J. Inst. Math. Jussieu (2022), 1163-1218 (©) The Author(s) 2021. Published by Cambridge 1163
University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work

is properly cited.

doi:10.1017/51474748020000535

THE COHOMOLOGY OF UNRAMIFIED RAPOPORT-ZINK SPACES
OF EL-TYPE AND HARRIS'S CONJECTURE

ALEXANDER BERTOLONI MELI

University of Michigan, 530 Church St, Ann Arbor, MI /8109, United States
(abertolo@umich.edu)

(Received 29 November 2018; revised 23 July 2020; accepted 8 August 2020; first
published online 14 January 2021)

Abstract We study the l-adic cohomology of unramified Rapoport—Zink spaces of EL-type. These spaces
were used in Harris and Taylor’s proof of the local Langlands correspondence for GLy, and to show local—
global compatibilities of the Langlands correspondence. In this paper we consider certain morphisms
Manty, ;, of Grothendieck groups of representations constructed from the cohomology of these spaces, as
studied by Harris and Taylor, Mantovan, Fargues, Shin and others. Due to earlier work of Fargues and
Shin we have a description of Manty, ,,(p) for p a supercuspidal representation. In this paper, we give a
conjectural formula for Manty, , (o) for p an admissible representation and prove it when p is essentially
square-integrable. Our proof works for general p conditionally on a conjecture appearing in Shin’s work.
We show that our description agrees with a conjecture of Harris in the case of parabolic inductions of
supercuspidal representations of a Levi subgroup.
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1. Introduction

Our goal in this paper is to give a description of the [-adic cohomology of unramified
Rapoport—Zink spaces of EL-type. These spaces are moduli spaces of p-divisible groups
associated to unramified Weil-restrictions of general linear groups and can be thought of
as generalisations of Lubin—Tate spaces.

This work generalises, for these particular spaces, the Kottwitz conjecture stated in [13,
Conjecture 7.3]. The Kottwitz conjecture describes the supercuspidal part of the l-adic
cohomology of Rapoport—Zink spaces, and is known in the cases we consider from work by
Shin [16, Corollary 1.3]. We prove that our description of this cohomology is compatible
with a conjecture of Harris [6, Conjecture 5.4], generalising the Kottwitz conjecture to
parabolic inductions of supercuspidal representations.

Our result describes the cohomology of these Rapoport-Zink spaces as a formal
alternating sum (indexed by certain root-theoretic data) of representation-theoretic
constructions including the local Langlands correspondence, parabolic inductions and
Jacquet modules.
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1164 A. Bertoloni Meli

We prove our result inductively using two formulas from the literature. The first of
these is Shin’s averaging formula [16, Theorem 7.5], which is proven using Mantovan’s
formula [11, Theorem 22]. Mantovan’s formula connects the cohomology of Rapoport—
Zink spaces, Igusa varieties and Shimura varieties. The second formula is the Harris—
Viehmann conjecture [13, Conjecture 8.4], which relates the cohomology of so-called
nonbasic Rapoport—Zink spaces to a product of Rapoport—Zink spaces of lower dimension.
A proof of this conjecture is expected to appear in a forthcoming paper by Scholze.

To carry out our induction, we prove combinatorial analogues of these formulas phrased
purely in terms of root-theoretic data. Interestingly, we are able to prove these analogues
for general quasi-split reductive groups, though at present we can only connect them to
the cohomology of Rapoport—Zink spaces of unramified EL-type. To do so in other cases,
one would need to generalise Shin’s averaging formula.

We now describe our main results more precisely. We fix an algebraic closure @ of Qp.
We study Rapoport-Zink spaces of unramified EL-type, which we denote M, ,. These
are moduli spaces of p-divisible groups coming from an unramified EL-datum consisting
of

(1) a finite unramified extension F' C Q, of Q,,

(2) a finite-dimensional F' vector space V which defines the group
G= ResF/QpGL( V),
3) a Gg—-conjugacy class of cocharacters {u}, with u : G,, = G-, and such that the
@p QP
weights of u are elements of {0,1},

(4) an element b of a finite set B(G, i) which defines a group J, that is an inner twist
of a Levi subgroup M, of G.

Roughly, one can think of b, u as specifying the Newton and Hodge polygons of a p-
divisible group and J, as the automorphism group of the isocrystal b.

Let Q" denote the maximal unramified extension of Q, inside Q,, and let @\gr denote
its completion. Then the spaces M, , are formal schemes over @ . One constructs

a tower of rigid spaces MY, = over the generic fibre M} of M), where the index
U runs over compact open subgroups of G(Q)). Associated to such a tower we have
a cohomology space [H*(G,b,u)], which is an element of the Grothendieck group
Groth(G(Qp) x Jy(Qp) x WE(MG) of admissible representations of G(Q,), Jy(Qp) and
WE(M]G, where the latter group is the Weil group of the reflex field E,;, of {u}. This
construction can be thought of as an alternating sum of a direct limit over U C G of
l-adic cohomology groups, with the actions of G(Q,) and J,(Q,) arising from Hecke
correspondences and isogenies of p-divisible groups, respectively (refer to §3.1 for a precise
definition).
The cohomology object [H*(G, b, )| gives rise to a map of Grothendieck groups

Mant g, s, : Groth(Jy(Qp)) — Groth(G(Qp) x Wgy, ),

which maps a representation p to the alternating sum of the J; (Qp)-linear Ext groups of
[H*(G,b,p)] and p.
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The map Mant ¢, , has been studied by many authors. Harris and Taylor [7] used this
construction to prove the local Langlands correspondence for general linear groups. It
also appears naturally in Mantovan’s work relating the cohomology of Shimura varieties,
Igusa varieties and Rapoport—Zink spaces [11]. Fargues studied Mantg. s, for basic b in
some EL- and PEL-cases in [5]. Shin combined Mantovan’s formula with his own trace
formula description of the cohomology of Igusa varieties to prove instances of local-global
Langlands compatibilities [15].

In [16], Shin proved an averaging formula for Mant¢ ; , which is key to our work. He
defined a map

Redy : Groth(G(Qp)) — Groth(Jy(Qp)),
which up to a character twist is given by composing the unnormalised Jacquet module

Jacg;p : Groth(G(Qp)) — Groth(M,(Qp))

with the Jacquet-Langlands map of Badulescu [1]:
LJ : Groth(M(Qp)) — Groth(J,(Q;)).

Shin uses global methods and so necessarily works with a large but inexplicit class of
representations, which he denotes accessible. This set loosely consists of those represen-
tations isomorphic to the p-component of an automorphic representation appearing in
the cohomology of a certain unitary-similitude group Shimura variety. In particular, the
essentially square-integrable representations in Groth(G(Q))) are accessible.

In what follows, r_, is a finite-dimensional representation of G WE{MG which restricts
to the representation of highest weight —u on é, and LL is the semisimplifed local
Langlands correspondence from [7]. Shin shows the following result:

Theorem 1.0.1 (Shin’s averaging formula). Assume 7 is an accessible representation of
G(Qp). Then

Z Mantc, b,M(Redb(ﬂ)) = [JT][?LM OLL(nNWEm) ]’
beB(G, 1) ’

where this formula is correct up to a Tate twist which we omit for clarity, and [7][p] is
our notation for an element w X p € Groth(G(Q,) x WEI/Llc)'

Additionally we have the conjecture of Harris and Viehmann, which allows us to write
Mant g ., for nonbasic b (b is basic when it corresponds to an isocrystal with a single
slope) in terms of Mante v such that G’ is a general linear group of smaller rank
than G. This conjecture was formulated in [6] and [13] and is expected to be proven in
forthcoming work by Scholze. In what follows, Ind is the unnormalised parabolic induction
functor.

Conjecture 1.0.2 (Harris—Viehmann).

Mantg s, = Z Indgb (®];=1Manth(,b;,u;)v

G,n

I
(Mp, )GIerb/
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where we omit a Tate twist which we discuss at length in §3.2. The finite set IAC/"[;”I)/ 1
described in Definition 2.5.5.

Shin’s averaging formula and the Harris—Viehmann conjecture allow us to compute
Mant g, 3, 0 Redy recursively. The latter lets us compute Mant g 4, , for nonbasic b, given
that we know Mant ¢y, for G’ of lower rank, and the former lets us compute Mant g s, ,
for the unique basic b € B(G, w) if we know it for all nonbasic b € B(G, u). One of our main
results is to give a nonrecursive description of Mant¢ 5, , o Red, which we now describe.

Let G =Resr/q, GL(V) as before and choose a rational Borel subgroup B of G and a
rational maximal torus 7' C B C G. Then we consider pairs (Mg, its), where Mg C T is
a Levi subgroup of a parabolic subgroup Pg containing B, and pug € X,(7T) is dominant
as a cocharacter of Mg. We call a pair of this form a cocharacter pair for G.

We associate to a cocharacter pair (Mg, us) the map of representations [Mg,us] :
Groth(G(Q,)) — Groth(G(Q,) x WE(MslMS ), which up to a character twist is given by

T [(Indgs olus] oJacggp)(rr)],
and
i) : Groth(Ms(Q,) — Groth(Ms(Qy) x W, )
given by
7 [w|[r_g o LL(7)].
Then our main result, which follows from Theorem 3.3.7 in this paper, is the following:
Theorem 1.0.3. Suppose Mantg 1, corresponds to a tower of unramified Rapoport—

Zink spaces of EL-type. We assume that the Harris—Viehmann conjecture is true. Then
if p € Groth(G(Qy)) is essentially square-integrable, we have

Mantgp,(Redy ()= Y (=D)"Ms:M [ Mg, pus](p),

(Mg, 1t$)€ERG, b,

where Rg b, 15 a collection of cocharacter pairs with a combinatorial definition and
(=1)EMs My s an easily determined sign.

Shin conjectures that the averaging formula holds for all admissible representations
of G(Q,) [16, Conjecture 8.1]. If this is indeed the case, then our result would also
immediately hold for all admissible representations of G(Q)).

A crucial part of the proof of this theorem is the following unconditional result, which
is perhaps interesting in its own right:

Theorem 1.0.4 (Imprecise version of Theorem 2.5.4 and Corollary 2.5.8). For general
quasi-split G and a cochcaracter u (not necessarily minuscule), combinatorial analogues
of Shin’s averaging formula and the Harris—Viehmann conjecture hold true.

This result suggests that perhaps the combinatorics of cocharacter pairs is related
to Mantg,p,, in cases more general than Rapoport—Zink spaces of unramified EL-type.
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However, we caution the reader that the existence of nontrivial L-packets and nontrivial
endoscopy in more general groups will likely complicate the situation.

In §4, we use our combinatorial formula to prove the EL-type cases of a conjecture
of Harris ([6, Conjecture 5.4]). This conjecture describes Mantg s (I (p)) for p a
supercuspidal representation of M (Q,) for M a Levi subgroup of G. In this case, I ]\9}'
denotes normalised parabolic induction. In particular, we show the following result, which
is our Conjecture 4.0.4:

Theorem 1.0.5 (Harris conjecture). We assume that Shin’s averaging formula holds for
all admissible representations of G(Qp) and that the Harris—Viehmann conjecture is true.
Let p be a supercuspidal representation of M(Qp). Then up to a precise character twist
and sign which we omit for clarity,

Mant g, s, . (LI (I3 (o)) = |1 (0)] P  rwolLip)

(M, )eRel
. . G,
for an explicit set of cocharacter pairs Rely;’, .

We prove our result for [ ]S (p) not necessarily irreducible and b not necessarily basic,
which is a generalisation of what Harris conjectured for the G we consider.

Finally, in Appendix 4 we give an example to show that for general representations p,
one cannot hope for an expression as simple as that in Harris’s conjecture.

2. Cocharacter formalism

In this section we define and study the notion of a cocharacter pair. This notation will be
used in the third and fourth sections of this paper, where we describe the cohomology of
certain Rapoport—Zink spaces in terms of cocharacter pairs. We endeavor to use a similar
notation to [10].

This section is divided into five subsections. These are structured so that the first
contains the basic definitions and the fourth and fifth contain the most important results.
The second and third subsections prove a number of technical lemmas that the reader
may want to skip at first and refer to as necessary.

2.1. Notation and preliminary definitions

For the remainder of this section, we fix G a connected quasi-split reductive group defined
over QQ,. This is a significantly more general setting than we will need for applications
in this paper. However, we choose to work in this generality because doing so is both
conceptually clearer and potentially useful for future applications. The ideas in [10, §5]
might allow one to remove the quasi-split assumption, but we do not attempt this here,
as it is unnecessary for the applications. Moreover, Kottwitz’s study of the set B(G) in
that section relies on understanding the quasi-split case first.

Remark 2.1.1. The reader will notice that most of this section makes sense over an
arbitrary field. The assumption that we work over Q, is used in §2.4 when we connect
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cocharacter pairs to the set B(G) defined by Kottwitz. However, in [10, §5.1], Kottwitz
shows that over Qp, the set B(G) is parametrised by a disjoint union of sets of the form
X*(Z (Ms) )* for Mg a standard Levi subgroup of G. These latter sets make sense over
general fields, and one could make sense generally of all the results of this section by
replacing B(G) with the sets parametrising it.

Since G is quasi-split, we can pick a Borel subgroup B C G defined over Q, and a
maximal split torus A C B of G. We choose T to be a maximal torus defined over Q,
satisfying A C T C B. We define X*(A) and X, (A), respectively, to be the character and
cocharacter groups of AQ

The group G has a relatlve root datum (X™*(A), *(G, A), Xi(A), D.(G, A)), where
®*(G, A) and @,(G, A), respectively, denote the set of relative roots and relative coroots
of G and the torus A. Our choice of Borel subgroup B determines a decomposition
O*(G, A) = O*(G, AT P*(G,A)~ of positive and negative roots and a subset A C
®*(G, A)T of simple roots. Analogous statements are also true for the coroots. The set
of parabolic subgroups P O B defined over Q, are called standard parabolic subgroups.
We define Ps to be the unique standard parabolic subgroup such that ®*(Pg, A) =
O*(G, AT U (P,(G,A)” NSpany(S)). There is an inclusion-preserving bijection between
the set of standard parabolic subgroups and subsets of A, given by S+ Pg.

We let Ng be the unipotent radical of the standard parabolic subgroup Pg. It is
a standard result that there exists a connected reductive subgroup M C Ps so that
the natural map M — Pg/Ng is an isomorphism. In particular, this gives us a Levi
decomposition Pg = MNg, and the subgroup M is called a Levi subgroup of Pg. The
subgroup M is not unique, but any two Levi subgroups of Pg are conjugate by an element
of Ng. However, we have fixed a maximal torus 7', and there is a unique Levi subgroup
Mg containing T'. The subgroup Mg is constructed explicitly as the centraliser Cg(Z2),
where Z C T is the connected component of the intersection of the kernels of the roots
in S. We refer to the Levi subgroups Mg that we produce in this way as standard Levi
subgroups.

Define

A := X, (A).
We have the closed rational Weyl chamber
Co={recUy: (z,a) >0, € A}.
For each standard Levi subgroup, we define
Anrg,0 :=1{r €Ay : (z,a) =0, € S},
and we denote the strictly dominant elements of 2y ¢ by
Ql+MS o={zeUg: (z,0) =0, € S,{z,a) > 0,0 € A\ S}.

We have

]_[QlMS o= Co-
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There is a partial ordering of g given by pu < u' if ' — p is a nonnegative rational
combination of simple roots.

Definition 2.1.2. We define a cocharacter pair for a group G (relative to some fixed
choice of T and B defined over Q) to be a pair (Mg, ug) such that Mg C G is a standard
Levi subgroup and pg € X, (T) satisfies (ug,a) > 0 for each positive absolute root o of
T in the Lie algebra of M 5.3, Positivity for absolute roots is determined by the Borel
subgroup B which we have fixed.

We denote the set of cocharacter pairs for G by Cg.

Remark 2.1.3. We caution the reader that the cocharacter ug need not be an element
of X.(A), even though Mg is defined over Q,.

We could define cocharacter pairs more canonically as the set of equivalence classes of
pairs (M, u) such that M is a Levi subgroup of G defined over Q, and u is a cocharacter
of M. Two pairs (M,u),(M', ') are equivalent if M, M" are conjugate in Gg, and pu, i’
are conjugate in M@. We choose not to do this, as in practice we will often need to work
with the unique dominant cocharacter in a conjugacy class relative to a fixed base root
datum.

Let T' = Gal(QTp/Qp). Since we have assumed that T and B are defined over Qp, I'
acts on T@ and B@. This gives us a natural left action of I" on X,(T) given explicitly
by (v -u)(g) = y(u(y~1(g)) for u € X,(T) and y € I'. We get an analogous left action
on X*(T), and one can easily check that the pairing X*(T) x X,(7T) — Z is I'-invariant

under these actions.
We have

X (" =4.

