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HYPERGROUP STRUCTURES ON THE SET

OF NATURAL NUMBERS

WALTER R. BLOOM AND SAROJA SELVANATHAN

Every hermitian hypergroup structure on the set of nonnegative

integers can be generated by a family of real-valued continuous

functions defined on a compact interval. We characterise such

structures in terms of properties of the generating functions.

1. Introduction

Let X be a locally compact Hausdorff space. The notation below

will be used throughout the paper.

M(X) Space of bounded Radon measures on X.

M (X),Ml(X) Subset of M(X) consisting of those measures that are

nonnegative, and those that are nonnegative with total

variation one, respectively.

supp y Support of y e M(X) .

e Point measure at x e X .
x

N, N1 Space of nonnegative integers, and positive integers,

respectively.

A nonvoid locally compact Hausdorff space K will be called a

hypergroup if the following conditions are satisfied:
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(HG1)

(HG2)

M(K) admits a binary operation * under which it is a complex

algebra.

The bilinear mapping * : M(K) x M(K) + M(K) given by

(\i,v) •*• u * v is nonnegative (v * v > 0 whenever u,v > 0)

and its restriction to M (K) x M (K) is continuous when

M (K) is given the weak topology.

Given x,y e K, e * e e M (K) and suppfe * e ) is compact.

x y x y
The mapping (x,y) -»• suppfe * e ) of K x K into the space of

nonvoid compact subsets of K is continuous, the la t te r space

with the topology as given in Section 2.5, Jewett [6] .

There exists a (necessarily unique) element e of K such that

E * e = e * e = e for a l l x e K .x e e x x

There exists a unique involution ( a homeomorphism x -*• x of K

onto itself with the property x = x for all x e. K) such that

for x,y e. K, e e supp(e * e ) if and only if x = y , and
x y

(HG3)

(HG4)

(HG5)

(HG6)

(\i * v) = v * u for all y,v £ A/fiL) , where y e MfiU is

defined by pfij = gf^J for Borel subsets A of K and

4 = {a; : x e /!}.

The study of hypergroups in harmonic analysis was put on a firm

footing with the papers of Dunkl [3], Jewett [6] and Spector [7/]. Since

then work on hypergroups, together with the development of probability

theory on these spaces, has progressed considerably. For an 'early'

survey of results in this area, see the article by Ross [&], and for a

more recent overview, Heyer [5] .

The idea of generalising convolution had in fact been investigated

by many authors. Schwartz [ 9] gave an axiomatic structure that leads to a

generalised convolution on M(H). With a refinement of these axioms (see

below) one obtains various hypergroup structures on N , a topic that has

been treated in some detail by Lasser[7] .

Throughout this paper we shall be dealing with hypergroup structures

on N , when the latter is given the discrete topology, and where the

involution in (HG6) is just given by the identity mapping (such a
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hypergroup is termed hermitian). We first show how the convolution

structure of Schwartz fits within this framework and then,in Section 2,

we prove that for such a hypergroup having as its dual a compact

subinterval of the real line, a necessary and sufficient condition for

it to be generated by polynomials (see the definition following (P1)-(P6)

below) is that it satisfy the assumptions of Lasser [7].

For a general reference to hypergroups see Jewett [6] and Bloom and

Heyer [7]. Numerous examples are to be found in the paper by Jewett and

Bloom and Heyer [2]. The more straightforward results in these papers

will be used without explicit reference.

Suppose that N has the structure of a hermitian discrete

hypergroup, which guarantees that the convolution is commutative. The

dual N is defined as the set of bounded real-valued sequences

satisfying

CO

X(m) X(n) = V X(k) E * e (k) (1.1)

k=0 m n

for all m,n e N . With the topology of uniform convergence on compact

sets (which, in this case, is just pointwise convergence), N is a

compact space.

For y e M(H) its Fourier transform y is the function on N

defined by

u(x; = I x(k) v(k) .
k=o

It is clear that y is continuous, the mapping y -»• y is linear and

one-tc-one, and fu * v) = y v for all |i,v € M(H) .

