions of K
and [K}: K| < d for all £ € L. The extension K'K, /K’ is abelian for every ¢ € L. It follows that
L/K is a d-Jordanian extension. Furthermore L/K is contained in Kg,. By Proposition 2.2, L
is a finite extension of kK. Note that k7 /Q may well be an infinite extension. Hence there is
an element w € L such that L =k K(w). Let E; be the Galois closure of K(w)/K in L. Then
E1/K is a finite Galois extension and x1 E1 = L. Hence we have a diagram of fields

HLKiL

K——E

in which the vertical extensions are constant field extensions and in which the horizontal
extensions are finite. Furthermore L contains Kzr for every ¢ € L.

Now consider the canonical isomorphism
r: DKSVm/K(Pnr) = Gal(k(Pnr)/k(PK))

Let A; be the fixed field of #(D’) in k(P,;) = Q. Since D’ is open in D /i (Pux), the field Aq is a
finite extension of k(P ), so A; is a finite extension of Q. Choose a finite Galois extension A\/k g
containing A; and k(Pg,), and define E := AE;j. Then S(E) = §(E1) Xk, Spec(A) and kg = A.
There is the following diagram of number fields.

Al ——— )\ Rp —— k(PE)
k(Px) —— k(Pg,)
RK KRE;
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The fibre of Pg, under the projection S®) — S(F1) is Spec(rp ®kp, k(Pp,)), and this fibre
splits up into the coproduct of [k(Pg,) : £g,] many copies of Spec(kg) = Spec(A), because A/kg
is Galois and A D k(Pg,). Thus all points in S) over Pg, are kp-rational. In particular Pg is
Kk p-rational.

It follows that
r(Dkg /B (Par)) = Gal(k(Por) /k(Ppg)) = Gal(k(Par)/kE),

and this group is an open subgroup of r(D’) = Gal(k(P,;)/\1) because kg is a finite extension
of A\1. Hence D . /p(Pur) is an open subgroup of D'.

As (pe)ecL is independent over D’ by one of our assumptions, it follows from part (a) of
Remark 3.2 that there is a finite subset I’ C IL such that the family (p¢)ser- 7 is independent over
Dy ,./B(Par). Finally K S E/E is a constant field extension, because K, E is an intermediate
field of LE/FE and LE =k FE is a constant field extension of E due to our construction. By
Lemma 3.3 we see that E = K F for all £ € L which do not divide the index [E : K]. Hence
assertions (a), (b) and (c¢) follow, if we put I:=1I'U{¢ €L : ¢ divides [E : K|}. O

LEMMA 3.6. Let FE and I be as in Lemma 3.5. Let s > 1. Let {1 < - - - < {511 be some elements
of LN I. Then Ey, --- E;, N Ey,,, Is a regular extension of kg (i.e. the algebraic closure of Q in
Ey - Ep, N Efs+1 is HE).

s+1

Proof. The canonical isomorphism
r: Dicg . /5(Por) = Gal(k(Por) /K(PE))
induces by restriction an isomorphism
Drcg /B (Por) = Dy e (Par) N Gal(Kg e/ Ee) = Gal(k(Par) /k(PE,))

for every ¢ € L. Hence k(Pg,) is the fixed field in k(P,) of the kernel of pyor~!. The family
(pe)ecL~r is independent over Dy p(Pnr) by Lemma 3.5. Hence Remark 3.1 shows that
(k(Pg,))ecL~1 is linearly disjoint over k(Pg). Define F':= Ej, --- Ey, . There is a diagram of
residue fields as follows.
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We have k(Pr) =k(Pg, ) k(Pg,, ), because

DX

Gal(k(Pur)/k(Pp, ) - - - K(Pp,,)) = | Gal(k(Pur)/k(Pgy,))

1

.
Il

DKs,m/Eei (Pnr)>
1=1

Dig/p(Por) 0[] Gal(Ksg i/ E&-))
=1
D /B(Por) N Gal(Kg i /F))

(
(DK e/ (Pur)) = Gal(k(Pur) /k(Pr))-

=r

i

Furthermore there is a diagram

k(PF) k(PEz

~

k(Prg,,,,)

k(Pg)

and k(Pr) N k(PEeS+1) = k(Pg) due to the fact that (k(Pg,))ecr1 is linearly disjoint over k(Pg).
It follows that k(PFﬂEst) = k(Pg). Finally k(Pg) = kg, because Pg is a kpg-rational point of

S(E) . This shows that the normalization of S(¥) in F n Ey,., has a kg-rational point and thus
its function field F'N Ey_, must be regular over xg. O

Let £ > 5 be a prime number. We denote by ¥y the set of isomorphism classes of groups which
are either the cyclic group Z/¢, or the quotient of H (F') modulo its center, where F' is a finite field
of characteristic £ and H is a connected smooth algebraic group over F' which is geometrically
simple and simply connected. These are the simple groups of Lie type in characteristic £. It is
known (cf. [Ser10, Théoreme 5]), that 3, N Xy =0 for all primes 5 < ¢ <. (As Serre points
out in [Serl0], the proof of this theorem is essentially due to Artin [Art55]. It was completed
in [KLST90].) In the following proof we shall strongly use this result.