Indeed, a I'-invariant cocharacter u factors through the identity component of 7T, where
T" is the subscheme defined by T7(Q,) = T(Q,)". But the identity component of T is
the torus A. Conversely, any cocharacter of A induces a I'-invariant cocharacter via the
natural inclusion 4 — T.

Given p € X,(T), we construct an element u" of g as follows:

1
ph = T > v,

”] yel/T,

where I',, is the stabiliser of  in T'. Then u' € X*(T)(B = 2p.
Given a standard Levi subgroup Mg, we let W]’\fj; denote the relative Weyl group of

Mg. The group W]fjé is defined to be the subgroup of the relative Weyl group W*e! that
is generated by the reflections corresponding to simple roots in S.

Definition 2.1.4. We define a map

Ours + Xu(T) — g,
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given by

— 1 r
Outs (1) = e Y owh.

sewrel
Mg

We are now ready to describe a formalism that will prove useful in studying the
cohomology of certain Rapoport—Zink spaces. Crucial to everything that follows is a
partial ordering on the set C¢ of cocharacter pairs for G.

Definition 2.1.5. We define a partial ordering on Cs which we denote by the symbol
<. Unfortunately, our definition is somewhat indirect: we first define when (Mg,,us,) <
(Mg, pns,) for Mg, C Mg, (equivalently, So C S1) and S\ S2 contains a single element
(in other words, Mg, is a maximal proper Levi subgroup of Mg, ). We then extend the
relation to all cocharacter pairs by taking the transitive closure.

Let Mg,, Mg, be standard Levi subgroups of G such that Mg, C Mg, and S;\ Ss is
a singleton. For cocharacter pairs (Msg,,is,), (Mg, ps,) € Cq, we write (Ms,, 1s,) <
(Mg, pusy) if g, is conjugate to g, in M51@ and 9M32 (sy) > QMsl (s;). We then
take the transitive closure to extend to a partiaf ordering on Cg.

The following example shows that this definition depends on the assumption that S\ Ss
is a singleton:

Example 2.1.6. Consider G = GL, with T, the diagonal torus and B the upper
triangular matrices. We can pick a basis for X,(T) of cocharacters €; defined so that
¢;(g) is the diagonal matrix with 1 in every position except for the ith, which equals
g. Then we can identify an element of X,(7) with its coordinate vector in this basis.
Finally, we use additional parentheses to indicate the product structure of the standard
Levi subgroup Mg. Using this notation, the set of cocharacter pairs that are less than or
equal to (GL4,(1%,0%)) is given by Diagram (11).

In particular, we see that (GL%, (1)(1)(0)(0)) < (GL4, (12,02)), since we have a chain of
cocharacter pairs where each Levi subgroup is maximal in the next:

(GL{, (1)(1)(0)(0)) < (GL; x GLy x GLy, (1)(1,0)(0))
< (GL3 x GL1, (1%,0)(0)) < (GLy, (1%,0%).

However, it is not the case that (GL%,(1)(0)(1)(0)) < (GL4,(1%0%)), even though
GGL%((L 0,1,0)) > 61, ((1,1,0,0)) and the cocharacters are conjugate in G.

Finally, we remark that the fact that all the related cocharacter pairs in this example
have equal (as opposed to just conjugate) cocharacters is very much a result of us choosing
a fairly small group G. Even for G = GLs, this is not the case.

Definition 2.1.7. We define a cocharacter pair (Mg, ug) for G to be strictly decreasing
if Oprg(s) € EZ[LS,Q. We denote by SD C C¢ the strictly decreasing elements of C¢, and
by 8D, (for dominant u € X, (T)) the strictly decreasing elements (Mg, ug) € Cg such
that (Mg, pns) < (G, ).

Remark 2.1.8. The 6,7, map can be thought of as associating a tuple of slopes to a
cocharacter pair. Then the strictly decreasing cocharacter pairs with Levi subgroup Mg
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are the ones whose slope tuple lies in the image of the Newton map v : B(G) pry — g, 0-
This statement is made precise by Proposition 2.4.3.

2.2. An alternate characterisation of the averaging map

The following two subsections consist of a collection of lemmas developing the theory of
the map 04 and the set of strictly decreasing elements SD of Cq.

In this section, we give an alternate description of the map 6,,4. To do so, we will need
several properties of cocharacters and root data, which we record in the following lemma.
For this lemma only, we consider T" and G defined over a more general class of fields, so
that these results also apply to the complex dual groups T and G.

Lemma 2.2.1. Let F D> Q be a field and F an algebraic closure. Let G be a connected
quasi-split reductive group defined over F. Suppose that T C G is a maximal torus defined
over F' and that the group scheme T admits an action defined over F by a finite group
A. Let X*(T?) denote the characters of the subgroup scheme of A-fized points of Tg.
The antiequivalence of categories between tori and finitely generated free abelian groups
given by T X*(T) induces an action of A on X*(T). We then have the following:

(1) There is a unique isomorphism X*(T*) = X*(T), such that the following diagram
commutes:
X*(T) 2 XH(T)

|
X*(T)a.

2) Let Ms C G be a standard Levi subgroup. Let W2Ps, WISl denote the absolute and
Mg ™" Mg

relative Weyl groups of Mg and let T' = Gal(f/F). Then Whg rel acts on X.(THT

via its natural identification with A, and T acts on X, (T) Wiig.abs  gince for w e

Wirgabs, 7 € T and € Xo(T) M50 we have w(y (1)) =y (y ~ (w) (1)) = y ().
Then the identity map on X.(T) induces an isomorphism of groups

(X*(T) WMS’abS)F = (X*(T)F) WMs,rel.

(3) The natural map X*(T)a — X(T)g - Xu(T)ga induces an isomorphism
XD = X(T)rq.

Proof. The functor T +— X*(7T) is an antiequivalence between the categories of
diagonalisable groups over F and finitely generated abelian groups. The diagram for
the universal property for A-invariants is that of A-coinvariants but with all the arrows
reversed. Thus, there must exist a unique isomorphism between X*(T%) and X*(T),
that makes the diagram

XH(T) = X*(T™)

s |

X*(T)a

commute. This proves (1).
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In [9, Lemma 1.1.3], Kottwitz proves that the identity map on X,(T) induces an

isomorphism
(X ()" Wish = (X(T)/ WipH)'.

Thus, to prove (2) we need only show that this isomorphism gives a bijection of
the singleton orbits. This will give an isomorphism of groups (not just sets) between
(X (T) WMS~abS)F and (X.(T)D) Whigrel that is induced from the identity map on X, (T).

Kottwitz’s isomorphism maps the Wﬁé -orbit of u € X, (T to its WA“I/};S orbit in X, (7).
Thus, it suffices to show that if u € X,(T) is invariant by W}{j;, then it is also invariant
by Wf});. If p is invariant by Wf\,}’é , then the pairing of u with each relative root of Mg is
0. Thus the image of u lies in the intersection of the kernels of the relative roots of Mg,
which is Z(Mg) N A. Therefore, u is invariant under the action of ijgb;.

Finally, we note that Kottwitz’s proof uses the fact that the intersection of the absolute

Weyl chamber 6&“ with the image of X,(A) in X,(T) gives the relative Weyl chamber

Cg. Indeed, this follows easily from the fact that the restriction of the set of absolute

simple roots A2 relative to our choice of B and T equals the set of relative simple roots

A (see Proposition B.0.1). An analogous fact is known for the Weyl chambers in the

character group X*(T) (see Proposition B.0.3), but this seems to be much more subtle.
For (3), we need to construct an inverse to the map

X*(T)(% = Xu(T)g —» Xu(D)ga-
Take [u] € Xo(T)q A for € X, (T)g. Then
1
~ D M) € X(T)g

reEA

is independent of the choice of lift of [u] to X,(T)g and gives the desired inverse. O

Let Ay, be the maximal split torus in the centre of Mg. Then
X (Apg)o = Ay 0-

We now prove a lemma that we will need to use to describe the alternate characterisation
of QMS .

Lemma 2.2.2.

(1) There is a natural isomorphism X*(Z(f/lg)r)@ = Aprg,@ defined via a series of
canonical identifications.

(2) The isomorphism in (1) coincides with the one constructed in [9, Lemma 1.1.3].
Proof. We prove (1) first. By Lemma 2.2.1, we have the following isomorphisms:
" AW]?/[bSvr ~ T
XTI o = X (Tg wyps r = X Dg wyps r

abs rel

=X(T) ™ =Xy
= X*(AMS)@ = QlMs,Q’
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rel

We explicate the isomorphism X*(T)Q’ Ms X, (Apg)g- This follows from the isomor-

rel

phism X, (A) Wﬁé = X, (Ayy), which we now describe. Suppose we have u € X, (A) Wits .
Equivalently, for each relative root o of Lie(Mg) we have o,(u) = p (where o, is the
reflection in the Weyl group corresponding to «). Since o,(n) = p — (4, a)a, this is
equivalent to (u,a) = 0 for all relative roots o of Lie(Mg), which in turn is equivalent
to the statement that im(u) C [ kera. Finally, this is equivalent to im(n) C Z(Mg) N A.

o
Since the image of a cocharacter is connected, we in fact have that pu € X, (Apy).
To finish the argument, we need to construct an isomorphism

— o~ abs
X*(Z2(Ms)")g = X*(T "5 Ty,
abs

Note that it is necessary to take the tensor product with Q here, as Z (m) and T " ¥s
need not be isomorphic.
It suffices to show that

— ~ Wabs
X*(Z(Mg))g Z X" (T Ms)q.
The group Z (ﬁg) is equal to the intersection of the kernels of the roots of m, and so
X*(Z(Mg)) is identified with X*(T)/R, where R is the Z-module spanned by the roots of
—_ ~ Ti7abs ~ ~
Mg. By Lemma 2.2.1, X*(TWMS) = X*(1) Wabs = X*(T)/D, where D is the Z module
s
~ — ~ abs
spanned by w(u) — u for every w € Wﬁ/}’; and u € X*(T). Since Z(Mg) C T Wi , we have
a natural surjection
-~ Wabs —
XH(T " Ms) - X*(Z(Mg)).

By our previous discussion, the kernel of this map is R/D. Thus, to prove our claim, it
suffices to show that R/D is finite. But if « is a root of M\S, then o,(0) —a = —2a. Thus
2R C D, and so we have the desired result.

We now show (2). The map in [10, §4.4.3] is defined as follows:

res

nig.0 = Xu( Do = X*(Dg == X*(Z(Ms) g,
where the final map is restriction of characters. By Lemma 2.2.1(1), this last map is the
same as the composition

S . S ~ " Awabs7 ~ " —
X*(T)g — X*(D)q, wipnr = x*(T"is )y = X*(Z2(Ms) g

Thus, by applying Lemma 2.2.1 and the proof of Lemma 2.2.2, we get that the entire
map is given by

rel abs

rw s
Uprg0 =X (Dg ™ =X (D)o S = X(D)g, wipnr

_~ abs —
=~ x*(T"is Ty = X*(Z2(Ms) .

We observe that this is the inverse of what we wrote down before. O
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We are now ready to give our alternate characterisation of the map 6x/,.

Proposition 2.2.3 (Alternate characterisation of 6y4). The map 6Opg that was intro-
duced in Definition 2.1./ is equal to the composition

X (T) = X*(T) 5 X*(Z(Mg)") = X*(Z(Ms)")g = A0 C Ao,
where the final isomorphism is the one described in Lemma 2.2.2.

Proof. We recall Definition 2.1.4, where 63/, is defined to be the composition

rel

r, M
X (T) = X (TN = Xu(T)g —° CAg,
where both maps are averages over the relevant group. As we now show, this is the same
as the composition
Wabs Wabs r Wrcl

Xo(T) = X (T)g ™ — Xu(T)y % EX*(T)Q 5 C g,

where the first two maps are averages and the third is as in Lemma 2.2.1(2). Indeed, for
n € X (T),

Wrd' DD wy )

Wrel yel

is invariant by W]?Jbss, by Lemma 2.2.1(2), and so — keeping in mind that ijjé C Wﬁ};s
by Corollary B.0.2 — equals

|Wabs| D D wrw)= |Wab5| > 2 rrw)

Wabs yel Wabs yel

_|W]awbs Y vww) = ——r Wabs D> yw)).
S

‘/VabS yel Mg yel y, Wabs

Now we consider the following commutative diagram:

abs avg Wf/lbsy
X.(T)g X.(T)g ™S X.(T)g
\ avg
\X / X Wzawbss
*(T)Q WJ?/I? *(T)Q[‘

X, ( T)Q_ W]'\‘}};, r
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The commutativity essentially follows from the definition of the averaging maps. The
benefit of this is that now we can write 6374 as the composition of

X(T) — X (T) Wﬂ‘/ft; — X,.(T) W]'('}[bss,l‘ - X*(T)Q, Wﬁ};?l‘

abs Wabs

s rel
= XH (Mg = XDy " = X1 s c g,

where we no longer need to base-change the first three spaces to Q, because denominators
are not introduced in the maps until later.
Using the equality between cocharacters of T and characters of T, we rewrite this as

X(T)=X*(T) > X*(T) wips = X*(7) wipsr = X*(T)q, Wi

abs wabs W abs

= XDy 5 = X* (D)™ = XDy ™" = X(D)" Wils ¢ 21g.
Now we invoke Lemma 2.2.1(1) to get that this composition is equal to

~ abs ~
X.(T) = X*(T) =5 x+7" F)»X*(TWMS’W@%X*(T)QW?,F

abs abs W abs

o~ o~ N s rel
= X (Mg — XM ™" = X(D)g ™ = XD s c 2ug.
The final step is to observe that we have a commutative diagram

abs
XTI Ty oy X1 (P s T

lres l?
X*(Z(Mg)") —— X*(Z(Ms)")q-
Thus, the previous expression equals

X,(T) = Xx*(T) 23 x*(T"Ws ") I3 x*(2(M3)") - X*(Z2(M3)")g
abs

~ ~wap ~
= x+(T s g = x*(D), wiper = X° (Mg

dbb abs

= X"y S =Xy S = xm)™ s c g,
Comparing with Lemma 2.2.2, we can rewrite 07, as
X (T)=X*(T) > X*(Z(M3)") - X*(Z(Ms)")g = Anrg.0 € Ag
as desired. O

We record the following useful corollary of the ideas discussed in the preceding
argument:

Corollary 2.2.4. Suppose that u,u’ € X, (T) are conjugate in Ms,@- Then Opg (1) =
Ong ().
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Proof. By the observation at the start of Proposition 2.2.3, 8y, is equivalently defined
as the composition

wirs WipsT Wi
Xi(T) > Xu(T)g ™ — Xu(T)g = X(T)g C Ag.

In particular, u and u’ are mapped to the same element under the first map in this
composition. O

2.3. Strictly decreasing cocharacter pairs

In this section, we prove a number of properties of strictly decreasing cocharacter pairs
and their relation to the partial order we defined in Definition 2.1.5. As always, we let oy
denote the reflection in the relative Weyl group corresponding to the relative root «.

Lemma 2.3.1. If z € g is dominant, then

1
Y=o o(z)
|WM; Z

o€ WX/?;
18 also dominant. If, in addition, (z,a) > 0 for some a € A\ S, then we also have {y,a) > 0.

Proof. For the first part of the lemma, we claim that if we can show that (o (z),a) >0
for each o € WX}; and o € A\ S, then we are done. This follows because if a collection of
cocharacters pair nonnegatively with «, then so will their average. Thus for « € A\ S, we
get (y,a) > 0. For o € S, we automatically have (y,a) =0, since 0 = y — 0, (y) = (y, ).

Pick @ € A\ S. Then the root group of « is contained in the unipotent radical Ng
of Pg. The group Ng is normalised by Mg. In particular, for any o € Wlfjé the root
group of o~ (a) is contained in Ng, and hence o~ !(a) is also a positive root. Thus
(o(2),0) = (z,0 H(e)) > 0, as desired.