Every commutative hypergroup K admits a Haar measure X , that is,

a nonnegative measure satisfying e * A = X for all x e K. Levitan1s

cc

theorem (Jewett C6], Theorem 7.31) guarantees the existence of a unique

nonnegative Borel measure a on N , called the Plancherel measure

associated with X , with the property that

=
V

I f(k) g(k) \(k) = f(X) g(X) da(X)
k=0 iN«
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2 2

for a l l f,g e L (ti,XJ. (The Fourier transform i s extended to L (tl,X)

in the usual way.) For each n e N write / = X(n) ?, •, (where

£, , denotes the function taking the value 1 at n and 0 elsewhere.)

Then

fn(X) = x(n) X(n)'1 X(n) = X(n) .

F o r <j> d e f i n e d on N by <p (X) = X(n) we h a v e , u s i n g L e v i t a n ' s theorem,

\ da = X(n)~26
n rim

N

vhere 6 is Kronecker's symbol. Thus {<(> } ̂  is orthogonal with

respect to the Plancherel measure. Writing the convolution on N as

CO

e * e = F a (TUe, ,m n , _. rm k

a further application of Levitan's theorem gives

«mn(k) = X(k)

' N

Functions ij) with properties derived from the above can be used

to generate hermitian hypergroup structures. Let K be a discrete space,

X a compact space with nonnegative Borel measure a y and {<(> }^^v a

family of continuous functions on X. Write

X(a) = {[ U I2 da}'1

Jx
a Jo) = X(a)
ab

' X

for each a^bjO e K . Suppose that {$ } v satisfies the following

properties:

(Pl) {<t } ., is orthogonal in L (X,a) .
a tx£K

(P2) There e x i s t s a. e K s u c h t h a t <J> = 2 .

(P3) There e x i s t s X- e X s u c h t h a t <j> (XQ) = 1 f o r a l l a e K.
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(P4) {<f> } „ is uniformly bounded.

(P5) For each a. b e K , the function a , on K i s nonnegative and
ab

has finite support.

(P6) For every a,b e K ,

These properties correspond to the axioms given in Schwartz [9] for

generalised convolution on N, except that Schwartz does not require each

a to be finitely supported (which is needed if the convolution of
mn

two point measures is to have compact support). It should be noted that

(P6) holds automatically if {<(>}„ is further assumed to be complete
a aeK.

in Ll (% a) .

With {<fi } sat isfying (P1)-(P6), K can be made into a

hermitian hypergroup by defining the convolution as

e * e, = I a , (c)e , a,b e K ,
a b ,, ab c

ceK

(compare with Dunkl [3] , Examples 4.4 and 4.5) and we refer to the

hypergroup s t ruc ture on K as being generated by {{<j> } j X] . In the
a (xeK

case K = N we always take a. = 0.

Writing

X = I X(o)e ,
ceK

(in fact, X(a) = (a(X)z * e (0))~ ) we have, for a, b e K ,
a a

e * X(b) = I e * e (b)\(c)

= I I %(c')e.(b)X(c)
c'eK aC c

= I a
ceK

= I a,(c)X(b)
ceK

= X(b)
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(the las t equality following from (P6) by evaluating at x. ) and this

shows that e * A = A , so that A i s a Haar measure on K .
a

There i s a na tura l mapping n : X -y K." given by n (x) (a) = <j> (x) ,

where a e. K, x e X ; we write r\(x) = X .

THEOREM 1.

(a) If the linear span of {(J> } „ is dense in C(X) then n is one-
a acK

to-one.

Cb) n (X) is closed in K .

(c) r\(a) is the Plancherel measure on K" associated with A.

(d) If K" is a hypergroup (compatible with pointwise multiplication of

characters) then r\(X) = if".

Proof.

(a) This is evident.

(b) Since <i is continuous we have that x -*• x\(x) (a) is continuous

a

for each a e K. Thus n is continuous, as K has the topology

of pointwise convergence, and the conclusion follows from the

compactness of X.

