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Independence of `-adic Galois representations

over function fields

Wojciech Gajda and Sebastian Petersen

Abstract

Let K be a finitely generated extension of Q. We consider the family of `-adic
representations (` varies through the set of all prime numbers) of the absolute Galois
group of K, attached to `-adic cohomology of a separated scheme of finite type over
K. We prove that the fields cut out from the algebraic closure of K by the kernels of
the representations of the family are linearly disjoint over a finite extension of K. This
gives a positive answer to a question of Serre.

1. Introduction

Let Γ be a profinite group and (Γi)i∈I a family of groups. For every i let ρi : Γ→ Γi be
a homomorphism. Following Serre (cf. [Ser10, p. 1]), we shall say that the family (ρi)i∈I is
independent, provided the homomorphism

Γ
ρ−−→
∏
i∈I

ρi(Γ)

induced by the ρi is surjective. Let Γ′ ⊂ Γ be a closed subgroup. We call the family (ρi)i∈I
independent over Γ′, if ρ(Γ′) =

∏
i∈I ρi(Γ

′). Finally we call the family (ρi)i∈I almost independent,
if there exists an open subgroup Γ′ ⊂ Γ, such that (ρi)i∈I is independent over Γ′. Of particular
interest is the special case where Γ = GalK is the absolute Galois group of a field K, and (ρ`)`∈L
is a family of `-adic representations of GalK , indexed by the set L of all prime numbers.

Important examples of such families of representations arise as follows: let K be a field
of characteristic zero and let X/K be a separated K-scheme of finite type. Denote by K̃ an
algebraic closure of K. For every ` ∈ L and every q > 0 we consider the representation of the
absolute Galois group Gal(K̃/K)

ρ
(q)
`,X : Gal(K̃/K) // AutQ`

(Hq(X
K̃
,Q`))

afforded by the étale cohomology group Hq(X
K̃
,Q`), and also the representation

ρ
(q)
`,X,c : Gal(K̃/K) // AutQ`

(Hq
c(X

K̃
,Q`))

afforded by the étale cohomology group with compact support Hq
c(X

K̃
,Q`). One can wonder in

which circumstances the families (ρ(q)
`,X)`∈L and (ρ(q)

`,X,c)`∈L are almost independent.
In the recent paper [Ser10] Serre considered the special case where K is a number field.

He proved a general independence criterion for certain families of `-adic representations over
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a number field (cf. [Ser10, § 2, Théorèm 1]), and used this criterion together with results of
Katz–Laumon and of Berthelot (cf. [Ill]) in order to prove the following (cf. [Ser10, § 3]).

Let K be a number field and X/K a separated scheme of finite type. Then the families of
representations (ρ(q)

`,X)`∈L and (ρ(q)
`,X,c)`∈L are almost independent.

The special case of an abelian variety X over a number field K had been dealt with earlier
in a letter from Serre to Ribet (cf. [Ser00]). In [Ser10, p. 4] Serre asks the following question.

Does this theorem remain true, if one replaces the number field K by a finitely generated
transcendental extension K of Q?

This kind of problem also shows up in Serre’s article [Ser94, 10.1] and in Illusie’s
manuscript [Ill]. The aim of our paper is to answer this question affirmatively. In order to do this
we prove an independence criterion for families of `-adic representations of the étale fundamental
group π1(S) of a normal Q-variety S (cf. Theorem 3.4 below). This criterion allows us to reduce
the proof of the following Theorem 1.1 to the number field case, where it is known to hold
true thanks to the theorem of Serre (cf. [Ser10]) mentioned above. We do take Tate twists into
account. For every ` ∈ L we denote by ε` : GalK →AutQ`

((lim←−i∈N µ`i)⊗Q`)⊂Q×` the cyclotomic
character, by ε⊗−1

` its contragredient and define for every d ∈ Z

ρ
(q)
`,X(d) := ρ

(q)
`,X ⊗ ε

⊗d
` and ρ

(q)
`,X,c(d) := ρ

(q)
`,X,c ⊗ ε

⊗d
` .

Theorem 1.1. Let K be a finitely generated extension of Q. Let X/K be a separated scheme

of finite type. Then for every q ∈ N and every d ∈ Z the families (ρ(q)
`,X(d))`∈L and (ρ(q)

`,X,c(d))`∈L
of representations of GalK are almost independent.

Note that outside certain special cases it is not known whether the representations in
Theorem 1.1 are semisimple. Hence we cannot use techniques like the semisimple approximation
of monodromy groups in the proof of Theorem 1.1.

Theorem 1.1 has an important consequence for the arithmetic of abelian varieties. Let A/K
be an abelian variety. For every ` ∈ L consider the Tate module T`(A) := lim←−i A(K̃)[`i], define
V`(A) := T`(A)⊗Z`

Q` and let

η`,A : Gal(K̃/K) // AutQ`
(V`(A))

be the `-adic representation attached to A. Then the Q`[GalK ]-modules V`(A) and H1(A∨
K̃
,Q`(1))

are isomorphic, i.e. the representation η`,A is isomorphic to ρ`,A∨ (1). Hence Theorem 1.1 implies
that the family (η`,A)`∈L is almost independent. Denote by K(A[`∞]) the fixed field in K̃ of
the kernel of η`,A. Then K(A[`∞]) is the field obtained from K by adjoining the coordinates
of the `-power division points in A(K̃). Using Remark 3.1 below we see that Theorem 1.1 has
the following corollary.

Corollary 1.2. Let K be a finitely generated extension of Q and A/K an abelian variety.
Then there is a finite extension E/K such that the family (EK(A[`∞]))`∈L is linearly disjoint
over E.

This paper has an appendix with a more elementary proof of this corollary, which is based
on our Theorem 3.4 below, but avoiding use of étale cohomology.
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Independence of `-adic Galois representations over function fields

Notation and preliminaries

For a field K fix an algebraic closure K̃ and denote by GalK the absolute Galois group of K.
We denote by L the set of all prime numbers.