To prove the second part, we notice since (z,a) > 0, the term in y corresponding to
o =1 has positive pairing with «. Since all the other terms have nonnegative pairing with
a, we must have (y,a) > 0. O

Lemma 2.3.2. If z as in Lemma 2.5.1 is dominant, then

1
ey Z o(r) <.
Mg

(TEWrel
Mg

Proof. It suffices to show that for any o € WI{/?;, we have o (z) < x. This is a standard
fact [10, §4.4.3]. O

Corollary 2.3.3. Let (Mg,us) € SD be a strictly decreasing cocharacter pair, let
(Mg, us) € Co and suppose that (Mg, us) < (Mg, us’). Then (Mg, us’) € SD.
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Proof. We need to show that for each 8 € A\ S, (Omg (ns), B) > 0. By Corollary 2.2.4,
Omg (s) = Ong, (). Further, we observe that

1
Org (hs) = ——— Y 0(Oug(us)). (1)
|WMS/| O,EWrel
MS/

Since 64 (1s) is dominant by assumption and satisfies (s (1), 8) > 0, we can apply
Lemma 2.3.1 to get the desired result. O

The following easy uniqueness result is quite useful:

Lemma 2.3.4. Let (Mg, ps,),(Ms,,1ts,), (Mg, isy) € Ca. Suppose  further that
(Mslau“sl) = (MSQ G/’I’Ld,bLSQ), that (Mslvl’LSl) = (M,S'é’ I‘LSé) If MSQ = MSé7 then
(Mg, psy) = (Mg, jugy).

Proof. By definition, LSy W Sps sy are all conjugate in Mg,. But also, ug, and Isy are
dominant in the absolute root system. Thus they are equal. O

We now define the notion of a cocharacter pair being strictly decreasing relative to a
Levi subgroup.

Definition 2.3.5. Let Mg C Mg be standard Levi subgroups of G. We say that (Mg, ug)
is strictly decreasing relative to Mg if (Bp4(1s), ) >0 for ¢ € §"\ S.

Remark 2.3.6. Recall that by construction, (94 (1ts),a) =0 for o € S. Thus, (Mg, us) €
8D exactly when it is strictly decreasing relative to G.

Lemma 2.3.7. Let (Mgl,,u,gl),(Msi,/xsi) € Cq be cocharacter pairs such that
(Mg, ug,) < (Msi’ﬂsi)' Let Mg, D Mg, be a standard Levi subgroup of G and suppose
(Mg, us,) s strictly decreasing relative to Mg,. Then (Msi’p‘si) is strictly decreasing
relative to Msiusg-

Proof. We first reduce to the case where Mg, is a maximal Levi subgroup of MSi (i.e.,
S; = S1U{e} for some o € A\ S1). To do so, we recognise that the relation (Mg, 1ts,) <
(M Si,ﬂsi) definitionally implies that there is a finite sequence of cocharacter pairs

(MSpMSl) = (Ms(),/_LSO) S S (MSk7MSk) = (Msivusi)v

where each Mg: is a maximal Levi subgroup of Mgi+1. Thus, if we prove the lemma in
the maximal Levi subgroup case, we can inductively prove it in the general case.

We now assume that Mg, C M, ) is a maximal Levi subgroup so that S; = S; U{a} for
some o € A\ S;. We need to show that (QMSi (nsy).B) >0 for each g € S;US2\ 5. First

note that any such B is an element of S;\ S;. By Corollary 2.2.4, since ug, and Is;

are conjugate in M, 5, we have GMS, (ns,) = GMS, (n Si)' Thus we are reduced to showing
1

<9Msi (usy),B) >0 for B € 53\ 5.

Note that since (Mg, ius,) is strictly decreasing relative to Mg, , we have that eMsl (msy)
is dominant relative to the root datum of Mg, and (GMS1 (s,), B) > 0. Therefore, by (1)
and Lemma 2.3.1, (GMS, (1s;). B) > 0, as desired. O

1
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Proposition 2.3.8. Let (Mg,ug) € Cg and suppose it is strictly decreasing relative to
some standard Levi subgroup Mg D Mg. Then there is a unique (Mg, us') € Cq such that
(Mg, us) < (Mgr,pus). We call (Mgr,usr) the extension of (Mg, ug) to Mgr.

In the case where S' = SU{a} for a € A\ S, the converse is true. Specifically, if
(Mg,us) € Cqg and there exists (Mg,us') € Cg satisfying (Mgr,us') > (Mg, us) with
S'=SU{a}, then (Mg, ug) is strictly decreasing relative to Mg.

Proof. We begin by proving the first statement. Uniqueness follows from Lemma 2.3.4.
For existence, we first reduce to the case where Mg is a maximal Levi subgroup of Mg.
Suppose we have proven the proposition in this reduced case. We might then try to prove
the general case by iteratively applying the reduced case of the proposition to a chain
of standard Levi subgroups Mg = Mg, C ... C Mg, = Mg such that each is maximal in
the next. Such a chain clearly exists, but to apply the reduced case of the proposition we
need to show that if we have constructed a cocharacter pair (Mg, us,) > (Mg, us), then
(Ms;, is;) is strictly decreasing relative to Mgr. This follows from Lemma 2.3.7.

Now we let g be the unique conjugate of ug which is dominant in Mg. If we can show
that Omg (sr) < Onig(1s), then (Mg, ug) will satisfy the conditions of the proposition.
By Corollary 2.2.4 and (1),

D o Ous(rs)),

UEWMS/

1
Omg (ms) = Ong, (s) =
Ms Ms | Wi, |

so we can reduce to showing that

1
W] > o<y
S/

o€ WMS’

for any y satisfying (y,a) > 0 for @ € §'\ S and (y,«a) =0 for @ € S. Any such y is dominant
in the root datum of Mg and so by Lemma 2.3.2,

1
o(y) <.
[ War | 2 W=y

o€ WMS’

Further, this expression cannot be an equality, because y has positive pairing with each
root of 8"\ S, while \W—1| > o(y) has 0 pairing with these roots.

Mg creWMS,
To prove the converse, suppose that (Mg, us) < (Mg, us) and S’ = SU{a} for some

a € A\ S. Then by Corollary 2.2.4,

Ong (s) =Ong (s) = Ot (Ws) +‘;a(9Ms (Ms))’
and so
R > Cuaslits) _ %(eMS (19, 0.
Since by assumption Oar, (s) < Omg(s), it follows that (Oarg(ns), ) > 0. 0

https://doi.org/10.1017/51474748020000535 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000535

The Cohomology of Rapoport—Zink Spaces of EL-Type 1179

Remark 2.3.9. Note that the converse of this proposition is not true in the general case.

Corollary 2.3.10. Fiz a standard Levi subgroup Mg and roots ay,00 € A\ S. Suppose
that we have cocharacter pairs (Mg, s), (Msua;} #SUr))> (MsUay,as)s HSUer.a0)) € Ca
satisfying

(Mg, ts) < (Msujaq)s H8UGar) < (MsUjar,an)s HSUar,az))

and that (Mg, us) is strictly decreasing relative to Mgyjas)-
Then the extension of (Ms, ps) to Msujas), which we denote (Msujas), ISUas))s Satisfies

(Mg, pt5) < (Msujag)s MSULas)) < (MsUjaq,ag)s HSUa1,a2))-

Proof. By the second statement of Proposition 2.3.8, we have that (Mg, ug) is strictly
decreasing relative to Msyiy,}- Then by Lemma 2.3.7, (Msujay), hSUjag)) 1S strictly
decreasing relative to Mgujay,az)- Thus by Proposition 2.3.8 we have (Msujag}s hSUg}) <
(Msufay,az)s HSULay,ag)), a8 desired. O

Proposition 2.3.11. Let S C 51 C S be subsets of A and suppose (Mg, 1s), (Ms,, its,) €
Ca with

(Mg, ps) < (Mgy, fbs,)

and (Mg, us) strictly decreasing relative to Mg,. Then the unique extension (Mg, s;)
of (Ms,s) to Mg, satisfies

(MSp /J’Sl) = (M5'29 /vl’Sz)-

Proof. Since (Mgs,ug) < (Msg,,ts,), there is an increasing chain of cocharacter pairs
(Ms,pug) = (Mgo,pugo) < ... < (Mgk,ugr) = (Ms,,ts,) such that each standard Levi
subgroup is maximal in the next. The content of this proposition is that we can pick a
chain such that (Mg,, s,) appears. By Lemma 2.3.7, we can assume that Mg is maximal
in Mg, . Let o be the unique element of S\ S.

Pick a chain of cocharacter pairs (Mg, us) = (Mgo,tgo) < ... < (Mg, bgr) = (Ms,, tts,)
as before. Chains of cocharacter pairs are determined by an ordering on the roots in
S\ S = {aq,...,ar}, such that S* = S U{ay,...,a;}. The root o appears in this chain,
so a = «; for some i. If i =1, we are done. Otherwise, we consider (Mgi-2,gi-2) <
(Mgi-1,pgi-1) < (Mgi, pgi). By Lemma 2.3.7, (Mgi-2, tgi-2) is strictly decreasing relative
to Mgi-2 4, and so by Corollary 2.3.10 — applied so that (Mgi-2,ugi-2) takes the place
of (Mg, ng) — we get a new chain of cocharacter pairs between (Mg, us) and (Ms,, 1s,),
where we switch the positions of a,a;_1 in the corresponding ordering of Sy \ S. By
repeating this argument, we can construct a chain where o = o3, which is what we
need. O

The preceding propositions give us the following picture. Given a cocharacter pair
(Ms,pus), we check which simple roots a satisfy (6a(is),a) > 0. Suppose there are n
such simple roots. Then we get 2™ standard Levi subgroups containing Mg, corresponding
to adding different subsets of these simple roots. The cocharacter pair (Mg, ug) has a
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unique extension to each of the Levi subgroups, and the poset lattice of these cocharacter
pairs can be thought of as the graph of an n-dimensional cube in the following way. The
vertices of the cube are the 2" cocharacter pairs extending (Mg, ug) that we have just
constructed. For two such pairs (Ms,, s, ), (Ms,, s,), we draw an edge between the two
corresponding vertices if either S; C Sy and |S2\ S1| =1 or So C S; and |51\ S2| =1. We
can upgrade this graph to a directed graph by stipulating that an edge between (Mg, , it s;)
and (MS2,,1L52) is directed from (Msl,/,Lgl) to (MSQ,MS2) if (MS2,/,L52) < (Msl,ﬂgl).

Finally, note that for any two pairs (Mg, us,) and (Mg,, ug,) corresponding to vertices
in this cube, we have (Msg,, ps,) < (Mg, g, ) if and only if there is a directed path in the
cube travelling from the vertex of (Mg,,ug,) to that of (Ms,,1s,).

2.4. Connection with isocrystals

We now investigate the relation between strictly decreasing cocharacter pairs and
Kottwitz’s theory of isocrystals with additional structure (see [Ch6 1.6.18 3, p. 158] for
omitted details on the theory of isocrystals).

An isocrystal is a pair (V,®) where V is a finite dimensional @” vector space and
®: V — V is an additive transformation satisfying ®(av) = o (a)®(v) for a € @, veV
and o the arithmetic Frobenius morphism. As before, let G be a connected quasi-split
reductive group defined over @, and consider the set of isomorphism classes of exact
®-functors from Rep(G) to Isoc, the category of isocrystals. Such isomorphism classes
are classified by Hl(WQp, G(@;'?T))7 which we denote B(G) (where Wg, is the Weil group
of Qp). .

In [10], Kottwitz constructs the Newton map v : B(G) - Cg and the Kottwitz map
k:B(G) —> X*(Z(a)r). An element of B(G) is uniquely determined by its image under
these maps.

We say that the standard Levi subgroup Mg is associated to b € B(G) if v(b) € QlJrMS,Q.
Henceforth, we will often denote the standard Levi subgroup associated to b by M,.
Notice that many elements of B(G) could be associated to the same Levi subgroup. We
call b basic if My = G. We write

B(G)= | [ B(G)ws.

ScA

such that B(G) g consists of those b € B(G) associated to Mg. We denote by B(Mg)*
the maximal subset of B(Mg) such that v(B(Mg)™) C Cq. In [10, §4.2], Kottwitz uses the
Kottwitz map for Mg to construct canonical bijections

B(G)mg =B(Ms)}, = X*(Z(Ms)")*, (2)
where he constructs a canonical isomorphism

X*(Z(Ms) g = Anrg.0 (3)
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and X*(Z(T/.I'E)F)Jr denotes the subset of X*(Z(f/lg)r) mapping to QIL&Q. In fact,
Kottwitz shows that the composition of these isomorphisms gives the Newton map

B(G)mg = Ajyg 0= Co

For a further discussion of (3), we refer the reader to Lemma 2.2.2.
We now prove an important lemma that will be used to relate the set B(G) to the
strictly decreasing elements of Cg.

Lemma 2.4.1. Fiz a standard Levi subgroup Mg of G and let (Mg,us) € SD. Then
Omg(s) € vB(G)ng)-

Proof. We first descrlbe the set V(B(G) ). By (2) and (3), the set v(B(G) ) is equal
to the image of X*(Z(MS) M+ in Anrg,0- Thus to prove thls lemma, it suffices to show
that 0p7, factors through the map X*(Z(MS) ) — X*(Z(MS) )o = Anrg,@, Where the
isomorphism is as in (3) or Lemma 2.2.2. Then, since (Mg, ug) is strictly decreasing,
the factoring of 0y, will map pus to an element of X*(Z(]\//[;)r)*'7 as desired. The fact
that 67, factors in this way follows from the alternate characterisation of 07, given in
Proposition 2.2.3. O

Definition 2.4.2. Fix u € X, (7). Then we recall the following definition from Kottwitz
[10, §5.1]:

B(G, ) :={beB(G) : v(b) 2 01 (w),k(b) = plz@r}-

Now we prove the key result of this section, which permits us to associate an element
of B(G) to each strictly decreasing cocharacter pair.

Proposition 2.4.3. We have a natural map
T:8D— B(G)

defined as follows. Let (Mg,ug) € SD. Then there exists b € B(G) such that «(b) =
uslz(@)r and v(b) =6On4(s). We note that by construction, b is unique. Then we define
T((Ms,us)) = b. Furthermore, we show that

T(SD,) C B(G, ).

Proof. We first define b. Note that since (Mg, ug) is strictly decreasmg7 Org(s) €
Qljrw .- By Proposition 2.2.3, it follows that wslzargr € X* (Z(MS) M+, and so we can
deﬁne b to be the element of B(G) corresponding to wslzrgr under the isomorphism
B(G)uy = X*(Z(MS)F)+ of (2). Recall that the composition of this isomorphism with
(3) induces the Newton map restricted to B(G)azg. Thus, we have 64 (s) = v(b). [10
(4.9.2)] implies that « (b) = wslzer-

It remains to show that if (Mg, us) € SD,, then the element b € B(G) that we have
constructed lies in the set B(G, ). For this, we need to show that v(b) =60 (s) <07 ().

We claim that 67(u) = 07 (ug). After all, by [10, (4.9.2)] we have u > pg. Then the
claim follows from Corollary B.0.4.
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Now we claim that 67 (ug) is dominant in the relative root system of Mg. To prove the
claim, we first observe that ug is dominant relative to the absolute root system of Mg.
As before, the Galois group I' preserves the Weyl chamber corresponding to the positive
absolute roots given by B. Thus, y(ug) is dominant for each y € I', and so 07(ug) is
dominant relative to the absolute roots of Mg. The intersection of the closed positive
Weyl chamber for the absolute root datum of Mg with 2lg is the Weyl chamber for the
relative root datum of Mg (cf. the proof of Lemma 2.2.1(2)). Thus, 07 (us) is dominant
with respect to the relative roots, as desired.

Finally, we apply Lemma 2.3.2 and (1) to get

O7r(s) = Ong(s),
which finishes the proof. O

Question 2.4.4. Can one describe the image
T(SD,) CB(G, w)?

Fix G = GL,, with T and B the diagonal maximal torus and upper triangu-
lar Borel subgroup, respectively. Suppose @ has weights 1 and 0. Then we claim
T(SD,) = B(G,u). Indeed, pick any b € B(GL,,u). Then without loss of generality,
vy = ((a1/b1)™ bi .. (ar/br)mr) for some a;, b; € N such that a;/b; is written in reduced
form. Then let M be the standard Levi subgroup isomorphic to GLg,p; X ... X GLyz,.p, and
embedded diagonally. Since b € B(GL,, ), we must have that u = (11;1 - al,On El o
Finally, we define u' € X, (T) by p/ = (1719, Q=bi—z1a1  qorar Zrbr=2rar) Then we note
that u’ is dominant in the root system of M, so that (M, ') € Co. Moreover, 0, (') = vy
so that (M,u') € SD. Then since u' and u are conjugate in GL,,, it is easy to see that
(M, ") < (GLyp, p). In conclusion, we have shown that (M', u') € SD,, and T ((M', 1)) =,
as desired.

On the other hand, for different choices of u we can have 7(SD,) € B(G,u). For
instance, let G = GL3, u = (2,0,0) and b € B(G, ) be such that v, = (1,1/2,1/2). Then
it is easy to check that 7(SD,) does not contain b.

2.5. The induction and sum formulas

We are now ready to prove our main theorems on cocharacter pairs. We begin by defining
some key subsets of C, the set of cocharacter pairs for G. In this section we fix a dominant
e X (T) and b € B(G, ).