(c) First consider the functions f = \(a) £r ,., where a e K . We

have
I fjfr. d r\(a) = / (r\(x)) f.(r\(x)) da(x)

n- A

- I vX(a) X (b) da(x)
X X

' x
= j $ (x) if,(x) do(x)

x a

= X(a)'1 6
ab

fjo) fjc) \(c) . (1.2)
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2
Now the linear span of {f } is dense in L (K3 X) , whence it

a u€ A..
2

follows that (1.2) holds for a l l fe L (K,\). By uniqueness,

n.CaJ i s the Plancherel measure on K associated with X.

(d) If K i s a hypergroup then (Jewett [6 ] , Theorem 12.4) the support

of i t s Plancherel measure is the whole space. Thus, using (c),

K~ = supp(nCaJ) c r)(X) j

and this completes the proof. / /

A discrete commutative hypergroup could be generated by many families

{{(j> } .vj<Y} . For example, let G be a compact nonabelian group and

take K = I , its dual object. The Clebsch-Gordan formula for characters

on G is

n m

V K = j j 2 dim(U) k

where ty = dimfi/J Tr(U) for U e £ , dim(U) denotes the dimension of

the representation U , and m, denotes the multiplicity of U, in the

n

decomposition £ m U of U 8 V as a direct sum of its irreducible
k=l K K

components. A convolution on K can be defined by

n m1 dim(t/,
_ \ k k

eu * ev~ fc£a d i k

This hypergroup structure is generated by {{iK,}., TtG} , or

alternatively via the i|/ suitably defined on the (compact) space u of

conjugacy classes of G. I t should be noted that in the former case

Dunkl's Examples 4.4 and 4.5 do not apply since the span of characters

would be contained in the set of continuous central functions of G ,

a proper closed subspace of C(G).

Z. Hermitian Hypergroup Structures on N

Throughout we assume that N has a hermitian hypergroup structure

generated by {{<|> } ,, 3 [ajfc]} , where the associated map n is a
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homeomorphism. All of the examples given in Lasser [7] are hypergroups of

th i s type, where each $ i s a polynomial of degree n. In this section

we show that this restr ict ion on ij> i s necessary and sufficient for the

convolution to be given by

rrn-n

The first thing to notice is that (2.1) is equivalent to the

corresponding identity with m = 1. One implication is obvious. In the

other direction, suppose that

1+n
e l * e n = I ain(k) ek ' ( 2 - 2 )

n k=\l-n\ n K

t h a t i s , s u p p ( e j * e ) <= [|« - l\ ,n + i ] fo r a l l n e N. We proceed by

i n d u c t i o n . Suppose t h a t s u p p ( e . * e ) c [\n - l\}n + I] f o r a l l

% < m - 1 j where m 2 2 i s g iven . Then, fo r n > 1 }

m+n-2 mhn-1

L
rm-n

+ a, (n + 1) Y a , Jk) e, (2.3)
ln k=\m-n-2\ n^1>n+1 k

and

nH-n-2

m+n-1
+a i Jm-1) 1 a. , (k)z,+ a , Am)

(2 .4 )

Since these two expressions are equal by associativity of convolution, we

see that a (k) = 0 for k \ Z\m - n\,m + nl . This clearly holds for
rm '

n = 0 as well, which gives the assertion. Our main resul t i s :

THEOREM 2. Suppose that the hevmitian hypergraup structure on N

•is generated by {^r l ) n e^ • Za^bl} where the associated map n. is a

homeomorphism.
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(a) If each <(> is a polynomial of degree n then

supp(e. * e ) <= L\m - n[,m-m] for all m,n e N.

(b) Suppose supp(e * e ) c [ \m - n\,m+n] for each m,n e N . Then

there is a closed interval \_dyl] and a sequence {((>*} _M of
n n£n

polynomials with deg $* = n such that {{<)>*} N : Ld_,ll]

generates the given hypergroup structure on N .

Proof.

(a) Using (P6)

aln(k) = \(k) j ^^Jk da = 0
a

whenever k > n + 1 or n > k + 1, in which case k < n - 1. Thus

supp(e * e ) c [|n - l\,n + 2],and the result follows by the discussion

preceding the theorem.

(b) First note that <|>g = 1 is a consequence of the assumption on the

support given in the statement of the theorem.