End of proof of Theorem 3.4. Let E and I be as in Lemma 3.5. In order to finish up the proof
of Theorem 3.4 it suffices to prove the following.

CLAIM. There is a finite subset I’ C L containing I, such that (Ej)ger.p is linearly disjoint
over F.

In fact, once this claim is proven, it follows that the family (p¢)eer- s is independent over
Gal(Kgnr/E) by Remark 3.1, and Remark 3.2 implies that the whole family (p¢)¢cr, must be
almost independent, as desired.

In [Ser10, Théoréme 4] Serre proves: There is a constant C' such that for every prime number
> C every finite simple subquotient of GLy(Zy) of order divisible by € lies in X,. This is a
generalization of a well-known result of Nori (cf. [Nor87, Theorem B]).
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Let us define I’:=TU{2,3} U{¢€L:{<C}. For £ €L every non-trivial quotient of G},
has order divisible by ¢: in fact, if A : GJEE’Z — (@ is an epimorphism onto a non-trivial group @,
then the image of some /-Sylow subgroup of Gg, under h must be non-trivial. Hence, for every
¢ €L~ I every finite simple quotient of GJBC Y lies in X,.

We shall now prove the Claim. Let s > 1 and #; < - - - < £s11 be elements of I \. I'. It suffices
to show that Ey, --- By, N Ey_, = E, assuming by induction that the sequence (Eeys ..., Ep,) is
already linearly disjoint over E. This assumption implies

Gal(Egl s EZS/E) = Gfl,E X o+ X Gg&E

and Gal(Ey, - - 'EZS/EZ e EZ) = GZ g X X GZ g- Suppose that Ey, --- E, NE,_ , #E.
Then there would be an intermediate field L of that extension such that @ := Gal(L/E) is a
finite simple group. We would have the following diagram of fields.

N
NV

But L/kg is a regular extension (cf. Lemma 3.6), hence k1 = kg. On the other hand E+/E
is a constant field extension for every i=1,...,s+1 (cf. Lemma 3.5). It follows that
Gal(LE; /EZF ) =@ and Gal(LEZ e EZ/E;1 e EZ) = Q. Hence @ is simultaneously a

Uos1

quotient group of G} 0B XX GZ p and of GZ+1 oo 1t follows that

Gz BX ><G2 B

Qe (Egl U‘-'UZZS) mEgM,
which contradicts Artin’s theorem that X, N Xy = () for all primes 5 < £ < /. O

4. Proof of the main theorem

Proof of Theorem 1.1. Let K be a finitely generated extension of Q. Let X/K be a separated
scheme of finite type. Let T'= (T4, ...,T,) be a transcendence base of K/Q and Sy be the
normalization of Spec(Q[T]) in K. Then Sy is a normal Q-variety with function field K. The
spreading-out principles in [EGAIV3] (cf. in particular [EGAIV3, 8.8.2, 8.10.5 and 8.9.4]), allow
us to construct a dense open subscheme S C Sy and a flat separated morphism of finite type
f: X — § with generic fibre X.

We choose a closed point P € S and a closed point Py € Sy over P and denote by P
Spec(k(Pur)) — Sur — S the corresponding geometric point of S. Note that k(Py;) is algebraically
closed (cf. the second paragraph after Theorem 3.4). We define k := k(P,;). Furthermore we
denote by &: Spec(K) — S the generic geometric point of S afforded by the choice of K. We
let Xp:=X xgk(P), Xp=X xg Spec(k(Pnr)) and Xz =X xg Spec(K) be the corresponding
fibres of X. Note that Xz = Xy and Xp = X

Let ¢ € N. From now on we shall consider two cases. For the first case we define py := p@q)

Ty :=HYXg, Zy), Ve :=H1(Xg, Qo), Ty, p :=HI(Xp, Z¢), Vo,p :=HY(Xp, Q) and = RIf.(Z)
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for every ¢ € L. For the second case we define py := pl(f))(,c, Ty = Hg(Xg, Zy), Vi = Hg(XE, Qv),
Ty p = HY (X, Zy), Vi,p:=HI(Xp, Q) and F:=R7fi(Z) for every £ € L. In both cases pgp
will stand for the representation of Gal(k/k(P)) on Vip.

All residue characteristics of S are zero. Hence there is a dense open subscheme U C S
such that for every ¢ € L the Zs-sheaves R1f.(Z;)|U and RYf\(Z;)|U are lisse and of formation
compatible with any base change U' — U (cf. [Ill, Corollaire 2.6], [KL86, Théoreme 3.1.2] and
[KL86, Théoremme 3.3.2]). Considering the cartesian diagrams

I

f7iU)—vu i) —=u

Xe o f

we can for every ¢ € L identify the stalks of §, by the following base change isomorphisms
Sé’ﬁ = TK,P and gez = Tg.