Definition 2.5.1. We define the sets T¢ 5, and Rq, s, as follows:
Teon =T "(b)NSD,
and

Rabu ={Ms,,pus,) €Cq: (Mg, us;) < (Ms,, ius,) for some (Msg,,is,) € Ta b ul-
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Definition 2.5.2. Let Z(Cg) denote the free abelian group generated by the set of
cocharacter pairs for G.
We define Mg s, € Z{Cg) by

Mapu= Y, (=DM (M, pg),

(Ms,1t8)ER G, b,

such that for Mg, C Mg,, LMSPMSQ is defined to be S5\ S1].
Remark 2.5.3. We observe that for (Mg, us) € SD, if T((Ms,ts)) = b, then Mg = M.

We will show in Theorem 3.3.7 that at least in the case where G is an unramified
restriction of scalars of a general linear group, Mg, is related to the cohomology of
Rapoport—Zink spaces for G. Thus one expects there to be a combinatorial analogue of
the Harris—Viehmann conjecture (Conjecture 3.2.1). We call this combinatorial analogue
the induction formula. Perhaps the more surprising result is that there is also an analogue
of Shin’s averaging formula (which we call the sum formula) [3, Ch6 1.6.18, p. 158]. We
first prove the sum formula.

Theorem 2.5.4 (Sum formula). The following holds in Z{Cq):
> M= (G.p.
beB(G, )
Proof. We need to show that
> Mau=(G.p).
beB(G,pn)
or equivalently,
> Yo (=DM (Mg, ) = (G, ).
beB(G, ) (Mg, n$)ERG, b,

We prove this equality by counting how many times a given cocharacter pair shows up
on the left-hand side. The pair (G, 1) shows up exactly once in the left-hand sum, as an
element of R¢,p,, for b the unique basic element of B(G, ). Suppose (Mg, ug) € Cq is
some other cocharacter pair. Then define

Yiugug) =10 €B(G, 1) : (Mg, u5) € Ra,b,u)-

We are reduced to showing

> (=DMMs =0, (4)

be Y(MS'/’“S)

Our general strategy will be to show that the left-hand side of (4) vanishes for each
(Mg, us) < (G, ) by inducing on the size of A\ S. However, in the case that (Mg, ug) €
8D, we can prove the vanishing without an inductive argument. We show this first before
discussing the induction.

Suppose now that (Mg, ns) € SD,. By Corollary 2.3.3, every pair (Mg, tg') € C¢ satis-
fying (Mg, us) < (Mg, ts) < (G, ) is strictly decreasing, and thus by Proposition 2.4.3
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we have T ((Mg/,us)) € B(G, ). These are precisely the elements b € B(G, i) such that
(Mg, ius) € R, b, By the discussion after Proposition 2.3.11, we can associate the graph
of a cube to the set of (Mg, ug’) such that each cocharacter pair is a vertex. To the vertex

associated to (Mg, itg’) we attach the sign (—1)LMS'M/S. We note that adjacent vertices
in this graph will have opposite signs, since if (Mg, us) and (Mg, ug») have adjacent
vertices, then the cardinality of S” and S” differs by 1. Now, it is a standard fact that if
we associate an element of {1, — 1} to each vertex of the graph of an n-dimensional cube
for n > 1 so that adjacent vertices have opposite signs, then the sum of all the signs is 0.
This implies that the left-hand side of (4) vanishes in the strictly decreasing case.

Now we discuss the inductive argument. The base case will be for pairs (Mg, ug) < (G, 1)
satisfying |A\ S| = 1. The second statement of Proposition 2.3.8 implies that in this case,
(Mg, s) is strictly decreasing relative to G, which means that (Mg, us) € SD,,. Thus,
the base case is proven by the previous paragraph.

We now discuss the inductive step. Suppose (Mg, us) < (G, ). If (Mg, ug) is strictly
decreasing, then we are done, by the foregoing. Suppose now that (Mg,pg) is not
strictly decreasing. We claim that (Mg, us) must be strictly decreasing with respect to
at least some standard Levi subgroup of G that properly contains Mg. After all, since
(Mg, s) < (G, ), there must exist at least some o € A\ S and (Msyye), suie)) € Ca so
that (Mg, us) < (Msuga), hsutey)- Then by Proposition 2.3.8, this implies that (Mg, ug) is
strictly decreasing relative to Mgy(q)-

Thus, let Mg be the maximal standard Levi subgroup of G such that (Mg, ug) is strictly
decreasing relative to Mg/. We can write S" = SU{ay,...,a,}, where a; # «; for i # j and
each a; € A\ S. We denote by X the n-cube of cocharacter pairs above (Mg, ug), as in
the discussion after Proposition 2.3.11.

We claim that

Yo (DFus M = - > Yo (D,

beY (Mg, ng) (Mg, ng)eX\(Ms,1n8)} €Yo g

Given this claim, we see that to finish the proof, it suffices to show that the right-hand
side is identically 0. However, the right-hand side consists of a sum of a number of terms
similar to the left-hand side, but for pairs (Mg, ug) in place of (Mg, ug). Note that each
S’ is strictly larger than S, and thus we are done by induction.

We now prove the claim. Moving all the terms to one side, we need only show that

> 3 (pFHsn =,

(MS/,,LLS/)GX be Y(MS/’V'S/)

Fix b € B(G, u). Then it suffices to show the contribution from b in this formula vanishes.
Thus, we must show

> ptem <o, (5)

(Mgr,ngneXNRq, b, i

We examine the structure of X "R, 5, when it is nonempty. If we can show that the
cocharacter pairs in this set form a subcube of X of positive dimension, then we will be
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done, by the standard fact that if we place alternating signs on the vertices of a cube and
add up all the signs, we get 0.

Clearly, any (Ms/,pus) € X NRa,p,, must satisfy Mg C Mg C M. The subset of X
satisfying this latter property forms a subcube of X, since its elements are indexed by
subsets of Sy \ S, where S, is the subset of A corresponding to M} in the standard way
(note that by Lemma 2.3.4, there is at most one element of X "R 3, , for each standard
Levi Mg/). Moreover, this latter set cannot form a cube of dimension 0, for then we
would have Mg = M, and so XNR¢g, s, = {(Ms,us)}, which would imply that (Mg, is)
is strictly decreasing, contrary to assumption.

Thus to finish the proof, we need only show that for some (My, up) € Ta, b, s (Msr, Lsr) <
(My, 1up) is satisifed by every (Mg, g) such that

(1) Mg C Mg C My,

(2) (Ms,pus) < (Mg, pusr),
(3) (Mg, ) is strictly decreasing relative to M.

Since we assumed that X NRq.p,, # ¥, then in fact there is an (My, up) € Ta, b, With
(Mg, s) < (My,itp). Then the desired result follows from Proposition 2.3.11. O

We now turn to the induction formula. Fix a standard Levi subgroup Mg of G. Then
our choice of maximal torus 7" and Borel subgroup B of G provides us with natural
choices BN Mg and T of a Borel subgroup and maximal torus of Mg. This allows us to
define the set Cpzq of cocharacter pairs for Mg. There is a natural inclusion

ifrs : Cug <> Ca. (6)

The image of this inclusion is precisely the set of cocharacter pairs (Mg, ug), where
S’ S. This inclusion preserves the partial ordering of cocharacter pairs. The strictly
decreasing elements of Cp;y, map to the elements of Cg which are strictly decreasing
relative to Mg.

Now choose b € B(G, i) and rational Levi Mg such that M, C Mg C G. We have a unique
b e B(Mb)Lb corresponding to b under the isomorphism given by (2). The inclusion
M, C Mg induces a map

B(My) — B(Ms).

Let bgs be the image of & under this map.
The following definition will be important in relating cocharacter pairs of a group G to
those of a standard Levi (compare with [16, Theorem 7.5]):

Definition 2.5.5. Let Mg be a standard Levi subgroup of G, let u € X,(T) be a dominant
cocharacter and choose b € B(G, ). We take bg € B(Mg) as constructed in the previous
paragraph and define the set

G . . .
IM’S’be ={(Ms,us) € Cyg : bs € B(Mg,us), s is conjugate to u in G}.
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We first check the following transitivity property of IES“ b

Proposition 2.5.6. Fiz (G,n) € Cq and b e B(G,n). Suppose Mg, and Mg, are standard
Levi subgroups of G such that My C Mg, C Mg,. Then

G, Mgy sy

. G,u
Mg, bs, = {(MSQs//LSQ) € CM52 . (MSQSI’LSQ) EIMS2,Z;S2 fO’f’ some (Mslsl‘LSl) e-’Z-]\/[ }

S1» bSI

Proof. We show that each set is a subset of the other. Take (Ms,,1s,) € Iﬁs’; b, Let
s, be the unique dominant cocharacter conjugate to pg, in Mg,. Then we consider
(Mg, ts;) as an element of C’MS1 and just need to show that bs, € B(Mg,,us,), since
we already know that bg, € B(Ms,,us,), by assumption. Thus, we need only show that
V(bsy) < 07 (ps,) and k(bs)) = sy |z, r-

We prove the inequality first. By assumption, v(bs,) < 0r(us,), and by (2) and (3),
v(bs,) = v(b) = v(bs,). Since us, and ug, are conjugate in Mg, and pg, is dominant, it
follows from [13, (8.1)] that ug, < i, . Then by Corollary B.0.4 it follows that 07 (1 g,) <
O1(ws,) in the relative root system. Combining all this data, we get

V(bsl) = v(bSQ) =< OT(I’LSQ) = 9T(M51),

as desired.
To prove «(bs,) = us, |Z(A7['§1)r, we note that by [3, Ch6 1.6.18, p. 158] and the fact that
1)52 S B(MSQ,,U,SQ), we have

K(bsl) = MSQ|Z(AZ§1)F~

Then ng, and ug, are conjugate in Mg, , so there exists a w € Wj}bss so that w(w1) = we.
1

This implies that u; and ps are conjugate in ]\/4;, and in particular equal when restricted
to Z(Msg,). This implies the desired equality.

Mg, ,
To show the converse inclusion, we start with (Ms,,1s,) € IM;Z:; for some
(Ms,,us,) € II\C/JI’S’;’bsl and need to show that bg, € B(Mg,, us,) and that pg, is conjugate

. Mg, ns
touin G. But (Mg,,us,) € IMsglvbs;
conjugate to ug, in Mg, . Further, (Mg,,us,) € IE’S‘i’bsl implies that pug, is conjugate to

implies that bgs, € B(Msg,, ts,) and also that ug, is

w in G. Thus, ug, is conjugate to u in G, as desired. O

The set IES“ pg Will primarily be useful because it allows us to relate the set Ta,b,u to
analogous constructions in Mg. This is encapsulated in the following proposition:

Proposition 2.5.7. Fiz Mg, u and b as in Definition 2.5.5. The natural inclusion
zﬁs :Cug = Cq of (6) induces a bijection

]_[ TMs,bs,Ms =Ta. by

G,u
(MS’”'S)EIMS,I)S
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Proof. We first show that

iAC/;IS( ]_[ TMSsbS»HS) DTc bu-

G.u
(Msyus)estbe

Since My C Mg, it follows from the discussion after (6) that
Ta.bn C igig Cosg)-

Thus, pick an arbitrary element of 7¢ s, of the form zﬁs (My, py) for (Mp, uy) € Cprg. The
cocharacter pair zﬁs (My, jup) is strictly decreasing, and therefore so is (Mp, p) € Crpg. By
Proposition 2.3.8 we can find (Mg, us) € Carg such that (My,up) < (Ms,ng). Observe
that since zﬁs (My, up) < (G, 1), the cocharacter up is conjugate to u in G and therefore
s must be as well, by construction. If we can show that 7 ((My, 1)) = bg, then we will
be done, because by Proposition 2.4.3 this implies that bg € B(Mg, us), and so therefore
that (Ms.pus) € Iy, and (M. ib) € Thsg b, s

By assumption, T(il\c;}s (My, 1p)) = b € B(G, ). Recall that the map 7T is defined so that
a strictly decreasing (M, up) € Co which satisfies (My, up) < (G, 1) is mapped first to the
element Wbl zam,)r € X*(Z(]\?[\;,)F)J“. Then this element is identified with an element of
B(G) via the isomorphisms of (2):

X*(ZO0)NH =B(M))}, , = B(G)uy,

where the second isomorphism is induced by the inclusion M, < G. We have the
commutative diagram

B(My) —— B(My)

~

B(G),

where each map is induced from the inclusion of groups. By definition, the element
b € B(Mp)* maps to b € B(G) and bs € B(Mg), respectively. Thus, we see that by
construction, T ((Mp, iup)) = bs.

Conversely, suppose (My,u1y) € Targ bg.ug for some (Mg,us) € Iﬁ:bs. Since b’ €
B(M;))Lb7 it follows from the definition of bs and Tasg, b, that Wbl z(ag,)r is an element
of X*(Z(]\/ib)r)f This implies that iACfIS (My, up) € SD. By Proposition 2.3.8, we have an
extension of z']\(/’}s (My, up) to G, and since u;, and u are conjugate in G by assumption, it
follows that this extension is (G, i) such that Zﬁs (My, up) < (G, ). It follows from these
facts that iﬁs (My, p) € Ta, bo-

Finally, we remark that for distinct (Mg, s), (Ms,'s) € Iﬁé’fbs, the sets Targ, g, g and
TMs,bsyu’S are indeed disjoint, by Lemma 2.3.4. O
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As a corollary of this result, we have the induction formula.

Corollary 2.5.8 (Induction formula). We continue using the notation of the previous
proposition. The natural map

Z.]SS :CMS —> CG
induces a map
ity Z{Cog) = Z(Ca),
which gives an equality
Z iES(MMS,bS,MS):MG,b,/,L'
(MS’MS)EIJ\G/[::.bS

Proof. It follows from Proposition 2.5.7 that the map zﬁs induces a bijection

]_[ RMs,bs,/LS ;RG,I),M'

G,
(MS’MS)GIMS.I)S

We remark that for distinct (Mg, us),(Ms,uy) € I]\C;:‘}’fby we have Rarg pgug N
RMS»stM,S = by Lemma 2.3.4.
The corollary then follows from the definition of Mg s, .. O

This result can be thought of as an analogue of the Harris—Viehmann conjecture, which
we discuss in the next section.

In the cases we are interested in, we will also need a description of how cocharacter
pairs behave with respect to products.

Suppose G = Gy X ... x G and T = Ty x ... x T}, such that T; is a maximal torus for
G;. Then

X(T)=X(T) @ ... ® Xi(Th),
and any standard Levi subgroup admits a product decomposition
MS = M51 X ... X Msk,

such that T; C Mg, C G;. Then any cocharacter pair (Mg, itg) of G corresponds to a tuple
of cocharacter pairs

(Mg, i5y), s (Mg, ju5,)) €Ciy X ... xCgy,

in the obvious way. The pair (Mg, ug) € Cg is strictly decreasing if and only if each pair
(Ms;,ns;) € Cg, is, and if T((Mgs,us)) =b € B(G,u), then we also have T;((Ms;, us,)) =
b; € B(G;, i), where T; is the map T defined for the group G;. Thus, b +> (by,..., bx)
under the natural bijection

B(G) = B(Gy) x ... x B(Gy).
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We record the following proposition:

Proposition 2.5.9. We use the notation of the previous two paragraphs.
The natural bijection

CG =CG1 X ... X CGk
induces bijections
Tebuw =TGyby.ug X oo X TlewaMk
and

RG,b,M = RGl,bl,Ml X ... X RGk’bk‘sﬂk'
Further, under the natural isomorphism Z{Cq) = Z{Cq,) ® ... Z({Cg, ), we have
Ma b =Mey, by @ "'®MGk,bquk'

3. Cohomology of Rapoport—Zink spaces and the Harris—Viehmann
conjecture

In this section, we define the Rapoport—Zink spaces we will work with and show how we
can describe their cohomology using the language developed in the previous section. We
also give a statement of the Harris—Viehmann conjecture, and explain the necessity of a
small correction to it. We follow [5, 13, 16].

The theory necessarily involves several choices of signs. This is often a point of confusion,
so we describe our conventions here. We choose the cocharacter u appearing in the
definition of Rapoport—Zink spaces to have nonnegative weights, in agreement with most
authors. In this paper, we use the contravariant Dieudonne functor, which means that our
p-divisible groups will have isocrystals in the set B(G, 1) (as opposed to B(G, — u) for
the covariant theory). This convention agrees with that of [13] and [16], but [7, pg. 2] uses
the opposite convention. We use the local Langlands correspondence for GL, (Q,) as in
[14, Theorem 3.25]. In particular, we normalise the local Artin map so that uniformisers
correspond to geometric Frobenius elements.

