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The incompressibility constraint for fluid flow was imposed by Lagrange in
the so-called Lagrangian variable description using his method of multipliers
in the Lagrangian (variational) formulation. An alternative is the imposition of
incompressibility in the Eulerian variable description by a generalization of Dirac’s
constraint method using noncanonical Poisson brackets. Here it is shown how to
impose the incompressibility constraint using Dirac’s method in terms of both the
canonical Poisson brackets in the Lagrangian variable description and the noncanonical
Poisson brackets in the Eulerian description, allowing for the advection of density.
Both cases give the dynamics of infinite-dimensional geodesic flow on the group
of volume preserving diffeomorphisms and explicit expressions for this dynamics
in terms of the constraints and original variables is given. Because Lagrangian and
Eulerian conservation laws are not identical, comparison of the various methods is
made.
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1. Introduction
1.1. Background

Sometimes constraints are maintained effortlessly, an example being the constraint
on the magnetic field, ∇ · B = 0, in electrodynamics which if initially true remains
true, while alternatively in most cases dynamical equations must be modified to
maintain constraints, an example being ∇ · v = 0 in fluid mechanics. The need to
apply constraints arises in a variety of contexts, ranging from gauge field theories
(e.g. Sundermeyer 1982) to optimization and control (e.g. Bloch 2002). A very
common approach is to use the method of Lagrange multipliers, which is taught in
standard physics curricula for imposing holonomic constraints in mechanical systems.
Alternatively, Dirac (1950), in pursuit of his goal of quantizing gauge field theories,
introduced a method that uses the Poisson bracket.
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The purpose of the present article is to explore different methods for imposing
the compressibility constraint in ideal (dissipation-free) fluid mechanics and its
extension to magnetohydrodynamics (MHD), classical field theories intended for
classical purposes. This endeavour is richer than might be expected because the
different methods of constraint can be applied to the fluid in either the Lagrangian
(material) description or the Eulerian (spatial) description, and the constraint methods
have different manifestations in the Lagrangian (action principle) and Hamiltonian
formulations. Although Lagrange’s multiplier is widely appreciated, it is not so well
known that he used it long ago for imposing the incompressibility constraint for a
fluid in the Lagrangian variable description (Lagrange 1788). More recently, Dirac’s
method was applied for imposing incompressibility within the Eulerian variable
description, first in Nguyen & Turski (1999, 2001) and followed up in several works
(Morrison, Lebovitz & Biello 2009; Tassi, Chandre & Morrison 2009; Chandre,
Morrison & Tassi 2012, 2014; Chandre et al. 2013). Given that a Lagrangian
conservation law is not equivalent to an Eulerian conservation law, it remains to
elucidate the interplay between the methods of constraint and the variables used for
the description of the fluid. Thus we have three dichotomies: the Lagrangian versus
Eulerian fluid descriptions, Lagrange multiplier versus Dirac constraint methods and
Lagrangian versus Hamiltonian formalisms. It is the elucidation of the interplay
between these, along with generalizing previous results, that is the present goal.

It is well known that a free particle with holonomic constraints, imposed
by the method of Lagrange multipliers, is a geodesic flow. Indeed, Lagrange
essentially observed this in Lagrange (1788) for the ideal fluid when he imposed
the incompressibility constraint by his method. Lagrange did this in the Lagrangian
description by imposing the constraint that the map from the initial positions of fluid
elements to their positions at time t preserves volume, and he did this by the method
of Lagrange multipliers. It is worth noting that Lagrange knew the Lagrange multiplier
turns out to be the pressure, but he had trouble solving for it. Lagrange’s calculation
was placed in a geometrical setting by Arnold (1966) (see also appendix 2 of Arnold
(1978)), where the constrained maps from the initial conditions were first referred to
as volume preserving diffeomorphisms in this context. Given this background, in our
investigation of the three dichotomies described above we emphasize geodesic flow.

For later use we record here the incompressible Euler equations for the case with
constant density and the case where density is advected. The equations of motion,
allowing for density advection, are given by

∂v

∂t
=−v · ∇v −

1
ρ
∇p, (1.1)

∇ · v = 0, (1.2)
∂ρ

∂t
=−v · ∇ρ, (1.3)

where v(x, t) is the velocity field, ρ(x, t) is the mass density, p(x, t) is the pressure and
x ∈D, the region occupied by the fluid. These equations are generally subject to the
free-slip boundary condition n · v|∂D= 0, where n is normal to the boundary of D. The
pressure field that enforces the constraint (1.2) is obtained by setting ∂(∇ · v)∂t = 0,
which implies

∆ρp :=∇ ·
(

1
ρ
∇p
)
=−∇ · (v · ∇v). (1.4)
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For reasonable assumptions on ρ and boundary conditions, equation (1.4) is a well-
posed elliptic equation (see e.g. Evans (2010)), so we can write

p=−∆−1
ρ ∇ · (v · ∇v). (1.5)

For the case where ρ is constant we have the usual Green’s function expression

p(x, t)=− ρ
∫

d3x′G(x, x′)∇′· (v′ · ∇′v′), (1.6)

where G is consistent with Neumann boundary conditions (Orszag, Israeli & Deville
1986) and v′ = v(x′, t). Insertion of (1.6) into (1.1) gives

∂v

∂t
=−v · ∇v +∇

∫
d3x′G(x, x′)∇′· (v′ · ∇′v′), (1.7)

which is a closed system for v(x, t).
For MHD, equation (1.1) has the additional term (∇×B)×B/ρ added to the right-

hand side. Consequently for this model, the source of (1.5) is modified by the addition
of this term to −v · ∇v.

1.2. Overview
Section 2 contains material that serves as a guide for navigating the more complicated
calculations to follow. We first consider the various approaches to constraints in the
finite-dimensional context in §§ 2.1 and 2.3. Section 2.1 briefly covers conventional
material about holonomic constraints by Lagrange multipliers – here the reader is
reminded how the free particle with holonomic constraints amounts to geodesic flow.
Section 2.2 begins with the phase space action principle, whence the Dirac bracket
for constraints is obtained by Lagrange’s multiplier method, but with phase space
constraints as opposed to the usual holonomic configuration space constraints used in
conjunction with Hamilton’s principle of mechanics, as described in § 2.1. Next, in
§ 2.3, we compare the results of §§ 2.1 and 2.3 and show how conventional holonomic
constraints can be enforced by Dirac’s method. Contrary to Lagrange’s method, here
we obtain explicit expressions, ones that do not appear in conventional treatments,
for the Christoffel symbol and the normal force entirely in terms of the original
Euclidean coordinates and constraints. Section 2 is completed with § 2.4, where the
previous ideas are revisited in the d + 1 field theory context in preparation for the
fluid and MHD calculations. Holonomic constraints, Dirac brackets, with local or
non-local constraints, and geodesic flow are treated.

In § 3 we first consider the compressible (unconstrained) fluid and MHD versions
of Hamilton’s variational principle, the principle of least action, with Lagrange’s
Lagrangian in the Lagrangian description. From this we obtain in § 3.2 the canonical
Hamiltonian field theoretic form in the Lagrangian variable description, which is
transformed in § 3.3, via the mapping from Lagrangian to Eulerian variables, to the
noncanonical Eulerian form. Section 3 is completed by an in depth comparison of
constants of motion in the Eulerian and Lagrangian descriptions, which surprisingly
does not seem to appear in fluid mechanics or plasma physics textbooks. The
material of this section is necessary for understanding the different manifestations of
constraints in our dichotomies.