Let S be a scheme and s ∈ S a point (in the underlying topological space). Then k(s) denotes
the residue field at s. A geometric point of S is a morphism s : Spec(Ω)→ S where Ω is an
algebraically closed field. To give such a geometric point s is equivalent to giving a pair (s, i)
consisting of a usual point s ∈ S and an embedding i : k(s)→ Ω. We then let k(s) be the algebraic
closure of i(k(s)) in Ω. Now assume S is an integral scheme and let K be its function field. Then
we view S as equipped with the geometric generic point Spec(K̃)→ S and denote by π1(S) the
étale fundamental group of S with respect to this geometric point. For a scheme S over a field F
and an extension F ′/F we define SF ′ := S ×F Spec(F ′). A variety S/F is an integral separated
F -scheme of finite type.

Now let S be a connected normal scheme with function field K. Assume for simplicity that
char(K) = 0. If E/K is an algebraic field extension, then S(E) denotes the normalization of
S in E (cf. [EGAII, 6.3]). This notation is used throughout this manuscript. The canonical
morphism S(E)→ S is universally closed and surjective. (This follows from the going-up theorem,
cf. [EGAII, 6.1.10].) If E/K is a finite extension, then S(E)→ S is a finite morphism (cf. [Mil80,
Proposition I.1.1]). We shall say that an algebraic extension E/K is unramified along S, provided
the morphism S(E′)→ S is étale for every finite extension E′/K contained in E. We denote
by KS,nr the maximal extension of K inside K̃ which is unramified along S, and by Snr the
normalization of S in KS,nr. One can then identify π1(S) with Gal(KS,nr/K). Let E/K be a
Galois extension. If P ∈ S is a closed point and P̂ is a point in S(E) above P , then we define
DE/K(P̂ )⊂Gal(E/K) to be the decomposition group of P̂ , i.e. the stabilizer of P̂ under the
action of Gal(E/K).

2. Finiteness properties of Jordan extensions

Let E/K be an algebraic field extension and d ∈ N. We call the extension E/K d-Jordanian,
if there exists a family (Ki)i∈I of intermediate fields of E/K such that Ki/K is Galois and
[Ki :K] 6 d for all i ∈ I and such that E is a (possibly infinite) abelian Galois extension of the
compositum

∏
i∈I Ki. The 1-Jordanian extensions of K are hence just the abelian extensions

of K. If K is a number field and E/K is a d-Jordanian extension of K which is everywhere
unramified, then E/K is finite. This has been shown by Serre in [Ser10, Théorème 2], making
use of the Hermite–Minkowski theorem and the finiteness of the Hilbert class field. The aim of
this section is to derive a similar finiteness property for d-Jordanian extensions of function fields
over Q. In Lemmata 2.6, 2.7 and 2.8 we follow closely the paper [KL81] of Katz and Lang on
geometric class field theory, giving complete details for the convenience of the reader.

If E is any extension field of Q, then we denote by κE the algebraic closure of Q in E,

κE := {x ∈ E : x is algebraic over Q},

and we call κE the constant field of E. We say that E/K is a constant field extension, if κEK = E.
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Remark 2.1. Let K be a finitely generated extension of Q. Let E/K be an algebraic extension.
Then there is a diagram of fields as follows.

E Q̃E

κE κEK Q̃K

κK K

The field κK is a number field and κE/κK is an algebraic extension. If E/K is Galois, then κE/κK ,
κEK/K and Q̃E/Q̃K are Galois as well, and the restriction maps Gal(Q̃E/Q̃K)→Gal(E/κEK)
and Gal(κEK/K)→Gal(κE/κK) are both bijective.

The aim of this section is to prove the following proposition.

Proposition 2.2. Let S/Q be a normal variety with function field K. Let d ∈ N. Let E/K be
a d-Jordanian extension which is unramified along S. Then E/κEK is a finite extension.

Note that in the situation of Proposition 2.2 the extension κE/κK may well be infinite
algebraic. The proof occupies the rest of this section.

Lemma 2.3. Let S/Q be a normal variety with function field K. Let d ∈ N. Let E/K be an
algebraic extension which is unramified outside S. Assume that there is a family (Ki)i∈I of
intermediate fields of E/K such that each Ki/K is Galois with [Ki :K] 6 d and such that
E =

∏
i∈I Ki. Then E/κEK is finite and Gal(κE/κK) is a (possibly infinite) group of exponent

6 d!.

Proof. The Galois group Gal(E/K) is a closed subgroup of
∏
i∈I Gal(Ki/K). By Remark 2.1

Gal(κE/κK) is a quotient of Gal(E/K), hence Gal(κE/κK) has exponent 6 d!. Again by
Remark 2.1 it is now enough to show that Q̃E/Q̃K is finite. The Galois group Gal(Q̃E/Q̃K) is
a quotient of π1(SQ̃), and π1(SQ̃) is topologically finitely generated (cf. [SGA7, II.2.3.1]). Hence

there are only finitely many intermediate fields L of Q̃E/Q̃K with [L : Q̃K] 6 d (cf. [FJ05,
16.10.2]). This implies that Q̃E/Q̃K is finite. 2

Lemma 2.4. Let K be a finitely generated extension of Q. Let E/K be a (possibly infinite)
Galois extension. Assume that Gal(E/K) has finite exponent. Let X = (X1, . . . , Xn) be a
transcendence base of K/Q and R the integral closure of Z[X] in E. Then the residue field
k(m) =R/m is finite for every maximal ideal m of R.

Proof. Let R′ be the integral closure of Z[X] in K. Let m be a maximal ideal of R. Define
m′ := m ∩R′ and p = m ∩ Z[X]. There are diagrams of fields and residue fields

Q(X) K E and k(p) k(m′) k(m).

By the going-up theorem p is a maximal ideal of Z[X], and k(p) = Z[X]/p is a finite field.
Furthermore R′ is a finitely generated Z[X]-module (cf. [Mil80, Proposition I.1.1]). This implies
that k(m′) is a finite field. The extension k(m)/k(m′) is Galois and the Galois group G :=
Gal(k(m)/k(m′)) is a subquotient of Gal(E/K). Hence G is of finite exponent. On the other
hand G must be procyclic, because it is a quotient of the Galois group Ẑ of the finite field k(m′).
It follows that G is finite and that k(m) is a finite field. 2
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Lemma 2.5. Let K be a finitely generated extension of Q. Let E/K be a (possibly infinite)
Galois extension. Let X = (X1, . . . , Xn) be a transcendence base of K/Q and R the integral
closure of Z[X] in E. Let f ∈R be a non-zero element. Then there exists a natural number N
(depending on f) such that for every prime number p not dividing N there exists a maximal
ideal m⊂R which satisfies f /∈m and char(k(m)) = p.

