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Abstract We study the l-adic cohomology of unramified Rapoport–Zink spaces of EL-type. These spaces
were used in Harris and Taylor’s proof of the local Langlands correspondence for GLn and to show local–
global compatibilities of the Langlands correspondence. In this paper we consider certain morphisms
Mantb,μ of Grothendieck groups of representations constructed from the cohomology of these spaces, as
studied by Harris and Taylor, Mantovan, Fargues, Shin and others. Due to earlier work of Fargues and
Shin we have a description of Mantb,μ(ρ) for ρ a supercuspidal representation. In this paper, we give a
conjectural formula for Mantb,μ(ρ) for ρ an admissible representation and prove it when ρ is essentially
square-integrable. Our proof works for general ρ conditionally on a conjecture appearing in Shin’s work.
We show that our description agrees with a conjecture of Harris in the case of parabolic inductions of
supercuspidal representations of a Levi subgroup.
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1. Introduction

Our goal in this paper is to give a description of the l -adic cohomology of unramified

Rapoport–Zink spaces of EL-type. These spaces are moduli spaces of p-divisible groups

associated to unramified Weil-restrictions of general linear groups and can be thought of
as generalisations of Lubin–Tate spaces.

This work generalises, for these particular spaces, the Kottwitz conjecture stated in [13,

Conjecture 7.3]. The Kottwitz conjecture describes the supercuspidal part of the l -adic
cohomology of Rapoport–Zink spaces, and is known in the cases we consider from work by
Shin [16, Corollary 1.3]. We prove that our description of this cohomology is compatible

with a conjecture of Harris [6, Conjecture 5.4], generalising the Kottwitz conjecture to

parabolic inductions of supercuspidal representations.
Our result describes the cohomology of these Rapoport–Zink spaces as a formal

alternating sum (indexed by certain root-theoretic data) of representation-theoretic

constructions including the local Langlands correspondence, parabolic inductions and
Jacquet modules.
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1164 A. Bertoloni Meli

We prove our result inductively using two formulas from the literature. The first of
these is Shin’s averaging formula [16, Theorem 7.5], which is proven using Mantovan’s

formula [11, Theorem 22]. Mantovan’s formula connects the cohomology of Rapoport–

Zink spaces, Igusa varieties and Shimura varieties. The second formula is the Harris–
Viehmann conjecture [13, Conjecture 8.4], which relates the cohomology of so-called

nonbasic Rapoport–Zink spaces to a product of Rapoport–Zink spaces of lower dimension.

A proof of this conjecture is expected to appear in a forthcoming paper by Scholze.

To carry out our induction, we prove combinatorial analogues of these formulas phrased
purely in terms of root-theoretic data. Interestingly, we are able to prove these analogues

for general quasi-split reductive groups, though at present we can only connect them to

the cohomology of Rapoport–Zink spaces of unramified EL-type. To do so in other cases,
one would need to generalise Shin’s averaging formula.

We now describe our main results more precisely. We fix an algebraic closure Qp of Qp .

We study Rapoport–Zink spaces of unramified EL-type, which we denote Mb,μ. These
are moduli spaces of p-divisible groups coming from an unramified EL-datum consisting

of

(1) a finite unramified extension F ⊂ Qp of Qp ,

(2) a finite-dimensional F vector space V which defines the group

G = ResF/QpGL(V ),

(3) a GQp
-conjugacy class of cocharacters {μ}, with μ : Gm → GQp

, and such that the

weights of μ are elements of {0,1},
(4) an element b of a finite set B(G,μ) which defines a group Jb that is an inner twist

of a Levi subgroup Mb of G .

Roughly, one can think of b,μ as specifying the Newton and Hodge polygons of a p-
divisible group and Jb as the automorphism group of the isocrystal b.
Let Qur

p denote the maximal unramified extension of Qp inside Qp , and let Q̂ur
p denote

its completion. Then the spaces Mb,μ are formal schemes over Q̂ur
p . One constructs

a tower of rigid spaces M
rig
U ,b,μ over the generic fibre M

rig
b,μ of Mb,μ, where the index

U runs over compact open subgroups of G(Qp). Associated to such a tower we have

a cohomology space [H •(G,b,μ)], which is an element of the Grothendieck group

Groth(G(Qp) × Jb(Qp) × WE{μ}G ) of admissible representations of G(Qp),Jb(Qp) and
WE{μ}G , where the latter group is the Weil group of the reflex field E{μ}G of {μ}. This
construction can be thought of as an alternating sum of a direct limit over U ⊂ G of

l -adic cohomology groups, with the actions of G(Qp) and Jb(Qp) arising from Hecke

correspondences and isogenies of p-divisible groups, respectively (refer to §3.1 for a precise
definition).

The cohomology object [H •(G,b,μ)] gives rise to a map of Grothendieck groups

MantG,b,μ : Groth(Jb(Qp)) → Groth(G(Qp)×WE{μ}G ),

which maps a representation ρ to the alternating sum of the Jb(Qp)-linear Ext groups of

[H •(G,b,μ)] and ρ.
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The map MantG,b,μ has been studied by many authors. Harris and Taylor [7] used this

construction to prove the local Langlands correspondence for general linear groups. It

also appears naturally in Mantovan’s work relating the cohomology of Shimura varieties,
Igusa varieties and Rapoport–Zink spaces [11]. Fargues studied MantG,b,μ for basic b in

some EL- and PEL-cases in [5]. Shin combined Mantovan’s formula with his own trace

formula description of the cohomology of Igusa varieties to prove instances of local–global
Langlands compatibilities [15].

In [16], Shin proved an averaging formula for MantG,b,μ which is key to our work. He

defined a map

Redb : Groth(G(Qp)) → Groth(Jb(Qp)),

which up to a character twist is given by composing the unnormalised Jacquet module

JacGPop
b

: Groth(G(Qp)) → Groth(Mb(Qp))

with the Jacquet-Langlands map of Badulescu [1]:

LJ : Groth(Mb(Qp)) → Groth(Jb(Qp)).

Shin uses global methods and so necessarily works with a large but inexplicit class of
representations, which he denotes accessible. This set loosely consists of those represen-

tations isomorphic to the p-component of an automorphic representation appearing in

the cohomology of a certain unitary-similitude group Shimura variety. In particular, the
essentially square-integrable representations in Groth(G(Qp)) are accessible.

In what follows, r−μ is a finite-dimensional representation of Ĝ�WE{μ}G which restricts

to the representation of highest weight −μ on Ĝ , and LL is the semisimplifed local

Langlands correspondence from [7]. Shin shows the following result:

Theorem 1.0.1 (Shin’s averaging formula). Assume π is an accessible representation of

G(Qp). Then ∑
b∈B(G,μ)

MantG,b,μ(Redb(π)) = [π ][r−μ ◦LL(π)|WE{μ}G
],

where this formula is correct up to a Tate twist which we omit for clarity, and [π ][ρ] is
our notation for an element π �ρ ∈ Groth(G(Qp)×WE{μ}G ).

Additionally we have the conjecture of Harris and Viehmann, which allows us to write

MantG,b,μ for nonbasic b (b is basic when it corresponds to an isocrystal with a single
slope) in terms of MantG ′,b′,μ′ such that G ′ is a general linear group of smaller rank

than G . This conjecture was formulated in [6] and [13] and is expected to be proven in

forthcoming work by Scholze. In what follows, Ind is the unnormalised parabolic induction
functor.

Conjecture 1.0.2 (Harris–Viehmann).

MantG,b,μ =
∑

(Mb,μ′)∈IG,μ

Mb,b′

IndG
Pb

(⊗k
i=1MantMb′

i
,b′

i,μ
′
i
),
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where we omit a Tate twist which we discuss at length in §3.2. The finite set IG,μ

Mb,b′ is

described in Definition 2.5.5.

Shin’s averaging formula and the Harris–Viehmann conjecture allow us to compute

MantG,b,μ ◦Redb recursively. The latter lets us compute MantG,b,μ for nonbasic b, given
that we know MantG ′,b′,μ′ for G ′ of lower rank, and the former lets us compute MantG,b,μ

for the unique basic b ∈B(G,μ) if we know it for all nonbasic b ∈B(G,μ). One of our main

results is to give a nonrecursive description of MantG,b,μ ◦Redb , which we now describe.
Let G = ResF/QpGL(V ) as before and choose a rational Borel subgroup B of G and a

rational maximal torus T ⊂ B ⊂ G . Then we consider pairs (MS,μS ), where MS ⊂ T is

a Levi subgroup of a parabolic subgroup PS containing B , and μS ∈ X∗(T ) is dominant
as a cocharacter of MS . We call a pair of this form a cocharacter pair for G .

We associate to a cocharacter pair (MS,μS ) the map of representations [MS,μS ] :
Groth(G(Qp)) → Groth(G(Qp)×WE{μS }MS

), which up to a character twist is given by

π 	→ [(IndG
PS

◦ [μS ]◦JacGPop
S

)(π)],

and

[μS ] : Groth(MS (Qp)) → Groth(MS (Qp)×WE{μS }MS
)

given by

π 	→ [π ][r−μS ◦LL(π)].

Then our main result, which follows from Theorem 3.3.7 in this paper, is the following:

Theorem 1.0.3. Suppose MantG,b,μ corresponds to a tower of unramified Rapoport–

Zink spaces of EL-type. We assume that the Harris–Viehmann conjecture is true. Then
if ρ ∈ Groth(G(Qp)) is essentially square-integrable, we have

MantG,b,μ(Redb(ρ)) =
∑

(MS ,μS )∈RG,b,μ

(−1)
LMS ,Mb [MS,μS ](ρ),

where RG,b,μ is a collection of cocharacter pairs with a combinatorial definition and

(−1)
LMS ,Mb is an easily determined sign.

Shin conjectures that the averaging formula holds for all admissible representations

of G(Qp) [16, Conjecture 8.1]. If this is indeed the case, then our result would also

immediately hold for all admissible representations of G(Qp).

A crucial part of the proof of this theorem is the following unconditional result, which
is perhaps interesting in its own right:

Theorem 1.0.4 (Imprecise version of Theorem 2.5.4 and Corollary 2.5.8). For general

quasi-split G and a cochcaracter μ (not necessarily minuscule), combinatorial analogues
of Shin’s averaging formula and the Harris–Viehmann conjecture hold true.

This result suggests that perhaps the combinatorics of cocharacter pairs is related

to MantG,b,μ in cases more general than Rapoport–Zink spaces of unramified EL-type.
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However, we caution the reader that the existence of nontrivial L-packets and nontrivial
endoscopy in more general groups will likely complicate the situation.

In §4, we use our combinatorial formula to prove the EL-type cases of a conjecture

of Harris ([6, Conjecture 5.4]). This conjecture describes MantG,b,μ(IG
M (ρ)) for ρ a

supercuspidal representation of M (Qp) for M a Levi subgroup of G . In this case, IG
M

denotes normalised parabolic induction. In particular, we show the following result, which

is our Conjecture 4.0.4:

Theorem 1.0.5 (Harris conjecture). We assume that Shin’s averaging formula holds for

all admissible representations of G(Qp) and that the Harris–Viehmann conjecture is true.

Let ρ be a supercuspidal representation of M (Qp). Then up to a precise character twist
and sign which we omit for clarity,

MantG,b,μ(LJ (IMb
M (ρ))) = [IG

M (ρ)]

⎡
⎢⎣ ⊕

(M ,μ′)∈Rel
G,μ
M ,b

r−μ′ ◦LL(ρ)

⎤
⎥⎦

for an explicit set of cocharacter pairs Rel
G,μ

M ,b.

We prove our result for IG
M (ρ) not necessarily irreducible and b not necessarily basic,

which is a generalisation of what Harris conjectured for the G we consider.
Finally, in Appendix 4 we give an example to show that for general representations ρ,

one cannot hope for an expression as simple as that in Harris’s conjecture.

2. Cocharacter formalism

In this section we define and study the notion of a cocharacter pair. This notation will be

used in the third and fourth sections of this paper, where we describe the cohomology of
certain Rapoport–Zink spaces in terms of cocharacter pairs. We endeavor to use a similar

notation to [10].

This section is divided into five subsections. These are structured so that the first
contains the basic definitions and the fourth and fifth contain the most important results.

The second and third subsections prove a number of technical lemmas that the reader

may want to skip at first and refer to as necessary.

2.1. Notation and preliminary definitions

For the remainder of this section, we fix G a connected quasi-split reductive group defined
over Qp . This is a significantly more general setting than we will need for applications

in this paper. However, we choose to work in this generality because doing so is both

conceptually clearer and potentially useful for future applications. The ideas in [10, §5]
might allow one to remove the quasi-split assumption, but we do not attempt this here,

as it is unnecessary for the applications. Moreover, Kottwitz’s study of the set B(G) in

that section relies on understanding the quasi-split case first.

Remark 2.1.1. The reader will notice that most of this section makes sense over an

arbitrary field. The assumption that we work over Qp is used in §2.4 when we connect
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cocharacter pairs to the set B(G) defined by Kottwitz. However, in [10, §5.1], Kottwitz

shows that over Qp , the set B(G) is parametrised by a disjoint union of sets of the form

X ∗(Z (M̂S )�)+ for MS a standard Levi subgroup of G . These latter sets make sense over
general fields, and one could make sense generally of all the results of this section by

replacing B(G) with the sets parametrising it.

Since G is quasi-split, we can pick a Borel subgroup B ⊂ G defined over Qp and a
maximal split torus A ⊂ B of G . We choose T to be a maximal torus defined over Qp

satisfying A ⊂ T ⊂ B . We define X ∗(A) and X∗(A), respectively, to be the character and

cocharacter groups of AQp
.

The group G has a relative root datum (X ∗(A),�∗(G,A),X∗(A),�∗(G,A)), where

�∗(G,A) and �∗(G,A), respectively, denote the set of relative roots and relative coroots

of G and the torus A. Our choice of Borel subgroup B determines a decomposition
�∗(G,A) = �∗(G,A)+

∐
�∗(G,A)− of positive and negative roots and a subset � ⊂

�∗(G,A)+ of simple roots. Analogous statements are also true for the coroots. The set

of parabolic subgroups P ⊃ B defined over Qp are called standard parabolic subgroups.

We define PS to be the unique standard parabolic subgroup such that �∗(PS,A) =
�∗(G,A)+ ∪ (�∗(G,A)− ∩SpanZ(S )). There is an inclusion-preserving bijection between

the set of standard parabolic subgroups and subsets of �, given by S 	→ PS .

We let NS be the unipotent radical of the standard parabolic subgroup PS . It is
a standard result that there exists a connected reductive subgroup M ⊂ PS so that

the natural map M → PS/NS is an isomorphism. In particular, this gives us a Levi

decomposition PS = MNS , and the subgroup M is called a Levi subgroup of PS . The
subgroup M is not unique, but any two Levi subgroups of PS are conjugate by an element

of NS . However, we have fixed a maximal torus T , and there is a unique Levi subgroup

MS containing T . The subgroup MS is constructed explicitly as the centraliser CG(Z ),

where Z ⊂ T is the connected component of the intersection of the kernels of the roots
in S . We refer to the Levi subgroups MS that we produce in this way as standard Levi

subgroups.

Define

A := X∗(A).

We have the closed rational Weyl chamber

CQ = {x ∈ AQ : 〈x,α〉 ≥ 0,α ∈ �}.
For each standard Levi subgroup, we define

AMS ,Q := {x ∈ AQ : 〈x,α〉 = 0,α ∈ S },
and we denote the strictly dominant elements of AMS ,Q by

A
+
MS ,Q = {x ∈ AQ : 〈x,α〉 = 0,α ∈ S,〈x,α〉 > 0,α ∈ �\S }.

We have ∐
MS

A
+
MS ,Q = CQ.
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There is a partial ordering of AQ given by μ � μ′ if μ′ − μ is a nonnegative rational
combination of simple roots.

Definition 2.1.2. We define a cocharacter pair for a group G (relative to some fixed

choice of T and B defined over Qp) to be a pair (MS,μS ) such that MS ⊂ G is a standard

Levi subgroup and μS ∈ X∗(T ) satisfies 〈μS,α〉 ≥ 0 for each positive absolute root α of

T in the Lie algebra of MS,Qp
. Positivity for absolute roots is determined by the Borel

subgroup B which we have fixed.

We denote the set of cocharacter pairs for G by CG .

Remark 2.1.3. We caution the reader that the cocharacter μS need not be an element

of X∗(A), even though MS is defined over Qp .

We could define cocharacter pairs more canonically as the set of equivalence classes of
pairs (M ,μ) such that M is a Levi subgroup of G defined over Qp and μ is a cocharacter

of M . Two pairs (M ,μ),(M ′,μ′) are equivalent if M ,M ′ are conjugate in GQp and μ,μ′
are conjugate in MQp

. We choose not to do this, as in practice we will often need to work
with the unique dominant cocharacter in a conjugacy class relative to a fixed base root

datum.

Let � = Gal(Qp/Qp). Since we have assumed that T and B are defined over Qp , �

acts on TQp
and BQp

. This gives us a natural left action of � on X∗(T ) given explicitly

by (γ ·μ)(g) = γ (μ(γ −1(g)) for μ ∈ X∗(T ) and γ ∈ �. We get an analogous left action

on X ∗(T ), and one can easily check that the pairing X ∗(T )×X∗(T ) → Z is �-invariant

under these actions.
We have

X∗(T )� = A.

Indeed, a �-invariant cocharacter μ factors through the identity component of T�, where

T� is the subscheme defined by T�(Qp) = T (Qp)�. But the identity component of T� is
the torus A. Conversely, any cocharacter of A induces a �-invariant cocharacter via the

natural inclusion A ↪→ T .

Given μ ∈ X∗(T ), we construct an element μ� of AQ as follows:

μ� = 1
[� : �μ]

∑
γ∈�/�μ

γ (μ),

where �μ is the stabiliser of μ in �. Then μ� ∈ X∗(T )�Q = AQ.

Given a standard Levi subgroup MS , we let W rel
MS

denote the relative Weyl group of

MS . The group W rel
MS

is defined to be the subgroup of the relative Weyl group W rel that

is generated by the reflections corresponding to simple roots in S .

Definition 2.1.4. We define a map

θMS : X∗(T ) → AQ,
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given by

θMS (μ) = 1
|W rel

MS
|

∑
σ∈W rel

MS

σ(μ�).

We are now ready to describe a formalism that will prove useful in studying the
cohomology of certain Rapoport–Zink spaces. Crucial to everything that follows is a

partial ordering on the set CG of cocharacter pairs for G .

Definition 2.1.5. We define a partial ordering on CG which we denote by the symbol
≤. Unfortunately, our definition is somewhat indirect: we first define when (MS2,μS2) ≤
(MS1,μS1) for MS2 ⊂ MS1 (equivalently, S2 ⊂ S1) and S1 \S2 contains a single element

(in other words, MS2 is a maximal proper Levi subgroup of MS1). We then extend the
relation to all cocharacter pairs by taking the transitive closure.

Let MS2,MS1 be standard Levi subgroups of G such that MS2 ⊂ MS1 and S1 \ S2 is

a singleton. For cocharacter pairs (MS2,μS2),(MS1,μS1) ∈ CG , we write (MS2,μS2) ≤
(MS1,μS1) if μS2 is conjugate to μS1 in MS1Qp

and θMS2
(μS2) � θMS1

(μS1). We then

take the transitive closure to extend to a partial ordering on CG .