We begin by showing that a An + 1) > 0 for all n e. N' . Since

* is associative on M(H) , for m 2 2 and n e N' we can write

Equating the coefficients of e1 „, of both sides (refer to (2.3)
\Tu—n—c ]

and (2.4)) we obtain

anl(n + 1)amlW\m ' n ~ 2 | ; = V W ^ V S / 1 " -n-2\) .

In particular if m = 2 , then we obtain

ani(n + 1)an+l,l(n) = aU(0)a
n0

(n) = e l * zi(0) > °

since 0 e suppfe * e^ . Thus a (n + 1) > 0 for all n e N1 , and in

fact this inequality holds for n = 0 as well.

The identity for convolution ensures that

n+1
x) = I a

k=n-l n
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for n e N' and x e [a,£>] . Hence

^x). (2.5)

We can use (2.5) to show tha t <f> i s a homeomorph ism of [<2.,£>] onto

Ldjll for some d e. \_-l,l). The f i r s t thing to notice i s that since

{ij> } „ i s orthogonal in L (\_a,b~\,da) , <fi f= <j> = 1 , which ensures

tha t <j> (La, b 1) ^ {1} . I t i s also easy to see that lifijfcJl < 1 for a l l

x € LcCjbl . Indeed, writing M = sup{ | X (n)\ : n e N} , we have using

(1.1) t ha t for m>n e N, x e \.a3b~\ 3

I X (m) I I X (n) I < I I X (k) I E * e (k) < M ,
' x ' ' x ' ,^0 ' x ' m n ~ x

from which i t follows that M < 1 , and hence
x

as required. Thus a l l that needs to be shown is that <J>. is one-to-one.

Suppose that ^^(x) = $i(y) for some x,y e la^bl . We proceed by

induction to show that $ (x) = d> (y) for a l l n e N , in which case

x = W as n i s one-to-one. Assume tha t <b (x) = <j> (u) for a l l
mm

m < n . Using (2 .5 ) , we have

anl(n + 1H
n+1

(x) = {*1(X) ~ a

Since a (n + 1) > 0 , if +j^.x^ = $ +1^^ ' Th^-S completes the induct ion

s t e p a s r equ i r ed .

Write <J>* = <J> ° 4> i - Then (2.5) becomes

= (x - ani(n))^(x) - o^tr. - l)^1(x) . (2.6)

https://doi.org/10.1017/S0004972700002914 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002914


Hypergroup Structures 99

As a (n + 1) > 0 for each n e M , i t fo l lows from (2.6) t h a t d>*
ni n

i s a polynomial of degree n . Also, since

I1 !b i

d a

the set {<)>*} eN is orthogonal in L
2 ([d,l~\,d§ (a)) . It is easy to

check that {<(>*} ., satisfies properties (P1)-(P6), and that

{{<)>} M • ld,l~}} generates the given hypergroup structure on N . //

A related result can be found in Schwartz [10], Theorem 1, proved

under somewhat different conditions. Schwartz starts with an SL -

convolution algebra where the convolution is not assumed to be non-

negative (]i a v > 0 whenever y., v > 0) ; on the other hand, he does

require from the outset that o ̂ (n + 1) # 0 .

It should be noted from the proof of Theorem 2 that for each n e N

for all x e La^bl .

We observe that for N to be a hermitian hypergroup with the

convolution (2.1) it is necessary that the a (m,n e N) be generated as

in Lasser [7]. Indeed

rrti-n 2m
e * e = I a (k)z, = I g(m,n,m + n - k)e

k=|m-n I k=0

where q(m.n.k) = a (k) for m.n.k e N . Then
rrtn

g(0,n,n) = a (n) = 1 ,

a = g(l,n,n + 1) = a (n + 1) > 0 ,

b = g(l,n,n) = a (n) > 0 y

a = g(l,n,n - 1) = a (n - 1) > 0

and, since e * e is a probability measure.
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a + b + c = a (n + 1) + a. (n) + a (n - 1) = 1.n n n \n In in

Thus {a }, {b }, {a } satisfy property (P) of Lasser[7] , p. 191.