Section 4 begins with § 4.1 that reviews Lagrange’s original calculations. Because
the incompressibility constraint he imposes is holonomic and there are no additional
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forces, his equations describe infinite-dimensional geodesics flow on volume
preserving maps. The remaining portion of this section contains the most substantial
calculations of the paper. In § 4.2 for the first time Dirac’s theory is applied to
enforce incompressibility in the Lagrangian variable description. This results in a
new Dirac bracket that generates volume preserving flows. As in § 2.3.1, which
serves as a guide, the equations of motion generated by the bracket are explicit
and contain only the constraints and original variables. Next, in § 4.3, a reduction
from Lagrangian to Eulerian variables is made, resulting in a new Eulerian variable
Poisson bracket that allows for density advection while preserving incompressibility.
This was an heretofore unsolved problem. Section 4.4 ties together the results of
§§ 4.2, 4.3 and 3.4. Here both the Eulerian and Lagrangian Dirac constraint theories
are compared after they are evaluated on their respective constraints, simplifying
their equations of motion. Because Lagrangian and Eulerian conservation laws are
not identical, we see that there are differences. Section 4 concludes in § 4.5 with a
discussion of the full algebra of invariants, that of the ten parameter Galilean group,
for both the Lagrangian and Eulerian descriptions. In addition the Casimir invariants
of the theories are discussed.

The paper concludes with § 5, where we briefly summarize our results and speculate
about future possibilities.

2. Constraint methods
2.1. Holonomic constraints by Lagrange’s multiplier method

Of interest are systems with Lagrangians of the form L(q̇, q) where the overdot
denotes time differentiation and q = (q1, q2, . . . , qN). Because non-autonomous
systems could be included by appending an additional degree of freedom, explicit
time dependence is not included in L.

Given the Lagrangian, the equations of motion are obtained according to Hamilton’s
principle by variation of the action

S[q] =
∫ t1

t0

dt L(q̇, q); (2.1)

i.e.

δS[q; δq] :=
d
dε

S[q+ εδq]
∣∣∣
ε=0
=

∫ t1

t0

dt
(

d
dt
∂L
∂ q̇i
−
∂L
∂qi

)
δqi
=

∫ t1

t0

dt
δS[q]
δqi(t)

δqi
= 0,

(2.2)
for all variations δq(t) satisfying δq(t0)= δq(t1)= 0, implies Lagrange’s equations of
motion, i.e.

δS[q]
δqi(t)

= 0 ⇒
d
dt
∂L
∂ q̇i
−
∂L
∂qi
= 0, i= 1, 2, . . . ,N. (2.3)

Holonomic constraints are real-valued functions of the form CA(q), A= 1, 2, . . . ,M,
which are desired to be constant on trajectories. Lagrange’s method for implementing
such constraints is to add them to the action and vary as follows:

δSλ := δ(S+ λACA)= 0, (2.4)
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yielding the equations of motion

δSλ[q]
δqi(t)

= 0 ⇒
d
dt
∂L
∂ q̇i
−
∂L
∂qi
= λA

∂CA

∂qi
, i= 1, 2, . . . ,N, (2.5)

with the forces of constraint residing on the right-hand side of (2.5). Observe in (2.4)
and (2.5) repeated sum notation is implied for the index A. The N equations of (2.5)
with the M numerical values of the constraints CA(q) = CA

0 , determine the N + M
unknowns {qi

} and {λA}. In practice, because solving for the Lagrange multipliers can
be difficult an alternative procedure, an example of which we describe in § 2.1.1, is
used.

We will see in § 4.1 that the field theoretic version of this method is how Lagrange
implemented the incompressibility constraint for fluid flow. For the purpose of
illustration and in preparation for later development, we consider a finite-dimensional
analogue of Lagrange’s treatment.

2.1.1. Holonomic constraints and geodesic flow via Lagrange
Consider N non-interacting bodies each of mass mi in the Euclidian configuration

space E3N with Cartesian coordinates qi = (qxi, qyi, qzi), where as in § 2.1
i = 1, 2, . . . , N, but our configuration space has dimension 3N. The Lagrangian
for this system is given by the usual kinetic energy,

L=
N∑

i=1

mi

2
q̇i · q̇i, (2.6)

with the usual ‘dot’ product. The Euler–Lagrange equations for this system,
equation (2.3), are the uninteresting system of N free particles. As in § 2.1 we
constrain this system by adding constraints CA(q1, q2, . . . , qN), where again
A= 1, 2, . . . ,M, leading to the equations

miq̈i = λA
∂CA

∂qi
. (2.7)

Instead of solving the 3N equations of (2.7) together with the M numerical values of
the constraints, in order to determine the unknowns qi and λA, we recall the alternative
procedure, which dates back to Lagrange (see e.g. § IV of Lagrange (1788)) and has
been taught to physics students for generations (see e.g. Whittaker (1917), Corben &
Stehle (1960)). With the alternative procedure one introduces generalized coordinates
that account for the constraints, yielding a smaller system on the constraint manifold,
one with the Lagrangian

L= 1
2 gµν(q) q̇µq̇ν, µ, ν = 1, 2 . . . , 3N −M, (2.8)

where

gµν =
N∑

i=1

mi
∂qi

∂qµ
·
∂qi

∂qν
. (2.9)

Then Lagrange’s equations (2.3) for the Lagrangian (2.13) are the usual equations for
geodesic flow

q̈µ + Γ µ
αβ q̇αq̇β = 0, (2.10)
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where the Christoffel symbol is as usual

Γ
µ
αβ =

1
2

gµν
(

gνα
∂qβ
+

gνβ
∂qα
−

gαβ
∂qν

)
. (2.11)

If the constraints had time dependence, then the procedure would have produced the
Coriolis and centripetal forces, as is usually done in textbooks.

Thus, we arrive at the conclusion that free particle dynamics with time-independent
holonomic constraints is geodesic flow.

2.2. Dirac’s bracket method
So, a natural question to ask is ‘How does one implement constraints in the
Hamiltonian setting, where phase space constraints depend on both the configuration
space coordinate q and the canonical momentum p’? (see e.g. Sundermeyer (1982),
Arnold, Kozlov & Neishtadt (1980) for a general treatment and Dermaret & Moncrief
(1980) for a treatment in the context of the ideal fluid and relativity and a selection
of earlier references.) To this end we begin with the phase space action principle

S[q, p] =
∫ t1

t0

dt [piq̇i
−H(q, p)], (2.12)

where again repeated sum notation is used for i= 1, 2, . . . , N. Independent variation
of S[q, p] with respect to q and p, with δq(t0)= δq(t1)= 0 and no conditions on δp,
yields Hamilton’s equations,

ṗi =−
∂H
∂qi

and q̇i
=
∂H
∂pi
, (2.13)

or equivalently
żα = {zα,H}, (2.14)

which is a rewrite of (2.13) in terms of the Poisson bracket on phase space functions
f and g,