3.1. Rapoport-Zink spaces of EL-type

We fix the following notation. Suppose G is a reductive group defined over a field k
and u € X,(G). Then if H is a subgroup of G such that u factors through the inclusion
X,.(H) — X,(G), we denote by {u}z the H(k) conjugacy class of u and by Eyy,; the field
of definition of {u} g (i.e., the smallest extension of & so that each element of Gal(E/E{M}H)
stabilises {u} ).

Now we define the Rapoport—Zink data we consider.

Definition 3.1.1. An unramified Rapoport-Zink datum of EL-type is a tuple
(F, V., {u}g,b), where

(1) F is a finite unramified extension of Q,,

(2) V is a finite-dimensional F' vector space,
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(3) G :=Resp/q,(GLr(V)),

(4) u: Gm’@ — G@ is a cocharacter inducing a weight decomposition V ®@ET =
Vo @ Vi, where u(z) acts by z* on V;,

(5) beB(G,p).

We fix a Borel subgroup B C G defined over Q,, a Q,-split torus A C G of maximal
rank in G and such that A C B and a maximal torus T C B containing A and defined
over Q,. We can choose u in the definition so that it is dominant relative to B.

Let X be a p-divisible group defined over E with an action of Op and such that
the isocrystal attached to X by the contravariant Dieudonne functor is isomorphic to
(Vr,bo). We consider the moduli functor M, , such that for S a scheme over (9@7 with
p locally nilpotent, M ,(S) = {(X,%,p)}/ ~. Where X is a p-divisible group defined over
S,1:0p > Endp(X), and p: X XEE — X is a quasi-isogeny (E,Y are the reductions
modulo p).

By work of Rapoport and Zink [10, §3.3], this moduli problem is represented by a formal
scheme over O@T, which we also denote by My, ,. We have the generic fibre M}, which

is a rigid analytic space over @;\r . Further, we get a tower of coverings M?Z y of lei
for each compact open subgroup U C G(Qp).

For a fixed prime [ # p, we denote by HJ (MZ%’U X @ ,Q;) the étale cohomology

with compact supports. This is a Q; vector space which is a smooth representation of
Jp(Qp) x WEW)G’ where J; is the inner form of the standard Levi subgroup M, associated
to b (as constructed in [13, Proposition 6.1]) and Wg,, . is the Weil group of Ey, (for
example, see [7, S1.2]).

We use the notation Groth(-) for the Grothendieck group of admissible representations
of topological groups. See [11] for the precise definition of these Grothendieck groups.

Let Pp be the standard parabolic subgroup with Levi factor Mj, and denote the opposite
parabolic by P; P We define J 19 ,Jacg to be the normalised and unnormalised Jacquet
module functors, and we define 1 P(.; , Indg to be the normalised and unnormalised parabolic
induction functors. Often, if M C P is the standard Levi subgroup of P and we are taking
I 19 or ] 190,, to be a map of Grothendieck groups, we will write I ﬁ to remind the reader that
these maps do not depend on choice of P, P°? when considered as maps of Grothendieck

groups.
In [16], Mantovan considers the following construction (see also [15],§2.4). We define a
map
Mantg,p,,, : Groth(J,(Q,)) — Groth(G(Q,) x WE(MG)
by

Mantpu(p) = Y (=)™ lim  Bxtl, g, (H MG, ; x Q7 Qo). p) (~dimM, ).
1,5>0 UcG@Qp)

In [15] and [16, §6.2], Shin considers a map
Redy : Groth(G(Qp)) — Groth(J,(Qy)).
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We follow the construction given in [16, Lemma 6.2]." We define Red;, by
1
T e(Jb)(LJng'bop(n) ®682,),
where

LJ : Groth(M,(Q,)) — Groth(J,(Q,))

is the map defined by Badulescu extending the inverse Jacquet—Langlands correspondence
[8] and e(Jp) is the Kottwitz sign as defined in [16].

We now describe the main result of [16, Theorem 7.5]. The cocharacter u of G is a
map u:G,, g — I1 ~ GL, g, such that the weights in each GLy, factor are 1s or

reHom(F,Qp)

0s. Thus we let p;, ¢; denote the number of 1 and 0 weights, respectively, in the factor
corresponding to t.

The following formula is the main theorem in [16]:

Theorem 3.1.2 (Shin). We have the following equality for accessible representations in
Groth(G(Qp) x Wg,, ):

wa

Z Mant,, , (Red; (7)) = [7][r—, o LL(7)| Wi,
beB(G,pn)

- TUrt 2
}G®|,| L Prdr/2),

Loosely speaking, accessible representations in [16] are character twists of the local
components of global representations that can be found within the cohomology of Shimura
varieties. Shin shows that all essentially square-integrable representations are accessible.

In this case, LL is the semisimplified local Langlands correspondence (known by the
work of [7], for instance). The map 7, is the algebraic representation of G x WE(u}G cta
defined by Kottwitz [9, Lemma 2.1.2]. It is characterised by the fact that r_,|g is the
irreducible representation of extreme weight —u, and if we take a I'-invariant splitting
of @, then the subgroup WE{M)G of 'G acts trivially on the highest weight vector of r_,
associated with this splitting.

Remark 3.1.3. The Tate twist appearing on the right-hand side of the formula in
Theorem 3.1.2 comes from the dimension formula for Shimura varieties and is equal
to —{pg, u), where pg is the half sum of the positive roots in G.

This theorem is analogous to the sum formula for cocharacter pairs (Theorem 2.5.4).
The induction formula (Corollary 2.5.8) is related to the Harris-Viehmann conjecture
(Conjecture 3.2.1). A proof of this conjecture is expected to appear in forthcoming work
by Scholze.

I'We believe the construction given before [15] has a slight typo. There, Redy is defined by 7 +—

1 1
G : G G 2 G -2
e(Jp)(LJo Jacpg,p (r)). As maps of Grothendieck groups, Jacpz,p = JP;p ® SP;p = JP;,p ® ‘SP;, .

1
But this is not equal to Jg:,, () ®8123h, which is the construction given in [7] that is compatible
with [1, Proposition 3.2].
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3.2. Harris—Viehmann conjecture

We now state the Harris—Viehmann conjecture following Rapoport and Viehmann in [13].
In this subsection, we return to the notation of §2 so that in particular, G is a connected,
quasi-split reductive group defined over Q,.

Choose a dominant minuscule pu € X,(T) (where we can consider u as a cocharacter of
G, since T C G) and b € B(G, n). Associated to b, we have the standard Levi subgroup
My,. Suppose we have a standard rational Levi subgroup Mg, so that M, C Mg C G. We
define b’, bg as we did before Definition 2.5.5.

In [13, (6.2)], the authors associate a cohomological construction to the triple (G, b, 1)
which they denote H*((G,[b],{1})). This construction is a map of Grothendieck groups,
H*((G,[b],{u})) : Groth(J,(Qp)) — Groth(G(Q)) x Wg,,,), and agrees with Mantg v, .-
We will denote this construction H*(G, b, 1), since we deal with dominant cocharacters
instead of conjugacy classes. Then we have the following conjecture:

Conjecture 3.2.1 (Harris-Viehmann). For p € Groth(J,(Q,)), we have the equality

HY(G.bwll= Y (ndf H*(Ms, bs, )] ®]1][|-] 610,

G,
(Mg, n8)Lprg bg

in Groth(G(Q,) x WE(M}G)' The parabolic induction only modifies the Groth(G(Q,)) parts
of these representations.

Remark 3.2.2. We need to explain several things in this conjecture. First we explain
why the right-hand side is a representation of WE(MG’ then we check that the conjecture
satisfies a transitivity property and finally we give an example justifying the extra
character twist appearing in our formulation. This twist is not present in the original
formulation of the conjecture.

We first explain why the right-hand side is a representation of WE(Mg' We start with
a general lemma.

Lemma 3.2.3. Suppose a group A acts on a finite set S. Suppose further that for each
s €V, we attach a vector space Vg and for each A € A and s € § we have an isomorphism

i(S,)\) : Vs — V)»(s)-

We suppose further that i(s,1) is the identity map and that i(A1(s),A2) 0 i(s,A1) =

i(s,A2A1). Then @ Vi is naturally a representation of A.
seS
Let {s1,...,s.} C S be a set of one representative from each A-orbit in S. Then

k
@ Vs = @Indé\tab(si) Vsi’

seS =1

where Ind refers to induced representation (not parabolic induction).

Proof. The proof is clear from the definition of induced representation. O
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Moreover, we record the following transitivity property for later use:

Lemma 3.2.4. Suppose that A acts on S as before. Let S1]]...][ Sk = S be a partition
of S so that A acts on {51, ..., Si}. Suppose we have for each s € S a vector space Vs and
isomorphisms i(s,A) as before. Then by Lemma 3.2.3 we can consider the stab(S;) C A

representation Vg, = € . For each A € A, we get isomorphisms i(S;,A) : Vs, = Vi(s,)-
sESi

Thus, again by Lemma 3.2.5, we get a A representation @ Vs,. This representation is

7
isomorphic to the A representation @ Vs we get from applying Lemma 53.2.3 to S.
ses

Now we discuss the W, _-action in the Harris-Viehmann conjecture. Observe that for
ue X (G), if y e WEW)G stabilises {u} g then it also stabilises {u} g, so that WE[M)M C
s
Wk,
Now we claim that Wpg, e acts on IM“b and that the stabiliser of (Mg, ug) under
this action is WEu . To prove the ﬁrst part of the claim, we pick y € Wg,  and
Mg

ntg”

observe that since Mg and Pg are defined over Q,, we have y(Mgs) = Mg and y(us) is
dominant in Mg. Thus (Mg, y(us)) € Carg, so we need only check that bs € B(Mg,y (1s))
and y(ug) ~g u- The first check follows from the facts that

Or(us) =07(y(us))

and

MS|Z(1\7[§)F = V(MS)|Z(1\’[S)F~

The second check follows because y stabilises {u}¢q.

To prove the second part of the claim, we note that if ug = y(ug), then y stabilises
{5} mg. Conversely, if y stabilises {@s} g, then since it maps dominant elements relative
to Mg to dominant elements, we must have y(ug) = us.

We observe that we have now shown that WE(;L)G acts on the collection of Rapoport—

Zink data (Mg, bs.ps) for (Ms.ws) € Iy;", . By [13, Proposition 5.3.iv], these actions
induce morphisms of the corresponding towers of rigid spaces and therefore the spaces
H* (Mg, bs, ns)|p] for p € Groth(J,(Qp)). Thus by Lemma 3.2.3 we get an action of WE(MG
on the sum of vector spaces

> H*(Mgs.bs.us)lpl.
(Msvus>elﬁ‘s’f,,s
and therefore on

> Ind§, (H*(Ms,bs.is)[p]).

G,u
(MS'MS)EIMs,bS

We remark that the character twist by —dimM, rig LU i the definition of H*(Mg, bs, i s) is
not an obstacle to defining the Wg,,, o -action, as the dimensions of the spaces associated
to (Mg, bs, us) and (Mg, bg,y (ig)) are the same (for y € WEMG). Also, we observe that
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. This

the twist by [1][] - |*°G-#5)=(PG-1)] is harmless, as it is constant over orbits of WEq

concludes our discussion of the WE(MG—action.

We now check that the Harris—Viehmann conjecture is transitive. By this, we mean that
if we have standard Levi subgroups Mg, and Mg, of G such that M, C Mg, C Ms, C G,
then first applying the conjecture to (G, b, u) and the inclusion Mg, C G and then applying

it to each resulting (Mg, bs;, us;) for (Mg, pus,) € IM and the inclusion Mg, C Mg,

51-bs;
should be the same as applying the conjecture to (G, b w) and the inclusion Mg, C G.

We need to check that the character twists match, that

Mg
Thias v, = ((Msy usy) € Corg, = (Msyopusy) € Tyt 01 for some (Msypsy) € Tygl! )

and that the WE(#} -actions are the same.
To check that the characters match, it suffices to check that for (Mg,, us,), (Ms,, its,) €
Cg such that (Ms,, ns,) < (Ms,,us;) < (G,u), we have

(paisy) = (pa, ) = (pa  tsy) = (PG )+ ((Pug, - hsy) = (PMg » Ms1)-

This reduces to showing the equality

(Pa\Mg, » Hs1) = (PG\Mg, + 4S2)s (7)

where pg\ Mg, is the half-sum of the absolute roots of G that are not roots of Mg, . Since
s, and pg, are conjugate in Mg, , there exists a w e Wf/gsl so that w(u1) = wo. Then the
desired equality follows from the facts that the pairing (-,-) is WabS -invariant and that

W‘lbS stabilises the set of positive absolute roots in G but not Mg, . To prove this second
fact note that Mg, normalises the unipotent radical Us, of Pg, and that the roots of
Lie(Us,) are precisely the positive absolute roots of G' that are not contained in Mg, .
The second check is precisely Proposition 2.5.6, and the third check follows from
Proposition 2.5.6 and Lemma 3.2.4.
Now we compute an example to illustrate the necessity of the extra Tate twist in our
statement of Conjecture 3.2.1. This example is also discussed in [16, §8.3].

Example 3.2.5. Let n; < ny be coprime positive integers and let G = GLj,, yr,. Fix T the
standard maximal torus of diagonal matrices and B the Borel subgoup of upper triangular
matrices. Let 1 be the minuscule cocharacter with weight vector (12,0™+"272) and b €
B(G, n) satisfying v, = ((1/n1)™, (1/n2)"™?). Let p1, p2 be supercuspidal representations of
GL,, (Qp), GLy, (Qp), respectively. Define the standard Levi subgroup My = GLy,, X GLy,,
and consider the representation m = I A% (p1 X p2). We will be interested in computing
Mant g 5, (Redy (7).

The key point is that we can use Shin’s formula (Theorem 3.1.2) and known cases of the
Harris—Viehmann conjecture due to Mantovan [12] to do this computation, even though
the Harris—Viehmann conjecture is not known to be true in the case of Mj, since b is not
of Hodge—Newton type.

We observe that there are only 3 elements b’ € B(G, 1) that satisfy

Mant g, i, (Redy (1)) # 0.
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After all, the fact that pq, 02 are supercuspidal and the geometric lemma of Bernstein
and Zelevinski [4, §2.11] forces My to be one of G,GL,, x GL,,,GL,, x GL,,. In the
case where My = G, we also get 0, since LJ(;r) = 0. Thus, if we write out Shin’s formula
for our 7, the only elements of B(G, 1) whose terms contribute to the left-hand side are
b, b1, bo, where b is as before and by, by are defined by

Vo, = ((2/n1)™,0™),vp, = ((2/12)"2,0™).

Thus, we have My, = M, = GL,, x GL,,, and My, = GL,, x GL,,. Note that by, by are
both of Hodge—-Newton type, so we can apply the results of Mantovan.
We have

1
Mant g, by, (Redy, (7)) = Mant e by, (L (3, ® o Ii7, (015 p2))).
1
By the geometric lemma of Bernstein and Zelevinski [4, §2.11], this equals

1
Mant g, b, 4, (LJ ((p1 M p2) ® 312%1 ).

We recall that (Spbl =(]-]"2 odet) X (|-|"™ odet) and henceforth use the notation p(n) to
mean (|-|" odet) ® p. Thus, we can rewrite this formula as

Mant g, b,y (LJ (p1(n2/2)) W LJ (p2(—n1/2))).
Then applying the Harris—Viehmann formula, we get that this equals
Indﬁb (Mantqy,,  q2,0m-2)(LJ (p1(n2/2))) ®Mantar,,,. om2) (L (p2(=n1/2))).  (8)

Since p; and po are supercuspidal, we can compute (by an easy application of Shin’s
formula, for instance) that

Mantey, 2 gm-2) (LT (1 (12/2))) = [p1 (2 /D][r 12, gmi-2) 0 LL(p1 (n2/2) ® | - |*~],
and so (8) becomes equal to
[7][r_12,0m-2) 0 LL(p1(n2/2)) ® | - 1>"™ @ rignz) 0 LL(pa(—n1/2))].
Pulling the twists through the r_, maps, we get
[71[(r_y2.0m-2) R rgney) o (LL(p1) @ LL(p2)) ® | -]~ 7"2].
Repeating this computation for the by term, we get

Mant g, p,, . (Reds, (7))

= [7][(r_y2.m-2) B riom)) o (LL(p2) & LL(p1)) ® | - |*~™772].
We now compare these terms to the right-hand side of Shin’s formula. There the term
is
[7][r—p o LL(T)® - >~ "2].