The following example shows that this definition depends on the assumption that S1 \S2
is a singleton:

Example 2.1.6. Consider G = GL4 with T , the diagonal torus and B the upper

triangular matrices. We can pick a basis for X∗(T ) of cocharacters êi defined so that

êi (g) is the diagonal matrix with 1 in every position except for the ith, which equals

g . Then we can identify an element of X∗(T ) with its coordinate vector in this basis.
Finally, we use additional parentheses to indicate the product structure of the standard

Levi subgroup MS . Using this notation, the set of cocharacter pairs that are less than or

equal to (GL4,(12,02)) is given by Diagram (11).
In particular, we see that (GL4

1,(1)(1)(0)(0)) ≤ (GL4,(12,02)), since we have a chain of

cocharacter pairs where each Levi subgroup is maximal in the next:

(GL4
1,(1)(1)(0)(0)) ≤ (GL1 ×GL2 ×GL1,(1)(1,0)(0))

≤ (GL3 ×GL1,(12,0)(0)) ≤ (GL4,(12,02)).

However, it is not the case that (GL4
1,(1)(0)(1)(0)) ≤ (GL4,(12,02)), even though

θGL4
1
((1,0,1,0)) � θGL4((1,1,0,0)) and the cocharacters are conjugate in G .

Finally, we remark that the fact that all the related cocharacter pairs in this example

have equal (as opposed to just conjugate) cocharacters is very much a result of us choosing
a fairly small group G . Even for G = GL5, this is not the case.

Definition 2.1.7. We define a cocharacter pair (MS,μS ) for G to be strictly decreasing
if θMS (μS ) ∈ A

+
MS ,Q. We denote by SD ⊂ CG the strictly decreasing elements of CG , and

by SDμ (for dominant μ ∈ X∗(T )) the strictly decreasing elements (MS,μS ) ∈ CG such

that (MS,μS ) ≤ (G,μ).

Remark 2.1.8. The θMS map can be thought of as associating a tuple of slopes to a

cocharacter pair. Then the strictly decreasing cocharacter pairs with Levi subgroup MS
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are the ones whose slope tuple lies in the image of the Newton map ν :B(G)MS →AMS ,Q.
This statement is made precise by Proposition 2.4.3.

2.2. An alternate characterisation of the averaging map

The following two subsections consist of a collection of lemmas developing the theory of

the map θMS and the set of strictly decreasing elements SD of CG .

In this section, we give an alternate description of the map θMS . To do so, we will need
several properties of cocharacters and root data, which we record in the following lemma.

For this lemma only, we consider T and G defined over a more general class of fields, so

that these results also apply to the complex dual groups T̂ and Ĝ .

Lemma 2.2.1. Let F ⊃ Q be a field and F an algebraic closure. Let G be a connected
quasi-split reductive group defined over F . Suppose that T ⊂ G is a maximal torus defined

over F and that the group scheme TF admits an action defined over F by a finite group


. Let X ∗(T
) denote the characters of the subgroup scheme of 
-fixed points of TF .

The antiequivalence of categories between tori and finitely generated free abelian groups
given by TF 	→ X ∗(T ) induces an action of 
 on X ∗(T ). We then have the following:

(1) There is a unique isomorphism X ∗(T
) ∼= X ∗(T )
 such that the following diagram

commutes:

X ∗(T ) X ∗(T
)

X ∗(T )
.

res

proj

(2) Let MS ⊂ G be a standard Levi subgroup. Let W abs
MS

,W rel
MS

denote the absolute and

relative Weyl groups of MS and let � = Gal(F/F ). Then WMS ,rel acts on X∗(T )�

via its natural identification with A, and � acts on X∗(T )
WMS ,abs , since for w ∈

WMS ,abs, γ ∈ � and μ ∈ X∗(T )
WMS ,abs , we have w(γ (μ)) = γ (γ −1(w)(μ)) = γ (μ).

Then the identity map on X∗(T ) induces an isomorphism of groups

(X∗(T )
WMS ,abs)� ∼= (X∗(T )�)

WMS ,rel .

(3) The natural map X∗(T )
Q ↪→ X∗(T )Q � X∗(T )Q,
 induces an isomorphism

X∗(T )
Q
∼= X∗(T )
,Q.

Proof. The functor T 	→ X ∗(T ) is an antiequivalence between the categories of

diagonalisable groups over F and finitely generated abelian groups. The diagram for

the universal property for 
-invariants is that of 
-coinvariants but with all the arrows
reversed. Thus, there must exist a unique isomorphism between X ∗(T
) and X ∗(T )

that makes the diagram

X ∗(T ) X ∗(T
)

X ∗(T )


res

proj

commute. This proves (1).
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In [9, Lemma 1.1.3], Kottwitz proves that the identity map on X∗(T ) induces an

isomorphism

(X∗(T )�)/W rel
MS

∼= (X∗(T )/W abs
MS

)�.

Thus, to prove (2) we need only show that this isomorphism gives a bijection of
the singleton orbits. This will give an isomorphism of groups (not just sets) between

(X∗(T )
WMS ,abs)� and (X∗(T )�)

WMS ,rel that is induced from the identity map on X∗(T ).

Kottwitz’s isomorphism maps the W rel
MS

-orbit of μ ∈ X∗(T )� to its W abs
MS

orbit in X∗(T ).

Thus, it suffices to show that if μ ∈ X∗(T )� is invariant by W rel
MS

, then it is also invariant

by W abs
MS

. If μ is invariant by W rel
MS

, then the pairing of μ with each relative root of MS is
0. Thus the image of μ lies in the intersection of the kernels of the relative roots of MS ,

which is Z (MS )∩A. Therefore, μ is invariant under the action of W abs
MS

.

Finally, we note that Kottwitz’s proof uses the fact that the intersection of the absolute

Weyl chamber C
abs

Q with the image of X∗(A) in X∗(T ) gives the relative Weyl chamber

CQ. Indeed, this follows easily from the fact that the restriction of the set of absolute

simple roots �abs relative to our choice of B and T equals the set of relative simple roots

� (see Proposition B.0.1). An analogous fact is known for the Weyl chambers in the
character group X ∗(T ) (see Proposition B.0.3), but this seems to be much more subtle.

For (3), we need to construct an inverse to the map

X∗(T )
Q ↪→ X∗(T )Q � X∗(T )Q,
.

Take [μ] ∈ X∗(T )Q,
 for μ ∈ X∗(T )Q. Then

1



∑
λ∈


λ(μ) ∈ X∗(T )
Q

is independent of the choice of lift of [μ] to X∗(T )Q and gives the desired inverse.

Let AMS be the maximal split torus in the centre of MS . Then

X∗(AMS )Q ∼= AMS ,Q.

We now prove a lemma that we will need to use to describe the alternate characterisation

of θMS .

Lemma 2.2.2.

(1) There is a natural isomorphism X ∗(Z (M̂S )�)Q ∼= AMS ,Q defined via a series of

canonical identifications.

(2) The isomorphism in (1) coincides with the one constructed in [9, Lemma 1.1.3].

Proof. We prove (1) first. By Lemma 2.2.1, we have the following isomorphisms:

X ∗(T̂W abs
MS

,�
)Q ∼= X ∗(T̂ )Q,W abs

MS
,� = X∗(T )Q,W abs

MS
,�

∼= X∗(T )
W abs

MS
,�

Q
∼= X∗(T )

�,W rel
MS

Q

∼= X∗(AMS )Q ∼= AMS ,Q.
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We explicate the isomorphism X∗(T )
�,W rel

MS
Q

∼= X∗(AMS )Q. This follows from the isomor-

phism X∗(A)
W rel

MS ∼= X∗(AMS ), which we now describe. Suppose we have μ ∈ X∗(A)
W rel

MS .

Equivalently, for each relative root α of Lie(MS ) we have σα(μ) = μ (where σα is the
reflection in the Weyl group corresponding to α). Since σα(μ) = μ − 〈μ,α〉α̌, this is

equivalent to 〈μ,α〉 = 0 for all relative roots α of Lie(MS ), which in turn is equivalent

to the statement that im(μ) ⊂ ⋂
α

kerα. Finally, this is equivalent to im(μ) ⊂ Z (MS )∩A.

Since the image of a cocharacter is connected, we in fact have that μ ∈ X∗(AMS ).

To finish the argument, we need to construct an isomorphism

X ∗(Z (M̂S )�)Q ∼= X ∗(T̂W abs
MS

,�
)Q.

Note that it is necessary to take the tensor product with Q here, as Z (M̂S ) and T̂W abs
MS

need not be isomorphic.

It suffices to show that

X ∗(Z (M̂S ))Q ∼= X ∗(T̂W abs
MS )Q.

The group Z (M̂S ) is equal to the intersection of the kernels of the roots of M̂S , and so
X ∗(Z (M̂S )) is identified with X ∗(T̂ )/R, where R is the Z-module spanned by the roots of

M̂S . By Lemma 2.2.1, X ∗(T̂W abs
MS ) ∼= X ∗(T̂ )W abs

MS
= X ∗(T̂ )/D , where D is the Z module

spanned by w(μ)−μ for every w ∈ W abs
MS

and μ ∈ X ∗(T̂ ). Since Z (M̂S ) ⊂ T̂W abs
MS , we have

a natural surjection

X ∗(T̂W abs
MS ) � X ∗(Z (M̂S )).

By our previous discussion, the kernel of this map is R/D . Thus, to prove our claim, it

suffices to show that R/D is finite. But if α is a root of M̂S , then σα(α)−α = −2α. Thus

2R ⊂ D , and so we have the desired result.
We now show (2). The map in [10, §4.4.3] is defined as follows:

AMS ,Q → X∗(T )Q = X ∗(T̂ )Q
res−→ X ∗(Z (M̂S )�)Q,

where the final map is restriction of characters. By Lemma 2.2.1(1), this last map is the

same as the composition

X ∗(T̂ )Q → X ∗(T̂ )Q,W abs
MS

,�
∼= X ∗(T̂W abs

MS
,�

)Q ∼= X ∗(Z (M̂S )�)Q.

Thus, by applying Lemma 2.2.1 and the proof of Lemma 2.2.2, we get that the entire

map is given by

AMS ,Q
∼= X∗(T )

�,W rel
MS

Q
∼= X∗(T )

W abs
MS

,�

Q
∼= X∗(T )Q,W abs

MS
,�,

∼= X ∗(T̂W abs
MS

,�
)Q ∼= X ∗(Z (M̂S )�)Q.

We observe that this is the inverse of what we wrote down before.
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We are now ready to give our alternate characterisation of the map θMS .

Proposition 2.2.3 (Alternate characterisation of θMS ). The map θMS that was intro-
duced in Definition 2.1.4 is equal to the composition

X∗(T ) = X ∗(T̂ )
res−→ X ∗(Z (M̂S )�) → X ∗(Z (M̂S )�)Q ∼= AMS ,Q ⊂ AQ,

where the final isomorphism is the one described in Lemma 2.2.2.

Proof. We recall Definition 2.1.4, where θMS is defined to be the composition

X∗(T ) → X∗(T )�Q → X∗(T )
�,W rel

MS
Q ⊂ AQ,

where both maps are averages over the relevant group. As we now show, this is the same

as the composition

X∗(T ) → X∗(T )
W abs

MS
Q → X∗(T )

W abs
MS

,�

Q
∼= X∗(T )

�,W rel
MS

Q ⊂ AQ,

where the first two maps are averages and the third is as in Lemma 2.2.1(2). Indeed, for

μ ∈ X∗(T ),

1
|W rel

MS
|

∑
w∈W rel

MS

∑
γ∈�

w(γ (μ))

is invariant by W abs
MS

, by Lemma 2.2.1(2), and so – keeping in mind that W rel
MS

⊂ W abs
MS

by Corollary B.0.2 – equals

1
|W abs

MS
|

∑
w∈W abs

MS

∑
γ∈�

w(γ (μ)) = 1
|W abs

MS
|

∑
w∈W abs

MS

∑
γ∈�

γ (w)(γ (μ))

= 1
|W abs

MS
|

∑
w∈W abs

MS

∑
γ∈�

γ (w(μ)) = 1
|W abs

MS
|
∑
γ∈�

∑
w∈W abs

MS

γ (w(μ)).

Now we consider the following commutative diagram:

X∗(T )Q X∗(T )
W abs

MS
Q X∗(T )

W abs
MS

,�

Q .

X∗(T )Q,W abs
MS

X∗(T )
W abs

MS
Q,�

X∗(T )Q,W abs
MS

,�

avg avg

avg avg

avg
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The commutativity essentially follows from the definition of the averaging maps. The
benefit of this is that now we can write θMS as the composition of

X∗(T ) → X∗(T )W abs
MS

→ X∗(T )W abs
MS

,� → X∗(T )Q,W abs
MS

,�

→ X ∗(T )
W abs

MS
Q,� → X∗(T )

W abs
MS

,�

Q
∼= X∗(T )

�,W rel
MS ⊂ AQ,

where we no longer need to base-change the first three spaces to Q, because denominators
are not introduced in the maps until later.

Using the equality between cocharacters of T and characters of T̂ , we rewrite this as

X∗(T ) = X ∗(T̂ ) → X ∗(T̂ )W abs
MS

→ X ∗(T̂ )W abs
MS

,� → X ∗(T̂ )Q,W abs
MS

,�

→ X ∗(T̂ )
W abs

MS
Q,� → X ∗(T̂ )

W abs
MS

,�

Q = X∗(T )
W abs

MS
,�

Q
∼= X∗(T )

�,W rel
MS ⊂ AQ.

Now we invoke Lemma 2.2.1(1) to get that this composition is equal to

X∗(T ) = X ∗(T̂ )
res−→ X ∗(T̂W abs

MS
,�

) → X ∗(T̂W abs
MS

,�
)Q ∼= X ∗(T̂ )Q,W abs

MS
,�

→ X ∗(T̂ )
W abs

MS
Q,� → X ∗(T̂ )

W abs
MS

,�

Q = X∗(T )
W abs

MS
,�

Q
∼= X∗(T )

�,W rel
MS ⊂ AQ.

The final step is to observe that we have a commutative diagram

X ∗(T̂W abs
MS

,�
) X ∗(T̂W abs

MS
,�

)Q

X ∗(Z (M̂S )�) X ∗(Z (M̂S )�)Q.

res ∼

Thus, the previous expression equals

X∗(T ) = X ∗(T̂ )
res−→ X ∗(T̂W abs

MS
,�

)
res−→ X ∗(Z (M̂S )�) → X ∗(Z (M̂S )�)Q

∼= X ∗(T̂W abs
MS

,�
)Q ∼= X ∗(T̂ )Q,W abs

MS
,� → X ∗(T̂ )

W abs
MS

Q,�

→ X ∗(T̂ )
W abs

MS
,�

Q = X∗(T )
W abs

MS
,�

Q
∼= X∗(T )

�,W rel
MS ⊂ AQ.

Comparing with Lemma 2.2.2, we can rewrite θMS as

X∗(T ) = X ∗(T̂ )
res−→ X ∗(Z (M̂S )�) → X ∗(Z (M̂S )�)Q ∼= AMS ,Q ⊂ AQ

as desired.

We record the following useful corollary of the ideas discussed in the preceding

argument:

Corollary 2.2.4. Suppose that μ,μ′ ∈ X∗(T ) are conjugate in MS,Qp
. Then θMS (μ) =

θMS (μ′).
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Proof. By the observation at the start of Proposition 2.2.3, θMS is equivalently defined
as the composition

X∗(T ) → X∗(T )
W abs

MS
Q → X∗(T )

W abs
MS

,�

Q
∼= X∗(T )

�,W rel
MS

Q ⊂ AQ.

In particular, μ and μ′ are mapped to the same element under the first map in this

composition.

2.3. Strictly decreasing cocharacter pairs

In this section, we prove a number of properties of strictly decreasing cocharacter pairs

and their relation to the partial order we defined in Definition 2.1.5. As always, we let σα

denote the reflection in the relative Weyl group corresponding to the relative root α.

Lemma 2.3.1. If x ∈ AQ is dominant, then

y = 1
|W rel

MS
|

∑
σ∈W rel

MS

σ(x )

is also dominant. If, in addition, 〈x,α〉 > 0 for some α ∈ �\S , then we also have 〈y,α〉 > 0.

Proof. For the first part of the lemma, we claim that if we can show that 〈σ(x ),α〉 ≥ 0
for each σ ∈ W rel

MS
and α ∈ �\S , then we are done. This follows because if a collection of

cocharacters pair nonnegatively with α, then so will their average. Thus for α ∈ �\S , we
get 〈y,α〉 ≥ 0. For α ∈ S , we automatically have 〈y,α〉 = 0, since 0 = y −σα(y) = 〈y,α〉α̌.
Pick α ∈ � \ S . Then the root group of α is contained in the unipotent radical NS

of PS . The group NS is normalised by MS . In particular, for any σ ∈ W rel
MS

the root

group of σ−1(α) is contained in NS , and hence σ−1(α) is also a positive root. Thus

〈σ(x ),α〉 = 〈x,σ−1(α)〉 ≥ 0, as desired.
To prove the second part, we notice since 〈x,α〉 > 0, the term in y corresponding to

σ = 1 has positive pairing with α. Since all the other terms have nonnegative pairing with

α, we must have 〈y,α〉 > 0.

Lemma 2.3.2. If x as in Lemma 2.3.1 is dominant, then

1
|W rel

MS
|

∑
σ∈W rel

MS

σ(x ) � x .

Proof. It suffices to show that for any σ ∈ W rel
MS

, we have σ(x ) � x . This is a standard

fact [10, §4.4.3].

Corollary 2.3.3. Let (MS,μS ) ∈ SD be a strictly decreasing cocharacter pair, let

(MS ′,μS ′) ∈ CG and suppose that (MS,μS ) ≤ (MS ′,μS ′). Then (MS ′,μS ′) ∈ SD.
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Proof. We need to show that for each β ∈ �\S ′, 〈θMS ′ (μS ′),β〉 > 0. By Corollary 2.2.4,
θMS ′ (μS ′) = θMS ′ (μS ). Further, we observe that

θMS ′ (μS ) = 1
|W rel

MS ′ |
∑

σ∈W rel
MS ′

σ(θMS (μS )). (1)

Since θMS (μS ) is dominant by assumption and satisfies 〈θMS (μS ),β〉 > 0, we can apply

Lemma 2.3.1 to get the desired result.

The following easy uniqueness result is quite useful:

Lemma 2.3.4. Let (MS1,μS1),(MS2,μS2),(MS ′
2
,μS ′

2
) ∈ CG . Suppose further that

(MS1,μS1) ≤ (MS2andμS2), that (MS1,μS1) ≤ (MS ′
2
,μS ′

2
). If MS2 = MS ′

2
, then

(MS2,μS2) = (MS ′
2
,μS ′

2
).

Proof. By definition, μS1,μS2,μS ′
2
are all conjugate in MS2 . But also, μS2 and μS ′

2
are

dominant in the absolute root system. Thus they are equal.

We now define the notion of a cocharacter pair being strictly decreasing relative to a
Levi subgroup.