{ f , g} =
∂f
∂qi

∂g
∂pi
−
∂g
∂qi

∂f
∂pi
=
∂f
∂zα

Jαβc
∂g
∂zβ

, (2.15)

where in the second equality we have used z= (q, p), so α, β = 1, 2, . . . , 2N and the
cosymplectic form (Poisson matrix) is

Jc =

(
ON IN

−IN ON

)
, (2.16)

with ON being an N ×N block of zeros and IN being the N ×N identity.
Proceeding as in § 2.1, albeit with phase space constraints Da(q, p), a= 1, 2, . . . ,

2M < 2N, we vary

Sλ[q, p] =
∫ t1

t0

dt [piq̇i
−H(q, p)+ λaDa

], (2.17)

and obtain
ṗi =−

∂H
∂qi
+ λa

∂Da

∂qi
and q̇i

=
∂H
∂pi
− λa

∂Da

∂pi
. (2.18)
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Next, enforcing Ḋa
= 0 for all a, will ensure that the constraints stay put. Whence,

differentiating the Da and using (2.18) yields

Ḋa
=
∂Da

∂qi
q̇i
+
∂Da

∂pi
ṗi

= {Da,H} − λb{Da,Db
} ≡ 0. (2.19)

We assume Dab
:= {Da, Db

} has an inverse, D−1
ab , which requires there be an even

number of constraints, a, b= 1, 2, . . . , 2M, because odd antisymmetric matrices have
zero determinant. Then upon solving (2.19) for λb and inserting the result into (2.18)
gives

żα = {zα,H} −D−1
ab {z

α,Da
}{Db,H}. (2.20)

From (2.20), we obtain a generalization of the Poisson bracket, the Dirac bracket,

{ f , g}∗ = { f , g} −D−1
ab { f ,Da

}{Db, g}. (2.21)

which has the degeneracy property

{ f ,Da
}
∗
≡ 0. (2.22)

for all functions f and indices a= 1, 2, . . . , 2M.
The generation of the equations of motion via a Dirac bracket, i.e.

żα = {zα,H}∗, (2.23)

which is equivalent to (2.20), has the advantage that the Lagrange multipliers λA have
been eliminated from the theory.

Note, although the above construction of the Dirac bracket is based on the canonical
bracket of (2.15), his construction results in a valid Poisson bracket if one starts from
any valid Poisson bracket (cf. (2.76) of §§ 2.4 and 3.3), which need not have a Poisson
matrix of the form of (2.16) (see e.g. Morrison et al. (2009)). We will use such a
bracket in § 4.3 when we apply constraints by Dirac’s method in the Eulerian variable
picture. Also note, for our purposes it is not necessary to describe primary versus
secondary constraints (although we use the latter), and the notions of weak versus
strong equality. We refer the reader to Dirac (1950), Sudarshan & Makunda (1974),
Hanson, Regge & Teitleboim (1976) and Sundermeyer (1982) for treatment of these
concepts.

2.3. Holonomic constraints by Dirac’s bracket method
A connection between the approaches of Lagrange and Dirac can be made. From a
set of Lagrangian constraints CA(q), where A = 1, 2, . . . , M, one can construct an
additional M constraints by differentiation,

ĊA
=
∂CA

∂qi
q̇i
=
∂CA

∂qi

∂H
∂pi
, (2.24)

where the second equality is possible if (2.3) possesses the Legendre transformation
to the Hamiltonian form. In this way we obtain an even number of constraints

Da(q, p)= (CA(q), ĊA′(q, p)), (2.25)

where A= 1, 2, . . . ,M, A′ =M + 1,M + 2, . . . , 2M and a= 1, 2, . . . , 2M.
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With the constraints of (2.25) the bracket Dab
= {Da,Db

} needed to construct (2.21)
is easily obtained,

D=
(

OM {CA, ĊB′
}

{ĊA′,CB
} {ĊA′, ĊB′

}

)
=:

(
OM S
−S A

)
, (2.26)

where OM is an M × M block of zeros and S is the following M × M symmetric
matrix with elements

SAB
:= {CA, ĊB

} =
∂2H
∂pi∂pj

∂CA

∂qi

∂CB

∂qj
, (2.27)

and A is the following M×M antisymmetric matrix with elements

AAB
:= {ĊA′, ĊB′

}

=
∂2H
∂pi∂pk

[
∂2H
∂qi∂pj

(
∂CA

∂qj

∂CB

∂qk
−
∂CB

∂qj

∂CA

∂qk

)
+
∂H
∂pj

(
∂2CA

∂qi∂qj

∂CB

∂qk
−
∂2CB

∂qi∂qj

∂CA

∂qk

)]
.

(2.28)
Assuming the existence of D−1, the 2M × 2M inverse of (2.26), the Dirac bracket

of (2.21) can be constructed. A necessary and sufficient condition for the existence of
this inverse is that det S 6= 0, and when this is the case the inverse is given by

D−1
=

(
S−1AS−1

− S−1

S−1 OM

)
. (2.29)

Because of the block diagonal structure of (2.29), the Dirac bracket (2.21) becomes

{ f , g}∗ = { f , g} + S−1
AB

(
{ f ,CA

}{ĊB, g} − {g,CA
}{ĊB, f }

)
+ S−1

AC ACD S−1
DB { f ,CA

}{CB, g},
(2.30)

which has the form

{ f , g}∗ = { f , g} − (P⊥)ij

(
∂f
∂qi

∂g
∂pj
−
∂g
∂qi

∂f
∂pj

)
+Qij ∂f

∂pi

∂g
∂pj

=
∂f
∂qi

Pi
j
∂g
∂pj
−
∂g
∂qi

Pi
j
∂f
∂pj
+Qij ∂f

∂pi

∂g
∂pj
, (2.31)

where the matrices P= I − P⊥, with

(P⊥)ij = S−1
AB

∂2H
∂pi∂pk

∂CA

∂qj

∂CB

∂qk
, (2.32)

and Q, a complicated expression that we will not record, are crafted using the
constraints and Hamiltonian so as to make { f , g}∗ preserve the constraints.

The equations of motion that follow from (2.30) are

q̇` = {q`,H}∗ =
∂H
∂p`
+ S−1

AB

(
{q`,CA

}{ĊB,H} − {H,CA
}{ĊB, q`}

)
+ S−1

AC ACD S−1
DB {q

`,CA
}{CB,H}, (2.33)

ṗ` = {p`,H}∗ =−
∂H
∂q`
+ S−1

AB

(
{p`,CA

}{ĊB,H} − {H,CA
}{ĊB, p`}

)
+ S−1

AC ACD S−1
DB {p`,CA

}{CB,H}. (2.34)
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Given the Dirac bracket associated with the D of (2.27), dynamics that enforces the
constraints takes the form of (2.23). Any system generated by this bracket will enforce
Lagrange’s holonomic constraints; however, only initial conditions compatible with

Da
≡ 0, ∀a=M + 1,M + 2, . . . , 2M, (2.35)

or equivalently

ĊA
=
∂CA

∂qi

∂H
∂pi
= {CA,H} ≡ 0, ∀A= 1, 2, . . . ,M, (2.36)

will correspond to the system with holonomic constraints. Using (2.36) and {q`, CA
}

≡ 0, equations (2.33) and (2.34) reduce to

q̇` = {q`,H}∗ =
∂H
∂p`

, (2.37)

ṗ` = {p`,H}∗ =−
∂H
∂q`
+ S−1

AB{p`,CA
}{ĊB,H}, (2.38)

where

{ĊB,H} =
(
∂2H
∂qi∂pj

∂CB

∂qj
+
∂H
∂pj

∂2CB

∂qiqj

)
∂H
∂pi
−
∂CB

∂qi

∂2H
∂pi∂pj

∂H
∂qj
. (2.39)

Thus the Dirac bracket approach gives a relatively simple system for enforcing
holonomic constraints. It can be shown directly that if initially ĊA vanishes, then the
system of (2.37) and (2.38) will keep it so for all time.