The fact that the Zs-sheaves §¢|U are lisse implies that for every ¢ € L the representation py
factors through 71 (U) and that there is a cospecialization isomorphism § 0E =5 ' P Putting these
isomorphisms together and tensoring with QQ; we obtain a cospecialization isomorphism spy : Vp =
Vi.p for every £ € L. In order to take the Tate twists into account let & : Gal(I?/K) — Q) be
the cyclotomic character of Galg and by ¢ p: Gal(k/k(P)) — Q, the cyclotomic character of
Gal(k/k(P)). Let d € Z and define py(d) := p; ® af)d and pg p(d) = p; ® 5%’%. The cospecialization
isomorphism spy fits into a commutative diagram

Gal(Ksne/K) 4% Autg, (V)

|

DKS,nr/K(Pnr)

Gal(k/k(P)) 2erld) Autg, (Ve,p)

for every ¢ € L.

There is a constant b € N such that for every ¢ €L the inequality dim(V;) < b holds true
(cf. [Ill, Corollaire 1.3]). Furthermore, if we denote the torsion part of the finitely generated
Z¢-module Ty by T, then T;/T, injects into V; and the representation p(d) factors through
Autz, (Ty/T}). Hence im(ps(d)) (and also im(pg,p(d))) is isomorphic to a closed subgroup of
GLy(Zy) for every £ € L. Hence the families (p¢(d))ecr and (pg,p(d))ser. of representations of
m1(U) satisfy assumption a) of Theorem 3.4 (and condition (B) of [Ser10, p. 3]).

Now note that Xp is a separated scheme of finite type over the number field k := k(P). For
a place v of a number field we denote by p, its residue characteristic. There is a finite extension
k'/k and a finite set T of places of k' such that the following holds true.

(1) For every place v of k' with v ¢ T and every ¢ € L\ {p,} the representation py p(d) is
unramified at v.

(2) For every v € T, every extension ¢ of v to k and every £ € L ~ {pv} the image of the inertia
group I under the representation p, p(d) is a pro-£ group.
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This is shown for d =0 in [Ill, Théoreme 4.3], and the case d # 0 follows as well, because the
cyclotomic character ey p is unramified at every place v of k' with p, # ¢. Because the family
(pe,p(d))eeL satisfies the condition (B) of [Ser10, p. 3] and conditions (1) and (2) and because k is
a number field, Serre’s theorem [Ser10, Théorerne 1] implies that the family (pg p(d))eer is almost
independent. Now the above diagram shows that there is an open subgroup D’ of DKS,nr(Pun)
such that the restricted family (p;(d)|D’)ser is independent, and our Theorem 3.4 implies that
(pe(d))ger is almost independent as desired. O
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Appendix. Abelian varieties

The aim of this appendix is to give a more elementary direct proof of Corollary 1.2, based on
our independence criterion (cf. Theorem 3.4) and on the corresponding results of Serre in the
number field case. It avoids the use of étale cohomology.

Proof of Corollary 1.2. Let K be a finitely generated field of characteristic zero. Let A/K be
an abelian variety. It is enough to show that the family (1, 4)¢cr. defined in the introduction is
almost independent. Then Remark 3.1 implies the assertion. There is a normal Q-variety S with
function field K and an abelian scheme f:. 4 — S with generic fibre A.

Let P, be a closed point of Sy, and P the point of S below P,,. Then the residue field k(P,,) is
an algebraic closure of the number field k(P). We define k := k(P,;). Let Ap := A x g Spec(k(P))
be the special fibre of A at P. Then Ap is an abelian variety over the number field k(P).

Let n be an integer. The group scheme A[n] is finite and étale over S, because all residue
characteristics of S are zero. Hence there is a finite extension £/K contained in Kgp, such that
Aln] x5 SP) is a constant group scheme over S(¥). In fact one can take E = K(A[n]). This
implies that both evaluation maps

An](8%)) — A|(E) and - A[n](S®)) — Ap[n](k)

are isomorphisms. In particular the action of Galg on A[n](K) factors through Gal(Kgn/K)
(and in fact through Gal(E/K)). We obtain a composite isomorphism

Aln)(K) = Aln)(5")) 2 Ap[n] (k).
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Taking limits, we obtain for each ¢ € L an isomorphism
Ti(A) =Ti(Ap)

and the action of Galg on Ty(A) factors through Gal(Kg,/K). This isomorphism fits into a
commutative diagram as shown below.

Ne, A

Gal(Kgn/K)

|

DKS,nr/K(Pnr)

J’ e, A

Gal(k(Py)/k(P)) —% Autz, (Ty(Ap))

Autgz, (T,(A))

Recall that Ap is an abelian variety over the number field k(P). Hence Serre’s theorem (cf.
[Ser10, §3]) implies that the family (¢ 4, )¢er is almost independent. It follows that there is an
open subgroup D' in Dy sk (Pur) such that the family (1,4)ecr is independent over D’. Now,

by our Theorem 3.4, the family (7, 4)ser, must be almost independent, as desired. O
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