Definition 2.3.5. Let MS �MS ′ be standard Levi subgroups of G . We say that (MS,μS )

is strictly decreasing relative to MS ′ if 〈θMS (μS ),α〉 > 0 for α ∈ S ′ \S .

Remark 2.3.6. Recall that by construction, 〈θMS (μS ),α〉 = 0 for α ∈ S . Thus, (MS,μS ) ∈
SD exactly when it is strictly decreasing relative to G .

Lemma 2.3.7. Let (MS1,μS1),(MS ′
1
,μS ′

1
) ∈ CG be cocharacter pairs such that

(MS1,μS1) ≤ (MS ′
1
,μS ′

1
). Let MS2 ⊃ MS1 be a standard Levi subgroup of G and suppose

(MS1,μS1) is strictly decreasing relative to MS2 . Then (MS ′
1
,μS ′

1
) is strictly decreasing

relative to MS ′
1∪S2 .

Proof. We first reduce to the case where MS1 is a maximal Levi subgroup of MS ′
1
(i.e.,

S ′
1 = S1 ∪{α} for some α ∈ �\S1). To do so, we recognise that the relation (MS1,μS1) ≤

(MS ′
1
,μS ′

1
) definitionally implies that there is a finite sequence of cocharacter pairs

(MS1,μS1) = (MS0,μS0) ≤ ... ≤ (MSk ,μSk ) = (MS ′
1
,μS ′

1
),

where each MSi is a maximal Levi subgroup of MSi+1 . Thus, if we prove the lemma in

the maximal Levi subgroup case, we can inductively prove it in the general case.

We now assume that MS1 ⊂ MS ′
1
is a maximal Levi subgroup so that S ′

1 = S1 ∪{α} for
some α ∈ �\S1. We need to show that 〈θMS ′

1
(μS ′

1
),β〉 > 0 for each β ∈ S ′

1 ∪S2 \S ′
1. First

note that any such β is an element of S2 \ S1. By Corollary 2.2.4, since μS1 and μS ′
1

are conjugate in MS ′
1
, we have θMS ′

1
(μS1) = θMS ′

1
(μS ′

1
). Thus we are reduced to showing

〈θMS ′
1
(μS1),β〉 > 0 for β ∈ S2 \S1.

Note that since (MS1,μS1) is strictly decreasing relative to MS2 , we have that θMS1
(μS1)

is dominant relative to the root datum of MS2 and 〈θMS1
(μS1),β〉 > 0. Therefore, by (1)

and Lemma 2.3.1, 〈θMS ′
1
(μS1),β〉 > 0, as desired.
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Proposition 2.3.8. Let (MS,μS ) ∈ CG and suppose it is strictly decreasing relative to
some standard Levi subgroup MS ′ ⊃ MS . Then there is a unique (MS ′,μS ′) ∈ CG such that

(MS,μS ) ≤ (MS ′,μS ′). We call (MS ′,μS ′) the extension of (MS,μS ) to MS ′ .
In the case where S ′ = S ∪ {α} for α ∈ � \ S , the converse is true. Specifically, if

(MS,μS ) ∈ CG and there exists (MS ′,μS ′) ∈ CG satisfying (MS ′,μS ′) ≥ (MS,μS ) with

S ′ = S ∪{α}, then (MS,μS ) is strictly decreasing relative to MS ′ .

Proof. We begin by proving the first statement. Uniqueness follows from Lemma 2.3.4.
For existence, we first reduce to the case where MS is a maximal Levi subgroup of MS ′ .
Suppose we have proven the proposition in this reduced case. We might then try to prove

the general case by iteratively applying the reduced case of the proposition to a chain
of standard Levi subgroups MS = MS0 ⊂ ... ⊂ MSk = MS ′ such that each is maximal in

the next. Such a chain clearly exists, but to apply the reduced case of the proposition we

need to show that if we have constructed a cocharacter pair (MSi ,μSi ) ≥ (MS,μS ), then

(MSi ,μSi ) is strictly decreasing relative to MS ′ . This follows from Lemma 2.3.7.
Now we let μS ′ be the unique conjugate of μS which is dominant in MS ′ . If we can show

that θMS ′ (μS ′) ≺ θMS (μS ), then (MS ′,μS ′) will satisfy the conditions of the proposition.

By Corollary 2.2.4 and (1),

θMS ′ (μS ′) = θMS ′ (μS ) = 1
|WMS ′ |

∑
σ∈WMS ′

σ(θMS (μS )),

so we can reduce to showing that

1
|WMS ′ |

∑
σ∈WMS ′

σ(y) ≺ y,

for any y satisfying 〈y,α〉 > 0 for α ∈ S ′ \S and 〈y,α〉 = 0 for α ∈ S . Any such y is dominant

in the root datum of MS ′ and so by Lemma 2.3.2,

1
|WMS ′ |

∑
σ∈WMS ′

σ(y) � y .

Further, this expression cannot be an equality, because y has positive pairing with each

root of S ′ \S , while 1
|WMS ′ |

∑
σ∈WMS ′

σ(y) has 0 pairing with these roots.

To prove the converse, suppose that (MS,μS ) ≤ (MS ′,μS ′) and S ′ = S ∪ {α} for some
α ∈ �\S . Then by Corollary 2.2.4,

θMS ′ (μS ′) = θMS ′ (μS ) = θMS (μS )+σα(θMS (μS ))

2
,

and so

θMS (μS )− θMS ′ (μS ′) = θMS (μS )−σα(θMS (μS ))

2
= 1

2
〈θMS (μS ),α〉α̌.

Since by assumption θMS ′ (μS ′) ≺ θMS (μS ), it follows that 〈θMS (μS ),α〉 > 0.
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Remark 2.3.9. Note that the converse of this proposition is not true in the general case.

Corollary 2.3.10. Fix a standard Levi subgroup MS and roots α1,α2 ∈ � \S . Suppose
that we have cocharacter pairs (MS,μS ),(MS∪{α1},μS∪{α1}),(MS∪{α1,α2},μS∪{α1,α2}) ∈ CG

satisfying

(MS,μS ) ≤ (MS∪{α1},μS∪{α1}) ≤ (MS∪{α1,α2},μS∪{α1,α2})

and that (MS,μS ) is strictly decreasing relative to MS∪{α2}.
Then the extension of (MS,μS ) to MS∪{α2}, which we denote (MS∪{α2},μS∪{α2}), satisfies

(MS,μS ) ≤ (MS∪{α2},μS∪{α2}) ≤ (MS∪{α1,α2},μS∪{α1,α2}).

Proof. By the second statement of Proposition 2.3.8, we have that (MS,μS ) is strictly

decreasing relative to MS∪{α1}. Then by Lemma 2.3.7, (MS∪{α2},μS∪{α2}) is strictly
decreasing relative to MS∪{α1,α2}. Thus by Proposition 2.3.8 we have (MS∪{α2},μS∪{α2}) ≤
(MS∪{α1,α2},μS∪{α1,α2}), as desired.

Proposition 2.3.11. Let S ⊂ S1 ⊂ S2 be subsets of � and suppose (MS,μS ),(MS2,μS2) ∈
CG with

(MS,μS ) ≤ (MS2,μS2)

and (MS,μS ) strictly decreasing relative to MS1 . Then the unique extension (MS1,μS1)

of (MS,μS ) to MS1 satisfies

(MS1,μS1) ≤ (MS2,μS2).

Proof. Since (MS,μS ) ≤ (MS2,μS2), there is an increasing chain of cocharacter pairs

(MS,μS ) = (MS0,μS0) ≤ ... ≤ (MSk ,μSk ) = (MS2,μS2) such that each standard Levi

subgroup is maximal in the next. The content of this proposition is that we can pick a

chain such that (MS1,μS1) appears. By Lemma 2.3.7, we can assume that MS is maximal
in MS1 . Let α be the unique element of S1 \S .
Pick a chain of cocharacter pairs (MS,μS ) = (MS0,μS0) ≤ ... ≤ (MSk ,μSk ) = (MS2,μS2)

as before. Chains of cocharacter pairs are determined by an ordering on the roots in
S2 \ S = {α1,...,αk }, such that S i = S ∪ {α1,...,αi }. The root α appears in this chain,

so α = αi for some i . If i = 1, we are done. Otherwise, we consider (MSi−2,μSi−2) ≤
(MSi−1,μSi−1) ≤ (MSi ,μSi ). By Lemma 2.3.7, (MSi−2,μSi−2) is strictly decreasing relative
to MSi−2∪{α}, and so by Corollary 2.3.10 – applied so that (MSi−2,μSi−2) takes the place

of (MS,μS ) – we get a new chain of cocharacter pairs between (MS,μS ) and (MS2,μS2),

where we switch the positions of α,αi−1 in the corresponding ordering of S2 \ S . By

repeating this argument, we can construct a chain where α = α1, which is what we
need.

The preceding propositions give us the following picture. Given a cocharacter pair
(MS,μS ), we check which simple roots α satisfy 〈θMS (μS ),α〉 > 0. Suppose there are n
such simple roots. Then we get 2n standard Levi subgroups containing MS , corresponding

to adding different subsets of these simple roots. The cocharacter pair (MS,μS ) has a

https://doi.org/10.1017/S1474748020000535 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000535


1180 A. Bertoloni Meli

unique extension to each of the Levi subgroups, and the poset lattice of these cocharacter
pairs can be thought of as the graph of an n-dimensional cube in the following way. The

vertices of the cube are the 2n cocharacter pairs extending (MS,μS ) that we have just

constructed. For two such pairs (MS1,μS1),(MS2,μS2), we draw an edge between the two
corresponding vertices if either S1 ⊂ S2 and |S2 \S1| = 1 or S2 ⊂ S1 and |S1 \S2| = 1. We

can upgrade this graph to a directed graph by stipulating that an edge between (MS1,μS1)

and (MS2,μS2) is directed from (MS1,μS1) to (MS2,μS2) if (MS2,μS2) < (MS1,μS1).

Finally, note that for any two pairs (MS1,μS1) and (MS2,μS2) corresponding to vertices
in this cube, we have (MS2,μS2) ≤ (MS1,μS1) if and only if there is a directed path in the

cube travelling from the vertex of (MS1,μS1) to that of (MS2,μS2).

2.4. Connection with isocrystals

We now investigate the relation between strictly decreasing cocharacter pairs and

Kottwitz’s theory of isocrystals with additional structure (see [Ch6 1.6.18 3, p. 158] for
omitted details on the theory of isocrystals).

An isocrystal is a pair (V ,�) where V is a finite dimensional Q̂ur
p vector space and

� : V → V is an additive transformation satisfying �(av) = σ(a)�(v) for a ∈ Q̂ur
p ,v ∈ V

and σ the arithmetic Frobenius morphism. As before, let G be a connected quasi-split
reductive group defined over Qp and consider the set of isomorphism classes of exact

⊗-functors from Rep(G) to Isoc, the category of isocrystals. Such isomorphism classes

are classified by H 1(WQp,G(Q̂ur
p )), which we denote B(G) (where WQp is the Weil group

of Qp).

In [10], Kottwitz constructs the Newton map ν : B(G) → CQ and the Kottwitz map
κ : B(G) → X ∗(Z (Ĝ)�). An element of B(G) is uniquely determined by its image under

these maps.

We say that the standard Levi subgroup MS is associated to b ∈ B(G) if ν(b) ∈ A
+
MS ,Q.

Henceforth, we will often denote the standard Levi subgroup associated to b by Mb .

Notice that many elements of B(G) could be associated to the same Levi subgroup. We

call b basic if Mb = G . We write

B(G) =
∐
S⊂�

B(G)MS ,

such that B(G)MS consists of those b ∈ B(G) associated to MS . We denote by B(MS )+
the maximal subset of B(MS ) such that ν(B(MS )+) ⊂ CQ. In [10, §4.2], Kottwitz uses the

Kottwitz map for MS to construct canonical bijections

B(G)MS
∼= B(MS )+MS

∼= X ∗(Z (M̂S )�)+, (2)

where he constructs a canonical isomorphism

X ∗(Z (M̂S )�)Q ∼= AMS ,Q (3)
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and X ∗(Z (M̂S )�)+ denotes the subset of X ∗(Z (M̂S )�) mapping to A
+
MS ,Q. In fact,

Kottwitz shows that the composition of these isomorphisms gives the Newton map

B(G)MS → A
+
MS ,Q ↪→ CQ.

For a further discussion of (3), we refer the reader to Lemma 2.2.2.

We now prove an important lemma that will be used to relate the set B(G) to the

strictly decreasing elements of CG .

Lemma 2.4.1. Fix a standard Levi subgroup MS of G and let (MS,μS ) ∈ SD. Then

θMS (μS ) ∈ ν(B(G)MS ).

Proof. We first describe the set ν(B(G)MS ). By (2) and (3), the set ν(B(G)MS ) is equal

to the image of X ∗(Z (M̂S )�)+ in AMS ,Q. Thus, to prove this lemma, it suffices to show

that θMS factors through the map X ∗(Z (M̂S )�) ↪→ X ∗(Z (M̂S )�)Q ∼= AMS ,Q, where the
isomorphism is as in (3) or Lemma 2.2.2. Then, since (MS,μS ) is strictly decreasing,

the factoring of θMS will map μS to an element of X ∗(Z (M̂S )�)+, as desired. The fact

that θMS factors in this way follows from the alternate characterisation of θMS given in

Proposition 2.2.3.

Definition 2.4.2. Fix μ ∈ X∗(T ). Then we recall the following definition from Kottwitz

[10, §5.1]:

B(G,μ) := {b ∈ B(G) : ν(b) � θT (μ),κ(b) = μ|Z (Ĝ)� }.
Now we prove the key result of this section, which permits us to associate an element

of B(G) to each strictly decreasing cocharacter pair.

Proposition 2.4.3. We have a natural map

T : SD → B(G)

defined as follows. Let (MS,μS ) ∈ SD. Then there exists b ∈ B(G) such that κ(b) =
μS |Z (Ĝ)�

and ν(b) = θMS (μS ). We note that by construction, b is unique. Then we define
T ((MS,μS )) = b. Furthermore, we show that

T (SDμ) ⊂ B(G,μ).

Proof. We first define b. Note that since (MS,μS ) is strictly decreasing, θMS (μS ) ∈
A

+
MS ,Q. By Proposition 2.2.3, it follows that μS |Z (M̂S )� ∈ X ∗(Z (M̂S )�)+, and so we can

define b to be the element of B(G) corresponding to μS |Z (M̂S )� under the isomorphism

B(G)MS
∼= X ∗(Z (M̂S )�)+ of (2). Recall that the composition of this isomorphism with

(3) induces the Newton map restricted to B(G)MS . Thus, we have θMS (μS ) = ν(b). [10,

(4.9.2)] implies that κ(b) = μS |Z (Ĝ)�
.

It remains to show that if (MS,μS ) ∈ SDμ, then the element b ∈ B(G) that we have
constructed lies in the set B(G,μ). For this, we need to show that ν(b) = θMS (μS ) � θT (μ).

We claim that θT (μ) � θT (μS ). After all, by [10, (4.9.2)] we have μ � μS . Then the

claim follows from Corollary B.0.4.
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Now we claim that θT (μS ) is dominant in the relative root system of MS . To prove the
claim, we first observe that μS is dominant relative to the absolute root system of MS .

As before, the Galois group � preserves the Weyl chamber corresponding to the positive

absolute roots given by B . Thus, γ (μS ) is dominant for each γ ∈ �, and so θT (μS ) is
dominant relative to the absolute roots of MS . The intersection of the closed positive

Weyl chamber for the absolute root datum of MS with AQ is the Weyl chamber for the

relative root datum of MS (cf. the proof of Lemma 2.2.1(2)). Thus, θT (μS ) is dominant

with respect to the relative roots, as desired.
Finally, we apply Lemma 2.3.2 and (1) to get

θT (μS ) � θMS (μS ),

which finishes the proof.

Question 2.4.4. Can one describe the image

T (SDμ) ⊂ B(G,μ)?

Fix G = GLn , with T and B the diagonal maximal torus and upper triangu-
lar Borel subgroup, respectively. Suppose μ has weights 1 and 0. Then we claim

T (SDμ) = B(G,μ). Indeed, pick any b ∈ B(GLn,μ). Then without loss of generality,

νb = ((a1/b1)
x1b1,...,(ar/br )xr br ) for some ai,bi ∈ N such that ai/bi is written in reduced

form. Then let M be the standard Levi subgroup isomorphic to GLx1b1 × ...×GLxr br and

embedded diagonally. Since b ∈ B(GLn,μ), we must have that μ = (1
r∑

i=1
xiai

,0
n−

r∑
i=1

xiai
).

Finally, we define μ′ ∈ X∗(T ) by μ′ = (1x1a1,0x1b1−x1a1,...,1xr ar ,0xr br−xr ar ). Then we note

that μ′ is dominant in the root system of M , so that (M ,μ′) ∈ CG . Moreover, θM (μ′) = νb

so that (M ,μ′) ∈ SD. Then since μ′ and μ are conjugate in GLn , it is easy to see that

(M ,μ′) ≤ (GLn,μ). In conclusion, we have shown that (M ′,μ′) ∈ SDμ and T ((M ′,μ′)) = b,
as desired.
On the other hand, for different choices of μ we can have T (SDμ) � B(G,μ). For

instance, let G = GL3, μ = (2,0,0) and b ∈ B(G,μ) be such that νb = (1,1/2,1/2). Then

it is easy to check that T (SDμ) does not contain b.

2.5. The induction and sum formulas

We are now ready to prove our main theorems on cocharacter pairs. We begin by defining

some key subsets of CG , the set of cocharacter pairs for G . In this section we fix a dominant
μ ∈ X∗(T ) and b ∈ B(G,μ).

Definition 2.5.1. We define the sets TG,b,μ and RG,b,μ as follows:

TG,b,μ := T −1(b)∩SDμ

and

RG,b,μ = {(MS1,μS1) ∈ CG : (MS1,μS1) ≤ (MS2,μS2) for some (MS2,μS2) ∈ TG,b,μ}.
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Definition 2.5.2. Let Z〈CG〉 denote the free abelian group generated by the set of
cocharacter pairs for G .

We define MG,b,μ ∈ Z〈CG〉 by
MG,b,μ =

∑
(MS ,μS )∈RG,b,μ

(−1)
LMS ,Mb (MS,μS ),

such that for MS1 ⊂ MS2 , LMS1,MS2
is defined to be |S2 \S1|.

Remark 2.5.3. We observe that for (MS,μS ) ∈ SD, if T ((MS,μS )) = b, then MS = Mb .

We will show in Theorem 3.3.7 that at least in the case where G is an unramified

restriction of scalars of a general linear group, MG,b,μ is related to the cohomology of
Rapoport–Zink spaces for G . Thus one expects there to be a combinatorial analogue of

the Harris–Viehmann conjecture (Conjecture 3.2.1). We call this combinatorial analogue

the induction formula. Perhaps the more surprising result is that there is also an analogue

of Shin’s averaging formula (which we call the sum formula) [3, Ch6 1.6.18, p. 158]. We
first prove the sum formula.

Theorem 2.5.4 (Sum formula). The following holds in Z〈CG〉:∑
b∈B(G,μ)

MG,b,μ = (G,μ).