2.3.1. Holonomic constraints and geodesic flow via Dirac
Let us now consider again the geodesic flow problem of § 2.1.1: the N degree-

of-freedom free particle system with holonomic constraints, but this time within the
framework of Dirac bracket theory. For this problem the unconstrained configuration
space is the Euclidean space E3N and we will denote by Q the constraint manifold
within E3N defined by the constancy of the constraints CA.

The Lagrangian of (2.6) is easily Legendre transformed to the free particle
Hamiltonian

H =
N∑

i=1

1
2mi

pi · pi, (2.40)

where pi =miq̇i. For this example the constraints of (2.25) take the form

Da
=

(
CA(q1, q2, . . . , qN),

∂CA′(q1, q2, . . . , qN)

∂qi
·

pi

mi

)
, (2.41)

the M×M matrix S has elements

SAB
=

N∑
i=1

1
mi

∂CA

∂qi
·
∂CB

∂qi
, (2.42)

and the M×M matrix A is

AAB
=

N∑
i,j=1

1
mimj

pi ·

[
∂2CA

∂qi∂qj
·
∂CB

∂qj
−
∂2CB

∂qi∂qj
·
∂CA

∂qj

]
. (2.43)
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The Dirac bracket analogous to (2.31) is

{ f , g}∗ =
N∑

ij=1

[
∂f
∂qi
·
↔

Pij ·
∂g
∂pj
−
∂g
∂qi
·
↔

Pij ·
∂f
∂pj
+
∂f
∂pi
·
↔

Qij ·
∂g
∂pj

]
, (2.44)

where
↔

Pij =
↔

I ij −
↔

P⊥ ij with the tensors

↔

P⊥ ij :=

N∑
k=1

S−1
AB

∂2H
∂pi∂pk

·
∂CB

∂qk

∂CA

∂qj
= S−1

AB
1
mi

∂CB

∂qi

∂CA

∂qj
, (2.45)

↔

Q ij :=

N∑
k=1

S−1
AB

[
∂CA

∂qj

pk

mk
·
∂2CB

∂qk∂qi
−
∂CA

∂qi

pk

mk
·
∂2CB

∂qk∂qj

]
+ S−1

AC ACD S−1
DB
∂CA

∂qi

∂CB

∂qj
(2.46)

=:
↔

Tij −
↔

Tji +
↔

Aij, (2.47)

where
↔

Aij is the term with S−1
ACACDS−1

DB. Observe
↔

Aij=−
↔

Aji because ACD
=−ADC and

N∑
k=1

↔

P⊥ ik ·
↔

P⊥ kj =

N∑
k=1

(
S−1

AB
1
mi

∂CB

∂qi

∂CA

∂qk

)
·

(
S−1

A′B′
1

mk

∂CB′

∂qk

∂CA′

∂qj

)

=

(
S−1

AB
1
mi

∂CB

∂qi

)
S−1

A′B′

(
N∑

k=1

∂CA

∂qk
·

1
mk

∂CB′

∂qk

)
∂CA′

∂qj

=

(
S−1

AB
1
mi

∂CB

∂qi

)
S−1

A′B′ S
AB′ ∂CA′

∂qj
=
↔

P⊥ ij. (2.48)

Also observe for the Hamiltonian of (2.40)

N∑
j=1

↔

P⊥ ij ·
∂H
∂pj
=

N∑
j=1

↔

P⊥ ij ·
pj

mj
≡ 0, (2.49)

N∑
j=1

∂H
∂pj
·
↔

Tij =

N∑
j=1

pj

mj
·
↔

Tij ≡ 0, (2.50)

N∑
j=1

↔

Aij ·
∂H
∂pj
=−

N∑
j=1

↔

Aji ·
∂H
∂pj
≡ 0, (2.51)

when evaluated on the constraint ĊA,B
= 0, while

N∑
j=1

∂H
∂pj
·
↔

P⊥ ji 6= 0 and
N∑

i=1

∂H
∂pi
·
↔

Tij 6= 0, (2.52)
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when evaluated on the constraint ĊA,B
= 0. Thus, the bracket of (2.44) yields the

equations of motion

q̇i = {qi,H}∗ =
∂H
∂pi
=

pi

mi
, (2.53)

ṗi =−
∂CA

∂qi
S−1

AB

N∑
j,k=1

pj

mj
·
∂2CB

∂qjqk
·

pk

mk
, (2.54)

or

q̈i =−
1
mi

∂CA

∂qi
S−1

AB

N∑
j,k=1

q̇j ·
∂2CB

∂qjqk
· q̇k =−

N∑
j,k=1

q̇j · Γ̂i,jk · q̇k, (2.55)

where

Γ̂i,jk :=
1
mi

∂CA

∂qi
⊗ S−1

AB
∂2CB

∂qjqk
, (2.56)

is used to represent the normal force.
Observe, equation (2.55) has two essential features: as noted, its right-hand side is

a normal force that projects to the constraint manifold defined by the constraints CA

and within the constraint manifold it describes a geodesic flow, all done in terms of
the original Euclidean space coordinates where the initial conditions place the flow on
Q by setting the values CA for all A= 1, 2, . . . ,M. We will show this explicitly.

First, because the components of vectors normal to Q are given by ∂CA/∂qi for
A = 1, 2, . . . , M, this prefactor on the righthand side of (2.55) projects as expected.
Upon comparing (2.55) with (2.7) we conclude that the coefficient of this prefactor
must be the Lagrange multipliers, i.e.

λA =−S−1
AB

N∑
k,j=1

q̇j ·
∂2CB

∂qjqk
· q̇k. (2.57)

Thus, we see that Dirac’s procedure explicitly solves for the Lagrange multiplier.
Second, to uncover the geodesic flow we can proceed as usual by projecting

explicitly onto Q. To this end we consider the transformation between the Euclidean
configuration space E3N coordinates

(q1, q2, . . . , qi, . . . , qN), where i= 1, 2, . . . ,N (2.58)

and another set of coordinates

(q1, q2, . . . , qa, . . . , q3N), where a= 1, 2, . . . , 3N, (2.59)

which we tailor as follows:

(q1, q2, . . . , qα . . . , qn,C1,C2, . . . ,CA, . . . ,CM), (2.60)

where α = 1, 2, . . . , n, A = 1, 2, . . . , M and n = 3N − M. Here we have chosen
qn+A
=CA and n is the actual number of degrees of freedom on the constraint surface

Q. We can freely transform back and forth between the two coordinates, i.e.

(q1, q2, . . . , qi, . . . , qN)←→ (q1, q2, . . . , qa, . . . , q3N). (2.61)

https://doi.org/10.1017/S0022377820000331 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000331