Now LL(w) = LL(p1) ® LL(p2). Thus, we can restrict r_, to ]\//.Tb ca (we have been
ignoring the Galois part of “G in this example, since G is a split group). Using the
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theory of weights, we get
T;Mﬂ = [’r'(_lzyonl—z) X 7“(0"2)] D [Q_Lonl—l) X ’I“(_Long—l)] D [T‘(onl) X 7‘(_12’0n2—2)],

and so we see that the contributions for by, b which we computed before will cancel terms
on the right-hand side of Shin’s formula, leaving us with

Mant,p, , (Redy (7)) = [7][(r_y.gm-1) 7y gna-1,) 0 (LL(p1) + LL(p2)) ® | - 1>~ 7"2].

However, if the Harris—Viehmann conjecture without the extra Tate twist were to hold
for b, we would get

Mant g s, . (Redy (1)) = Mant g, (LJ (p1(n2/2)) W LJ (p2(—n1/2)))

= [llr—y.om-1) B 7y gma-1) 0 (LLGo1) + LL(p2))| - ["2].
Thus, we see that the Tate twists do not agree.

In general, the right-hand side of Shin’s formula has a twist of —{pg, 1), where pg is
the half-sum of the positive roots of G. Suppose now that b € B(G,u) and b € B(M,)™*
corresponds to b under (2). Then for any (M, u') € Iﬁ’b‘fb,, we would expect the Galois
part of Mantyy, .,/ (p) for p € Groth(J,(Q))) to come with a twist of —(pas,,1"). Then

the Galois part of Manta s, ,(Redy (7)) for m € Groth(G(Q,)) would carry an extra twist

det(Adpy, (M, 1
of —(w,/ﬂ), corresponding to twisting ‘]1%” () by SI%b in the definition of

Red;,. We note that

det(Ady, (My))|
2

Thus, we see that the difference between these Tate twists is

M) =(pa, ).

<prv M/> + (

(pa. 1) —(pa. 1),

which is the twist in Conjecture 3.2.1.

Remark 3.2.6. We note that in the Hodge-Newton case studied by Mantovan, u = u’
(as in the notation of the previous paragraph), so that this extra twist vanishes, agreeing
with Mantovan’s results [12, Corollary 5] (cf. [13, Theorem 8.8]).

We now give an alternate version of the Harris—Viehmann conjecture that we will use
in numerous arguments in this paper. Suppose that G, b, u are as in Theorem 3.1.2. The
standard Levi subgroup M, has a natural product decomposition

My = My x ... x M,
so that under the natural isomorphism
B(M) =B(M;) x B(M), b+ (b1, ..., b}.),

each v(b;) has a single slope. Now pick (My, up) € Z Ebﬂ - Then the local Shimura variety
datum (My, b, 1up) decomposes into a collection (M, b, s, 1), ... (Mg, by, pp. ). In [13,
§5.2(ii)], the authors show that the local Shimura variety associated to (My, ', up) is
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the product of those associated to (M;, b}, s, ;). Furthermore, using the Kiinneth formula
(as in [12, p. 15]), we get that for p; ®...K pi, € Groth(M1(Q,) x ... x M (Qy)),

Mant ar, 57,0, (01 X ... W pg) = @leMantGi’b;,MM(pi)

as a representation of M x WE(ub)M (the group WEU‘-b)M acts diagonally through the
b b

product WE( X ... X WE(

1My kg, )-
Thus, we have the following alternate form of the Harris—Viehmann conjecture for the

Rapoport—Zink spaces we consider:

Conjecture 3.2.7 (Alternate form of the Harris-Viehmann conjecture). We use the
notation of the previous paragraphs so that in particular, (G,b,u) comes from an
unramified Rapoport—Zink space of EL-type as in Definition 3.1.1. Then for any p €

Groth(J,(Qp)), we have the following equality in Groth(G(Q,) x WE(M]G):
Mant g s, . (p) = Y. Indg (R Manty, p ,, (00) ® L[] |V 0c].
(M. pp)eZ iyl

3.3. Proof of Theorem 1.0.3

The combination of the Harris—Viehmann conjecture and the sum formula allows us to
relate the cohomology of Rapoport—Zink spaces to the cocharacter pairs studied in §2.
To do so, we attach a map of Grothendieck groups to each cocharacter pair. We return
to the notation of §3.1.

Fix a cocharacter pair (G, ) € Cq. Suppose (Mg, us) € Co and satisfies ug ~g u. We
associate (Mg, us) to a map of representations

[Mg, 5] : Groth(G(Q,)) — Groth(G(Q,) x WEluslMs)

given by
7+ (Ind§, o[ns]o (Bps ® JacTon))(m) @ [1]]| -|76-#5) =G 1],
S
with
[15] : Groth(Ms (@) — Groth(Ms(Qp) x W, )
given by
7> fllrps o LUl wy, - ®1- |~tens )]

Remark 3.3.1. We note that the map [Mg, us] is only defined relative to a cocharacter
pair (G, u).

Remark 3.3.2. We observe an interesting property of the maps [Mg, us|. Fix (G, 1) and
consider (Mg, itg) such that ug ~ g . Since the normalised Jacquet module and parabolic
induction functors behave better with respect to the local Langlands correspondence, it
makes sense to rewrite [Mg,ug| in terms of these maps. We get

_1 1
[Ms, 5] = (i, ®p] o lis]o O5, & J o) @ [1][I-6-57],
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Note that the twists by the modular character cancel in the admissible part but do not

cancel in the Galois part. Thus, the total Tate twist of the Galois part is

det(Adyg (Ms)| T
2 b

(pa, s — 1) — (Prmg> ths) — ¢ ns)

=—(pa. ).

This twist does not depend on (Mg, us) but rather only on (G, u). Thus, as we will see
in the computations of the next section, it is possible for large cancellations to occur in
computations of Mant¢ 5 . (p) for various p.

We now prove some lemmas relating to these maps before tackling the main theorem.

Lemma 3.3.3. Let Mg, Mg, be standard Levi subgroups of G satisfying Ms, C Mg, .
Consider the natural map

.G .
ZMSI : C]\/[S1 d Cg,

as defined in (6). Let (Mg,,1ts,) € CMsl' Suppose further that we have fixed pairs
(Ms,,us,) € CMS1 and (G,n) € Cq, so that s, ~ Mg, S, and g, ~g i. Then for
7 € Groth(Gg, ),

i, (M, 15, D) = (0 0 (M, |0 B, @ Jacion)) () @ 1[0 4510 )
where we write

iﬁsl ([M321 I’LSQ]) : GrOth(G(@p)) - GrOth(G(QP) x VVE(MSQ)MS2 )

to denote the map associated to Zﬁsl (Msy, it s,)).

Proof. We first note that by the transitivity of the Jacquet module and modulus character
constructions, we have

M
G S1 G
dpg, ® Ja‘cpgg = (6pg,nn; ® Jacpgp )o(Bpg ® Jacpgf)-
2

Hence, we just need to check that the twists on the Galois parts of both sides match. By
Remark 3.3.2, both twists are by —(pg, u) O

Lemma 3.3.4. Suppose we are in the situation of Proposition 2.5.9, so that G = Gy x
... X Gy 1s a connected reductive group with standard Levi subgroup Mg = Mg, x ... x Mg, .
Fiz cocharacter pairs (Mg, jus), (G, ) € Cq with us ~g . The bijection Cqg =Cqy x...Cq,

takes (Mg, s) to (Msy, iLsy), -, (Mg, pts;)) and (G, ) to ((G1, 1), ..., (G, k), and we
have wg;, ~q; wi. Then we define

K1 [Ms,, s, ] : Groth(G(Qy)) — Groth(G(Qp) x W, )

)MS
by
m X Ry, > (Mg, s, () R K[ Mg, , s, | (Tr).
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Then we have the following equality of homomorphisms of Grothendieck groups:
XYy [Ms, ws;] = [Ms, 1es)-
Proof. We have
Ry [Ms,. s, ] = szllndfj;i ous;]o@pg, @Jaclf;;,?) @ [1][| - |0CiHsi—ha)]
k
=1Indg, o[u]o(Bpy ® Jacggp) ®[1][]- |i§1<pci,usi—ui>]
= Indgs ofu]o(Bps® Jacggp) ® [1][| - |PPe-1s =]

= [Mg,ps]- m

For some finite subset C' C Cg such that each (Mg, ug) € C satisfies ug ~a i, we would
like to make sense of a sum
Z [Ms, ps].

(Mg,ng)eC

This makes sense as a map Groth(G(Qp)) — Groth(G(Q,) x Wg), where Wg =

Wg . However, for our purposes, we would like to understand when we
(Mg,ng)eC
can extend the image of this map to a representation in Groth(G(Q,) x WE(MG)'

(HS)MS

Lemma 3.3.5. Fiz a pair (G,n) € Cq. Consider a finite subset C' C Cg such that if
(Mg,us) € C, then us ~g u. Furthermore, suppose that for each y € WE{MG and element
(Mg,us) € C, we have (Mg,y(ug)) € C. Then

> [Ms. sl
(Mg.ng)eC
1S a map
Groth(G(Qp)) — Groth(G(Q,) x WE{M)G)
in a natural way.

Proof. Our construction is analogous to that of Lemma 3.2.3. We fix p € Groth(G(Q,))
and give

Vo= @ [Ms,usl(o),
(Mg,png)eC

the structure of a G(Q,) x WEMG—representation. Suppose that C' = Cy[]...]] Cy, where
each C; is a single WE{#}G—orbit. Then for each i, we give

Vo= @B [Ms.uslp),

(Mg,ng)eC;

the structure of a G'(Q,) x WEWG—representation, and then define the G(Q,) x WE(u)g'
structure on V¢ to be the direct sum of the V.
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Suppose now that C contains a single WEMG—orbit. In this case, we will show that
B [Ms.uslo)
(Mg,ug)eC

can be given the structure of a Groth(G(Q,) x WE(M}G)—representation equal to
G G G —(pGs—m)—(Pgo1s)
[Ind g, (g @ JacSos (0))][1 0 LL(Spy @ JacKa (M)l wg, @ |-~ ns i),

where r is the induced representation (not parabolic induction) given by

for a fixed choice of (Mg, ug) € C. The isomorphism class of r will not depend on this
choice.

We study the representation r. Fix representatives yy,...,yx € WE(MG / WE(MSWS so that
y1 =1. Then r is defined to be the sum of k copies of _, ¢ indexed by the y; and acted
on by WEMG in the standard way. We check that the ith copy of r_, is a representation

of Mg x WEm )t and isomorphic to 7_,,.4). Let V; be the underlying vector space
of the ith copy of r_,,. Then V; is naturally a representation of Mg x y; WEWSU\/] yi’l =
— s

MS X WE(

Vi) mg
Now supp(;seMZ € V1 is a weight vector of T C MAS of weight p'. Then we show that
(1,y:)v € V; has weight y;(u). After all, for t € T, we have
r((¢, (L, y)v) = (&, yi)v
= (Lyd)(y; (). Do
= (Lyd)rus (7 (D, D) (v)
= (Ly)u' (v (D)v
=y, yi)v.
In particular, we have shown that V; is irreducible of extreme Weight/—\yi (ug) as an ﬁs—

representation (since r_, is irreducible of extreme weight —u g as an Mg-representation).

It is a similar simple check that WE(V‘(Ms))M acts trivially on the highest weight space of
3 S

V;. This proves that V; is isomorphic to r_,,(.q)-
In particular, it shows that we can give

@ T ysug) © LL(S pg ®Jacg§p (/0))|WE(

vits)mg ’
vieWa, o/ Wa

nsimg

the structure of a WEMG—representation isomorphic to
G
ro LL(Sps @ Jacgs (Mlwg,, -

To conclude the proof, we just need to check that the |-| twists on each [Mg, y;(us)]-term
are the same. This follows because pg and py, are both invariant by WEMG. O
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We would like to check the following:

Lemma 3.3.6. The sum Mg ., as in Definition 2.5.2 gives a map

M, b.] : Groth(G(Qy)) — Groth(G(Q,) x Wg,,, ).

wa

where

Ma.bul = > (=DM My Mg, ).

(Mg,t$)ER G, b, 1

Proof. By Lemma 3.3.5, it suffices to show that Mg 4 , is invariant under the natural
action of WE(H}G on Z{Cqg). Pick y € WE(Mg' Since the action of y on a cocharacter pair
fixes the standard Levi subgroup in the first factor, signs will not be an issue, and we
will be done if we can check that Rg s, is y-invariant. But if (M, us) € TG, then
it is a simple consequence of the definition of T that so is (Mjp,y (up)). Furthermore, if
(Mg, pus) < (My, up), then (Mg,y(ns)) < (My,y (up)) by definition of the partial order
relation (remarking that Oas (1ts) =6p (v (is))). This shows that R s, is y-invariant,
as desired. O

If we combine the previous lemma with Proposition 2.5.9 and Lemma 3.3.4, we get
&i‘le M qubiqm] = [Meg, b,u]~ 9)

We now prove the key result of this section, which provides the connection between
Mant and cocharacter pairs.

Theorem 3.3.7. Assume that the Harris—Viehmann conjecture is true for the genmeral
linear groups we consider.

(1) We have the following equality of morphisms Grothz(G(Qp)) — GrothQ(G(Qp) X
):

{{3Ye]

Mant g, 5 , o Redy = [Ma.p, ],

where GrothQ(G(Qp)) 1s defined to be the span of the essentially square-integrable
representations in Groth(G(Qy)).

(2) Now assume further that Theorem 3.1.2 holds for all admissible representa-
tions of Groth(G(Qp)). Then this equality holds as morphisms Groth(G(Qp)) —
Groth(G(Q,) x WE(MG)'

Proof. We prove the second statement first, by induction on the rank of X, (T).

If the rank of X,(T) is 1, then B(G, i) is a singleton, and so the result follows from
Theorem 3.1.2.

Suppose the result holds for all nonbasic b € B(G, u) with Rk(X,(T)) < r. Then by
Theorems 2.5.4 and 3.1.2, the result holds for all b € B(G, u) with Rk(X,(T)) < r.

Finally, suppose the result holds for all b € B(G, 1) with Rk(X,(T)) < r. Then suppose
X.(T) has rank r+1, and choose b € B(G,u) such that b is not basic. We write
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My = My, x ... x My, . By the Harris-Viehmann formula,

Mant g, o Redy

= ) (Indf o® Manty, 4, oRedy) ® 1| |7emmver)
(Mp, Mb)eIM Ry
= Z (Indgho®f=1(Manthi,b;,MbioRedb;)o(Spb®Jacg§p))®[1][|.|(PG-M1>>—</JG,M>].

(Mp, :U-b)EZM b

By inductive assumption we get

= Y ndf 0@k [Mag, y,l0 (6, ® Jack) @ [1][|- [ 0e,

(M, Mb)eIM Y

and now by (9)
= Y df 0 [Mu o Gp, @ JacG) @[1]]1- (VoG]

(M, Mb)EIM b

Finally, by Corollary 2.5.8 and Lemma 3.3.3,
= [Mac.b.ul-

We must check that the WE(MG—structure coming from Remark 3.2.2 is compatible with
that of Lemma 3.3.5. Pick p € Groth(G(Q,)). By inductive assumption and Lemma 3.3.3,

for each (My, iup) GIM > the W, Wt -structures on

(Indgb o Mant g, .., 0 Redy o (§p, ® Jac}gﬁﬁ))(ﬂ) ® (1[I |<pG’M)7(pG’M)]
and

ity (Magy. ., D (0)
are the same. Thus by Lemma 3.2.3, the W, —structure on Mantg 5, (Redy(p)) is a

direct sum over the WE —OI‘bltb of I b, of mduced representations of the form

{p) M

Wg,
Indyy, "% i (Mg, v D (0)-
b

This W, -structure matches the one on [Mg.p | (coming from Lemma 3.3.5), by the
transitivity of the induced representation construction (see Lemma 3.2.4, for instance).
We now prove the first statement of the theorem. To do so, we need to show that
if we restrict ourselves to the span of the essentially square-integrable representations
Groth?(G (Qp)) C Groth(G(Qp)), then we can remove the first assumption. In particular,
these representations are accessible, so we have Theorem 3.1.2 unconditionally. In the
preceding proof we need only observe that the Jacquet module Jacga,,(,o) is a sum
of essentially square-integrable representations for p € IrrZ(G(Qp)). Thus, to get the
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result for GrothQ(G(Qp)) by induction, our inductive assumption need only hold for
all Groth?(G’ (Qp)) for kG’ < rkG. This shows that under the condition that the Harris—
Viehmann conjecture is true in the cases we consider, the theorem is true for essentially
square-integrable representations without any other assumptions. O

4. Harris’s generalisation of the Kottwitz conjecture
(proof of Theorem 1.0.5)

In this section, we discuss an explicit computation using the results obtained in the
preceding sections. In particular, we prove that Shin’s formula for all admissible repre-
sentations combined with the Harris—Viehmann conjecture proves Harris’s conjecture for
the general linear groups considered in §3. This conjecture [6, Conjecture 5.4] is distinct
from the Harris—Viehmann conjecture.