Proof. We need to show that ∑
b∈B(G,μ)

MG,b,μ = (G,μ),

or equivalently, ∑
b∈B(G,μ)

∑
(MS ,μS )∈RG,b,μ

(−1)
LMS ,Mb (MS,μS ) = (G,μ).

We prove this equality by counting how many times a given cocharacter pair shows up

on the left-hand side. The pair (G,μ) shows up exactly once in the left-hand sum, as an
element of RG,b,μ for b the unique basic element of B(G,μ). Suppose (MS,μS ) ∈ CG is

some other cocharacter pair. Then define

Y(MS ,μS ) = {b ∈ B(G,μ) : (MS,μS ) ∈ RG,b,μ}.
We are reduced to showing ∑

b∈Y(MS ,μS )

(−1)
LMS ,Mb = 0. (4)

Our general strategy will be to show that the left-hand side of (4) vanishes for each

(MS,μS ) < (G,μ) by inducing on the size of �\S . However, in the case that (MS,μS ) ∈
SDμ, we can prove the vanishing without an inductive argument. We show this first before
discussing the induction.

Suppose now that (MS,μS ) ∈ SDμ. By Corollary 2.3.3, every pair (MS ′,μS ′) ∈ CG satis-

fying (MS,μS ) ≤ (MS ′,μS ′) ≤ (G,μ) is strictly decreasing, and thus by Proposition 2.4.3
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we have T ((MS ′,μS ′)) ∈ B(G,μ). These are precisely the elements b ∈ B(G,μ) such that
(MS,μS ) ∈RG,b,μ. By the discussion after Proposition 2.3.11, we can associate the graph

of a cube to the set of (MS ′,μS ′) such that each cocharacter pair is a vertex. To the vertex

associated to (MS ′,μS ′) we attach the sign (−1)
LMS ,M ′

S . We note that adjacent vertices

in this graph will have opposite signs, since if (MS ′,μS ′) and (MS ′′,μS ′′) have adjacent

vertices, then the cardinality of S ′ and S ′′ differs by 1. Now, it is a standard fact that if
we associate an element of {1, −1} to each vertex of the graph of an n-dimensional cube

for n ≥ 1 so that adjacent vertices have opposite signs, then the sum of all the signs is 0.
This implies that the left-hand side of (4) vanishes in the strictly decreasing case.
Now we discuss the inductive argument. The base case will be for pairs (MS,μS ) < (G,μ)

satisfying |�\S | = 1. The second statement of Proposition 2.3.8 implies that in this case,

(MS,μS ) is strictly decreasing relative to G , which means that (MS,μS ) ∈ SDμ. Thus,
the base case is proven by the previous paragraph.

We now discuss the inductive step. Suppose (MS,μS ) < (G,μ). If (MS,μS ) is strictly

decreasing, then we are done, by the foregoing. Suppose now that (MS,μS ) is not

strictly decreasing. We claim that (MS,μS ) must be strictly decreasing with respect to
at least some standard Levi subgroup of G that properly contains MS . After all, since

(MS,μS ) < (G,μ), there must exist at least some α ∈ � \S and (MS∪{α},μS∪{α}) ∈ CG so

that (MS,μS ) ≤ (MS∪{α},μS∪{α}). Then by Proposition 2.3.8, this implies that (MS,μS ) is
strictly decreasing relative to MS∪{α}.
Thus, let MS ′ be the maximal standard Levi subgroup of G such that (MS,μS ) is strictly

decreasing relative to MS ′ . We can write S ′ = S ∪{α1,...,αn }, where αi �= αj for i �= j and
each αi ∈ � \S . We denote by X the n-cube of cocharacter pairs above (MS,μS ), as in

the discussion after Proposition 2.3.11.

We claim that∑
b∈Y(MS ,μS )

(−1)
LMS ,Mb = −

∑
(MS ′,μS ′ )∈X \{(MS ,μS )}

∑
b∈Y(MS ′ ,μS ′ )

(−1)
LMS ′ ,Mb .

Given this claim, we see that to finish the proof, it suffices to show that the right-hand

side is identically 0. However, the right-hand side consists of a sum of a number of terms

similar to the left-hand side, but for pairs (MS ′,μS ′) in place of (MS,μS ). Note that each
S ′ is strictly larger than S , and thus we are done by induction.

We now prove the claim. Moving all the terms to one side, we need only show that∑
(MS ′,μS ′ )∈X

∑
b∈Y(MS ′ ,μS ′ )

(−1)
LMS ′ ,Mb = 0.

Fix b ∈B(G,μ). Then it suffices to show the contribution from b in this formula vanishes.
Thus, we must show ∑

(MS ′,μS ′ )∈X∩RG,b,μ

(−1)
LMS ′ ,Mb = 0. (5)

We examine the structure of X ∩RG,b,μ when it is nonempty. If we can show that the

cocharacter pairs in this set form a subcube of X of positive dimension, then we will be
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done, by the standard fact that if we place alternating signs on the vertices of a cube and
add up all the signs, we get 0.
Clearly, any (MS ′,μS ′) ∈ X ∩RG,b,μ must satisfy MS ⊂ MS ′ ⊂ Mb . The subset of X

satisfying this latter property forms a subcube of X , since its elements are indexed by
subsets of Sb \S , where Sb is the subset of � corresponding to Mb in the standard way

(note that by Lemma 2.3.4, there is at most one element of X ∩RG,b,μ for each standard

Levi MS ′). Moreover, this latter set cannot form a cube of dimension 0, for then we

would have MS = Mb and so X ∩RG,b,μ = {(MS,μS )}, which would imply that (MS,μS )

is strictly decreasing, contrary to assumption.

Thus to finish the proof, we need only show that for some (Mb,μb) ∈ TG,b,μ, (MS ′,μS ′) ≤
(Mb,μb) is satisifed by every (MS ′,μS ′) such that

(1) MS ⊂ MS ′ ⊂ Mb ,

(2) (MS,μS ) ≤ (MS ′,μS ′),

(3) (MS,μS ) is strictly decreasing relative to MS ′ .

Since we assumed that X ∩RG,b,μ �= ∅, then in fact there is an (Mb,μb) ∈ TG,b,μ with

(MS,μS ) ≤ (Mb,μb). Then the desired result follows from Proposition 2.3.11.

We now turn to the induction formula. Fix a standard Levi subgroup MS of G . Then

our choice of maximal torus T and Borel subgroup B of G provides us with natural

choices B ∩MS and T of a Borel subgroup and maximal torus of MS . This allows us to
define the set CMS of cocharacter pairs for MS . There is a natural inclusion

iGMS
: CMS ↪→ CG . (6)

The image of this inclusion is precisely the set of cocharacter pairs (MS ′,μS ′), where
S ′ ⊂ S . This inclusion preserves the partial ordering of cocharacter pairs. The strictly

decreasing elements of CMS map to the elements of CG which are strictly decreasing

relative to MS .

Now choose b ∈B(G,μ) and rational Levi MS such that Mb ⊂MS ⊂G . We have a unique
b ′ ∈ B(Mb)

+
Mb

corresponding to b under the isomorphism given by (2). The inclusion

Mb ⊂ MS induces a map

B(Mb) → B(MS ).

Let bS be the image of b ′ under this map.

The following definition will be important in relating cocharacter pairs of a group G to

those of a standard Levi (compare with [16, Theorem 7.5]):

Definition 2.5.5. Let MS be a standard Levi subgroup of G , let μ ∈X∗(T ) be a dominant
cocharacter and choose b ∈ B(G,μ). We take bS ∈ B(MS ) as constructed in the previous

paragraph and define the set

IG,μ

MS ,bS
= {(MS,μS ) ∈ CMS : bS ∈ B(MS,μS ),μS is conjugate to μ in G}.
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We first check the following transitivity property of IG,μ

MS ,bS
:

Proposition 2.5.6. Fix (G,μ) ∈ CG and b ∈B(G,μ). Suppose MS2 and MS1 are standard
Levi subgroups of G such that Mb ⊂ MS2 ⊂ MS1 . Then

IG,μ

MS2,bS2
= {(MS2,μS2) ∈ CMS2

: (MS2,μS2) ∈ IMS1,μS1
MS2,bS2

for some (MS1,μS1) ∈ IG,μ

MS1,bS1
}.

Proof. We show that each set is a subset of the other. Take (MS2,μS2) ∈ IG,μ

MS2,bS2
. Let

μS1 be the unique dominant cocharacter conjugate to μS2 in MS1 . Then we consider

(MS1,μS1) as an element of CMS1
and just need to show that bS1 ∈ B(MS1,μS1), since

we already know that bS2 ∈ B(MS2,μS2), by assumption. Thus, we need only show that

ν(bS1) ≤ θT (μS1) and κ(bS1) = μS1 |Z (M̂S1 )� .

We prove the inequality first. By assumption, ν(bS2) � θT (μS2), and by (2) and (3),
ν(bS1) = ν(b) = ν(bS2). Since μS1 and μS2 are conjugate in MS1 and μS1 is dominant, it

follows from [13, (8.1)] that μS2 � μS1 . Then by Corollary B.0.4 it follows that θT (μS2) �
θT (μS1) in the relative root system. Combining all this data, we get

ν(bS1) = ν(bS2) � θT (μS2) � θT (μS1),

as desired.

To prove κ(bS1) = μS1 |Z (M̂S1 )� , we note that by [3, Ch6 1.6.18, p. 158] and the fact that

bS2 ∈ B(MS2,μS2), we have

κ(bS1) = μS2 |Z (M̂S1 )� .

Then μS1 and μS2 are conjugate in MS1 , so there exists a w ∈ W abs
MS1

so that w(μ1) = μ2.

This implies that μ1 and μ2 are conjugate in M̂S1 , and in particular equal when restricted

to Z (M̂S1). This implies the desired equality.

To show the converse inclusion, we start with (MS2,μS2) ∈ IMS1,μS1
MS2,bS2

for some

(MS1,μS1) ∈ IG,μ

MS1,bS1
and need to show that bS2 ∈B(MS2,μS2) and that μS2 is conjugate

to μ in G . But (MS2,μS2) ∈ IMS1,μS1
MS2,bS2

implies that bS2 ∈ B(MS2,μS2) and also that μS2 is

conjugate to μS1 in MS1 . Further, (MS1,μS1) ∈ IG,μ

MS1,bS1
implies that μS1 is conjugate to

μ in G . Thus, μS2 is conjugate to μ in G , as desired.

The set IG,μ

MS ,bS
will primarily be useful because it allows us to relate the set TG,b,μ to

analogous constructions in MS . This is encapsulated in the following proposition:

Proposition 2.5.7. Fix MS , μ and b as in Definition 2.5.5. The natural inclusion

iGMS
: CMS ↪→ CG of (6) induces a bijection

∐
(MS ,μS )∈IG,μ

MS ,bS

TMS ,bS ,μS
∼= TG,b,μ.
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Proof. We first show that

iGMS
(

∐
(MS ,μS )∈IG,μ

MS ,bS

TMS ,bS ,μS ) ⊃ TG,b,μ.

Since Mb ⊂ MS , it follows from the discussion after (6) that

TG,b,μ ⊂ iGMS
(CMS ).

Thus, pick an arbitrary element of TG,b,μ of the form iGMS
(Mb,μb) for (Mb,μb) ∈ CMS . The

cocharacter pair iGMS
(Mb,μb) is strictly decreasing, and therefore so is (Mb,μb) ∈ CMS . By

Proposition 2.3.8 we can find (MS,μS ) ∈ CMS such that (Mb,μb) ≤ (MS,μS ). Observe

that since iGMS
(Mb,μb) ≤ (G,μ), the cocharacter μb is conjugate to μ in G and therefore

μS must be as well, by construction. If we can show that T ((Mb,μb)) = bS , then we will

be done, because by Proposition 2.4.3 this implies that bS ∈ B(MS,μS ), and so therefore

that (MS,μS ) ∈ IG,μ

MS ,bS
and (Mb,μb) ∈ TMS ,bS ,μS .

By assumption, T (iGMS
(Mb,μb)) = b ∈B(G,μ). Recall that the map T is defined so that

a strictly decreasing (Mb,μb) ∈ CG which satisfies (Mb,μb) ≤ (G,μ) is mapped first to the

element μb |Z (M̂b )� ∈ X ∗(Z (M̂b)
�)+. Then this element is identified with an element of

B(G) via the isomorphisms of (2):

X ∗(Z (M̂b))
�)+ ∼= B(Mb)

+
Mb

∼= B(G)Mb,

where the second isomorphism is induced by the inclusion Mb ↪→ G . We have the

commutative diagram

B(Mb) B(MS )

B(G),

where each map is induced from the inclusion of groups. By definition, the element
b ′ ∈ B(Mb)

+ maps to b ∈ B(G) and bS ∈ B(MS ), respectively. Thus, we see that by

construction, T ((Mb,μb)) = bS .
Conversely, suppose (Mb,μb) ∈ TMS ,bS ,μS for some (MS,μS ) ∈ IG,μ

MS ,bS
. Since b ′ ∈

B(Mb)
+
Mb

, it follows from the definition of bS and TMS ,bS ,μS that μb |Z (M̂b )� is an element

of X ∗(Z (M̂b)
�)+. This implies that iGMS

(Mb,μb) ∈ SD. By Proposition 2.3.8, we have an

extension of iGMS
(Mb,μb) to G , and since μb and μ are conjugate in G by assumption, it

follows that this extension is (G,μ) such that iGMS
(Mb,μb) ≤ (G,μ). It follows from these

facts that iGMS
(Mb,μb) ∈ TG,b,μ.

Finally, we remark that for distinct (MS,μS ),(MS,μ′
S ) ∈ IG,μ

MS ,bS
, the sets TMS ,bS ,μS and

TMS ,bS ,μ′
S
are indeed disjoint, by Lemma 2.3.4.
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As a corollary of this result, we have the induction formula.

Corollary 2.5.8 (Induction formula). We continue using the notation of the previous

proposition. The natural map

iGMS
: CMS ↪→ CG

induces a map

iGMS
: Z〈CMS 〉 ↪→ Z〈CG〉,

which gives an equality ∑
(MS ,μS )∈IG,μ

MS ,bS

iGMS
(MMS ,bS ,μS ) = MG,b,μ.

Proof. It follows from Proposition 2.5.7 that the map iGMS
induces a bijection

∐
(MS ,μS )∈IG,μ

MS ,bS

RMS ,bS ,μS
∼= RG,b,μ.

We remark that for distinct (MS,μS ),(MS,μ′
S ) ∈ IG,μ

MS ,bS
, we have RMS ,bS ,μS ∩

RMS ,bS ,μ′
S

= ∅ by Lemma 2.3.4.
The corollary then follows from the definition of MG,b,μ.

This result can be thought of as an analogue of the Harris–Viehmann conjecture, which

we discuss in the next section.
In the cases we are interested in, we will also need a description of how cocharacter

pairs behave with respect to products.

Suppose G = G1 × ...×Gk and T = T1 × ...×Tk , such that Ti is a maximal torus for
Gi . Then

X∗(T ) ∼= X∗(T1)⊕ ...⊕X∗(Tk ),

and any standard Levi subgroup admits a product decomposition

MS ∼= MS1 × ...×MSk ,

such that Ti ⊂ MSi ⊂ Gi . Then any cocharacter pair (MS,μS ) of G corresponds to a tuple

of cocharacter pairs

((MS1,μS1),...,(MSk ,μSk )) ∈ CG1 × ...×CGk

in the obvious way. The pair (MS,μS ) ∈ CG is strictly decreasing if and only if each pair

(MSi ,μSi ) ∈ CGi is, and if T ((MS,μS )) = b ∈ B(G,μ), then we also have Ti((MSi ,μSi )) =
bi ∈ B(Gi,μi ), where Ti is the map T defined for the group Gi . Thus, b 	→ (b1,...,bk )

under the natural bijection

B(G) ∼= B(G1)× ...×B(Gk ).

https://doi.org/10.1017/S1474748020000535 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000535


The Cohomology of Rapoport–Zink Spaces of EL-Type 1189

We record the following proposition:

Proposition 2.5.9. We use the notation of the previous two paragraphs.

The natural bijection

CG ∼= CG1 × ...×CGk

induces bijections

TG,b,μ
∼= TG1,b1,μ1 × ...×TGk ,bk ,μk

and

RG,b,μ
∼= RG1,b1,μ1 × ...×RGk ,bk ,μk .

Further, under the natural isomorphism Z〈CG〉 ∼= Z〈CG1〉⊗ ...⊗Z〈CGk 〉, we have

MG,b,μ = MG1,b1,μ1 ⊗ ...⊗MGk ,bk ,μk .

3. Cohomology of Rapoport–Zink spaces and the Harris–Viehmann

conjecture

In this section, we define the Rapoport–Zink spaces we will work with and show how we

can describe their cohomology using the language developed in the previous section. We

also give a statement of the Harris–Viehmann conjecture, and explain the necessity of a
small correction to it. We follow [5, 13, 16].

The theory necessarily involves several choices of signs. This is often a point of confusion,

so we describe our conventions here. We choose the cocharacter μ appearing in the

definition of Rapoport–Zink spaces to have nonnegative weights, in agreement with most
authors. In this paper, we use the contravariant Dieudonne functor, which means that our

p-divisible groups will have isocrystals in the set B(G,μ) (as opposed to B(G, −μ) for

the covariant theory). This convention agrees with that of [13] and [16], but [7, pg. 2] uses
the opposite convention. We use the local Langlands correspondence for GLn(Qp) as in

[14, Theorem 3.25]. In particular, we normalise the local Artin map so that uniformisers

correspond to geometric Frobenius elements.

3.1. Rapoport-Zink spaces of EL-type

We fix the following notation. Suppose G is a reductive group defined over a field k
and μ ∈ X∗(G). Then if H is a subgroup of G such that μ factors through the inclusion

X∗(H ) ↪→ X∗(G), we denote by {μ}H the H (k) conjugacy class of μ and by E{μ}H the field

of definition of {μ}H (i.e., the smallest extension of k so that each element of Gal(k/E{μ}H )

stabilises {μ}H ).

Now we define the Rapoport–Zink data we consider.

Definition 3.1.1. An unramified Rapoport-Zink datum of EL-type is a tuple
(F,V ,{μ}G,b), where

(1) F is a finite unramified extension of Qp ,

(2) V is a finite-dimensional F vector space,
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(3) G := ResF/Qp (GLF (V )),

(4) μ : Gm,Qp
→ GQp

is a cocharacter inducing a weight decomposition V ⊗ Q̂ur
p

∼=
V0 ⊕V1, where μ(z ) acts by z i on Vi ,

(5) b ∈ B(G,μ).

We fix a Borel subgroup B ⊂ G defined over Qp , a Qp-split torus A ⊂ G of maximal
rank in G and such that A ⊂ B and a maximal torus T ⊂ B containing A and defined

over Qp . We can choose μ in the definition so that it is dominant relative to B .