12 P. J. Morrison, T. Andreussi and F. Pegoraro

Note, the choice qn+A
= CA could be replaced by qn+A

= f A(C1, C2, . . . , CM) for
arbitrary independent f A, but we assume the original CA are optimal. Because qα are
coordinates within Q, tangent vectors to Q have the components ∂qi/∂qα, and there
is one for each α= 1, 2, . . . , n. The pairing of the normals with tangents is expressed
by

N∑
i=1

∂qi

∂qα
·
∂CA

∂qi
= 0, α = 1, 2, . . . , n; A= 1, 2, . . . ,M. (2.62)

Let us now consider an alternative procedure that the Dirac constraint method provides.
Proceeding directly we calculate

q̇a
=

N∑
i=1

∂qa

∂qi
· q̇i. (2.63)

Observe that on E3N the matrix ∂qa/∂qi is invertible and the full metric tensor and
its inverse in the new coordinates are given as follows:

gab
=

N∑
i=1

1
mi

∂qa

∂qi
·
∂qb

∂qi
and gab =

N∑
i=1

mi
∂qi

∂qa
·
∂qi

∂qb
. (2.64)

The metric tensor on Q of (2.9) is obtained by restricting gab to a, b 6 n and gαβ
is obtained by inverting gαβ and not by restricting gab. Proceeding by differentiating
again we obtain

q̈a
=

N∑
i=1

∂qa

∂qi
· q̈i +

N∑
i,j=1

q̇i ·
∂2qa

∂qi∂qj
· q̇j, a= 1, 2, . . . , 3N. (2.65)

Now inserting (2.55) into (2.65) gives

q̈a
=−

N∑
i=1

1
mi

∂qa

∂qi
·
∂CA

∂qi
gAB

N∑
j,k=1

q̇j ·
∂2CB

∂qjqk
· q̇k +

N∑
i,j=1

q̇j ·
∂2qa

∂qi∂qj
· q̇i, (2.66)

where we have recognized that

gAB
= SAB

=

N∑
i=1

1
mi

∂CA

∂qi
·
∂CB

∂qi
(2.67)

and, as was necessary for the workability of the Dirac bracket constraint theory, gAB=

S−1
AB must exist. This quantity is obtained by inverting SAB and not by restricting gab.
Equation (2.66) is an expression for the full system on E3N . However, for a> n, we

know q̈a
= C̈A

= 0, so the two terms of (2.66) should cancel. To see this, in the first
term of (2.66) we set qa

=CC and observe that this first term becomes

−

N∑
i=1

1
mi

∂CC

∂qi
·
∂CA

∂qi
gAB

N∑
j,k=1

q̇j ·
∂2CB

∂qjqk
· q̇k = −gCA gAB

N∑
j,k=1

q̇j ·
∂2CB

∂qjqk
· q̇k

= −

N∑
j,k=1

q̇j ·
∂2CC

∂qjqk
· q̇k. (2.68)
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Now, for a 6 n, say α, the right-hand side gives a Christoffel symbol expression for
the geodesic flow; viz.

q̈α = −
N∑

i=1

1
mi

∂qα

∂qi
·
∂CA

∂qi
gAB

N∑
j,k=1

q̇j ·
∂2CB

∂qjqk
· q̇k +

N∑
j,k=1

q̇j ·
∂2qα

∂qj∂qk
· q̇k

= −Γ α
µν q̇µq̇ν, (2.69)

where

Γ α
µν =

N∑
i=1

1
mi

∂qα

∂qi
·
∂CA

∂qi
S−1

AB

N∑
j,k=1

∂qj

∂qµ
·
∂2CB

∂qjqk
·
∂qk

∂qν
+

N∑
j,k=1

∂qj

∂qµ
·
∂2qα

∂qj∂qk
·
∂qk

∂qν
(2.70)

is an expression for the Christoffel symbol in terms of the original Euclidean
coordinates, the constraints and the choice of coordinates on Q.

Using (2.70) one can calculate an analogous expression for the Riemann curvature
tensor on Q from the usual expression

Rαβγ δ =
∂Γ α

δβ

∂qγ
−
∂Γ α

γβ

∂qδ
+ Γ α

γ λΓ
λ
δβ − Γ

α
δλΓ

λ
γβ, (2.71)

using ∂/∂qγ =
∑

i(∂qi/∂qγ ) · ∂/∂qi. This gives the curvature written in terms of the
original Euclidean coordinates, the constraints, and the chosen coordinates on Q.

2.4. The d+ 1 field theory
The techniques of §§ 2.1–2.3 have natural extensions to field theory.

Given independent field variables ΨA(µ, t), indexed by A= 1, 2, . . . , `, where the
independent variable µ= (µ1, µ2, . . . , µd). The field theoretic version of Hamilton’s
principle of (2.1) is embodied in the action

S[Ψ ] =
∫ t1

t0

dt L[Ψ , Ψ̇ ], with L[Ψ , Ψ̇ ] =
∫

ddµL(Ψ , Ψ̇ , ∂Ψ ), (2.72)

where we leave the domain of µ and the boundary conditions unspecified, but freely
drop surface terms obtained upon integration by parts. The Lagrangian density L is
assumed to depend on the field components Ψ and ∂Ψ , which is used to indicate all
possible partial derivatives with respect of the components of µ. Hamilton’s principle
with (2.72) gives the Euler–Lagrange equations,

δS[Ψ ]
δΨA(µ, t)

= 0 ⇒
d
dt

∂L
∂Ψ̇A

+
∂

∂µ

∂L
∂∂ΨA −

∂L
∂ΨA = 0, (2.73)

where the overdot implies differentiation at constant µ. Local holonomic constraints
CA(Ψ , ∂Ψ ) are enforced by Lagrange’s method by amending the Lagrangian

Lλ[Ψ , Ψ̇ ] =
∫

ddµ
(
L(Ψ , Ψ̇ , ∂Ψ )+ λACA(Ψ , ∂Ψ )

)
, (2.74)

with again A= 1, 2, . . . ,M and proceeding as in the finite-dimensional case.
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In the Hamiltonian field theoretic setting, we could introduce the conjugate
momentum densities πA, A= 1, 2, . . . , `, with the phase space action

Sλ[Ψ ,π] =
∫ t1

t0

dt
∫

ddµ
[
πAΨ̇

A
−H+ λADA

]
, (2.75)

with Hamiltonian density H and local constraints Da depending on the values of the
fields and their conjugates. Instead of following this route we will jump directly to a
generalization of the field theoretic Dirac bracket formalism that would result.

Consider a Poisson algebra composed of functionals of field variables χA(µ, t) with
a Poisson bracket of the form

{F,G} =
∫

ddµFχ · J(χ) ·Gχ , (2.76)

where Fχ is a shorthand for the functional derivative of a functional F with respect
to the field χ (see e.g. Morrison (1998)) and Fχ · J · Gχ = FχA JAB GχB , again
with repeated indices summed. Observe the fields χA(µ, t) need not separate into
coordinates and momenta, but if they do the Poisson operator J has a form akin to
that of (2.16). By a Poisson algebra we mean a Lie algebra realization on functionals,
meaning the Poisson bracket is bilinear, antisymmetric, and satisfies the Jacobi identity
and that there is an associative product of functionals that satisfies the Leibniz law.
From the Poisson bracket the equations of motion are given by χ̇ = {χ,H}, for some
Hamiltonian functional H[χ ].