Proof. Let f ∈R be a non-zero element and consider the closed set V (f) = {p ∈ Spec(R) : f ∈ p}.
The canonical morphism π : Spec(R)→ Spec(Z[X]) is closed (cf. [EGAII, 6.1.10]), hence π(V (f))
is a closed subset of Spec(Z[X]). It is also a proper subset of Spec(Z[X]). It follows that
there is a non-zero polynomial g ∈ Z[X] such that D(g) ∩ π(V (f)) = ∅, where by definition
D(g) = {p ∈ Spec(Z[X]) : g /∈ p}. Choose a ∈ Zn with g(a) 6= 0 and define N := g(a). Now let p
be a prime number not dividing g(a). Consider the maximal ideal p = (p, X1 − a1, . . . , Xn − an)
of Z[X]. Then p ∈D(g). Finally let m be a prime ideal of R such that π(m) = p. Then f /∈m and
char(k(m)) = p as desired. 2

We now show that a weak form of the Mordell–Weil theorem holds true over finitely generated
extensions of fields like the field κE in Lemma 2.3. If B is a semiabelian variety over a
field K, then we define T (B) =

∏
`∈L T`(B) and T (B)6=p :=

∏
`∈L\{p} T`(B) (for p ∈ L), where

T`(B) = lim←−i∈N B(K̃)[`i] is the Tate module of B for every ` ∈ L. If M is a compact topological
GalK-module, then we define the module of coinvariants MGalK of M to be the largest Hausdorff
quotient of M on which GalK acts trivially.

Lemma 2.6. Let K be a finitely generated extension of Q. Let E/K be a Galois extension.
Assume that Gal(E/K) has finite exponent. Let B/E be a semiabelian variety. Then T (B)GalE

is finite.

Proof. Let E′/E be a finite extension over which the torus part of B splits. Then there exists a
finite Galois extension L/K such that LE ⊃ E′, and Gal(LE/K) has finite exponent again. The
group T (B)GalE is a quotient of T (B)GalLE

. Hence we may assume right from the beginning that
B is an extension of an abelian variety A by a split torus Gd

m,E . Then there is an exact sequence
of GalE-modules

0 // T (Gm)d // T (B) // T (A) // 0.

As the functor −GalE is right exact, it is enough to prove that T (A)GalE and T (Gm)GalE are
both finite. We may thus assume that either B is an abelian variety over E (case 1) or B = Gm,E

(case 2). We shall prove the finiteness of T (B)GalE in both cases.
Choose a transcendence base X = (X1, . . . , Xn) of K/Q and let R be the integral closure of

Z[X] in E. In case 1 there is a nonempty open subscheme U ⊂ Spec(R) such that B extends to
an abelian scheme B over U . In case 2 we define U = Spec(R) and put B := Gm,U . Let m be a
maximal ideal of R contained in U , define p= char(R/m), and denote by B = B ×U Spec(k(m))
the special fibre at m. Let n be a positive integer which is coprime to p. Then the restriction of
B[n] to S := U [1/n] is a finite étale group scheme over S and m ∈ S. Let mnr be a closed point
of Snr over m. Taking a projective limit over the cospecialization maps B[n](Ẽ)∼=B[n](k(mnr)),
we obtain an isomorphism

T (B)6=p ∼= T (B)6=p,

which induces a surjection T (B)6=p,GalF → T (B)6=p,GalE , where we have put F = k(m). The field
F is finite by Lemma 2.4 and B is either an abelian variety over F (case 1) or the multiplicative
group scheme over F (case 2). In both cases it is known that T (B)6=p,GalF is finite (cf. [KL81,
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Theorem 1 (ter), p. 299]). This shows that T (B)6=p,GalE is finite, whenever there exists a maximal
ideal m of R contained in U with char(k(m)) = p. Now it follows by part (b) of Lemma 2.5 that
there are two different prime numbers p1 6= p2 such that T (B)6=p1,GalE and T (B)6=p2,GalE are
finite, and the assertion follows from that. 2

Let K0 be a field of characteristic zero and S/K0 a normal geometrically irreducible variety
with function field K. There is a canonical epimorphism p : π1(S)→GalK0 (with kernel π1(S

K̃0
))

and, following Katz–Lang [KL81, p. 285], we define K(S/K0) to be the kernel of the map
π1(S)ab→GalK0,ab induced by p on the abelianizations. If we denote by KS,nr,ab the maximal
abelian extension of K which is unramified along S, then there is a diagram of fields

KS,nr,ab K̃0KS,nr,ab

K0,ab K0,abK K̃0K

K0 K

(cf. [KL81, p. 286]) and the groups Gal(KS,nr,ab/K0,abK) and Gal(K̃0KS,nr,ab/K̃0K) are both
isomorphic to K(S/K0). The main result in the paper [KL81] of Katz and Lang is: if K0 is finitely
generated and S/K0 a smooth geometrically irreducible variety, then K(S/K0) is finite. On the
other hand, if K0 is algebraically closed and S/K0 is a smooth proper geometrically irreducible
curve of genus g, then K(S/K0)∼= Ẑ2g is infinite, unless g = 0. In order to finish up the proof
of Proposition 2.2 we have to prove the finiteness of K(S/K0) in the case of certain algebraic
extensions K0/Q (like the field κE in Lemma 2.3) which are not finitely generated but much
smaller than Q̃.

Lemma 2.7. Let K be a finitely generated extension of Q. Let E/K be a (possibly infinite)
Galois extension. Assume that Gal(E/K) has finite exponent. Let C/E be a smooth proper
geometrically irreducible curve and S the complement of a divisor D in C. Then K(S/E) is
finite.