We begin by discussing the Kottwitz conjecture, which appears as [16, Corollary 7.7
in the cases we consider and more generally as [13, Conjecture 7.3]. Fix G as in §3 and
a cocharacter pair (G, u) such that p is minuscule. Let b € B(G, 1) be the unique basic
element. Now consider p a representation of J,(Q,) such that JL(p) is a supercuspidal
representation of G(Q,). Then

Mant g, 3, . (Redy (JL(p))) = Mant g s, . (),
but by Theorem 3.3.7, the left-hand side equals
(M, b,u](JL(p)).

Now we see that since JL(p) is supercuspidal, each term of the form [Mg, us](JL(p)) is 0
when Mg is a proper Levi subgroup of G. Thus,

Mant g p . (p) = [Ma, b, . ) (JL(0)) = [JL(p)|[r— 0 LL(p)| - |~ -],

This result is the Kottwitz conjecture for G. Alternatively, if b € B(G, ) is not basic,
then no cocharacter pairs with G as the Levi subgroup will appear in Mg s ,, and so

Mant g, . (0) = 0.

Of course, these results are already known from [16], but we review them as motivation
for Harris’s conjecture.
We begin with the following useful definition:

Definition 4.0.1. Fix (G,u) € Cg and b € B(G, u). Let Mg be a standard Levi subgroup
such that Mg C M,. We define the subset Relﬁ’;b C C¢ as the set

{(Ms,us) € Cq : I(Mp, iup) € T b ps With Onr, (L) = Opnrg(s), b ~ 01, ST

The notation pg ~p, up is defined to mean that pug and u, are conjugate in M;. Note
that we do not require (Mg, ug) < (G, ) or (Mg, ug) < (My, 11p).
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We record the following useful properties of Rellc\jl’ : b

Lemma 4.0.2. We use the same notation as in the previous definition. Then

[ENTRE My, iy
Relyh, =[]  Relyty.

G,
(Mbvl‘«b)EIMb.b/

Proof. If (Mg,us) € Relf/l’;b, then there is an (Mj, p) € Ta b, such that Oy, (np) =
Om(us) and ps ~p, py. Then by Proposition 2.5.7, there is a unique (M, ') € Iﬂi‘b’fb,
such that (My,s) € Tagy,pr, s and so (Ms,pug) € Rel™> b The reverse inclusion is

Mg, b’
analogous. O

Lemma 4.0.3. The set Relfjs’fb is invariant under the action of WE(u)g'

Proof. If (Mg, ug) € Rellc\i,’;b7 then we can find (My, up) € Ta,p,, With 07, () =Oprg (1 5)
and up ~u, ms. By a similar argument to Lemma 3.3.6, we show that for each y €

Wgy,,,» we have (My,y (iup)) € Ta.b.u, Ons (v (ies)) = O, (v (p)) and y (ies) ~n, v (i)
This finishes the proof. 0

Equipped with this definition, we can now make the following restatement and slight
generalisation of [6, Conjecture 5.4] for the G that we consider. Our statement is a
generalisation because we consider nonbasic b and do not assume that the representation
Iﬁs (p) is irreducible.

Conjecture 4.0.4 (Harris). Fiz b € B(G, 1) and a standard Levi subgroup Mg C M.
Then for p € Groth(Ms(Q,)) a supercuspidal representation, the following representations
are equal in Groth(G(Qp) x Wg,, ):

na

1
Mantc, b . (e(J) LI 8Z p, ® L (0)))

and

[y (0] D Pous O LU wg, | 1706
S

G,
(MS,;LS)GRelM;b

Here r_, 4 is a representation of]\//[; X WEK/AS)M , but the right-hand side naturally acquires

the structure of a G(Qp) x WE(M)G—representation from Lemma 4.0.3 and the proof of
Lemma 3.5.5.
In particular, for b basic, this says that

Mant g, Redy (I (0)) = [, (0)] D s LDy, 700

G,
(MS,/J.S)ERelM;b
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We will prove this conjecture assuming that Shin’s formula (Theorem 3.1.2) holds for
all admissible representations.

We proceed by induction on the rank of T'. The key observation will be that Harris’s
conjecture is compatible with the Harris—Viehmann conjecture and Shin’s formula. We
will first assume that I Igs (p) is irreducible, and later remove this assumption.

The following proposition shows that Conjecture 4.0.4 is compatible with the Harris—
Viehmann conjecture (Conjecture 3.2.1):

Proposition 4.0.5. Fiz b € B(G, ) nonbasic and fix a standard Levi subgroup Mg of
G satisfying Mg C My. Pick p € Groth(Mg(Q,)) and suppose that Iﬁs (p) is irreducible.
Suppose that Conjecture 4.0.4 for p holds for Mantyy, ., for each (My,up) €L
Then Conjecture 4.0.4 holds for Mantg p ;..

Proof. We compute

Mantg,p, . (e(Jy) LI (8 p, IMb (P)))

= Z IndP (Mant py,, p, Mb(e(Jb)LJ(a‘G P, ®1Mb () Q[1][[ - |Pe-re=m),

(My, ub)eIM Y

so by assumption

= Y [mdf 6E @I 0] D s LLUylo)lwg, 117,
S

(M, ub)eIM Y (Mg, us)eRele i’
det(Ady,, (M) .
where S = —(pa,, o) + (PG 1ty — 1) — (F——25—"F 1) = —(pg.u) (following the
discussion in Remark 3.3.2). Now simplifying this expression, we get

= Z [y (0] @ T g oLL([ﬁ(p)NWEWS)M ||~
S

G, N
(Mb,ub)eIMbqb, (Mg, MS)eRcle bi)

Thus, we are reduced to showing that

Gu _ My, ey
Relyply =[] Relpy.

(Mp, Mh)EIM b

This is just Lemma 4.0.2. O

With Proposition 4.0.5 in hand, it remains to show that if Conjecture 4.0.4 holds for
all nonbasic b € B(G, ), then it holds for the basic b. The key to proving this is Theorem
3.1.2.

We begin by making some observations about r_,. Since we assumed that I ﬁs (p) is

irreducible, we have LL(I A?S (p)) = LL(p), and the image of this representation lies inside
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LMg c “G. Thus, the term [T_MoLL(IﬁS(p)NWEMG] depends only on the restriction

T 35 % Wi Since u is assumed to be minuscule, we have the following equality of

Mg-representations:

Tl ity = @ T | iy (10)
(Mg,n5)eCq s~ Gu
We further note that each r_,, is a representation of ME X WE(MSUV[ . Since {(Mg, us) €
s

Ca:pms ~qg m} is invariant under the natural action of Wg,,,, it follows from the proof
of Lemma 3.3.5 that the right-hand side of (10) can be promoted to a representation of
Mg x WE{u)G so that the equation is an equality of WEMG—representations.

Now we recall the following subsets of W defined in [4, §2.11]:
Definition 4.0.6. Let Mg, Ng be standard Levi subgroups of G. We define
WMs = {we W™ w(MsgNB) C B,

WMs:Ns = {1y e W™ : w(MsNB) C B,w *(NgsNB) C B}.
We record the following lemmas:

Lemma 4.0.7 ([4]). Suppose Mg, Ns are standard Levi subgroups of G, and w € W™Ms-Ns.
Then w(Mg)NNg and w™'(Ng)N Mg are standard Levi subgroups.

Lemma 4.0.8. Suppose Mg is a standard Levi subgroup of G. Then WMs contains a
unique representative of each left coset of WX,}’; Equivalently, (WMs)~1 contains a unique

representative of each right coset of Wjjé

Proof. Suppose w € W' Then B’ = w™'(B) is a Borel subgroup of G containing the
maximal torus 7T'. Since B’ contains exactly one of each root and its negative, B'N My is
a Borel subgroup of Mg. In particular, since B'N Mg, BN Mg are both Borel subgroups
of Mg containing T', there exists a w,, € Wﬁé so that

wm (BN Mg) = B'N Ms.

Then ww,,,(BNMg) = BN Mg C B, so that ww,, € W™Ms  Thus the coset wW;j; contains
at least one element of W™Ms,

Suppose Wy, ww,, € wW}{j; N WHMs_ In particular, ww), = (wwy,)(w,, w,,). But ww,
takes all positive roots of Mg to positive roots of G, and equivalently, negative roots of
Mg to negative roots of G. Thus, if w 1w/, takes any positive root of Mg to a negative
root of Mg, then ww/ cannot be an element of Ws. In particular, this implies that

-1

;o . .
w,*w,, =1, which shows uniqueness. O

Lemma 4.0.9. Suppose Mg is a standard Levi subgroup of G, and x € Qlfé’MS and w €
Wrel, Then w(z) =z if and only if w e ijj;

Proof. Recall that by assumption, G is quasi-split over Q, and A is a split torus of G of
maximal rank. Pick g € Ng(AQp) SO that g projects to
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= Wr_el = N¢ (A)((QTp)/ZG (A)((QTI,). Then the equation w(x) = x implies that ¢ €
Zc(2)(Qp). The centraliser of a cocharacter is a Levi subgroup, and since z € 2[6 Mg> We
have Zg(x) = Mg. In particular, g € Nyg (A)(@,), and so w € Wigl.

We remark that z is not a cocharacter but that Zg(z) still makes sense, as there is an
induced action of G on X, (A4)g. O

We can now prove the following key proposition:

Proposition 4.0.10. Fiz (G,u) € Cg and suppose (Mg, ug) € Cq satisfies us ~a . Then

there exists a unique b € B(G, 1) and a unique w € WMsMo 5o that (w(Mg), w(ug)) €
G,

Relw(’]f/fs),b.

Proof. We first discuss uniqueness. By assumption, w(Mg) is a standard Levi subgroup.
Then w induces an equality wWJ{/‘;;w_l = W;‘E(IMS). In particular, W acts on X, (T)
through Corollary B.0.2, and it follows that

w(Onrg (1s)) = Ow(nrg) (w(iLs)).

Since (w(Mg),w(us)) € Relgiﬂs)’b, it follows that 6y (w(ns)) is dominant in the

relative root system. In particular, 6, (ag)(w(its)) must be equal to the unique element
z in the W'lorbit of Onrg (s) which is dominant in 2lg. Now =z € Qlfw .0 for a unique
Mg. Since any (My, uy) € Ta,p,, is definitionally strictly decreasing, it fsollows that even
though we cannot yet conclude the uniqueness of b, we have shown that any other b,
must satisfy My, = My = Mg.

Now, suppose we have w, w’ € WMsMv guch that

w(Ong(ns)) =z = w' (Ong(Its))-

Then in particular, w'w™' stabilises z, and so by Lemma 4.0.9, w'w ™' e W]fj; So w
and w’ are in the same right coset ijj;w. However, WMs-Mv c (WMv)~1 By Lemma
4.0.8, (WMb)~! contains a unique representative of each right coset of (WM»)~1 and
so there is a unique w e (WMv)~1 satisfying w(Onrg (1s)) = . In particular, this implies
that w = w’. Thus, we have shown that w is unique, if it exists. There is exactly one
w' € X, (T) such that u' ~p; w(p) and p' is dominant in M. Then (My,u') € Ta,p, 0 for
at most one b € B(G, n). This shows uniqueness.

To prove existence, we again define = to be the unique dominant element in the Wrel-
orbit of 64 (us). Define Mg = Zg(z) and take the unique w € (WMsy=1 guch that
w(Ong(Mag)) = . We would like to show that w e WMs Mg

By definition,

w(Ms) Cw(Zg(Omg(s))) = Za(x) = Mg

Suppose it is not the case that w(MgN B) C B. In particular, w maps a positive root r of
Mg to a root w(r) of Mg which is not positive. In particular, —w(r) is positive, and so
w™t(—w(r)) = —r is positive (since w € (WMs')~1). But this is clearly a contradiction.
Thus, in fact w € WMs Mg/,
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By Lemma 4.0.7, w(Mg) N Mg = w(Mg) is a standard Lev1 It remains to show that
(w(Msg), w(g)) is a cocharacter pair and an element of Relw(M )b Now if r is a positive
root in the absolute root system of w(Mg), then (r,w(is)) = (w= (r),us) > 0 (since
(Mg, ius) is a cocharacter pair and w~!(r) is a positive root of Mg). Thus, (w(Mg), w(is))
is a cocharacter pair. By construction, = 0, g (w(ns)) = GMS,(w(,us)). Suppose u' €
X, (T) is the unique cocharacter conjugate to w(ng) in Mg/ and dominant in Mg/. Then
by Corollary 2.2.4, (Mg, i) is strictly decreasing, and therefore (Mg, u') € Ta,p,, for
some b and so (w(Mg), w(ig)) € Reli;j&s)’b. O

Corollary 4.0.11. Fix a cocharacter pair (G,u) € Cg and a standard Levi subgroup Mg of
G. For b € B(G, ), define Wy by {w € WMs:Mv : y(Mg) C My}. Then Proposition 4.0.10
gives a bijection

{(Ms,ns) €Cq s ~a n} = ]_[ ]_[ Relw(MS) b
beB(G,n) we Wy,

Proof. By the construction in Proposition 4.0.10, it is clear that given an (Mg, us) € Cq,
we get an element of the right-hand side of the equation in the corollary. Conversely, an
element (w(Mg),u') of the right-hand side comes with a fixed w € Wj, and so we can
recover (Mg, w™!(x')) on the left-hand side. O

We are now ready to finish the proof of Conjecture 4.0.4. By inductive assumption, we
assume that we have shown Conjecture 4.0.4 for G with maximal torus of rank less than
n. Then Proposition 4.0.5 implies that Conjecture 4.0.4 holds for G with maximal torus
of rank n in the case where b is not basic. It remains to prove the basic case, for which
it suffices to show that Theorem 3.1.2 is compatible with Conjecture 4.0.4. We have

D" Mantg.p . (Redy (1 (0)))
beB(G, 1)

1
> Mantgpu(e(Jp) LIGSE, ® J o I (0))).
beB(G, ) b

By the geometric lemma of [4] and noting that Ws M defined with respect to B is
equal to the analogous set defined with respect to B°P, we have

T liig) =" 3 Iy s (),

we WMs-Mp

where Mg = MgN w(My), M, = w(Ms)N M. By the assumption that p is supercuspidal,
we must have Mg = Mg and M; = w(Mg). In this case, we have from the geometric lemma
that w(Mg) is a standard Levi subgroup. Thus the previous expression is equal to

1
Y Manteyu(e(y) Y LIGE, & Ly, (w(p))).

beB(G,n) we Wy
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where W, ¢ WMs:Ms is the subset of w such that w(Mg) C M. We now apply Corollary
4.0.4 by inductive assumption to get

Yo Y LS (wio))]

beB(G,n) we Wy

x B rwo LU @Oy [T

(Mg)
G, wits
(w(Mg), ueRel iy

By [4, Theorem 2.9], we have
(L5 arg) (o] = 17, (0],

and since I ﬁs (p) is assumed to be irreducible, we have

LL(}7,(p)) = LL(p).

Finally, we note that WEW%(M , and we have an equality

=W,
/)}MS E“’-/]H)(MS)

[r—w o LL(w(p) I w,

= |\T_,,— ’ OLL .
u’lw(Ms)] 7wty ('O)le(w ( |

“Lumg

Thus we have

> D ) P rewmtge) 0 LU ws RRGR

“Luhim
beB(G,n) we Wy, (w(MS)’“/)ERelgiﬁ/ls),b S
By Corollary 4.0.11 this equals
G il
il @ ruso LL(p)] W 110
(Mg, ng):ims~aGH
Finally, we apply the decomposition given by (10) to get
G _ NeiZen2)
[IMS(IO)][KMMSX WE . o LL(p)| WB o |-[e ],

which is the desired result.