Using the associativity of the convolution, i t is straightforward but

tedious to check that the function g satisfies the recursive properties

given in Lasser C7], Section 2, p.188.

Finally we consider the following convolution on N , introduced in

Gilewski and Urbanik [41 •

__ cosh aim - n) cosh aim + n)
m n 2 cosh am cosh an E\m-n \ 2 cosh am cosh an zm+n '

where a > 0 is given. I t is easily shown that N is a hermitian

hypergroup with the above convolution and 0 as unit element, and that

N* = {X : x e [-cosh a., cosh a]} ,

where

(-1) cosh (n arcosh(-x)) if x e [-cosh a, -1),

X (n) cosh an = •
x

cos(n arccos x) if x e [-1,11 ,

cosh (ft arcosh x) if x e (1, cosh a] .

Each $ is a polynomial of degree n , agreeing (up to a constant) on

{.-1,11 with the nth Tchebychef polynomial of the first kind. The

sequence {$ } .. is orthogonal on [-cosh a, cosh al with respect to

the measure a supported in [-1,11 and satisfying

da(x) = (TTCZ - a 2 ; ) " * dx , x e 1-1,11 .

I t is clear that the hypergroup structure is generated by both {{<j> } „,

[-cosh a, cosh al} (with orthogonalising measure 0) and the corresponding

family restricted to [-1,11 ; however (using the notation of Theorem 1

above) in the la t ter case r\([-l, 11) is a proper subset of N . Note

that the <\> cannot be extended past the interval [-cosh a, cosh a ] ,

as then (P4) would not hold.

https://doi.org/10.1017/S0004972700002914 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002914


>•'• Kypergroup Structures 101

References

[7] Walter R. Bloom and Herbert Heyer, "The Fourier transform for

probability measureson hypergroups", Rend. Mat. 2 (1982),

315-334.

[2] Walter R. Bloom and Herbert Heyer, "Convergence of convolution

products of probability measures on hypergroups", Rend. Mat.

2 (1982), 547-563.

[3] Charles F. Dunkl, "The measure algebra of a locally compact

hypergroup", Trans. Amer. Math. Soo. 179 (19 73), 331-348.

[4] j. Gilewski and K. Urbanik, "Generalized convolutions and

generating functions", Bull. Aoad. Polon.- Sci. Sir. Sai.

Math. Astvonom. Phys. 16 (1968), 481-487.

[5] Herbert Heyer, "Probability theory on hypergroups : a survey",

Probability measures on groups VII. CProa. Conf., Oberwolfaah

Math. Res. Inst., Oberwolfaah 1983. ) 481-550. (Lecture

Notes in Math., 1064 Springer Verlag, Berlin, Heidelberg,

New York, 1984) .

[6] Robert I. Jewett, "Spaces with an abstract convolution of measures".

Adv. in Math. 18 (1975), 1-101.

[7] Rupert Lasser, "Orthogonal polynomials and hypergroups", Rend.

Mat. 3 (1983), 185-209.

[S] Kenneth A. Ross, "Hypergroups and centers of measure algebras",

Symposia Mathematiea 22 (1977), 189-203.

C9] Alan Schwartz, "Generalized convolutions and positive definite

functions associated with general orthogonal series",

Pacific J. Math. 55 (1974), 565-582.

[JO] Alan L. Schwartz, "I -convolution algebras : representation and

factorization", Z. Wahrsch. Verw. Gebiete 41 (1977), 161-176.

[JJ] Rene Spector, "Apercu de la theorie des hypergroupes", Analyse

harmonique sia> les groupes de Lie. (Sen). Nancy-Strasbourg,

1973-1975.) 643-673. (Lecture Notes in Math

Springer Verlag, Berlin, Heidelberg, New York, 1975).

https://doi.org/10.1017/S0004972700002914 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002914


102 Wal ter R. Bloom and Saro ja Selvanathan

School of Mathematical and Physical Sciences

Murdoch University

Perth

Western Australia 6150

AUSTRALIA

https://doi.org/10.1017/S0004972700002914 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700002914