Proof. There is a finite extension E′/E such that S has an E′-rational point and D is E′-
rational. There is a finite extension E′′/E′ which is Galois over K. Then Gal(E′′/K) must have
finite exponent (because Gal(E/K) and Gal(E′′/E) do). Furthermore K(SE′′/E′′) surjects onto
K(S/E) (cf. [KL81, Lemma 1, p. 291]). Hence we may assume from the beginning that S has
an E-rational point and D is E-rational. The generalized Jacobian J of C with respect to the
modulus D is a semiabelian variety. (If S = C, then J is just the usual Jacobian variety of C.)
Furthermore there is an isomorphism

π1(S
Ẽ

)ab
∼= T (J).

On the other hand π1(S
Ẽ

)ab,GalE is isomorphic to K(S/E) (cf. [KL81, Lemma 1, p. 291]). Hence
it is enough to prove that T (J)GalE is finite. But this has already been done in Lemma 2.6. 2

Lemma 2.8. Let K be a finitely generated extension of Q. Let E/K be a (possibly infinite)
Galois extension. Assume that Gal(E/K) has finite exponent. Let S/E be a normal geometrically
irreducible variety. Then K(S/E) is finite.
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Proof. There is a finite extension L/E and a sequence of elementary fibrations in the sense of
Artin (cf. [SGA4, Exposé XI, 3.1–3.3])

Spec(L) = U0
oo f1

U1
oo f2

U2
oo f3 · · · oo fn

Un ⊂ SL

where Un is a non-empty open subscheme of SL and dim(Ui) = i for all i. There exists ω ∈ L
such that L= E(ω). The extension K(ω)/K is finite, hence contained in a finite Galois extension
K ′/K. Then EK ′/K is Galois, EK ′/E is finite and L⊂ EK ′. Replacing L by EK ′ we may
assume that L/K is Galois, and then Gal(L/K) must be of finite exponent.

Let Li be the function field of Ui. Then the generic fibre Si+1 := Ui+1 ×Ui Spec(Li) of fi+1 is
a curve over Li which is the complement of a divisor in a smooth proper geometrically irreducible
curve Ci+1/Li. The extension Li/L is finitely generated (of transcendence degree i). Hence
Li = L(u1, . . . , us) for certain elements u1, . . . , us ∈ Li. Let us define Ki :=K(u1, . . . , us). Then
there is a diagram of fields

Ki Li

K E L

Q
such that the vertical extensions are all finitely generated and Li =KiL. The extension Li/Ki

is Galois because L/K is Galois, and the restriction map Gal(Li/Ki) →Gal(L/K) is injective.
Hence Gal(Li/Ki) is a group of finite exponent and Ki is finitely generated.

Lemma 2.7 implies that K(Si+1/Li) is finite for every i ∈ {0, . . . , n− 1}. By [KL81, Lemma 2]
and [KL81, (1.4)] it follows that K(Un/L) is finite. Then [KL81, Lemma 3] implies that K(SL/L)
is finite, and [KL81, Lemma 1] shows that K(S/E) is finite, as desired. 2

Proof of Proposition 2.2. Let S/Q be a normal variety with the function field K. Let E/K be
a d-Jordan extension contained in the extension KS,nr/K. There is an intermediate field L of
E/K such that E/L is abelian and L is a compositum of Galois extensions of K, each of degree
6 d. By Lemma 2.3 L/κLK is a finite extension. We have the following diagram of fields.

κE κEK κEL E KS,nr

κL κLK L

κK K

Now S(L) is the normalization of the geometrically irreducible κL-variety

S(κLK) = S ×κK Spec(κL)

in the finite extension L/κLK. Hence S(L) is a geometrically irreducible variety over κL. (The
crucial point is that S(L) is of finite type over κL.) The extension E/L is abelian and unramified
along S(L). Hence Gal(E/κEL) is a quotient of K(S(L)/κL). The field κK is a number field and
Gal(κL/κK) is a group of exponent 6 d!, because it is a quotient of Gal(L/K) (cf. Remark 2.1).
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Hence Lemma 2.8 implies that K(S(L)/κL) is finite. It follows that E/κEL is a finite extension.
Now κEL/κEK is finite, because L/κLK is finite. It follows that E/κEK is finite, as desired. 2

3. Representations of the fundamental group

We start this section with two remarks and a lemma about families of representations of certain
profinite groups. Then we prove an independence criterion for families of representations of the
étale fundamental group π1(S) of a normal Q-variety S (cf. Theorem 3.4). This criterion is
the technical heart of the paper.

Remark 3.1. Let K be a field, Ω/K a Galois extension and I ⊂ N. Let (Γi)i∈I be a family of
profinite groups. For every i ∈ I let ρi : Gal(Ω/K)→ Γi be a continuous homomorphism. Let Ki

be the fixed field of ker(ρi) in Ω. Then the following conditions are equivalent.

(i) The family (ρi)i∈I is independent.
(ii) The family (Ki)i∈I of fields is linearly disjoint over K.
(iii) If s> 1 and i1 < i2 < · · ·< is+1 are elements of I, then

Ki1 · · ·Kis ∩Kis+1 =K.

Proof. As the homomorphisms ρi induce isomorphisms Gal(Ki/K)∼= im(ρi), (i) is satisfied if and
only if the natural map Gal(Ω/K)→

∏
i∈I Gal(Ki/K) is surjective, and this is in turn equivalent

to (ii) (cf. [FJ05, 2.5.6]). It is well-known that (ii) is equivalent to (iii) (cf. [FJ05, p. 36]). 2

Remark 3.2. Let Γ be a profinite group and n ∈ N. For every ` ∈ L let Γ` be a profinite group
and ρ` : Γ→ Γ` a continuous homomorphism. Assume that for every ` ∈ L there is an integer
n ∈ N such that Γ` is isomorphic to a subquotient of GLn(Z`).

(a) Let Γ′ ⊂ Γ be an open subgroup. If the family (ρ`)`∈L is independent, then there is a finite
subset I ⊂ L such that the family (ρ`)`∈LrI is independent over Γ′.