Finally, we show that Conjecture 4.0.4 holds even if I ﬁs (p) is not irreducible. Our
verification that Conjecture 4.0.4 is compatible with the Harris—Viehmann conjecture did
not rely on the irreducibility of I ]SS (p). Thus, in the case where we do not assume that
I ﬁs (p) is irreducible, it suffices to show that Conjecture 4.0.4 is true in the case where b
is basic. If b is basic, then M, = G, so we have

1
Mant b, (e(J) LI B% p, Iy (p))) = Mant g, b, . (Redy, (I, (0))).
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This can now be computed by cocharacter pairs using the results of §3. If ﬁs (p) is
assumed to be irreducible, then for each cocharacter pair (Mg, ug) of G we have

[Msr, s/ |(Iyj (p) = (Ind g, o [us D37, ® JI%? IG () ® 1] - |tPets 0]

— (1§, olusD( @) 83, ® 115 (W) @ 1] (65,

we Wy

where W, is the subset of w € WMs:Ms' such that w(Ms) C Mg . This equals

[Iﬁs (0] @ T—pg © LL(w(p))|- |~leGom)

we W)

Thus we see that applying various [Mg,ug/| to Iﬁs(,o) in the irreducible case will
always yield the same term of Groth(G(Qp)) — namely, [IJ\E}S (p)]) — and so when

Mant g, p, . (Redy (/, I\C/f;s (p)) is evaluated as a sum of cocharacter pairs, the different Galois
terms must cancel to give Conjecture 4.0.4. Thus, if we can show that in the reducible
case the Groth(G(Q))) part of each [MS’»/LS’](IJ\?S (p)) is fixed and the Galois part is
identical to the irreducible case, then Conjecture 4.0.4 must hold for this case as well.

The first part of our previous computation did not depend on the irreducibility of
Iﬁs (p), so we still have

Mst ,
[Msr, s/ (Ii7, (p)) = (Ind§ o [us' ) ( €D SPS, Ly (w()) @ [1][| - [06-#s =],

we Wy

Suppose now that I (MS)(w(,o)) =m D ...0m,. Then using the fact that for all ¢ we have
LL(m;) = LL(w(p)),

s/ 1 Ly (W(0)) = @ [ |[r gy 0 LLGr) ® -]~ M7

= @ [mil[r_yuy 0 LL(w(p) ® |- |Vt

— L5 (WE][rpg, o LL(w(p) ®] | “Msrs"),

Thus, the expression for [MS/,MS/](I]SS (p)) becomes

(LG D rug o LL(w(p))|-|#e
we WMS’ MS/
as desired. 0
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Appendix A. Examples

In this appendix, we give an example to show that even in the unramified EL-type case,
we do not get an expression as simple as Harris’s conjecture for Mant g, s ,(p) for general
p. We generally use the same notation as in the computation in Example 3.2.5.

Let G = GLy, suppose u has weights (12,0%) and take b basic. Let T be the diagonal
maximal torus and B be the Borel subgroup of upper triangular matrices. Then the set
of cocharacter pairs less than or equal to (G, 1) is as follows:

(GL4, (1%,0%)

— T

(GL3 x GLy, (12,0)(0)) (GL3,(1%)(0%)) (GL1 x GL3,(1)(1,0%)
(GLy x GL3, (12)(0)(0)) (GL1 x GLz x GL1, (1)(1,0)(0)) (GLT x GLa, (D(1)(0%))

|

(GLY, () (1)(0)(0)).
(11)

Let p € Groth(GL;(Q,)) and consider 7 the unique essentially square-integrable quotient

of IGGL4 (PXRp(1)Xp2)Xp(3)). We want to compute Mant g, 5, , (Redy (7)).
1

We introduce some notation which will allow us to describe the answer to this

question. The results of [17, §2] show that IGGL4 (PXp(1)Xp(2) X p(3)) has exactly 8
1

irreducible subquotients. If 7’ is one such subquotient, then J BGo,, (") will be a finite
sum of representations of the form p(A(0)) X p(A(1)) X p(A(2)) X p(A(3)), where A is a
permutation of {0,1,2,3}. In particular, if © denotes the set of all such permutations
of pXp (1)K p(2) X p(3), then each permutation lies in the Jacquet module of exactly
one irreducible subquotient of I(?L‘ll (PR p(1DHXp(2)Xp(3)) such that the irreducible

subquotients correspond to a partition of 2. We use the following shorthand: we define
the notation (0123) to refer to the representation p(0)X p(1) X p(2) X p(3). Following
Zelevinsky, our 8 irreducible subquotients naturally correspond to vertices of a 3-
dimensional cube, and so we denote them by binary strings of length 3. Then if we
denote the subset of  corresponding to some subquotient 7’ by Q(r'),we have

Q([000]) = {(3210)}

Q([100]) = {(2310), (2130), (2103)}

©([010]) = {(3120), (1320), (1302), (3102), (1032)}

Q(J001]) = {(3201), (3021), (0321)}

Q([110]) = {(1203), (1023), (1230)}
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Q([101]) = {(2013), (2031), (0213), (0231), (2301)}
Q([011]) = {(3012), (0312), (0132)}
Q([111]) = {(0123)}.

In particular, our representation m corresponds to [111] in this notation. A tedious
computation using Theorem 3.3.7 yields the following:

Proposition A.0.1.
Mant g, (Redy (1)) = 11| ZL(0) (~7)+ LL(p) (=6)]
— (110][EZ(p) (=5)]| + [01L][ZL (o) (=5)])
+[010][ZZ(p) (—4)]
—[000][ZZ(p) (~3)]

We finish by remarking that the set of cocharacter pairs less than or equal to (G, )
has some special properties in this case that make the general case more complicated.

For instance, each 7¢ 5, has at most a single element. However, if G has a nontrivial
action by I', this need not be the case.

In the case we consider, we have a single cocharacter pair for each Levi subgroup. In
general, this need not be the case. For instance, if G = GL5,u = (13,02), then (GL3 x
GLa, (1%)(02)), (GL3 x GLo, (12,0)(1,0)) are both less than (G, u).

Further, in this example, each cocharacter pair (Mg, is) has the property that ug is
dominant as a cocharacter of G relative to B. In general, this need not be the case. In

fact, (GLY, (1)(1)(0)(1)(0)) < (GLs, (1%,0%)).

Appendix B. Relative root systems and Weyl chambers

In this appendix we prove a fact about root systems that is needed in the text (for
instance, in the proof of Proposition 2.4.3). We assume that G is a quasi-split group over
a field k of characteristic 0 and pick a separable closure £°°?. We fix a split k-torus A of
maximal rank in G and choose a maximal torus T and Borel subgroup B both defined
over k and such that A C T C B. Associated to this data, we have an absolute root datum

(X*(T),®*(G, 1), Xu(T), ®.(G, T))
and a relative root datum
(X*(A), 2*(G, A), X, (A), D.(G, A)).

Our choice of B also gives sets A of absolute simple roots and ;A of relative simple roots.
Note that we also have a natural restriction map

res: X*(T) = X*(A),

and that by definition an absolute root in ®*(G, T') restricts to an element of ®*(G, A)U
{0}.

We record two standard consequences of our assumption that G is quasi-split.

https://doi.org/10.1017/51474748020000535 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748020000535

The Cohomology of Rapoport—Zink Spaces of EL-Type 1213

Proposition B.0.1. Let G be quasi-split and use the notations as in the preceding. Then

(1) The centraliser Zg(A)=T.

(2) We have res(A) = A, the key point being that no absolute simple root restricts to
the trivial character.

We have the following easy consequence on the structure of the Weyl group of the
relative root system. Recall that the absolute Weyl group Wequals

Ne(T)(k*P)) Za(T)(k*P),
and the relative Weyl group W' is Ng(A)(k)/Zg(A)(k).
Corollary B.0.2. We have the following equality: W™ = W, where T' = Gal(k*P /k).

Proof. It suffices to show that Zg(A) = Z¢(T) and that Ng(A)(k) = Ng(T)(k). For the
first equality, we note that by the quasi-split assumption, Zg(A) = T = Zg(T). For the
second equality, we note that any g € Ng(A)(k) must also normalise the centraliser of A,
which is T. Conversely, if g € Ng(T)(k), then g normalises the unique maximal k-split
subtorus of T, which is A. O

Define the absolute Weyl chamber U(E) C X*(T)g by {z € X*(T)g: {(a,z) = 0, € A}
and define the relative Weyl chamber k?& C X*(A)g analogously. The key result of this
section is that

res(?&) = kﬁ(a

Despite its simple statement, we have been unable to locate a conve\nie/nt reference for
this fact. For z € X*(T)g and « € A, we need to relate (&, z) and (res(a),res(z)). If we
let 0, € W be the reflection corresponding to the root «, then we have

T —0,(2) = (&, ), (12)

and analogously for r?s@ . Thus, it will suffice to relate o, and Ores)-

Note that since B is defined over k, we have y(A) = A for every y € I'. Moreover, for
each o € A we have res(y (o)) = res(x). After all, T' acts trivially on X*(A4)q, and the
restriction map is ['-equivariant.

Now fix € A and let W, be the subgroup of W generated by the elements o, ) for
each y € I'. We claim that if we can find a nontrivial I'-invariant element of W,, then it
must equal yes(q). 10 prove this, we first recall the construction of oy and oyese) (see [2, p.
230], for instance). Given a root a € ®*(G, T), we can define a group G, = Z¢(T,), where
T, = ker(x)? ¢ T. Then Ng, (T)(k*°P)/ Zg, (T)(k*°?) embeds into W and has a unique
nontrivial element, which is o,. Analogously, we define A,es@) and Gres) = ZG (Aresa))-
Then N Gres(o{)(A)(k) ! ZGres) (A)(k) embeds into W' and has a unique nontrivial element
that is identified with oyes)-

Now, by Corollary B.0.2 we have

NGyewiy (DK 2y (DR = Ny (YK Zsyeny (T (B
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Thus to complete the proof of the claim, we need to show that

N (T)(E*P) ) Zay (TYEP) = NGy (T EP) ) 26,0y (T (EP). (13)

res(a) res(a)

After all, the unique nontrivial I'-invariant element of the group on the right is oyes(q)s
and the group on the left contains o,. Since we get the same equation if we replace «
everywhere with y (o), this implies that

Wa € Ny (DK 2 (T ().
Now (13) follows from the facts that
26, (T) = 26y (T) =T
and

Ng,(T) C Ng (7).

Tes(a)
We are now interested in finding a nontrivial I'-invariant element of the group W,. In
fact, W, will be a finite Coxeter group, and the element we seek is the unique element of
longest length. We need to compute this element explicitly, which we now do. We treat
two cases. Suppose first that the elements of the I'-orbit of o, commute pairwise. Then
clearly the product Il 0y is I-invariant.
yel'/stab(oy)

In the second case, suppose that the I'-orbit of o, has precisely two elements, which
we denote X and Y. Then we have (XY)¥ =1 for some k > 2, which we assume to be
minimal. If k¥ is even, then (XY)*/? is invariant and nontrivial, and if % is odd, then
Y (XY)*=D/2 is invariant and nontrivial.

We now prove that any I'-action on the simple roots A of G is a combination of
these cases. The action of I' on A induces an action on the associated (not necessarily
connected) Dynkin diagram D. Each y € I’ maps connected components of D to connected
components, and so there is an induced action of I' on the set of connected components
o (D) ,

Now fix an @ € A and consider the I'-orbit ' of . Suppose D* is a connected
component of D such that D*NTa # . Then via the classification of connected Dynkin
diagrams, we see that 'a N D? contains either a single node, 2 nonadjacent nodes, 2
adjacent nodes or 3 nodes where no two are adjacent. In particular, these are all covered
by the cases we have already considered, so we can find an element w; of W, that is
invariant by the action of stab(D?) C I'. Then ' consists of finitely many disjoint copies
of one of these possibilities, and so we see that [ [w; is [-invariant and an element of W,

1
and therefore equal to 0ye5(a). Equipped with this description, we now give a proof of the
main result of this section.

Proposition B.0.3. We continue to observe the previous assumptions. In particular, G
18 a quasi-split group over k. Then the map res: X*(T) — X*(A) induces an equality

res(ﬁg_)) = kaa'
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Proof. We first show that res(ﬁé) - ’CETQ' Pick z € 6(5 and o € A. Then we need to
show that

(res(a), res(z)) > 0,
or equivalently that
1es(2) — Ores(a) (res(z))

is a nonnegative multiple of res(a). Note that res is WT-equivariant (where W' acts as
Wres on X*(A)). Thus, it suffices to show that

res(T — Ores(a) (7))

is a nonnegative multiple of res(). Thus, we need to compute = — Oyes()(z). We do so
using our description of oyes(a)-

We first consider the case where the I'-orbit of o, consists of pairwise commuting
elements. Equivalently, the elements of 'a are pairwise orthogonal. Then

Gres(uz) = Oan O... OO'a1
for {a1,...,a,} = a. Since z is dominant in the absolute root system, we have
T — 0g, (1) = a;0
for some a; > 0. Then since «; is orthogonal to a; for ¢ # j, we have oy, (aj) = a;. Thus,
n
T — Ores(a) (T) = Z(aal 0...004;_)(2) — (04 0...004,)(2)
i=1

= Z(cro,1 0...004;,_ )(x — 0y, (7))
i=1

= Z(aa1 0...00q4, )(a;a;)
i=1

n
= E a;o;.
=1

Thus in this case,
1e8(Z — Ores() () = (a1 + ... + a,)res(a),

and a1+ ...+ a, > 0 as desired.

Now we consider the case where 'a = {&,8} and « and B are adjacent in D and
connected by a single edge. Then o, (8) = o+ p = og(a). In this case, 0res) = 0 004 00p.
By assumption, we have that £ —o,(z) = aa and  —og(z) = b8 for ¢ and b nonnegative.
Thus,
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T — Ores(a) (%) = (¥ — 0g(x)) + 0p(x — 04 (7)) + (0 0 04) (x — 0p(2))
=bB+ala+B)+ ba
=(a+b)(x+p),

which projects to 2(a + b)res(a) and 2(a+ b) > 0, as desired.

Finally, we must consider the case where ' equals {&1, 81, ...,®n, Bn} such that «; and
Bi are connected by a single edge in D, but for ¢ # j, neither «; nor ; are connected to
either a; or ;. We compute z — (0p, 00y, 00p,)(x) as in the previous paragraph. Then if
we let w; = 0p, 00y; 00p,, We have

Ores(e) =— W1 ©..0 Wy

Now we can compute 2 — 0res(o) (%) as in the commuting case, substituting w; for o,,. We
see in this case that

res(T — Ores() () = 2(a1 + by + ... 4+ ap, + by )res(a).

This concludes the proof that res(ﬁ?ﬁ@) C kﬁa
It remains to show that we actually have equality. We claim that it suffices to show
—%
that the fundamental weight d,es() is an element of res(Cg). Recall that dresq) is the

element in the Q-span of the relative roots defined so that the pairing with M is 1
and the pairing is 0 with all the other relative simple coroots. To show that the claim
proves our result, we note there is a natural isomorphism X*(A)g = X*(A4g)g x X*(4')q,
where Ag is the maximal k-split central torus and A’ is the identity component of the
intersection of A with the derived subgroup of G. Then kﬁg_) corresponds under this
identification to the product of X*(Ap)g with the projection of k?(a to X*(A’). Then we
have a natural map X*(Z(G)%)g - X*(Ao)g, where Z(G)" is the identity component of
the centre of G and X*(Z(G)%)q C 6(*@ Thus it suffices to show that res(ﬁa) surjects onto

the projection of ,ETQ to X*(A’). This latter space is identified with the set of nonnegative
linear combinations of the fundamental relative weights, thus proving the claim.

To prove that §res(«) is an element of res(?&), we make use of an equivalent description of
Sresa)- It is the unique element in the Q-span of the relative roots so that oves(g)(Sres@)) =
8res(a) for res(ar) and res(f) distinct simple roots and yes(g) (Sres(@)) = Sres(@) —res(B) when
res(a) =res(B).

In the case where the elements of ' are mutually orthogonal, we have by the previous
characterisation of fundamental weights that the absolute fundamental weight &, restricts
t0 res(a)- I the case where ' has two elements that are connected in D, then §, restricts
t0 28res(a)- In the final case, 8, restricts to 28,es(). Thus, in all cases we can find an element
of X*(T)q that restricts to dres(). This completes the proof. O

We record an important corollary of this proposition.

Corollary B.0.4. Suppose pu, i’ € X.(T)g and > i'. Let u' be the average of u over
its T-orbit. Then p" > u'" in X.(A)g. We caution that the first inequality means that
uw— i is a nonnegative combination of absolute simple coroots, while the second means
that u© — W' is a nonnegative combination of relative simple coroots.
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Proof. Recall that the action of T stabilises A. Thus for each y €', we have y (u) > y(u)
and so also u" > w7 in the absolute root system. Thus, we are reduced to showing that
ifze X*(T)(a is a nonnegative combination of simple absolute coroots, then it is also a
nonnegative combination of simple relative coroots (under the identification X,(A)g =
X (T)g)-

Equivalently, we need to show that if  has nonnegative pairing with every element
of 6(3, then it has nonnegative pairing with every element of kﬁé- This is indeed

equivalent, because x has nonnegative pairing with each element of ag if and only if
it has nonnegative pairing with each fundamental weight &y, and this is the case if and
only if x is a nonnegative combination of simple roots.

Finally, this equivalent statement is an immediate consequence of the proposition. [
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