Let X be a p-divisible group defined over Fp with an action of OF and such that

the isocrystal attached to X by the contravariant Dieudonne functor is isomorphic to
(VF,bσ). We consider the moduli functor Mb,μ such that for S a scheme over OQ̂ur

p
with

p locally nilpotent, Mb,μ(S ) = {(X ,i,ρ)}/ ∼. Where X is a p-divisible group defined over

S , i : OF → EndF (X ), and ρ : X×Fp
S → X is a quasi-isogeny (S,X are the reductions

modulo p).
By work of Rapoport and Zink [10, §3.3], this moduli problem is represented by a formal

scheme over OQ̂ur
p
, which we also denote by Mb,μ. We have the generic fibre M

rig
b,μ, which

is a rigid analytic space over Q̂ur
p . Further, we get a tower of coverings M

rig
b,μ,U of M

rig
b,μ

for each compact open subgroup U ⊂ G(Qp).

For a fixed prime l �= p, we denote by H j
c (M

rig
b,μ,U × Q̂ur

p ,Ql ) the étale cohomology

with compact supports. This is a Ql vector space which is a smooth representation of
Jb(Qp)×WE{μ}G , where Jb is the inner form of the standard Levi subgroup Mb associated

to b (as constructed in [13, Proposition 6.1]) and WE{μ}G is the Weil group of E{μ}G (for

example, see [7, SI.2]).
We use the notation Groth(·) for the Grothendieck group of admissible representations

of topological groups. See [11] for the precise definition of these Grothendieck groups.

Let Pb be the standard parabolic subgroup with Levi factor Mb , and denote the opposite
parabolic by Pop

b . We define JG
P ,JacGP to be the normalised and unnormalised Jacquet

module functors, and we define IG
P ,IndG

P to be the normalised and unnormalised parabolic

induction functors. Often, if M ⊂ P is the standard Levi subgroup of P and we are taking

IG
P or IG

Pop to be a map of Grothendieck groups, we will write IG
M to remind the reader that

these maps do not depend on choice of P,Pop when considered as maps of Grothendieck

groups.

In [16], Mantovan considers the following construction (see also [15],§2.4). We define a
map

MantG,b,μ : Groth(Jb(Qp)) → Groth(G(Qp)×WE{μ}G )

by

MantG,b,μ(ρ) =
∑
i,j≥0

(−1)i+j lim−→
U⊂G(Qp )

ExtiJb (Q�)
(H j

c (M
rig
b,μ,U × ˆQur

p ,Ql ),ρ)(−dimM
rig
b,μ,U ).

In [15] and [16, §6.2], Shin considers a map

Redb : Groth(G(Qp)) → Groth(Jb(Qp)).
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We follow the construction given in [16, Lemma 6.2].1 We define Redb by

π 	→ e(Jb)(LJ◦JG
Pop

b
(π)⊗ δ

1
2
Pb

),

where

LJ : Groth(Mb(Qp)) → Groth(Jb(Qp))

is the map defined by Badulescu extending the inverse Jacquet–Langlands correspondence

[8] and e(Jb) is the Kottwitz sign as defined in [16].
We now describe the main result of [16, Theorem 7.5]. The cocharacter μ of G is a

map μ : Gm,Qp
→ ∏

τ∈Hom(F,Qp )

GLn,Qp
such that the weights in each GLn factor are 1s or

0s. Thus we let pτ,qτ denote the number of 1 and 0 weights, respectively, in the factor

corresponding to τ .

The following formula is the main theorem in [16]:

Theorem 3.1.2 (Shin). We have the following equality for accessible representations in

Groth(G(Qp)×WE{μ}G ):

∑
b∈B(G,μ)

Mantb,μ(Redb(π)) = [π ][r−μ ◦LL(π)|WE{μ}G
⊗| · |−

∑
τ pτqτ /2].

Loosely speaking, accessible representations in [16] are character twists of the local

components of global representations that can be found within the cohomology of Shimura

varieties. Shin shows that all essentially square-integrable representations are accessible.
In this case, LL is the semisimplified local Langlands correspondence (known by the

work of [7], for instance). The map r−μ is the algebraic representation of Ĝ�WE{μ}G ⊂ LG
defined by Kottwitz [9, Lemma 2.1.2]. It is characterised by the fact that r−μ|Ĝ is the
irreducible representation of extreme weight −μ, and if we take a �-invariant splitting

of Ĝ , then the subgroup WE{μ}G of LG acts trivially on the highest weight vector of r−μ

associated with this splitting.

Remark 3.1.3. The Tate twist appearing on the right-hand side of the formula in
Theorem 3.1.2 comes from the dimension formula for Shimura varieties and is equal

to −〈ρG,μ〉, where ρG is the half sum of the positive roots in G .

This theorem is analogous to the sum formula for cocharacter pairs (Theorem 2.5.4).
The induction formula (Corollary 2.5.8) is related to the Harris–Viehmann conjecture

(Conjecture 3.2.1). A proof of this conjecture is expected to appear in forthcoming work

by Scholze.

1We believe the construction given before [15] has a slight typo. There, Redb is defined by π 	→
e(Jb)(LJ ◦JacGPop

b
(π)). As maps of Grothendieck groups, JacGPop

b
= JGPop

b
⊗ δ

1
2
Pop

b
= JGPop

b
⊗ δ

− 1
2

Pb
.

But this is not equal to JGPop
b

(π)⊗δ
1
2
Pb

, which is the construction given in [7] that is compatible

with [1, Proposition 3.2].
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3.2. Harris–Viehmann conjecture

We now state the Harris–Viehmann conjecture following Rapoport and Viehmann in [13].

In this subsection, we return to the notation of §2 so that in particular, G is a connected,

quasi-split reductive group defined over Qp .

Choose a dominant minuscule μ ∈ X∗(T ) (where we can consider μ as a cocharacter of
G , since T ⊂ G) and b ∈ B(G,μ). Associated to b, we have the standard Levi subgroup

Mb . Suppose we have a standard rational Levi subgroup MS , so that Mb ⊂ MS ⊂ G . We

define b ′,bS as we did before Definition 2.5.5.
In [13, (6.2)], the authors associate a cohomological construction to the triple (G,b,μ)

which they denote H •((G,[b],{μ})). This construction is a map of Grothendieck groups,

H •((G,[b],{μ})) : Groth(Jb(Qp)) → Groth(G(Qp) × WE{μ}), and agrees with MantG,b,μ.
We will denote this construction H •(G,b,μ), since we deal with dominant cocharacters

instead of conjugacy classes. Then we have the following conjecture:

Conjecture 3.2.1 (Harris–Viehmann). For ρ ∈ Groth(Jb(Qp)), we have the equality

H •(G,b,μ)[ρ] =
∑

(MS ,μS )∈IG,μ
MS ,bS

(IndG
PS

H •(MS,bS,μS )[ρ])⊗ [1][| · |〈ρG,μS 〉−〈ρG,μ〉],

in Groth(G(Qp)×WE{μ}G ). The parabolic induction only modifies the Groth(G(Qp)) parts

of these representations.

Remark 3.2.2. We need to explain several things in this conjecture. First we explain

why the right-hand side is a representation of WE{μ}G , then we check that the conjecture
satisfies a transitivity property and finally we give an example justifying the extra

character twist appearing in our formulation. This twist is not present in the original

formulation of the conjecture.

We first explain why the right-hand side is a representation of WE{μ}G . We start with
a general lemma.

Lemma 3.2.3. Suppose a group 
 acts on a finite set S . Suppose further that for each

s ∈ V , we attach a vector space Vs and for each λ ∈ 
 and s ∈ S we have an isomorphism

i(s,λ) : Vs → Vλ(s).

We suppose further that i(s,1) is the identity map and that i(λ1(s),λ2) ◦ i(s,λ1) =
i(s,λ2λ1). Then

⊕
s∈S

Vs is naturally a representation of 
.

Let {s1,...,sk } ⊂ S be a set of one representative from each 
-orbit in S . Then

⊕
s∈S

Vs ∼=
k⊕

i=1

Ind

stab(si )Vsi ,

where Ind refers to induced representation (not parabolic induction).

Proof. The proof is clear from the definition of induced representation.
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Moreover, we record the following transitivity property for later use:

Lemma 3.2.4. Suppose that 
 acts on S as before. Let S1
∐

...
∐

Sk = S be a partition
of S so that 
 acts on {S1,...,Sk }. Suppose we have for each s ∈ S a vector space Vs and

isomorphisms i(s,λ) as before. Then by Lemma 3.2.3 we can consider the stab(Si) ⊂ 


representation VSi = ⊕
s∈Si

. For each λ ∈ 
, we get isomorphisms i(Si,λ) : VSi → Vλ(Si ).

Thus, again by Lemma 3.2.3, we get a 
 representation
⊕
i

VSi . This representation is

isomorphic to the 
 representation
⊕
s∈S

Vs we get from applying Lemma 3.2.3 to S .

Now we discuss the WE{μ}G -action in the Harris–Viehmann conjecture. Observe that for

μ ∈ X∗(G), if γ ∈ WE{μ}G stabilises {μ}MS then it also stabilises {μ}G , so that WE{μ}MS
⊂

WE{μ}G .

Now we claim that WE{μ}G acts on IG,μ

MS ,bS
and that the stabiliser of (MS,μS ) under

this action is WE{μ}MS
. To prove the first part of the claim, we pick γ ∈ WE{μ}G and

observe that since MS and PS are defined over Qp , we have γ (MS ) = MS and γ (μS ) is

dominant in MS . Thus (MS,γ (μS )) ∈ CMS , so we need only check that bS ∈B(MS,γ (μS ))

and γ (μS ) ∼G μ. The first check follows from the facts that

θT (μS ) = θT (γ (μS ))

and

μS |Z (M̂S )� = γ (μS )|Z (M̂S )� .

The second check follows because γ stabilises {μ}G .

To prove the second part of the claim, we note that if μS = γ (μS ), then γ stabilises
{μS }MS . Conversely, if γ stabilises {μS }MS , then since it maps dominant elements relative

to MS to dominant elements, we must have γ (μS ) = μS .

We observe that we have now shown that WE{μ}G acts on the collection of Rapoport–

Zink data (MS,bS,μS ) for (MS,μS ) ∈ IG,μ

MS ,bS
. By [13, Proposition 5.3.iv], these actions

induce morphisms of the corresponding towers of rigid spaces and therefore the spaces
H •(MS,bS,μS )[ρ] for ρ ∈Groth(Jb(Qp)). Thus by Lemma 3.2.3 we get an action of WE{μ}G
on the sum of vector spaces ∑

(MS ,μS )∈IG,μ
MS ,bS

H •(MS,bS,μS )[ρ],

and therefore on ∑
(MS ,μS )∈IG,μ

MS ,bS

IndG
PS

(H •(MS,bS,μS )[ρ]).

We remark that the character twist by −dimMrig
b,μ,U in the definition of H •(MS,bS,μS ) is

not an obstacle to defining the WE{μ}G -action, as the dimensions of the spaces associated

to (MS,bS,μs) and (MS,bS,γ (μS )) are the same (for γ ∈ WE{μ}G ). Also, we observe that
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the twist by [1][| · |〈ρG,μS 〉−〈ρG,μ〉] is harmless, as it is constant over orbits of WE{μS }G . This
concludes our discussion of the WE{μ}G -action.

We now check that the Harris–Viehmann conjecture is transitive. By this, we mean that

if we have standard Levi subgroups MS1 and MS2 of G such that Mb ⊂ MS2 ⊂ MS1 ⊂ G ,
then first applying the conjecture to (G,b,μ) and the inclusion MS1 ⊂G and then applying

it to each resulting (MS1,bS1,μS1) for (MS1,μS1) ∈ IG,μ

MS1,bS1
and the inclusion MS2 ⊂ MS1

should be the same as applying the conjecture to (G,b,μ) and the inclusion MS2 ⊂ G .

We need to check that the character twists match, that

IG,μ

MS2,bS2
= {(MS2,μS2) ∈ CMS2

: (MS2,μS2) ∈ IMS1,μS1
MS2,bS2

for some (MS1,μS1) ∈ IG,μ

MS1,bS1
}

and that the WE{μ}G -actions are the same.
To check that the characters match, it suffices to check that for (MS1,μS1),(MS2,μS2) ∈

CG such that (MS2,μS2) ≤ (MS1,μS1) ≤ (G,μ), we have

〈ρG,μS2〉−〈ρG,μ〉 = (〈ρG,μS1〉−〈ρG,μ〉)+ (〈ρMS1
,μS2〉−〈ρMS1

,μS1〉).
This reduces to showing the equality

〈ρG\MS1
,μS1〉 = 〈ρG\MS1

,μS2〉, (7)

where ρG\MS1
is the half-sum of the absolute roots of G that are not roots of MS1 . Since

μS2 and μS1 are conjugate in MS1 , there exists a w ∈ W abs
MS1

so that w(μ1) = μ2. Then the

desired equality follows from the facts that the pairing 〈·,·〉 is W abs
MS1

-invariant and that

W abs
MS1

stabilises the set of positive absolute roots in G but not MS1 . To prove this second

fact, note that MS1 normalises the unipotent radical US1 of PS1 and that the roots of

Lie(US1) are precisely the positive absolute roots of G that are not contained in MS1 .
The second check is precisely Proposition 2.5.6, and the third check follows from

Proposition 2.5.6 and Lemma 3.2.4.

Now we compute an example to illustrate the necessity of the extra Tate twist in our

statement of Conjecture 3.2.1. This example is also discussed in [16, §8.3].

Example 3.2.5. Let n1 < n2 be coprime positive integers and let G =GLn1+n2 . Fix T the

standard maximal torus of diagonal matrices and B the Borel subgoup of upper triangular
matrices. Let μ be the minuscule cocharacter with weight vector (12,0n1+n2−2) and b ∈
B(G,μ) satisfying νb = ((1/n1)

n1,(1/n2)
n2). Let ρ1,ρ2 be supercuspidal representations of

GLn1(Qp),GLn2(Qp), respectively. Define the standard Levi subgroup Mb =GLn1 ×GLn2 ,

and consider the representation π = IG
Mb

(ρ1 � ρ2). We will be interested in computing
MantG,b,μ(Redb(π)).

The key point is that we can use Shin’s formula (Theorem 3.1.2) and known cases of the

Harris–Viehmann conjecture due to Mantovan [12] to do this computation, even though
the Harris–Viehmann conjecture is not known to be true in the case of Mb , since b is not

of Hodge–Newton type.

We observe that there are only 3 elements b ′ ∈ B(G,μ) that satisfy

MantG,b′,μ(Redb′(π)) �= 0.
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After all, the fact that ρ1,ρ2 are supercuspidal and the geometric lemma of Bernstein
and Zelevinski [4, §2.11] forces Mb′ to be one of G,GLn1 ×GLn2,GLn2 ×GLn1 . In the

case where Mb′ = G , we also get 0, since LJ (π) = 0. Thus, if we write out Shin’s formula

for our π , the only elements of B(G,μ) whose terms contribute to the left-hand side are
b,b1,b2, where b is as before and b1,b2 are defined by

νb1 = ((2/n1)
n1,0n2),νb2 = ((2/n2)

n2,0n1).

Thus, we have Mb1 = Mb = GLn1 ×GLn2 and Mb2 = GLn2 ×GLn1 . Note that b1,b2 are
both of Hodge–Newton type, so we can apply the results of Mantovan.

We have

MantG,b1,μ(Redb1(π)) = MantG,b1,μ(LJ (δ
1
2
Pb1

⊗JG
Pop

b1
IG
Mb1

(ρ1 �ρ2))).

By the geometric lemma of Bernstein and Zelevinski [4, §2.11], this equals

MantG,b1,μ1(LJ ((ρ1 �ρ2)⊗ δ
1
2
Pb1

)).

We recall that δPb1
= (| · |n2 ◦det)� (| · |−n1 ◦det) and henceforth use the notation ρ(n) to

mean (| · |n ◦det)⊗ρ. Thus, we can rewrite this formula as

MantG,b1,μ1(LJ (ρ1(n2/2))�LJ (ρ2(−n1/2))).

Then applying the Harris–Viehmann formula, we get that this equals

IndG
Mb

(MantGLn1,(12,0n1−2)(LJ (ρ1(n2/2)))�MantGLn2,(0n2 )(LJ (ρ2(−n1/2)))). (8)

Since ρ1 and ρ2 are supercuspidal, we can compute (by an easy application of Shin’s

formula, for instance) that

MantGLn1,(12,0n1−2)(LJ (ρ1(n2/2))) = [ρ1(n2/2)][r(−12,0n1−2) ◦LL(ρ1(n2/2))⊗| · |2−n1 ],

and so (8) becomes equal to

[π ][r(−12,0n1−2) ◦LL(ρ1(n2/2))⊗| · |2−n1 ⊗ r(0n2 ) ◦LL(ρ2(−n1/2))].

Pulling the twists through the r−μ maps, we get

[π ][(r(−12,0n1−2) � r(0n2 ))◦ (LL(ρ1)⊕LL(ρ2))⊗| · |2−n1−n2 ].

Repeating this computation for the b2 term, we get

MantG,b2,μ(Redb2(π))

= [π ][(r(−12,0n2−2) � r(0n1 ))◦ (LL(ρ2)⊕LL(ρ1))⊗| · |2−n1−n2 ].

We now compare these terms to the right-hand side of Shin’s formula. There the term

is

[π ][r−μ ◦LL(π)⊗| · |2−n1−n2 ].

Now LL(π) = LL(ρ1) ⊕ LL(ρ2). Thus, we can restrict r−μ to M̂b ⊂ Ĝ (we have been

ignoring the Galois part of LG in this example, since G is a split group). Using the

https://doi.org/10.1017/S1474748020000535 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000535


1196 A. Bertoloni Meli

theory of weights, we get

r−μ|M̂ = [r(−12,0n1−2) � r(0n2 )]⊕ [r(−1,0n1−1) � r(−1,0n2−1)]⊕ [r(0n1 ) � r(−12,0n2−2)],

and so we see that the contributions for b1,b2 which we computed before will cancel terms

on the right-hand side of Shin’s formula, leaving us with

MantG,b,μ(Redb(π)) = [π ][(r(−1,0n1−1) � r(−1,0n2−1))◦ (LL(ρ1)+LL(ρ2))⊗| · |2−n1−n2 ].

However, if the Harris–Viehmann conjecture without the extra Tate twist were to hold

for b, we would get

MantG,b,μ(Redb(π)) = MantG,b,μ(LJ (ρ1(n2/2))�LJ (ρ2(−n1/2)))

= [π ][r(−1,0n1−1) � r(−1,0n2−1) ◦ (LL(ρ1)+LL(ρ2))| · |1−n2 ].

Thus, we see that the Tate twists do not agree.

In general, the right-hand side of Shin’s formula has a twist of −〈ρG,μ〉, where ρG is

the half-sum of the positive roots of G . Suppose now that b ∈ B(G,μ) and b ′ ∈ B(Mb)
+

corresponds to b under (2). Then for any (Mb,μ
′) ∈ IG,μ

Mb,b′ , we would expect the Galois

part of MantMb,b′,μ′(ρ) for ρ ∈ Groth(Jb(Qp)) to come with a twist of −〈ρMb,μ
′〉. Then

the Galois part of MantG,b,μ(Redb(π)) for π ∈ Groth(G(Qp)) would carry an extra twist

of −〈det(AdNb (Mb ))|T
2 ,μ′〉, corresponding to twisting JG

Pop
b

(π) by δ
1
2
Pb

in the definition of

Redb . We note that

〈ρMb,μ
′〉+ 〈det(AdNb (Mb))|T

2
,μ′〉 = 〈ρG,μ′〉.