(b) The following conditions (i) and (ii) are equivalent.
(i) The family (ρ`)`∈L is almost independent.
(ii) There exists a finite subset I ⊂ L such that (ρ`)`∈LrI is almost independent.

Proof. Let ρ : Γ→
∏
`∈L Γ` be the homomorphism induced by the ρ`. To prove (a) assume

that ρ(Γ) =
∏
`∈L ρ`(Γ). The subgroup ρ(Γ′) is open in

∏
`∈L ρ`(Γ), because a surjective

homomorphism of profinite groups is open (cf. [FJ05, p. 5]). It follows from the definition of the
product topology that there is a finite subset I ⊂ L such that ρ(Γ′)⊃

∏
`∈I{1} ×

∏
`∈LrI ρ`(Γ).

This implies that (ρ`)`∈LrI is independent over Γ′ and finishes the proof of part (a). For part
(b) see [Ser10, Lemme 3]. 2

Let K be a field, n ∈ N and Ω/K a fixed Galois extension. For every ` ∈ L let Γ` be a profinite
group and ρ` : Gal(Ω/K)→ Γ` a continuous homomorphism. Assume that Γ` is isomorphic to a
subquotient of GLn(Z`) for every ` ∈ L. Denote by K` the fixed field in Ω of the kernel of ρ`.
Then K` is a Galois extension of K and ρ` induces an isomorphism Gal(K`/K)∼= ρ`(Gal(Ω/K)).
For every extension E/K contained in Ω and every ` ∈ L we define G`,E := ρ`(Gal(Ω/E)) and
E` := EK`. Then G`,E is isomorphic to a subquotient of GLn(Z`) and ρ` induces an isomorphism

Gal(E`/E)∼=G`,E .
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Furthermore we define G+
`,E to be the subgroup of G`,E generated by its `-Sylow subgroups. Then

G+
`,E is normal in G`,E . Finally we let E+

` be the fixed field of ρ−1
` (G+

`,E) ∩Gal(Ω/E). Then E+
`

is an intermediate field of E`/E which is Galois over E, the group Gal(E`/E+
` ) is isomorphic to

G+
`,E and Gal(E+

` /E) is isomorphic to G`,E/G+
`,E .

Lemma 3.3. Let E/K be a Galois extension contained in K̃ and let ` ∈ L.

(a) The extension E+
` /E is a finite Galois extension, and Gal(E+

` /E) is isomorphic to a
subquotient of GLn(F`).

(b) If E/K is finite and [E :K] is not divisible by `, then G+
`,E =G+

`,K and EK+
` = E+

` .

Proof. The profinite group G`,E is a closed normal subgroup of G`,K , and G`,K is isomorphic
to a subquotient of GLn(Z`). Hence there is a closed subgroup U` of GLn(Z`) and a closed
normal subgroup V` of U` such that there is an isomorphism i :G`,E → U`/V`. Furthermore there
is a closed normal subgroup U+

` of U` containing V` such that i(G+
`,K) = U+

` /V`. The group
U`/U

+
` is isomorphic to G`,E/G+

`,E . Its order is coprime to `. The kernel of the restriction map
r : GLn(Z`)→GLn(F`) is a pro-` group; hence the intersection of this kernel with U` is contained
in U+

` . This shows that r induces an isomorphism U`/U
+
` → r(U`)/r(U+

` ). Altogether we see that

Gal(E+
` /E)∼=G`,E/G

+
`,E
∼= U`/U

+
`
∼= r(U`)/r(U+

` )

and part (a) follows, because r(U`)/r(U+
` ) is obviously a subquotient of GLn(F`).

Every `-Sylow subgroup of G`,E lies in an `-Sylow subgroup of G`,K , hence G+
`,E ⊂G

+
`,K .

Assume from now on that [E :K] is finite and not divisible by `. Then every `-Sylow subgroup
of G`,K must map to the trivial group under the projection G`,K →G`,K/G`,E , because the
order of the quotient group is coprime to `. Hence every `-Sylow subgroup of G`,K lies in G`,E .
This shows that G+

`,K =G+
`,E . The Galois group Gal(E`/EK+

` ) is G+
`,K ∩G`,E and the Galois

group Gal(E`/EK+
` ) is G+

`,E . As G+
`,K =G+

`,E it follows that Gal(E`/EK+
` ) = Gal(E`/E+

` ), hence
EK+

` = E+
` . 2

Let S be a normal Q-variety with function field K. We shall now study families of
representations of the fundamental group π1(S) (viewing S as a scheme equipped with the
generic geometric point Spec(K̃)→K). Recall that we may identify π1(S) with Gal(KS,nr/K).

Theorem 3.4. Let S/Q be a normal variety with function field K. Let Pnr ∈ Snr be a closed
point. For every ` ∈ L let Γ` be a profinite group and ρ` : π1(S)→ Γ` a continuous homomorphism.
We make two assumptions.

(a) Assume there is an integer n ∈ N such that for every ` ∈ L the profinite group Γ` is
isomorphic to a subquotient of GLn(Z`).

(b) Assume that there exists an open subgroup D′ of the decomposition group DKS,nr/K(Pnr)
such that the family (ρ`)`∈L is independent over D′.

Then the family (ρ`)`∈L is almost independent.

The proof of Theorem 3.4 occupies the rest of this section. From now on all the assumptions of
Theorem 3.4 are in force, until the proof is finished. For every algebraic extension E/K contained
in KS,nr we define G`,E = ρ`(Gal(KS,nr/E)), G+

`,E , E` and E+
` exactly as before. Furthermore we

shall write PE for the point in S(E) below Pnr.
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We tacitly assume in the following that Q̃ denotes the algebraic closure of K inside K̃. Then
already KS,nr contains Q̃, because the constant field extensions of K are unramified along S. The
structure morphism Snr→ Spec(Q) factors through Spec(Q̃), because Snr is normal. It follows
in particular that k(Pnr) = Q̃.

Lemma 3.5. There is a finite Galois extension E/K contained in KS,nr and a finite subset I ⊂ L
such that the following statements about E and I hold true.

(a) For all ` ∈ L r I the extension E+
` /E is a constant field extension, that is: κE+

`
E = E+

` .