Dirac’s constraint theory is generally implemented in terms of canonical Poisson
brackets (see e.g. Dirac (1950), Sudarshan & Makunda (1974), Sundermeyer (1982)),
but it is not difficult to show that his procedure also works for noncanonical Poisson
brackets (see e.g. an appendix of Morrison et al. 2009).

We impose an even number of local constraints which we write as Da(µ)= const.,
a shorthand for Da

[χ(µ)], with the index a = 1, 2, . . . , 2M, bearing in mind that
they depend on the fields χ and their derivatives. As in the finite-dimensional case,
the Dirac bracket is obtained from the matrix D obtained from the bracket of the
constraints,

Dab(µ, µ′)= {Da(µ),Db(µ′)}, (2.77)

where we note that Dab(µ, µ′) = −Dba(µ′, µ). If D has an inverse, then the Dirac
bracket is defined as follows:

{F,G}∗ = {F,G} −
∫

ddµ

∫
ddµ′ {F,Da(µ)}D−1

ab (µ, µ
′){Db(µ′),G}, (2.78)

where the coefficients D−1
ab (µ, µ

′) satisfy∫
ddµ′D−1

ab (µ, µ
′)Dbc(µ′, µ′′)=

∫
d3µ′Dcb(µ, µ′)D−1

ba (µ
′, µ′′)= δc

aδ(µ−µ
′′), (2.79)

consistent with D−1
ab (µ, µ

′)=−D−1
ba (µ

′, µ).
We note, the procedure is effective only when the coefficients D−1

ab (µ, µ
′) can be

found. If D is not invertible, then one needs, in general, secondary constraints to
determine the Dirac bracket.
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2.4.1. Field theoretic geodesic flow
In light of § 2.1.1, any field theory with a Lagrangian density of the form

L= 1
2 Ψ̇

A(µ, t) ηAB Ψ̇
B(µ, t), (2.80)

with the metric ηAB = δAB being the Kronecker delta, subject to time-independent
holonomic constraints can be viewed as geodesic flow on the constraint surface. This
is a natural infinite-dimensional generalization of the idea of § 2.1.1.

3. Unconstrained Hamiltonian and action for fluid
3.1. Fluid action in Lagrangian variable description

The Lagrangian variable description of a fluid is described in Lagrange’s famous work
(Lagrange 1788), while historic and additional material can be found in Serrin (1959),
Newcomb (1962), Van Kampen & Felderhof (1967) and Morrison (1998). Because
the Lagrangian description treats a fluid as a continuum of particles, it naturally is
amenable to the Hamiltonian form. The Lagrangian variable is a coordinate that gives
the position of a fluid element or parcel, as it is sometimes called, at time t. We
denote this variable by q= q(a, t)= (q1, q2, q3), which is measured relative to some
cartesian coordinate system. Here a = (a1, a2, a3) denotes the fluid element label,
which is often defined to be the position of the fluid element at the initial time,
a= q(a, 0), but this need not always be the case. The label a is a continuum analogue
of the discrete index that labels a generalized coordinate in a finite degree-of-freedom
system. If D is a domain that is fully occupied by the fluid, then at each fixed time
t, q : D→ D is assumed to be 1–1 and onto. Not much is really known about the
mathematical properties of this function, but we will assume that it is as smooth as it
needs to be for the operations performed. Also, we will assume we can freely integrate
by parts dropping surface terms and drop reference to D in our integrals.

When discussing the ideal fluid and MHD we will use repeated sum notation with
upper and lower indices even though we are working in cartesian coordinates. And,
unlike in § 2, Latin indices, i, j, k, ` etc. will be summed over 1,2 and 3, the cartesian
components, rather than to N. This is done to avoid further proliferation of indices
and we trust confusion will not arise because of context.

Important quantities are the deformation matrix, ∂qi/∂aj and its Jacobian determinant
J := det(∂qi/∂aj), which is given by

J =
1
6
εkj`ε

imn ∂qk

∂ai

∂qj

∂am

∂q`

∂an
, (3.1)

where εijk = ε
ijk is the purely antisymmetric (Levi–Civita) tensor density. We assume

a fluid element is uniquely determined by its label for all time. Thus, J 6= 0 and we
can invert q= q(a, t) to obtain the label associated with the fluid element at position
x at time t, a= q−1(x, t). For coordinate transformations q= q(a, t) we have

∂qk

∂aj

Ai
k

J
= δi

j, (3.2)

where Ai
k is the cofactor of ∂qk/∂ai, which can be written as follows:

Ai
k =

1
2
εkj`ε

imn ∂qj

∂am

∂q`

∂an
. (3.3)
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Using q(a, t) or its inverse q−1(x, t), various quantities can be written either as a
function of x or a. For convenience we list additional formulas below for latter use:

J =
1
3

Ak
`

∂q`

∂ak
, (3.4)

Aj
i =

∂J
∂(∂qi/∂aj)

, (3.5)

∂(Ak
i f )

∂ak
= Ak

i
∂f
∂ak

, (3.6)

δJ = Ak
i
∂δqi

∂ak
or J̇ = Ak

i
∂ q̇i

∂ak
, (3.7)

δ

(
Ak
`

J

)
∂q`

∂au
=−

Ak
i

J
∂

∂au
δqi or δ

(
Ak
`

J

)
=−

Ak
i A

u
`

J 2

∂

∂au
δqi, (3.8)

Au
`

∂

∂au

[
Ak

i

J
∂f
∂ak

]
= Ak

i
∂

∂ak

[
Au
`

J
∂f
∂au

]
, ∀f , (3.9)

which follow from the standard rule for differentiation of determinants and the
expression for the cofactor matrix. For example, the commutator expression of (3.9)
follows easily from (3.8), which in turn follows upon differentiating (3.2). These
formulas are all of classical origin, e.g. the second equation of (3.7) is the Lagrangian
variable version of a formula due to Euler (see e.g. Serrin (1959)).

Now we are in a position to recreate and generalize Lagrange’s Lagrangian for the
ideal fluid action principle. On physical grounds we expect our fluid to possess kinetic
and internal energies, and if magnetized, a magnetic energy. The total kinetic energy
functional of the fluid is naturally given by

T[q̇] :=
1
2

∫
d3a ρ0(a) |q̇|2, (3.10)

where ρ0 is the mass density attached to the fluid element labelled by a and q̇ denotes
time differentiation of q at fixed label a. Note, in (3.10) |q̇|2= q̇iq̇i, where in general
q̇i = gij q̇i, but we will only consider the cartesian metric where gij = δij = ηij.