Thus, we see that the difference between these Tate twists is

〈ρG,μ′〉− 〈ρG,μ〉,
which is the twist in Conjecture 3.2.1.

Remark 3.2.6. We note that in the Hodge–Newton case studied by Mantovan, μ = μ′
(as in the notation of the previous paragraph), so that this extra twist vanishes, agreeing
with Mantovan’s results [12, Corollary 5] (cf. [13, Theorem 8.8]).

We now give an alternate version of the Harris–Viehmann conjecture that we will use

in numerous arguments in this paper. Suppose that G,b,μ are as in Theorem 3.1.2. The

standard Levi subgroup Mb has a natural product decomposition

Mb = M1 × ...×Mk,

so that under the natural isomorphism

B(Mb) ∼= B(M1)×B(Mk ),b ′ 	→ (b ′
1,...,b

′
k ),

each ν(bi ) has a single slope. Now pick (Mb,μb) ∈ IG,μ

Mb,b′ . Then the local Shimura variety

datum (Mb,b ′,μb) decomposes into a collection (M1,b ′
1,μb,1),...,(Mk,b ′

k,μb,k ). In [13,

§5.2(ii)], the authors show that the local Shimura variety associated to (Mb,b ′,μb) is
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the product of those associated to (Mi,b ′
i,μb,i ). Furthermore, using the Künneth formula

(as in [12, p. 15]), we get that for ρ1 � ...�ρk ∈ Groth(M1(Qp)× ...×Mk (Qp)),

MantMb,b′,μb (ρ1 � ...�ρk ) = �k
i=1MantGi ,b′

i,μb,i (ρi)

as a representation of Mb ×WE{μb }Mb
(the group WE{μb }Mb

acts diagonally through the

product WE{μb,1}M1
× ...×WE{μb,k }Mk

).

Thus, we have the following alternate form of the Harris–Viehmann conjecture for the
Rapoport–Zink spaces we consider:

Conjecture 3.2.7 (Alternate form of the Harris–Viehmann conjecture). We use the

notation of the previous paragraphs so that in particular, (G,b,μ) comes from an

unramified Rapoport–Zink space of EL-type as in Definition 3.1.1. Then for any ρ ∈
Groth(Jb(Qp)), we have the following equality in Groth(G(Qp)×WE{μ}G ):

MantG,b,μ(ρ) =
∑

(Mb,μb )∈IG,μ

Mb,b′

IndG
Pb

(�k
i=1MantMb,b′

i ,μb,i (ρi))⊗ [1][| · |〈ρG,μb 〉−〈ρG,μ〉].

3.3. Proof of Theorem 1.0.3

The combination of the Harris–Viehmann conjecture and the sum formula allows us to
relate the cohomology of Rapoport–Zink spaces to the cocharacter pairs studied in §2.
To do so, we attach a map of Grothendieck groups to each cocharacter pair. We return

to the notation of §3.1.
Fix a cocharacter pair (G,μ) ∈ CG . Suppose (MS,μS ) ∈ CG and satisfies μS ∼G μ. We

associate (MS,μS ) to a map of representations

[MS,μS ] : Groth(G(Qp)) → Groth(G(Qp)×WE{μS }MS
)

given by

π 	→ (IndG
PS

◦ [μS ]◦ (δPS ⊗JacGPop
S

))(π)⊗ [1][| · |〈ρG,μS 〉−〈ρG,μ〉],

with

[μS ] : Groth(MS (Qp)) → Groth(MS (Qp)×WE{μ}MS
)

given by

π 	→ [π ][r−μS ◦LL(π)|WE{μS }MS
⊗| · |−〈ρMS ,μS 〉].

Remark 3.3.1. We note that the map [MS,μS ] is only defined relative to a cocharacter

pair (G,μ).

Remark 3.3.2. We observe an interesting property of the maps [MS,μS ]. Fix (G,μ) and

consider (MS,μS ) such that μS ∼G μ. Since the normalised Jacquet module and parabolic
induction functors behave better with respect to the local Langlands correspondence, it

makes sense to rewrite [MS,μS ] in terms of these maps. We get

[MS,μS ] = (IG
MS

⊗ δ
− 1

2
PS

◦ [μS ]◦ (δ
1
2
PS

⊗JG
Pop

S
))⊗ [1][| · |〈ρG,μS−μ〉].
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Note that the twists by the modular character cancel in the admissible part but do not
cancel in the Galois part. Thus, the total Tate twist of the Galois part is

〈ρG,μS −μ〉−〈ρMS ,μS 〉−〈det(AdNS (MS ))|T
2

,μS 〉

= −〈ρG,μ〉.
This twist does not depend on (MS,μS ) but rather only on (G,μ). Thus, as we will see

in the computations of the next section, it is possible for large cancellations to occur in

computations of MantG,b,μ(ρ) for various ρ.

We now prove some lemmas relating to these maps before tackling the main theorem.

Lemma 3.3.3. Let MS1,MS2 be standard Levi subgroups of G satisfying MS2 ⊂ MS1 .
Consider the natural map

iGMS1
: CMS1

→ CG,

as defined in (6). Let (MS2,μS2) ∈ CMS1
. Suppose further that we have fixed pairs

(MS1,μS1) ∈ CMS1
and (G,μ) ∈ CG , so that μS2 ∼MS1

μS1 and μS2 ∼G μ. Then for

π ∈ Groth(GQp ),

iGMS1
([MS2,μS2 ])(π) = (IndG

PS1
◦ [MS2,μS2 ]◦ (δPS1

⊗JacGPop
S1

))(π)⊗ [1][| · |〈ρG,μS1 〉−〈ρG,μ〉],

where we write

iGMS1
([MS2,μS2 ]) : Groth(G(Qp)) → Groth(G(Qp)×WE{μS2 }MS2

)

to denote the map associated to iGMS1
((MS2,μS2)).

Proof.We first note that by the transitivity of the Jacquet module and modulus character
constructions, we have

δPS2
⊗JacGPop

S2
= (δPS2∩M1 ⊗Jac

MS1
Pop

S2
)◦ (δPS1

⊗JacGPop
S1

).

Hence, we just need to check that the twists on the Galois parts of both sides match. By

Remark 3.3.2, both twists are by −〈ρG,μ〉

Lemma 3.3.4. Suppose we are in the situation of Proposition 2.5.9, so that G = G1 ×
...×Gk is a connected reductive group with standard Levi subgroup MS = MS1 × ...×MSk .
Fix cocharacter pairs (MS,μS ),(G,μ) ∈ CG with μS ∼G μ. The bijection CG ∼= CG1 × ...CGk

takes (MS,μS ) to ((MS1,μS1),...,(MSk ,μSk )) and (G,μ) to ((G1,μ1),...,(Gk,μk )), and we

have μSi ∼Gi μi . Then we define

�k
i=1[MSi ,μSi ] : Groth(G(Qp)) → Groth(G(Qp)×WE{μS }MS

)

by

π1 � ...�πk 	→ [MS1,μS1 ](π1)� ...� [MSk ,μSk ](πk ).
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Then we have the following equality of homomorphisms of Grothendieck groups:

�k
i=1[MSi ,μSi ] = [MS,μS ].

Proof. We have

�k
i=1[MSi ,μSi ] = �k

i=1Ind
Gi
PSi

◦ [μSi ]◦ (δPSi
⊗Jac

Gi
Pop

Si
)⊗ [1][| · |〈ρGi ,μSi −μi 〉]

= IndG
PS

◦ [μ]◦ (δPS ⊗JacGPop
S

)⊗ [1][| · |
k∑

i=1
〈ρGi ,μSi −μi 〉

]

= IndG
PS

◦ [μ]◦ (δPS ⊗JacGPop
S

)⊗ [1][| · |〈ρG,μS−μ〉]

= [MS,μS ].

For some finite subset C ⊂ CG such that each (MS,μS ) ∈ C satisfies μS ∼G μ, we would

like to make sense of a sum ∑
(MS ,μS )∈C

[MS,μS ].

This makes sense as a map Groth(G(Qp)) → Groth(G(Qp) × WE ), where WE =⋂
(MS ,μS )∈C

WE{μS }MS
. However, for our purposes, we would like to understand when we

can extend the image of this map to a representation in Groth(G(Qp)×WE{μ}G ).

Lemma 3.3.5. Fix a pair (G,μ) ∈ CG . Consider a finite subset C ⊂ CG such that if

(MS,μS ) ∈ C , then μS ∼G μ. Furthermore, suppose that for each γ ∈ WE{μ}G and element

(MS,μS ) ∈ C , we have (MS,γ (μS )) ∈ C . Then∑
(MS ,μS )∈C

[MS,μS ]

is a map

Groth(G(Qp)) → Groth(G(Qp)×WE{μ}G )

in a natural way.

Proof. Our construction is analogous to that of Lemma 3.2.3. We fix ρ ∈ Groth(G(Qp))

and give

VC =
⊕

(MS ,μS )∈C

[MS,μS ](ρ),

the structure of a G(Qp)×WE{μ}G -representation. Suppose that C = C1
∐

...
∐

Cn , where

each Ci is a single WE{μ}G -orbit. Then for each i , we give

VCi =
⊕

(MS ,μS )∈Ci

[MS,μS ](ρ),

the structure of a G(Qp)×WE{μ}G -representation, and then define the G(Qp)×WE{μ}G -

structure on VC to be the direct sum of the VCi .
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Suppose now that C contains a single WE{μ}G -orbit. In this case, we will show that

⊕
(MS ,μS )∈C

[MS,μS ](ρ)

can be given the structure of a Groth(G(Qp)×WE{μ}G )-representation equal to

[IndG
PS

(δPS ⊗JacGPop
S

(ρ))][r ◦LL(δPS ⊗JacGPop
S

(ρ))|WE{μ}G
⊗| · |−〈ρG,μS−μ〉−〈ρMS ,μS 〉],

where r is the induced representation (not parabolic induction) given by

Ind
M̂S�WE{μ}G
M̂S�WE{μS }MS

(r−μS )

for a fixed choice of (MS,μS ) ∈ C . The isomorphism class of r will not depend on this

choice.

We study the representation r . Fix representatives γ1,...,γk ∈ WE{μ}G /WE{μS }MS
so that

γ1 = 1. Then r is defined to be the sum of k copies of r−μS indexed by the γi and acted

on by WE{μ}G in the standard way. We check that the ith copy of r−μS is a representation

of M̂S �WE{γi (μS )}MS
and isomorphic to r−γi (μS ). Let Vi be the underlying vector space

of the ith copy of r−μS . Then Vi is naturally a representation of M̂S �γiWE{μS }MS
γ −1
i =

M̂S �WE{γi (μS )}MS
.

Now suppose v ∈ V1 is a weight vector of T̂ ⊂ M̂S of weight μ′. Then we show that

(1,γi)v ∈ Vi has weight γi(μ
′). After all, for t ∈ T̂ , we have

r((t,1))((1,γi)v) = (t,γi)v

= (1,γi)(γ
−1
i (t),1)v

= (1,γi)r−μS ((γ −1
i (t),1))(v)

= (1,γi)μ
′(γ −1

i (t))v
= γi(μ

′)(t)(1,γi)v .

In particular, we have shown that Vi is irreducible of extreme weight −γi(μS ) as an M̂S -

representation (since r−μS is irreducible of extreme weight −μS as an M̂S -representation).

It is a similar simple check that WE{γi (μS )}MS
acts trivially on the highest weight space of

Vi . This proves that Vi is isomorphic to r−γi (μS ).
In particular, it shows that we can give⊕

γi∈WE{μ}G /WE{μS }MS

r−γi (μS ) ◦LL(δPS ⊗JacGPop
S

(ρ))|WE{γi (μS )}MS
,

the structure of a WE{μ}G -representation isomorphic to

r ◦LL(δPS ⊗JacGPop
S

(ρ))|WE{μ}G
.

To conclude the proof, we just need to check that the | · | twists on each [MS,γi(μS )]-term
are the same. This follows because ρG and ρMS are both invariant by WE{μ}G .
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We would like to check the following:

Lemma 3.3.6. The sum MG,b,μ as in Definition 2.5.2 gives a map

[MG,b,μ] : Groth(G(Qp)) → Groth(G(Qp)×WE{μ}G ),

where

[MG,b,μ] :=
∑

(MS ,μS )∈RG,b,μ

(−1)
LMS ,Mb [MS,μS ].

Proof. By Lemma 3.3.5, it suffices to show that MG,b,μ is invariant under the natural
action of WE{μ}G on Z〈CG〉. Pick γ ∈ WE{μ}G . Since the action of γ on a cocharacter pair

fixes the standard Levi subgroup in the first factor, signs will not be an issue, and we

will be done if we can check that RG,b,μ is γ -invariant. But if (Mb,μb) ∈ TG,b,μ, then
it is a simple consequence of the definition of T that so is (Mb,γ (μb)). Furthermore, if

(MS,μS ) ≤ (Mb,μb), then (MS,γ (μS )) ≤ (Mb,γ (μb)) by definition of the partial order

relation (remarking that θMS (μS ) = θMS (γ (μS ))). This shows that RG,b,μ is γ -invariant,

as desired.

If we combine the previous lemma with Proposition 2.5.9 and Lemma 3.3.4, we get

�k
i=1 [MGi ,bi,μi ] = [MG,b,μ]. (9)

We now prove the key result of this section, which provides the connection between

Mant and cocharacter pairs.

Theorem 3.3.7. Assume that the Harris–Viehmann conjecture is true for the general

linear groups we consider.

(1) We have the following equality of morphisms Groth2(G(Qp)) → Groth2(G(Qp)×
WE{μ}G ):

MantG,b,μ ◦Redb = [MG,b,μ],

where Groth2(G(Qp)) is defined to be the span of the essentially square-integrable
representations in Groth(G(Qp)).

(2) Now assume further that Theorem 3.1.2 holds for all admissible representa-

tions of Groth(G(Qp)). Then this equality holds as morphisms Groth(G(Qp)) →
Groth(G(Qp)×WE{μ}G ).

Proof. We prove the second statement first, by induction on the rank of X∗(T ).
If the rank of X∗(T ) is 1, then B(G,μ) is a singleton, and so the result follows from

Theorem 3.1.2.

Suppose the result holds for all nonbasic b ∈ B(G,μ) with Rk(X∗(T )) ≤ r . Then by
Theorems 2.5.4 and 3.1.2, the result holds for all b ∈ B(G,μ) with Rk(X∗(T )) ≤ r .
Finally, suppose the result holds for all b ∈B(G,μ) with Rk(X∗(T )) ≤ r . Then suppose

X∗(T ) has rank r + 1, and choose b ∈ B(G,μ) such that b is not basic. We write
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Mb = Mb1 × ...×Mbk . By the Harris–Viehmann formula,

MantG,b,μ ◦Redb

=
∑

(Mb,μb )∈IG,μ

Mb,b′

(IndG
Pb

◦⊗k
i=1MantMbi ,b

′
i,μbi ◦Redb)⊗ [1][| · |〈ρG,μb 〉−〈ρG,μ〉]

=
∑

(Mb,μb )∈IG,μ

Mb,b′

(IndG
Pb

◦⊗k
i=1(MantMbi ,b

′
i ,μbi ◦Redb′

i
)◦(δPb ⊗JacGPop

b
))⊗ [1][|·|〈ρG,μb 〉−〈ρG,μ〉].

By inductive assumption we get

=
∑

(Mb,μb )∈IG,μ

Mb,b′

(IndG
Pb

◦⊗k
i=1[MMbi ,b

′
i ,μbi ]◦ (δPb ⊗JacGPop

b
))⊗ [1][| · |〈ρG,μb 〉−〈ρG,μ〉],

and now by (9)

=
∑

(Mb,μb )∈IG,μ

Mb,b′

(IndG
Pb

◦ [MMb,b′,μb ]◦ (δPb ⊗JacGPop
b

))⊗ [1][| · |〈ρG,μb 〉−〈ρG,μ〉].

Finally, by Corollary 2.5.8 and Lemma 3.3.3,

= [MG,b,μ].

We must check that the WE{μ}G -structure coming from Remark 3.2.2 is compatible with

that of Lemma 3.3.5. Pick ρ ∈Groth(G(Qp)). By inductive assumption and Lemma 3.3.3,

for each (Mb,μb) ∈ IG,μ

Mb,b′ , the WE{μb }Mb
-structures on

(IndG
Pb

◦MantMb,b′,μb ◦Redb′ ◦ (δPb ⊗JacGPop
b

))(ρ)⊗ [1][| · |〈ρG,μb 〉−〈ρG,μ〉]

and

iGMb
([MMb,b′,μb ])(ρ)

are the same. Thus by Lemma 3.2.3, the WE{μ}G -structure on MantG,b,μ(Redb(ρ)) is a

direct sum over the WE{μ}G -orbits of IG,μ

Mb,b′ of induced representations of the form

Ind
WE{μ}G
WE{μb }Mb

iGMb
([MMb,b′,μb ])(ρ).

This WE{μ}G -structure matches the one on [MG,b,μ] (coming from Lemma 3.3.5), by the

transitivity of the induced representation construction (see Lemma 3.2.4, for instance).
We now prove the first statement of the theorem. To do so, we need to show that

if we restrict ourselves to the span of the essentially square-integrable representations

Groth2(G(Qp)) ⊂Groth(G(Qp)), then we can remove the first assumption. In particular,
these representations are accessible, so we have Theorem 3.1.2 unconditionally. In the

preceding proof we need only observe that the Jacquet module JacGPop (ρ) is a sum

of essentially square-integrable representations for ρ ∈ Irr2(G(Qp)). Thus, to get the
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result for Groth2(G(Qp)) by induction, our inductive assumption need only hold for

all Groth2(G ′(Qp)) for rkG ′ < rkG . This shows that under the condition that the Harris–

Viehmann conjecture is true in the cases we consider, the theorem is true for essentially
square-integrable representations without any other assumptions.

4. Harris’s generalisation of the Kottwitz conjecture

(proof of Theorem 1.0.5)

In this section, we discuss an explicit computation using the results obtained in the

preceding sections. In particular, we prove that Shin’s formula for all admissible repre-
sentations combined with the Harris–Viehmann conjecture proves Harris’s conjecture for

the general linear groups considered in §3. This conjecture [6, Conjecture 5.4] is distinct

from the Harris–Viehmann conjecture.
We begin by discussing the Kottwitz conjecture, which appears as [16, Corollary 7.7]

in the cases we consider and more generally as [13, Conjecture 7.3]. Fix G as in §3 and

a cocharacter pair (G,μ) such that μ is minuscule. Let b ∈ B(G,μ) be the unique basic
element. Now consider ρ a representation of Jb(Qp) such that JL(ρ) is a supercuspidal

representation of G(Qp). Then

MantG,b,μ(Redb(JL(ρ))) = MantG,b,μ(ρ),

but by Theorem 3.3.7, the left-hand side equals

[MG,b,μ](JL(ρ)).

Now we see that since JL(ρ) is supercuspidal, each term of the form [MS,μS ](JL(ρ)) is 0
when MS is a proper Levi subgroup of G . Thus,

MantG,b,μ(ρ) = [MG,b,μ](JL(ρ)) = [JL(ρ)][r−μ ◦LL(ρ)| · |−〈ρG,μ〉].