(b) The point PE is a κE-rational point of S(E).

(c) The family (ρ`)`∈LrI is independent over DKS,nr/E(Pnr).

Proof. Let L :=
∏
`∈L K

+
` be the composite field of all the K+

` . By Lemma 3.3, for each ` ∈ L, the
group Gal(K+

` /K) is isomorphic to a subquotient of GLn(F`), and |Gal(K+
` /K)| is not divisible

by `. By [Ser10, Théorème 3’] (which is a generalization due to Serre of the classical theorem
of Jordan) it follows that there is an integer d (independent of `) such that for every ` ∈ L the
group Gal(K+

` /K) has an abelian normal subgroup A` of index [Gal(K+
` /K) :A`] 6 d. Let K ′`

be the fixed field of A` in K+
` . Then K ′ :=

∏
`∈L K

′
` is a compositum of Galois extensions of K

and [K ′` :K] 6 d for all ` ∈ L. The extension K ′K+
` /K

′ is abelian for every ` ∈ L. It follows that
L/K is a d-Jordanian extension. Furthermore L/K is contained in KS,nr. By Proposition 2.2, L
is a finite extension of κLK. Note that κL/Q may well be an infinite extension. Hence there is
an element ω ∈ L such that L= κLK(ω). Let E1 be the Galois closure of K(ω)/K in L. Then
E1/K is a finite Galois extension and κLE1 = L. Hence we have a diagram of fields

κLK L

K E1

in which the vertical extensions are constant field extensions and in which the horizontal
extensions are finite. Furthermore L contains K+

` for every ` ∈ L.

Now consider the canonical isomorphism

r : DKS,nr/K(Pnr)∼= Gal(k(Pnr)/k(PK)).

Let λ1 be the fixed field of r(D′) in k(Pnr) = Q̃. Since D′ is open in DKS,nr/K(Pnr), the field λ1 is a
finite extension of k(PK), so λ1 is a finite extension of Q. Choose a finite Galois extension λ/κK
containing λ1 and k(PE1), and define E := λE1. Then S(E) = S(E1) ×κE1

Spec(λ) and κE = λ.
There is the following diagram of number fields.

λ1 λ κE k(PE)

k(PK) k(PE1)

κK κE1
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The fibre of PE1 under the projection S(E)→ S(E1) is Spec(κE ⊗κE1
k(PE1)), and this fibre

splits up into the coproduct of [k(PE1) : κE1 ] many copies of Spec(κE) = Spec(λ), because λ/κE
is Galois and λ⊃ k(PE1). Thus all points in S(E) over PE1 are κE-rational. In particular PE is
κE-rational.

It follows that

r(DKS,nr/E(Pnr)) = Gal(k(Pnr)/k(PE)) = Gal(k(Pnr)/κE),

and this group is an open subgroup of r(D′) = Gal(k(Pnr)/λ1) because κE is a finite extension
of λ1. Hence DKS,nr/E(Pnr) is an open subgroup of D′.

As (ρ`)`∈L is independent over D′ by one of our assumptions, it follows from part (a) of
Remark 3.2 that there is a finite subset I ′ ⊂ L such that the family (ρ`)`∈LrI′ is independent over
DKS,nr/E(Pnr). Finally K+

` E/E is a constant field extension, because K+
` E is an intermediate

field of LE/E and LE = κLE is a constant field extension of E due to our construction. By
Lemma 3.3 we see that E+

` =K+
` E for all ` ∈ L which do not divide the index [E :K]. Hence

assertions (a), (b) and (c) follow, if we put I := I ′ ∪ {` ∈ L : ` divides [E :K]}. 2

Lemma 3.6. Let E and I be as in Lemma 3.5. Let s> 1. Let `1 < · · ·< `s+1 be some elements
of L r I. Then E`1 · · · E`s ∩ E`s+1 is a regular extension of κE (i.e. the algebraic closure of Q in
E`1 · · · E`s ∩ E`s+1 is κE).

Proof. The canonical isomorphism

r : DKS,nr/E(Pnr)∼= Gal(k(Pnr)/k(PE))

induces by restriction an isomorphism

DKS,nr/E`
(Pnr) =DKS,nr/E(Pnr) ∩Gal(KS,nr/E`)∼= Gal(k(Pnr)/k(PE`

))

for every ` ∈ L. Hence k(PE`
) is the fixed field in k(Pnr) of the kernel of ρ` ◦ r−1. The family

(ρ`)`∈LrI is independent over DKS,nr/E(Pnr) by Lemma 3.5. Hence Remark 3.1 shows that
(k(PE`

))`∈LrI is linearly disjoint over k(PE). Define F := E`1 · · · E`s . There is a diagram of
residue fields as follows.

k(Pnr)

k(PF )

iiiiiiiiiiiiiiiiiiii

sssssssss

SSSSSSSSSSSSSSSS

k(PE`1
) k(PE`2

) k(PE`3
) · · · k(PE`s

)

k(PE)

UUUUUUUUUUUUUUUUUUUU

KKKKKKKKK

kkkkkkkkkkkkkkkk
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We have k(PF ) = k(PE`1
) · · · k(PE`s

), because

Gal(k(Pnr)/k(PE`1
) · · · k(PE`s

)) =
s⋂
i=1

Gal(k(Pnr)/k(PE`i
))

= r

( s⋂
i=1

DKS,nr/E`i
(Pnr)

)

= r

(
DKS,nr/E(Pnr) ∩

s⋂
i=1

Gal(KS,nr/E`i)
)

= r(DKS,nr/E(Pnr) ∩Gal(KS,nr/F ))
= r(DKS,nr/F (Pnr)) = Gal(k(Pnr)/k(PF )).