Fluids are assumed to be in local thermodynamic equilibrium and thus can be
described by a function U(ρ, s), an internal energy per unit mass that depends on the
specific volume ρ−1 and specific entropy s. If a magnetic field B(x, t) were present,
then we could add dependence on |B| as in Morrison (1982) to account for pressure
anisotropy. (See also Morrison, Lingam & Acevedo (2014), Lingam, Morrison &
Wurm (2020) where this appears in the context of gyroviscosity.) The internal energy
is written in terms of the Eulerian density and entropy (see § 3.3) since we expect
the fluid at each Eulerian observation point to be in thermal equilibrium. From U
we compute the temperature and pressure according to the usual differentiations,
T = ∂U/∂s and p = ρ2∂U/∂ρ. For MHD, the magnetic energy HB =

∫
d3x |B|2/2 in

Lagrangian variables would be added. For the ideal fluid, the total internal energy
functional is

V[q] :=
∫

d3a ρ0 U (ρ0/J , s0) . (3.11)

Here we have used the fact that a fluid element carries a specific entropy s = s0(a)
and a mass determined by ρ = ρ0(a)/J . In § 3.3 we will describe in detail the map
from Lagrangian to Eulerian variables.
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Thus, the special case of the action principle of (2.72) for the ideal fluid has
Lagrange’s Lagrangian L[q, q̇] = T − V . Variation of this action gives the Lagrangian
equation of motion for the fluid

ρ0q̈i =−Aj
i
∂

∂aj

(
ρ2

0

J 2

∂U
∂ρ

)
, (3.12)

with an additional term that describes the J × B force in Lagrangian variables for
MHD. See, e.g. Newcomb (1962) and Morrison (1998, 2009) for details of this
calculation and the MHD extension.

3.2. Hamiltonian formalism in Lagrangian description
Upon defining the momentum density as usual by

πi =
δL
δq̇i
= ρ0 q̇i, (3.13)

we can obtain the Hamiltonian by Legendre transformation, yielding

H[π, q] = T + V =
∫

d3a
(
|π|2

2ρ0
+ ρ0U(ρ0/J , s0)

)
, (3.14)

where |π|2 =πiπi =πiη
ijπj. This Hamiltonian with the canonical Poisson bracket,

{F,G} =
∫

d3a
(
δF
δqi

δG
δπi
−
δG
δqi

δF
δπi

)
, (3.15)

yields

q̇i
= {qi,H} =πi/ρ0, (3.16)

π̇i = {πi,H} =−Aj
i
∂

∂aj

(
ρ2

0

J 2

∂U
∂ρ

)
. (3.17)

Equations (3.16) and (3.17) are equivalent to (3.12). For MHD a term HB is added
to (3.14) (see Newcomb (1962), Morrison (2009)). We will give this explicitly in the
constraint context in § 4.2.1 after discussing the Lagrange to Euler map.

3.3. Hamiltonian formalism in Eulerian description via the Lagrange to Euler map
In order to understand how constraints in terms of the Lagrangian variable description
relate to those in terms of the Eulerian description, in particular ∇ · v = 0, it is
necessary to understand the mapping from Lagrangian to Eulerian variables. Thus, we
record here the relationship between the two unconstrained descriptions, i.e. how the
noncanonical Hamiltonian structure of the compressible Euler’s equations relates to
the Hamiltonian structure described in § 3.2.

For the ideal fluid, the set of Eulerian variables can be taken to be {v, ρ, s}, where
v(x, t) is the velocity field at the Eulerian observation point, x= (x, y, z)= (x1, x2, x3)
at time t and, as noted in § 3.1, ρ(x, t) is the mass density and s(x, t) is the specific
entropy. In order to describe magnetofluids the magnetic field B(x, t) would be
appended to this set. It is most important to distinguish between the Lagrangian fluid
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element position and label variables, q and a, and the Eulerian observation point x,
the latter two being independent variables. Confusion exists in the literature because
some authors use the same symbol for the Lagrangian coordinate q and the Eulerian
observation point x.

The Lagrangian and Eulerian descriptions must clearly be related and, indeed,
knowing q(a, t) we can obtain v(x, t). If one were to insert a velocity probe into a
fluid at (x, t) then one would measure the velocity of the fluid element that happened
to be at that position at that time. Thus it is clear that q̇(a, t)=v(x, t), where recall the
overdot means the time derivative at constant a. But, which fluid element will be at x
at time t? Evidently x= q(a, t), which upon inversion yields the label of that element
that will be measured, a= q−1(x, t). Thus, the Eulerian velocity field is given by

v(x, t)= q̇(a, t)|a=q−1(x,t) = q̇ ◦ q−1(x, t). (3.18)

Properties can be attached to fluid elements, just as a given mass is identified with
a given particle in mechanics. For a continuum system it is natural to attach a
mass density, ρ0(a), to the element labelled by a. Whence the element of mass in a
given volume is given by ρ0d3a and this amount of mass is preserved by the flow,
i.e. ρ(x, t)d3x= ρ0(a)d3a. Because the locus of points of material surfaces move with
the fluid are determined by q, an initial volume element d3a maps into a volume
element d3x at time t according to

d3x=J d3a. (3.19)

Thus, using (3.19) we obtain ρ0 = ρJ as used in § 3.1.
Other quantities could be attached to a fluid element; for the ideal fluid, entropy

per unit mass, s(x, t), is such a quantity. The assumption that each fluid element is
isentropic then amounts to s= s0. Similarly, for MHD a magnetic field, B0(a), can be
attached, and then the frozen flux assumption yields B · d2x= B0 · d2a. An initial area
element d2a maps into an area element d2x at time t according to

(d2x)i = Aj
i (d

2a)j. (3.20)

Using (3.20) we obtain J Bi
= Bj

0 ∂qi/∂aj.
Sometimes it is convenient to use another set of Eulerian density variables:
{M, ρ, σ , B}, where σ = ρs is the entropy per unit volume, and M = ρv is the
momentum density. These Eulerian variables can be represented by using the Dirac
delta function to ‘pluck out’ the fluid element that happens to be at the Eulerian
observation point x at time t. For example, the mass density ρ(x, t) is obtained by

ρ(x, t)=
∫

d3a ρ0(a) δ(x− q(a, t))=
ρ0

J

∣∣∣∣
a=q−1(x,t)

. (3.21)

The density one observes at x at time t will be the one attached to the fluid element
that happens to be there then, and this fluid element has a label given by solving
x= q(a, t). The second equality of (3.21) is obtained by using the three-dimensional
version of the delta function identity δ( f (x))=

∑
i δ(x− xi)/| f ′(xi)|, where f (xi)= 0.

Similarly, the entropy per unit volume is given by

σ(x, t)=
∫

d3a σ0(a) δ(x− q(a, t))=
σ0

J

∣∣∣∣
a=q−1(x,t)

, (3.22)

which is consistent with σ0(a) = ρ0(a)s0(a) and s(x, t) = s0(a)|a=q−1(x,t), where the
latter means s is constant along a Lagrangian orbit. Proceeding, the momentum density,
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M= (M1,M2,M3), is related to the Lagrangian canonical momentum (defined in § 3.2)
by

M(x, t)=
∫

d3a π(a, t) δ(x− q(a, t))=
π(a, t)
J

∣∣∣∣
a=q−1(x,t)

, (3.23)

where for the ideal fluid and MHD, π(a, t)= (π1,π2,π3)= ρ0q̇. Lastly,

Bi(x, t)=
∫

d3a
∂qi(a, t)
∂aj

Bj
0(a) δ(x− q(a, t))=

∂qi(a, t)
∂aj

Bj
0(a)
J

∣∣∣∣∣
a=q−1(x,t)

, (3.24)

for the components of the magnetic field. It may be unfamiliar to view the magnetic
field as density, but in MHD it obeys a conservation law. Geometrically, however,
it naturally satisfies the equations of a vector density associated with a differential
2-form as was observed in Morrison (1982) and Tur & Yanovsky (1993).