This result is the Kottwitz conjecture for G . Alternatively, if b ∈ B(G,μ) is not basic,

then no cocharacter pairs with G as the Levi subgroup will appear in MG,b,μ, and so

MantG,b,μ(ρ) = 0.

Of course, these results are already known from [16], but we review them as motivation

for Harris’s conjecture.

We begin with the following useful definition:

Definition 4.0.1. Fix (G,μ) ∈ CG and b ∈B(G,μ). Let MS be a standard Levi subgroup

such that MS ⊂ Mb . We define the subset Rel
G,μ

MS ,b ⊂ CG as the set

{(MS,μS ) ∈ CG : ∃(Mb,μb) ∈ TG,b,μ, with θMb (μb) = θMS (μS ), μb ∼Mb μS }.
The notation μS ∼Mb μb is defined to mean that μS and μb are conjugate in Mb . Note

that we do not require (MS,μS ) ≤ (G,μ) or (MS,μS ) ≤ (Mb,μb).
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We record the following useful properties of RelG,μ

MS ,b :

Lemma 4.0.2. We use the same notation as in the previous definition. Then

RelG,μ

MS ,b =
∐

(Mb,μb )∈IG,μ

Mb,b′

Rel
Mb,μb
MS ,b′ .

Proof. If (MS,μS ) ∈ RelG,μ

MS ,b , then there is an (Mb,μb) ∈ TG,b,μ such that θMb (μb) =
θM (μS ) and μS ∼Mb μb . Then by Proposition 2.5.7, there is a unique (Mb,μ

′) ∈ IG,μ

Mb,b′

such that (Mb,μb) ∈ TMb,b′,μ′ , and so (MS,μS ) ∈ Rel
Mb,μb
MS ,b′ . The reverse inclusion is

analogous.

Lemma 4.0.3. The set RelG,μ

MS ,b is invariant under the action of WE{μ}G .

Proof. If (MS,μS ) ∈RelG,μ

MS ,b , then we can find (Mb,μb) ∈ TG,b,μ with θMb (μb) = θMS (μS )

and μb ∼Mb μS . By a similar argument to Lemma 3.3.6, we show that for each γ ∈
WE{μ}G , we have (Mb,γ (μb)) ∈ TG,b,μ, θMS (γ (μS )) = θMb (γ (μb)) and γ (μS ) ∼Mb γ (μb).

This finishes the proof.

Equipped with this definition, we can now make the following restatement and slight

generalisation of [6, Conjecture 5.4] for the G that we consider. Our statement is a
generalisation because we consider nonbasic b and do not assume that the representation

IG
MS

(ρ) is irreducible.

Conjecture 4.0.4 (Harris). Fix b ∈ B(G,μ) and a standard Levi subgroup MS ⊂ Mb.

Then for ρ ∈Groth(MS (Qp)) a supercuspidal representation, the following representations
are equal in Groth(G(Qp)×WE{μ}G ):

MantG,b,μ(e(Jb)LJ (δ
1
2
G,Pb

⊗ IMb
MS

(ρ)))

and

[IG
MS

(ρ)]

⎡
⎢⎢⎣

⊕
(MS ,μS )∈Rel

G,μ
MS ,b

r−μS ◦LL(ρ)|WE{μS }MS
| · |−〈ρG,μ〉

⎤
⎥⎥⎦ .

Here r−μS is a representation of M̂S �WE{μS }MS
, but the right-hand side naturally acquires

the structure of a G(Qp) × WE{μ}G -representation from Lemma 4.0.3 and the proof of
Lemma 3.3.5.

In particular, for b basic, this says that

MantG,b,μ(Redb(IG
MS

(ρ))) = [IG
MS

(ρ)]

⎡
⎢⎢⎣

⊕
(MS ,μS )∈Rel

G,μ
MS ,b

r−μS ◦LL(ρ)|W{μS }MS
| · |−〈ρG,μ〉

⎤
⎥⎥⎦ .
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We will prove this conjecture assuming that Shin’s formula (Theorem 3.1.2) holds for

all admissible representations.

We proceed by induction on the rank of T . The key observation will be that Harris’s
conjecture is compatible with the Harris–Viehmann conjecture and Shin’s formula. We

will first assume that IG
MS

(ρ) is irreducible, and later remove this assumption.

The following proposition shows that Conjecture 4.0.4 is compatible with the Harris–
Viehmann conjecture (Conjecture 3.2.1):

Proposition 4.0.5. Fix b ∈ B(G,μ) nonbasic and fix a standard Levi subgroup MS of
G satisfying MS ⊂ Mb. Pick ρ ∈ Groth(MS (Qp)) and suppose that IG

MS
(ρ) is irreducible.

Suppose that Conjecture 4.0.4 for ρ holds for MantMb,b′,μb for each (Mb,μb) ∈ IG,μ

Mb,b′ .
Then Conjecture 4.0.4 holds for MantG,b,μ.

Proof. We compute

MantG,b,μ(e(Jb)LJ (δ
1
2
G,Pb

⊗ IMb
MS

(ρ)))

=
∑

(Mb,μb )∈IG,μ

Mb,b′

IndG
Pb

(MantMb,b′,μb (e(Jb)LJ (δ
1
2
G,Pb

⊗ IMb
MS

(ρ))))⊗ [1][| · |〈ρG,μb−μ〉],

so by assumption

=
∑

(Mb,μb )∈IG,μ

Mb,b′

[IndG
Pb

(δ
1
2
G,Pb

⊗IMb
MS

(ρ))]

⎡
⎢⎢⎣

⊕
(MS ,μS )∈Rel

Mb,μb
MS ,b′

r−μS ◦LL(IMb
MS

(ρ))|WE{μS }MS
| · |S

⎤
⎥⎥⎦,

where S = −〈ρMb,μb〉 + 〈ρG,μb − μ〉 − 〈det(AdNn (Mb ))|T
2 ,μb〉 = −〈ρG,μ〉 (following the

discussion in Remark 3.3.2). Now simplifying this expression, we get

=
∑

(Mb,μb )∈IG,μ

Mb,b′

[IG
MS

(ρ)]

⎡
⎢⎢⎣

⊕
(MS ,μS )∈Rel

Mb,μb
MS ,b′

r−μS ◦LL(IG
M (ρ))|WE{μS }MS

| · |−〈ρG,μ〉

⎤
⎥⎥⎦ .

Thus, we are reduced to showing that

Rel
G,μ

MS ,b =
∐

(Mb,μb )∈IG,μ

Mb,b′

Rel
Mb,μb
MS ,b′ .

This is just Lemma 4.0.2.

With Proposition 4.0.5 in hand, it remains to show that if Conjecture 4.0.4 holds for
all nonbasic b ∈B(G,μ), then it holds for the basic b. The key to proving this is Theorem

3.1.2.

We begin by making some observations about r−μ. Since we assumed that IG
MS

(ρ) is

irreducible, we have LL(IG
MS

(ρ)) = LL(ρ), and the image of this representation lies inside
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LMS ⊂ LG . Thus, the term [r−μ ◦ LL(IG
MS

(ρ))|WE{μ}G
] depends only on the restriction

r−μ|M̂S�WE{μ}G
. Since μ is assumed to be minuscule, we have the following equality of

M̂S -representations:

r−μ|M̂S
=

⊕
(MS ,μS )∈CG,μS∼Gμ

r−μS |M̂S
. (10)

We further note that each r−μS is a representation of M̂S �WE{μS }MS
. Since {(MS,μS ) ∈

CG : μS ∼G μ} is invariant under the natural action of WE{μ}G , it follows from the proof

of Lemma 3.3.5 that the right-hand side of (10) can be promoted to a representation of

M̂S �WE{μ}G so that the equation is an equality of WE{μ}G -representations.

Now we recall the following subsets of W rel defined in [4, §2.11]:

Definition 4.0.6. Let MS,NS be standard Levi subgroups of G . We define

W MS = {w ∈ W rel : w(MS ∩B) ⊂ B},

W MS ,NS = {w ∈ W rel : w(MS ∩B) ⊂ B,w−1(NS ∩B) ⊂ B}.
We record the following lemmas:

Lemma 4.0.7 ([4]). Suppose MS,NS are standard Levi subgroups of G, and w ∈W MS ,NS .

Then w(MS )∩NS and w−1(NS )∩MS are standard Levi subgroups.

Lemma 4.0.8. Suppose MS is a standard Levi subgroup of G. Then W MS contains a
unique representative of each left coset of W rel

MS
. Equivalently, (W MS )−1 contains a unique

representative of each right coset of W rel
MS

.

Proof. Suppose w ∈ W rel. Then B ′ = w−1(B) is a Borel subgroup of G containing the
maximal torus T . Since B ′ contains exactly one of each root and its negative, B ′ ∩MS is

a Borel subgroup of MS . In particular, since B ′ ∩MS,B ∩MS are both Borel subgroups

of MS containing T , there exists a wm ∈ W rel
MS

so that

wm(B ∩MS ) = B ′ ∩MS .

Then wwm(B ∩MS ) = B ∩MS ⊂ B , so that wwm ∈ W MS . Thus the coset wW rel
MS

contains

at least one element of W MS .

Suppose wwm,ww ′
m ∈ wW rel

MS
∩W MS . In particular, ww ′

m = (wwm)(w−1
m w ′

m). But wwm

takes all positive roots of MS to positive roots of G , and equivalently, negative roots of

MS to negative roots of G . Thus, if w−1
m w ′

m takes any positive root of MS to a negative

root of MS , then ww ′
m cannot be an element of W MS . In particular, this implies that

w−1
m w ′

m = 1, which shows uniqueness.

Lemma 4.0.9. Suppose MS is a standard Levi subgroup of G, and x ∈ A
+
Q,MS

and w ∈
W rel . Then w(x ) = x if and only if w ∈ W rel

MS
.

Proof. Recall that by assumption, G is quasi-split over Qp and A is a split torus of G of

maximal rank. Pick g ∈ NG(A)(Qp) so that g projects to

https://doi.org/10.1017/S1474748020000535 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000535


The Cohomology of Rapoport–Zink Spaces of EL-Type 1207

w ∈ W rel = NG(A)(Qp)/ZG(A)(Qp). Then the equation w(x ) = x implies that g ∈
ZG(x )(Qp). The centraliser of a cocharacter is a Levi subgroup, and since x ∈ A

+
Q,MS

, we

have ZG(x ) = MS . In particular, g ∈ NMS (A)(Qp), and so w ∈ W rel
MS

.

We remark that x is not a cocharacter but that ZG(x ) still makes sense, as there is an
induced action of G on X∗(A)Q.

We can now prove the following key proposition:

Proposition 4.0.10. Fix (G,μ) ∈ CG and suppose (MS,μS ) ∈ CG satisfies μS ∼G μ. Then

there exists a unique b ∈ B(G,μ) and a unique w ∈ W MS ,Mb so that (w(MS ),w(μS )) ∈
RelG,μ

w(MS ),b.

Proof. We first discuss uniqueness. By assumption, w(MS ) is a standard Levi subgroup.
Then w induces an equality wW rel

MS
w−1 = W rel

w(MS ). In particular, W rel acts on X∗(T )

through Corollary B.0.2, and it follows that

w(θMS (μS )) = θw(MS )(w(μS )).

Since (w(MS ),w(μS )) ∈ Rel
G,μ

w(MS ),b , it follows that θw(MS )(w(μS )) is dominant in the

relative root system. In particular, θw(MS )(w(μS )) must be equal to the unique element

x in the W rel-orbit of θMS (μS ) which is dominant in AQ. Now x ∈ A
+
MS ′,Q for a unique

MS ′ . Since any (Mb,μb) ∈ TG,b,μ is definitionally strictly decreasing, it follows that even

though we cannot yet conclude the uniqueness of b, we have shown that any other b1
must satisfy Mb1 = Mb = MS ′ .
Now, suppose we have w,w ′ ∈ W MS ,Mb such that

w(θMS (μS )) = x = w ′(θMS (μS )).

Then in particular, w ′w−1 stabilises x , and so by Lemma 4.0.9, w ′w−1 ∈ W rel
Mb

. So w
and w ′ are in the same right coset W rel

Mb
w . However, W MS ,Mb ⊂ (W Mb )−1. By Lemma

4.0.8, (W Mb )−1 contains a unique representative of each right coset of (W Mb )−1, and

so there is a unique w ∈ (W Mb )−1 satisfying w(θMS (μS )) = x . In particular, this implies
that w = w ′. Thus, we have shown that w is unique, if it exists. There is exactly one

μ′ ∈ X∗(T ) such that μ′ ∼Mb w(μ) and μ′ is dominant in Mb . Then (Mb,μ
′) ∈ TG,b,μ for

at most one b ∈ B(G,μ). This shows uniqueness.
To prove existence, we again define x to be the unique dominant element in the W rel-

orbit of θMS (μS ). Define MS ′ = ZG(x ) and take the unique w ∈ (W MS ′ )−1 such that

w(θMS (μMS )) = x . We would like to show that w ∈ W MS ,MS ′ .
By definition,

w(MS ) ⊂ w(ZG(θMS (μS ))) = ZG(x ) = MS ′ .

Suppose it is not the case that w(MS ∩B) ⊂ B . In particular, w maps a positive root r of
MS to a root w(r) of MS ′ which is not positive. In particular, −w(r) is positive, and so

w−1(−w(r)) = −r is positive (since w ∈ (W MS ′ )−1). But this is clearly a contradiction.

Thus, in fact w ∈ W MS ,MS ′ .
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By Lemma 4.0.7, w(MS )∩MS ′ = w(MS ) is a standard Levi. It remains to show that
(w(MS ),w(μS )) is a cocharacter pair and an element of RelG,μ

w(MS ),b . Now if r is a positive

root in the absolute root system of w(MS ), then 〈r,w(μS )〉 = 〈w−1(r),μS 〉 ≥ 0 (since

(MS,μS ) is a cocharacter pair and w−1(r) is a positive root of MS ). Thus, (w(MS ),w(μS ))

is a cocharacter pair. By construction, x = θw(MS )(w(μS )) = θMS ′ (w(μS )). Suppose μ′ ∈
X∗(T ) is the unique cocharacter conjugate to w(μS ) in MS ′ and dominant in MS ′ . Then
by Corollary 2.2.4, (MS ′,μ′) is strictly decreasing, and therefore (MS ′,μ′) ∈ TG,b,μ for

some b and so (w(MS ),w(μS )) ∈ RelG,μ

w(MS ),b .

Corollary 4.0.11. Fix a cocharacter pair (G,μ) ∈ CG and a standard Levi subgroup MS of

G. For b ∈B(G,μ), define Wb by {w ∈ W MS ,Mb : w(MS ) ⊂ Mb}. Then Proposition 4.0.10
gives a bijection

{(MS,μS ) ∈ CG : μS ∼G μ} ∼=
∐

b∈B(G,μ)

∐
w∈Wb

RelG,μ

w(MS ),b .

Proof. By the construction in Proposition 4.0.10, it is clear that given an (MS,μS ) ∈ CG ,

we get an element of the right-hand side of the equation in the corollary. Conversely, an

element (w(MS ),μ′) of the right-hand side comes with a fixed w ∈ Wb , and so we can
recover (MS,w−1(μ′)) on the left-hand side.

We are now ready to finish the proof of Conjecture 4.0.4. By inductive assumption, we
assume that we have shown Conjecture 4.0.4 for G with maximal torus of rank less than

n. Then Proposition 4.0.5 implies that Conjecture 4.0.4 holds for G with maximal torus

of rank n in the case where b is not basic. It remains to prove the basic case, for which

it suffices to show that Theorem 3.1.2 is compatible with Conjecture 4.0.4. We have∑
b∈B(G,μ)

MantG,b,μ(Redb(IG
MS

(ρ)))

=
∑

b∈B(G,μ)

MantG,b,μ(e(Jb)LJ (δ
1
2
Pb

⊗JG
Pop

b
IG
MS

(ρ))).

By the geometric lemma of [4] and noting that W MS ,Mb defined with respect to B is

equal to the analogous set defined with respect to Bop , we have

JG
Pop

b
IG
MS

(ρ) =
∑

w∈WMS ,Mb

IMb
M ′

b
(w(JMS

P ′op
S

(ρ))),

where M ′
S = MS ∩w−1(Mb),M ′

b = w(MS )∩Mb . By the assumption that ρ is supercuspidal,
we must have M ′

S = MS and M ′
b = w(MS ). In this case, we have from the geometric lemma

that w(MS ) is a standard Levi subgroup. Thus the previous expression is equal to

∑
b∈B(G,μ)

MantG,b,μ(e(Jb)
∑

w∈Wb

LJ (δ
1
2
Pb

⊗ IMb
w(MS )(w(ρ))),
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where Wb ⊂ W MS ,Mb is the subset of w such that w(MS ) ⊂ Mb . We now apply Corollary

4.0.4 by inductive assumption to get

∑
b∈B(G,μ)

∑
w∈Wb

[IG
w(MS )(w(ρ))]

×

⎡
⎢⎢⎣

⊕
(w(MS ),μ′)∈Rel

G,μ
w(MS ),b

r−μ′ ◦LL(IG
w(MS )(w(ρ)))|WE{μ′}w(MS )

| · |−〈ρG,μ〉

⎤
⎥⎥⎦ .

By [4, Theorem 2.9], we have

[IG
w(MS )(w(ρ))] = [IG

MS
(ρ)],

and since IG
MS

(ρ) is assumed to be irreducible, we have

LL(IG
MS

(ρ)) = LL(ρ).

Finally, we note that WE{w−1(μ′)}MS
= WE{μ′}w(MS )

, and we have an equality

[r−μ′ ◦LL(w(ρ))|WE{μ′}w(MS )

] = [r−w−1(μ′) ◦LL(ρ)|WE{w−1(μ′)}MS

].

Thus we have

∑
b∈B(G,μ)

∑
w∈Wb

[IG
MS

(ρ)]

⎡
⎢⎢⎣

⊕
(w(MS ),μ′)∈Rel

G,μ
w(MS ),b

r−w−1(μ′) ◦LL(ρ)|WE{w−1(μ′)}MS

| · |−〈ρG,μ〉

⎤
⎥⎥⎦ .

By Corollary 4.0.11 this equals

[IG
MS

(ρ)][
⊕

(MS ,μS ):μS∼Gμ

r−μS ◦LL(ρ)|WE{μS }MS
| · |−〈ρG,μ〉].