Furthermore there is a diagram

k(PF )

LLLLLLLLLL
k(PE`s+1

)

ppppppppppp

k(PF∩E`s+1
)

k(PE)

and k(PF ) ∩ k(PE`s+1
) = k(PE) due to the fact that (k(PE`

))`∈LrI is linearly disjoint over k(PE).
It follows that k(PF∩E`s+1

) = k(PE). Finally k(PE) = κE , because PE is a κE-rational point of

S(E). This shows that the normalization of S(E) in F ∩ E`s+1 has a κE-rational point and thus
its function field F ∩ E`s+1 must be regular over κE . 2

Let `> 5 be a prime number. We denote by Σ` the set of isomorphism classes of groups which
are either the cyclic group Z/`, or the quotient of H(F ) modulo its center, where F is a finite field
of characteristic ` and H is a connected smooth algebraic group over F which is geometrically
simple and simply connected. These are the simple groups of Lie type in characteristic `. It is
known (cf. [Ser10, Théorème 5]), that Σ` ∩ Σ`′ = ∅ for all primes 5 6 ` < `′. (As Serre points
out in [Ser10], the proof of this theorem is essentially due to Artin [Art55]. It was completed
in [KLST90].) In the following proof we shall strongly use this result.

End of proof of Theorem 3.4. Let E and I be as in Lemma 3.5. In order to finish up the proof
of Theorem 3.4 it suffices to prove the following.

Claim. There is a finite subset I ′ ⊂ L containing I, such that (E`)`∈LrI′ is linearly disjoint
over E.

In fact, once this claim is proven, it follows that the family (ρ`)`∈LrI′ is independent over
Gal(KS,nr/E) by Remark 3.1, and Remark 3.2 implies that the whole family (ρ`)`∈L must be
almost independent, as desired.

In [Ser10, Théorème 4] Serre proves: There is a constant C such that for every prime number
` > C every finite simple subquotient of GLn(Z`) of order divisible by ` lies in Σ`. This is a
generalization of a well-known result of Nori (cf. [Nor87, Theorem B]).
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Let us define I ′ := I ∪ {2, 3} ∪ {` ∈ L : `6 C}. For ` ∈ L every non-trivial quotient of G+
E,`

has order divisible by `: in fact, if h :G+
E,`→Q is an epimorphism onto a non-trivial group Q,

then the image of some `-Sylow subgroup of GE,` under h must be non-trivial. Hence, for every
` ∈ L r I ′ every finite simple quotient of G+

E,` lies in Σ`.
We shall now prove the Claim. Let s> 1 and `1 < · · ·< `s+1 be elements of L r I ′. It suffices

to show that E`1 · · · E`s ∩ E`s+1 = E, assuming by induction that the sequence (E`1 , . . . , E`s) is
already linearly disjoint over E. This assumption implies

Gal(E`1 · · · E`s/E)∼=G`1,E × · · · ×G`s,E
and Gal(E`1 · · · E`s/E

+
`1
· · · E+

`s
)∼=G+

`1,E
× · · · ×G+

`s,E
. Suppose that E`1 · · · E`s ∩ E`s+1 6= E.

Then there would be an intermediate field L of that extension such that Q := Gal(L/E) is a
finite simple group. We would have the following diagram of fields.

E`1 · · · E`s
G+

`1,E×···×G
+
`s,E

HHHHHHHHHHH
E`s+1

||
||

||
||

|
G+

`s+1,E

E+
`1
· · · E+

`s

IIIIIIIIII
L

Q

E+
`s+1

{{
{{

{{
{{

E

But L/κE is a regular extension (cf. Lemma 3.6), hence κL = κE . On the other hand E+
`i
/E

is a constant field extension for every i= 1, . . . , s+ 1 (cf. Lemma 3.5). It follows that
Gal(LE+

`s+1
/E+

`s+1
)∼=Q and Gal(LE+

`1
· · · E+

`s
/E+

`1
· · · E+

`s
)∼=Q. Hence Q is simultaneously a

quotient group of G+
`1,E
× · · · ×G+

`s,E
and of G+

`s+1,E
. It follows that

Q ∈ (Σ`1 ∪ · · · ∪ Σ`s) ∩ Σ`s+1 ,

which contradicts Artin’s theorem that Σ` ∩ Σ`′ = ∅ for all primes 5 6 ` < `′. 2

4. Proof of the main theorem

Proof of Theorem 1.1. Let K be a finitely generated extension of Q. Let X/K be a separated
scheme of finite type. Let T = (T1, . . . , Tr) be a transcendence base of K/Q and S0 be the
normalization of Spec(Q[T ]) in K. Then S0 is a normal Q-variety with function field K. The
spreading-out principles in [EGAIV3] (cf. in particular [EGAIV3, 8.8.2, 8.10.5 and 8.9.4]), allow
us to construct a dense open subscheme S ⊂ S0 and a flat separated morphism of finite type
f : X → S with generic fibre X.

We choose a closed point P ∈ S and a closed point Pnr ∈ Snr over P and denote by P :
Spec(k(Pnr))→ Snr→ S the corresponding geometric point of S. Note that k(Pnr) is algebraically
closed (cf. the second paragraph after Theorem 3.4). We define k̃ := k(Pnr). Furthermore we
denote by ξ : Spec(K̃)→ S the generic geometric point of S afforded by the choice of K̃. We
let XP := X ×S k(P ), XP = X ×S Spec(k(Pnr)) and Xξ = X ×S Spec(K̃) be the corresponding
fibres of X . Note that Xξ =X

K̃
and XP =X

P,k̃
.

Let q ∈ N. From now on we shall consider two cases. For the first case we define ρ` := ρ
(q)
`,X ,

T` := Hq(Xξ, Z`), V` := Hq(Xξ,Q`), T`,P := Hq(XP , Z`), V`,P := Hq(XP ,Q`) and F` := Rqf∗(Z`)
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for every ` ∈ L. For the second case we define ρ` := ρ
(q)
`,X,c, T` := Hq

c(Xξ, Z`), V` := Hq
c(Xξ,Q`),

T`,P := Hq
c(XP , Z`), V`,P := Hq

c(XP ,Q`) and F` := Rqf!(Z`) for every ` ∈ L. In both cases ρ`,P
will stand for the representation of Gal(k̃/k(P )) on V`,P .

All residue characteristics of S are zero. Hence there is a dense open subscheme U ⊂ S
such that for every ` ∈ L the Z`-sheaves Rqf∗(Z`)|U and Rqf!(Z`)|U are lisse and of formation
compatible with any base change U ′→ U (cf. [Ill, Corollaire 2.6], [KL86, Théorem̀e 3.1.2] and
[KL86, Théorem̀e 3.3.2]). Considering the cartesian diagrams

XP
//

��

k̃

��

Xξ
//

��

K̃

��
f−1(U) // U f−1(U) // U

we can for every ` ∈ L identify the stalks of F` by the following base change isomorphisms

F`,P
∼= T`,P and F`,ξ

∼= T`.

The fact that the Z`-sheaves F`|U are lisse implies that for every ` ∈ L the representation ρ`
factors through π1(U) and that there is a cospecialization isomorphism F`,ξ

∼= F`,P . Putting these
isomorphisms together and tensoring with Q` we obtain a cospecialization isomorphism sp` : V` ∼=
V`,P for every ` ∈ L. In order to take the Tate twists into account let ε` : Gal(K̃/K)→Q×` be
the cyclotomic character of GalK and by ε`,P : Gal(k̃/k(P ))→Q×` the cyclotomic character of
Gal(k̃/k(P )). Let d ∈ Z and define ρ`(d) := ρ` ⊗ ε⊗d` and ρ`,P (d) := ρ` ⊗ ε⊗d`,P . The cospecialization
isomorphism sp` fits into a commutative diagram

Gal(KS,nr/K)
ρ`(d) // AutQ`

(V`)

��

DKS,nr/K(Pnr)

OO

��

Gal(k̃/k(P ))
ρ`,P (d)

// AutQ`
(V`,P )

for every ` ∈ L.
There is a constant b ∈ N such that for every ` ∈ L the inequality dim(V`) 6 b holds true

(cf. [Ill, Corollaire 1.3]). Furthermore, if we denote the torsion part of the finitely generated
Z`-module T` by T ′`, then T`/T

′
` injects into V` and the representation ρ`(d) factors through

AutZ`
(T`/T ′`). Hence im(ρ`(d)) (and also im(ρ`,P (d))) is isomorphic to a closed subgroup of

GLb(Z`) for every ` ∈ L. Hence the families (ρ`(d))`∈L and (ρ`,P (d))`∈L of representations of
π1(U) satisfy assumption a) of Theorem 3.4 (and condition (B) of [Ser10, p. 3]).

Now note that XP is a separated scheme of finite type over the number field k := k(P ). For
a place v of a number field we denote by pv its residue characteristic. There is a finite extension
k′/k and a finite set T of places of k′ such that the following holds true.

(1) For every place v of k′ with v /∈ T and every ` ∈ L r {pv} the representation ρ`,P (d) is
unramified at v.

(2) For every v ∈ T , every extension v̂ of v to k̃ and every ` ∈ L r {pv} the image of the inertia
group Iv̂ under the representation ρ`,P (d) is a pro-` group.
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This is shown for d= 0 in [Ill, Théorem̀e 4.3], and the case d 6= 0 follows as well, because the
cyclotomic character ε`,P is unramified at every place v of k′ with pv 6= `. Because the family
(ρ`,P (d))`∈L satisfies the condition (B) of [Ser10, p. 3] and conditions (1) and (2) and because k is
a number field, Serre’s theorem [Ser10, Théorem̀e 1] implies that the family (ρ`,P (d))`∈L is almost
independent. Now the above diagram shows that there is an open subgroup D′ of DKS,nr

(Pun)
such that the restricted family (ρ`(d)|D′)`∈L is independent, and our Theorem 3.4 implies that
(ρ`(d))`∈L is almost independent as desired. 2
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Appendix. Abelian varieties

The aim of this appendix is to give a more elementary direct proof of Corollary 1.2, based on
our independence criterion (cf. Theorem 3.4) and on the corresponding results of Serre in the
number field case. It avoids the use of étale cohomology.

Proof of Corollary 1.2. Let K be a finitely generated field of characteristic zero. Let A/K be
an abelian variety. It is enough to show that the family (η`,A)`∈L defined in the introduction is
almost independent. Then Remark 3.1 implies the assertion. There is a normal Q-variety S with
function field K and an abelian scheme f :A→ S with generic fibre A.

Let Pnr be a closed point of Snr and P the point of S below Pnr. Then the residue field k(Pnr) is
an algebraic closure of the number field k(P ). We define k̃ := k(Pnr). Let AP :=A×S Spec(k(P ))
be the special fibre of A at P . Then AP is an abelian variety over the number field k(P ).

Let n be an integer. The group scheme A[n] is finite and étale over S, because all residue
characteristics of S are zero. Hence there is a finite extension E/K contained in KS,nr such that
A[n]×S S(E) is a constant group scheme over S(E). In fact one can take E =K(A[n]). This
implies that both evaluation maps

A[n](S(E))→A[n](E) and A[n](S(E))→AP [n](k̃)

are isomorphisms. In particular the action of GalK on A[n](K̃) factors through Gal(KS,nr/K)
(and in fact through Gal(E/K)). We obtain a composite isomorphism

A[n](K̃)∼=A[n](S(E))∼=AP [n](k̃).
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Taking limits, we obtain for each ` ∈ L an isomorphism

T`(A)∼= T`(AP )

and the action of GalK on T`(A) factors through Gal(KS,nr/K). This isomorphism fits into a
commutative diagram as shown below.

Gal(KS,nr/K)
η`,A // AutZ`

(T`(A))

��

DKS,nr/K(Pnr)

OO

��
Gal(k(Pnr)/k(P ))

η`,AP // AutZ`
(T`(AP ))

Recall that AP is an abelian variety over the number field k(P ). Hence Serre’s theorem (cf.
[Ser10, § 3]) implies that the family (η`,AP

)`∈L is almost independent. It follows that there is an
open subgroup D′ in DKS,nr/K(Pnr) such that the family (η`,A)`∈L is independent over D′. Now,
by our Theorem 3.4, the family (η`,A)`∈L must be almost independent, as desired. 2
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Ser00 J.-P. Serre, Lettre à Ken Ribet du 7/3/1986, in Œuvres. Collected papers, IV, 1985–1998
(Springer, Berlin, 2000).
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