Finally, we apply the decomposition given by (10) to get

[IG
MS

(ρ)][r−μ|M̂S�WE{μ}G
◦LL(ρ)|WE{μ}G

| · |−〈ρG,μ〉],

which is the desired result.
Finally, we show that Conjecture 4.0.4 holds even if IG

MS
(ρ) is not irreducible. Our

verification that Conjecture 4.0.4 is compatible with the Harris–Viehmann conjecture did

not rely on the irreducibility of IG
MS

(ρ). Thus, in the case where we do not assume that

IG
MS

(ρ) is irreducible, it suffices to show that Conjecture 4.0.4 is true in the case where b
is basic. If b is basic, then Mb = G , so we have

MantG,b,μ(e(Jb)LJ (δ
1
2
G,Pb

IMb
MS

(ρ))) = MantG,b,μ(Redb(IG
MS

(ρ))).
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This can now be computed by cocharacter pairs using the results of §3. If IG
MS

(ρ) is

assumed to be irreducible, then for each cocharacter pair (MS ′,μS ′) of G we have

[MS ′,μS ′ ](IG
MS

(ρ)) = (IndG
PS ′ ◦ [μS ′ ])(δ

1
2
PS

⊗JG
Pop

S ′
IG
MS

(ρ))⊗ [1][| · |〈ρG,μS ′−μ〉]

= (IndG
PS ′ ◦ [μS ′ ])(

⊕
w∈Wρ

δ
1
2
PS ′ ⊗ IMS ′

w(MS )(w(ρ)))⊗ [1][| · |〈ρG,μS ′−μ〉],

where Wρ is the subset of w ∈ W MS ,MS ′ such that w(MS ) ⊂ MS ′ . This equals

[IG
MS

(ρ)]

⎡
⎣ ⊕

w∈Wρ

r−μS ′ ◦LL(w(ρ))| · |−〈ρG,μ〉
⎤
⎦ .

Thus we see that applying various [MS ′,μS ′ ] to IG
MS

(ρ) in the irreducible case will

always yield the same term of Groth(G(Qp)) – namely, [IG
MS

(ρ)]) – and so when

MantG,b,μ(Redb(IG
MS

(ρ)) is evaluated as a sum of cocharacter pairs, the different Galois

terms must cancel to give Conjecture 4.0.4. Thus, if we can show that in the reducible
case the Groth(G(Qp)) part of each [MS ′,μS ′ ](IG

MS
(ρ)) is fixed and the Galois part is

identical to the irreducible case, then Conjecture 4.0.4 must hold for this case as well.

The first part of our previous computation did not depend on the irreducibility of
IG
MS

(ρ), so we still have

[MS ′,μS ′ ](IG
MS

(ρ)) = (IndG
PS ′ ◦ [μS ′ ])(

⊕
w∈Wρ

δ
1
2
PS ′ ⊗ IMS ′

w(MS )(w(ρ)))⊗ [1][| · |〈ρG,μS ′−μ〉].

Suppose now that IMS ′
w(MS )(w(ρ)) = π1 ⊕ ...⊕πk . Then using the fact that for all i we have

LL(πi ) = LL(w(ρ)),

[μS ′ ](IMS ′
w(MS )(w(ρ))) = ⊕k

i=1[πi ][r−μS ′ ◦LL(πi )⊗| · |−〈ρMS ′ ,μS ′ 〉]

= ⊕k
i=1[πi ][r−μS ′ ◦LL(w(ρ))⊗| · |−〈ρMS ′ ,μS ′ 〉]

= [IMS ′
w(MS )(w(ρ))][r−μS ′ ◦LL(w(ρ))⊗| · |−〈ρMS ′ ,μS ′ 〉].

Thus, the expression for [MS ′,μS ′ ](IG
MS

(ρ)) becomes

[IG
MS

(ρ)]

⎡
⎣ ⊕

w∈WMS ,MS ′
r−μS ′ ◦LL(w(ρ))| · |−〈ρG,μ〉

⎤
⎦,

as desired.
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Appendix A. Examples

In this appendix, we give an example to show that even in the unramified EL-type case,

we do not get an expression as simple as Harris’s conjecture for MantG,b,μ(ρ) for general

ρ. We generally use the same notation as in the computation in Example 3.2.5.

Let G = GL4, suppose μ has weights (12,02) and take b basic. Let T be the diagonal
maximal torus and B be the Borel subgroup of upper triangular matrices. Then the set

of cocharacter pairs less than or equal to (G,μ) is as follows:

(GL4,(12,02))

(GL3 ×GL1,(12,0)(0)) (GL2
2,(1

2)(02)) (GL1 ×GL3,(1)(1,02))

(GL2 ×GL2
1,(1

2)(0)(0)) (GL1 ×GL2 ×GL1,(1)(1,0)(0)) (GL2
1 ×GL2,(1)(1)(02))

(GL4
1,(1)(1)(0)(0)).

(11)

Let ρ ∈Groth(GL1(Qp)) and consider π the unique essentially square-integrable quotient

of IG
GL4

1
(ρ �ρ(1)�ρ(2)�ρ(3)). We want to compute MantG,b,μ(Redb(π)).

We introduce some notation which will allow us to describe the answer to this

question. The results of [17, §2] show that IG
GL4

1
(ρ � ρ(1) � ρ(2) � ρ(3)) has exactly 8

irreducible subquotients. If π ′ is one such subquotient, then JG
Bop (π ′) will be a finite

sum of representations of the form ρ(λ(0)) � ρ(λ(1)) � ρ(λ(2)) � ρ(λ(3)), where λ is a

permutation of {0,1,2,3}. In particular, if � denotes the set of all such permutations

of ρ � ρ(1) � ρ(2) � ρ(3), then each permutation lies in the Jacquet module of exactly

one irreducible subquotient of IG
GL4

1
(ρ � ρ(1) � ρ(2) � ρ(3)) such that the irreducible

subquotients correspond to a partition of �. We use the following shorthand: we define

the notation (0123) to refer to the representation ρ(0) � ρ(1) � ρ(2) � ρ(3). Following
Zelevinsky, our 8 irreducible subquotients naturally correspond to vertices of a 3-

dimensional cube, and so we denote them by binary strings of length 3. Then if we

denote the subset of � corresponding to some subquotient π ′ by �(π ′),we have

�([000]) = {(3210)}
�([100]) = {(2310),(2130),(2103)}
�([010]) = {(3120),(1320),(1302),(3102),(1032)}
�([001]) = {(3201),(3021),(0321)}
�([110]) = {(1203),(1023),(1230)}
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�([101]) = {(2013),(2031),(0213),(0231),(2301)}
�([011]) = {(3012),(0312),(0132)}
�([111]) = {(0123)}.

In particular, our representation π corresponds to [111] in this notation. A tedious

computation using Theorem 3.3.7 yields the following:

Proposition A.0.1.

MantG,b,μ(Redb(π)) = [111][LL(ρ)

∧2
(−7)+LL(ρ)

∧2
(−6)]

− ([110][LL(ρ)

∧2
(−5)]+ [011][LL(ρ)

∧2
(−5)])

+ [010][LL(ρ)

∧2
(−4)]

− [000][LL(ρ)

∧2
(−3)]

We finish by remarking that the set of cocharacter pairs less than or equal to (G,μ)

has some special properties in this case that make the general case more complicated.

For instance, each TG,b,μ has at most a single element. However, if G has a nontrivial

action by �, this need not be the case.
In the case we consider, we have a single cocharacter pair for each Levi subgroup. In

general, this need not be the case. For instance, if G = GL5,μ = (13,02), then (GL3 ×
GL2,(13)(02)),(GL3 ×GL2,(12,0)(1,0)) are both less than (G,μ).
Further, in this example, each cocharacter pair (MS,μS ) has the property that μS is

dominant as a cocharacter of G relative to B . In general, this need not be the case. In

fact, (GL5
1,(1)(1)(0)(1)(0)) ≤ (GL5,(13,02)).

Appendix B. Relative root systems and Weyl chambers

In this appendix we prove a fact about root systems that is needed in the text (for
instance, in the proof of Proposition 2.4.3). We assume that G is a quasi-split group over

a field k of characteristic 0 and pick a separable closure k sep . We fix a split k -torus A of

maximal rank in G and choose a maximal torus T and Borel subgroup B both defined

over k and such that A ⊂ T ⊂ B . Associated to this data, we have an absolute root datum

(X ∗(T ),�∗(G,T ),X∗(T ),�∗(G,T ))

and a relative root datum

(X ∗(A),�∗(G,A),X∗(A),�∗(G,A)).

Our choice of B also gives sets � of absolute simple roots and k� of relative simple roots.

Note that we also have a natural restriction map

res : X ∗(T ) → X ∗(A),

and that by definition an absolute root in �∗(G,T ) restricts to an element of �∗(G,A)∪
{0}.
We record two standard consequences of our assumption that G is quasi-split.
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Proposition B.0.1. Let G be quasi-split and use the notations as in the preceding. Then

(1) The centraliser ZG(A) = T .

(2) We have res(�) = k�, the key point being that no absolute simple root restricts to

the trivial character.

We have the following easy consequence on the structure of the Weyl group of the
relative root system. Recall that the absolute Weyl group W equals

NG(T )(k sep)/ZG(T )(k sep),

and the relative Weyl group W rel is NG(A)(k)/ZG(A)(k).

Corollary B.0.2. We have the following equality: W rel = W �, where � = Gal(k sep/k).

Proof. It suffices to show that ZG(A) = ZG(T ) and that NG(A)(k) = NG(T )(k). For the

first equality, we note that by the quasi-split assumption, ZG(A) = T = ZG(T ). For the
second equality, we note that any g ∈ NG(A)(k) must also normalise the centraliser of A,

which is T . Conversely, if g ∈ NG(T )(k), then g normalises the unique maximal k -split
subtorus of T , which is A.

Define the absolute Weyl chamber C
∗
Q ⊂ X ∗(T )Q by {x ∈ X ∗(T )Q : 〈α̌,x 〉 ≥ 0,α ∈ �}

and define the relative Weyl chamber kC
∗
Q ⊂ X ∗(A)Q analogously. The key result of this

section is that

res(C
∗
Q) = kC

∗
Q.

Despite its simple statement, we have been unable to locate a convenient reference for

this fact. For x ∈ X ∗(T )Q and α ∈ �, we need to relate 〈α∧

,x 〉 and 〈res(α)

∧

,res(x )〉. If we
let σα ∈ W be the reflection corresponding to the root α, then we have

x −σα(x ) = 〈α∧

,x 〉α, (12)

and analogously for res(α)

∧

. Thus, it will suffice to relate σα and σres(α).

Note that since B is defined over k , we have γ (�) = � for every γ ∈ �. Moreover, for

each α ∈ � we have res(γ (α)) = res(α). After all, � acts trivially on X ∗(A)Q, and the
restriction map is �-equivariant.

Now fix α ∈ � and let Wα be the subgroup of W generated by the elements σγ (α) for

each γ ∈ �. We claim that if we can find a nontrivial �-invariant element of Wα, then it
must equal σres(α). To prove this, we first recall the construction of σα and σres(α) (see [2, p.

230], for instance). Given a root α ∈ �∗(G,T ), we can define a group Gα = ZG(Tα), where

Tα = ker(α)0 ⊂ T . Then NGα (T )(k sep)/ZGα (T )(k sep) embeds into W and has a unique

nontrivial element, which is σα. Analogously, we define Ares(α) and Gres(α) = ZG(Ares(α)).
Then NGres(α)

(A)(k)/ZGres(α)
(A)(k) embeds into W rel and has a unique nontrivial element

that is identified with σres(α).

Now, by Corollary B.0.2 we have

NGres(α)
(A)(k)/ZGres(α)

(A)(k) = NGres(α)
(T )(k)/ZGres(α)

(T )(k).
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Thus to complete the proof of the claim, we need to show that

NGα (T )(k sep)/ZGα (T )(k sep) ↪→ NGres(α)
(T )(k sep)/ZGres(α)

(T )(k sep). (13)

After all, the unique nontrivial �-invariant element of the group on the right is σres(α),
and the group on the left contains σα. Since we get the same equation if we replace α

everywhere with γ (α), this implies that

Wα ⊂ NGres(α)
(T )(k sep)/ZGres(T )(k sep).

Now (13) follows from the facts that

ZGα (T ) = ZGres(α)
(T ) = T

and

NGα (T ) ⊂ NGres(α)
(T ).

We are now interested in finding a nontrivial �-invariant element of the group Wα. In
fact, Wα will be a finite Coxeter group, and the element we seek is the unique element of

longest length. We need to compute this element explicitly, which we now do. We treat

two cases. Suppose first that the elements of the �-orbit of σα commute pairwise. Then
clearly the product

∏
γ∈�/stab(σα)

σγ (α) is �-invariant.

In the second case, suppose that the �-orbit of σα has precisely two elements, which

we denote X and Y . Then we have (XY )k = 1 for some k ≥ 2, which we assume to be
minimal. If k is even, then (XY )k/2 is invariant and nontrivial, and if k is odd, then

Y (XY )(k−1)/2 is invariant and nontrivial.

We now prove that any �-action on the simple roots � of G is a combination of

these cases. The action of � on � induces an action on the associated (not necessarily
connected) Dynkin diagram D . Each γ ∈ � maps connected components of D to connected

components, and so there is an induced action of � on the set of connected components

π0(D).
Now fix an α ∈ � and consider the �-orbit �α of α. Suppose D i is a connected

component of D such that D i ∩�α �= ∅. Then via the classification of connected Dynkin

diagrams, we see that �α ∩ D i contains either a single node, 2 nonadjacent nodes, 2
adjacent nodes or 3 nodes where no two are adjacent. In particular, these are all covered

by the cases we have already considered, so we can find an element wi of Wα that is

invariant by the action of stab(D i) ⊂ �. Then �α consists of finitely many disjoint copies

of one of these possibilities, and so we see that
∏
i

wi is �-invariant and an element of Wα

and therefore equal to σres(α). Equipped with this description, we now give a proof of the

main result of this section.

Proposition B.0.3. We continue to observe the previous assumptions. In particular, G
is a quasi-split group over k . Then the map res : X ∗(T ) � X ∗(A) induces an equality

res(C
∗
Q) = kC

∗
Q.
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Proof. We first show that res(C
∗
Q) ⊂ kC

∗
Q. Pick x ∈ C

∗
Q and α ∈ �. Then we need to

show that

〈res(α)

∧

,res(x )〉 ≥ 0,

or equivalently that

res(x )−σres(α)(res(x ))

is a nonnegative multiple of res(α). Note that res is W �-equivariant (where W � acts as

W res on X ∗(A)). Thus, it suffices to show that

res(x −σres(α)(x ))

is a nonnegative multiple of res(α). Thus, we need to compute x −σres(α)(x ). We do so

using our description of σres(α).
We first consider the case where the �-orbit of σα consists of pairwise commuting

elements. Equivalently, the elements of �α are pairwise orthogonal. Then

σres(α) = σαn ◦ ...◦σα1

for {α1,...,αn } = �α. Since x is dominant in the absolute root system, we have

x −σαi (x ) = aiαi

for some ai ≥ 0. Then since αi is orthogonal to αj for i �= j , we have σαi (αj ) = αj . Thus,

x −σres(α)(x ) =
n∑

i=1

(σα1 ◦ ...◦σαi−1)(x )− (σα1 ◦ ...◦σαi )(x )

=
n∑

i=1

(σα1 ◦ ...◦σαi−1)(x −σαi (x ))

=
n∑

i=1

(σα1 ◦ ...◦σαi−1)(aiαi)

=
n∑

i=1

aiαi .

Thus in this case,

res(x −σres(α)(x )) = (a1 + ...+an)res(α),

and a1 + ...+an ≥ 0 as desired.

Now we consider the case where �α = {α,β} and α and β are adjacent in D and
connected by a single edge. Then σα(β) = α+β = σβ(α). In this case, σres(α) = σβ ◦σα ◦σβ .

By assumption, we have that x −σα(x ) = aα and x −σβ(x ) = bβ for a and b nonnegative.

Thus,
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x −σres(α)(x ) = (x −σβ(x ))+σβ(x −σα(x ))+ (σβ ◦σα)(x −σβ(x ))

= bβ +a(α +β)+ bα

= (a + b)(α +β),

which projects to 2(a + b)res(α) and 2(a + b) ≥ 0, as desired.
Finally, we must consider the case where �α equals {α1,β1,...,αn,βn} such that αi and

βi are connected by a single edge in D , but for i �= j , neither αi nor βi are connected to

either αj or βj . We compute x − (σβi ◦σαi ◦σβi )(x ) as in the previous paragraph. Then if

we let wi = σβi ◦σαi ◦σβi , we have

σres(α) = w1 ◦ ..◦wn .

Now we can compute x −σres(α)(x ) as in the commuting case, substituting wi for σαi . We
see in this case that

res(x −σres(α)(x )) = 2(a1 + b1 + ...+an + bn)res(α).

This concludes the proof that res(C
∗
Q) ⊂ kC

∗
Q.

It remains to show that we actually have equality. We claim that it suffices to show
that the fundamental weight δres(α) is an element of res(C

∗
Q). Recall that δres(α) is the

element in the Q-span of the relative roots defined so that the pairing with res(α)

∧

is 1
and the pairing is 0 with all the other relative simple coroots. To show that the claim

proves our result, we note there is a natural isomorphism X ∗(A)Q ∼= X ∗(A0)Q ×X ∗(A′)Q,
where A0 is the maximal k -split central torus and A′ is the identity component of the

intersection of A with the derived subgroup of G . Then kC
∗
Q corresponds under this

identification to the product of X ∗(A0)Q with the projection of kC
∗
Q to X ∗(A′). Then we

have a natural map X ∗(Z (G)0)Q � X ∗(A0)Q, where Z (G)0 is the identity component of

the centre of G and X ∗(Z (G)0)Q ⊂ C
∗
Q. Thus it suffices to show that res(C

∗
Q) surjects onto

the projection of kC
∗
Q to X ∗(A′). This latter space is identified with the set of nonnegative

linear combinations of the fundamental relative weights, thus proving the claim.

To prove that δres(α) is an element of res(C
∗
Q), we make use of an equivalent description of

δres(α). It is the unique element in the Q-span of the relative roots so that σres(β)(δres(α)) =
δres(α) for res(α) and res(β) distinct simple roots and σres(β)(δres(α)) = δres(α) − res(β) when

res(α) = res(β).
In the case where the elements of �α are mutually orthogonal, we have by the previous

characterisation of fundamental weights that the absolute fundamental weight δα restricts

to δres(α). In the case where �α has two elements that are connected in D , then δα restricts
to 2δres(α). In the final case, δα restricts to 2δres(α). Thus, in all cases we can find an element

of X ∗(T )Q that restricts to δres(α). This completes the proof.

We record an important corollary of this proposition.

Corollary B.0.4. Suppose μ,μ′ ∈ X∗(T )Q and μ � μ′. Let μ� be the average of μ over
its �-orbit. Then μ� � μ′� in X∗(A)Q. We caution that the first inequality means that

μ−μ′ is a nonnegative combination of absolute simple coroots, while the second means

that μ� −μ′� is a nonnegative combination of relative simple coroots.
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Proof. Recall that the action of � stabilises �

∧

. Thus for each γ ∈ �, we have γ (μ) � γ (μ′)
and so also μ� � μ′� in the absolute root system. Thus, we are reduced to showing that

if x ∈ X∗(T )�Q is a nonnegative combination of simple absolute coroots, then it is also a
nonnegative combination of simple relative coroots (under the identification X∗(A)Q =
X∗(T )�Q).

Equivalently, we need to show that if x has nonnegative pairing with every element
of C

∗
Q, then it has nonnegative pairing with every element of kC

∗
Q. This is indeed

equivalent, because x has nonnegative pairing with each element of C
∗
Q if and only if

it has nonnegative pairing with each fundamental weight δα, and this is the case if and
only if x is a nonnegative combination of simple roots.

Finally, this equivalent statement is an immediate consequence of the proposition.
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Chapitre IV: Groupes de Coxeter et systémes de Tits. Chapitre V: Groupes engendrés par
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