To obtain the noncanonical Eulerian Poisson bracket we consider functionals F[q,π]
that are restricted so as to obtain their dependence on q and π only through the
Eulerian variables. Upon setting F[q,π]= F̄[v, ρ, σ ], equating variations of both sides,

δF =
∫

d3a
[
δF
δq
· δq+

δF
δπ
· δπ

]
=

∫
d3x

[
δF̄
δρ
δρ +

δF̄
δσ
δσ +

δF̄
δM
· δM

]
= δF̄, (3.25)

varying the expressions (3.21), (3.22) and (3.23), substituting the result into (3.25)
and equating the independent coefficients of δq and δπ, we obtain

δF
δq
=

∫
d3x

[
ρ0∇

δF̄
δρ
+ σ0∇

δF̄
δσ
+πi∇

δF̄
δMi

]
δ(x− q), (3.26)

δF
δπ
=

∫
d3x

δF̄
δM

δ(x− q). (3.27)

(See Morrison (1998) and Morrison & Greene (1980) for details.) Upon substitution
of (3.26) and (3.27), expressions of the functional chain rule that relate Lagrangian
functional derivatives to the Eulerian functional derivates, into (3.15) yields the
following bracket expressed entirely in terms of the Eulerian fields {M, ρ, σ }:

{F,G} = −
∫

d3x
[

Mi

(
δF
δMj

∂

∂xj

δG
δMi
−
δG
δMj

∂

∂xj

δF
δMi

)
+ ρ

(
δF
δM
· ∇

δG
δρ
−
δG
δM
· ∇

δF
δρ

)
+ σ

(
δF
δM
· ∇

δG
δσ
−
δG
δM
· ∇

δF
δσ

)]
. (3.28)

In (3.28) we have dropped the overbars on the Eulerian functional derivatives. The
bracket for MHD is the above with the addition of the following term, which is
obtained by adding a B contribution to (3.25):

{F,G}B = −
∫

d3x
[

B ·
(
δF
δM
· ∇

δG
δB
−
δG
δM
· ∇

δF
δB

)
+B ·

(
∇

(
δF
δM

)
·
δG
δB
−∇

(
δG
δM

)
·
δF
δB

)]
, (3.29)
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where dyadic notation is used; for example, B · [∇(D) · C] =
∑

i,j BiCj∂Dj/∂xi, for
vectors B, D, and C. Alternatively, the bracket in terms of {v, ρ, s, B} is obtained
using chain rule expressions, e.g.

δF
δρ

∣∣∣∣
v,s

=
δF
δρ

∣∣∣∣
M,s

+
M
ρ
·
δF
δM
+
σ

ρ

δF
δσ
, (3.30)

yielding

{F,G} = −
∫

d3x
[(
δF
δρ
∇ ·

δG
δv
−
δG
δρ
∇ ·

δF
δv

)
+

(
∇× v

ρ
·
δG
δv
×
δF
δv

)
+
∇s
ρ
·

(
δF
δs
δG
δv
−
δG
δs
δF
δv

)]
, (3.31)

and

{F,G}B = −
∫

d3x
[

B ·
(

1
ρ

δF
δv
· ∇

δG
δB
−

1
ρ

δG
δv
· ∇

δF
δB

)
+B ·

(
∇

(
1
ρ

δF
δv

)
·
δG
δB
−∇

(
1
ρ

δG
δv

)
·
δF
δB

) ]
. (3.32)

The bracket of (3.31) plus that of (3.32) with the Hamiltonian

H[ρ, s, v,B] =
∫

d3x
(

1
2
ρ|v|2 + ρU(ρ, s)+

1
2
|B|2

)
(3.33)

gives the Eulerian version of MHD in Hamiltonian form, ∂v/∂t = {v, H}, etc.,
and similarly using (3.28) plus (3.29) with the Hamiltonian expressed in terms of
(M, ρ, σ ,B). Ideal fluid follows upon neglecting the B terms.

3.4. Constants of motion: Eulerian versus Lagrangian
In order to compare the imposition of constraints in the Lagrangian and Eulerian
descriptions, it is necessary to compare Lagrangian and Eulerian conservations laws.
This is because constraints, when enforced, are conserved quantities. The comparison
is not trivial because time-independent quantities in the Eulerian description can be
time dependent in the Lagrangian description.

Consider a Lagrangian function f (a, t), typical of the Lagrangian variable
description, and the relation x = q(a, t), which relates an Eulerian observation point
x to a corresponding fluid element trajectory value. The function f can be written in
either picture by composition, as follows:

f (a, t)= f̃ (x, t)= f̃ (q(a, t), t), (3.34)

where we will use a tilde to indicated the Eulerian form of a Lagrangian function.
Application of the chain rule gives

Ai
k

J
∂f
∂ai

∣∣∣∣
a=q−1(x,t)

=
∂ f̃
∂xk

and
Ak
`

J
∂

∂ak

(
π`

J

)∣∣∣∣
a=q−1(x,t)

=∇ · v, (3.35)
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with the second equality of (3.35) being a special case of the first. Similarly,

ḟ
∣∣

a=q−1(x,t) =
∂ f̃
∂t
+ q̇i(a, t)

∂ f̃
∂xi

∣∣∣∣∣
a=q−1(x,t)

=
∂ f̃
∂t
+ v · ∇f̃ (x, t), (3.36)

where recall an overdot denotes the time derivative at constant a, ∂/∂t denotes the
time derivative at constant x and ∇ is the Eulerian gradient with components ∂/∂xi

as used in (3.35). Because the Jacobian determinant J is composed of derivatives of
q, we have J (a, t)|a=q−1(x,t) = J̃ (x, t), whence one obtains a formula due to Euler
(see e.g. Serrin 1959),

∂J̃
∂t
+ v · ∇J̃ = J̃ ∇ · v, (3.37)

which can be compared to its Lagrangian version of (3.7).
Now, consider a conservation law in the Lagrangian variable description,

ḊL +
∂Γ i

DL

∂ai
= 0, (3.38)

where the density DL(a, t) has the associated flux ΓDL . Then, the associated conserved
quantity is

IDL =

∫
d3aDL, (3.39)

which satisfies dIDL/dt = 0 provided surface terms vanish. Similarly, an Eulerian
conservation law with density DE and flux ΓDE is

∂DE

∂t
+
∂Γ i

DE

∂xi
= 0 (3.40)

and the following is similarly constant in time:

IDE =

∫
d3xDE. (3.41)

The relationship between the two conservation laws (3.38) and (3.40) can be obtained
by defining

D̃L =JDE, Γ̃ i
DL
= Ai

k Γ̄
k
DE
, and ΓDE = Γ̄DE + vDE, (3.42)

and their equivalence follows from (3.7), (3.36), and (3.37). Given a Lagrangian
conservation law, one can use (3.42) to obtain a corresponding Eulerian conservation
law. The density DE is obtained from the first equation of (3.42), a piece of the
Eulerian flux Γ̄DE from the second, which then can be substituted into the third
equation of (3.42) to obtain the complete Eulerian flux ΓDE . An Eulerian conservation
law is most useful when one can write DE and ΓDE entirely in terms of the Eulerian
variables of the fluid.

The simplest case occurs when DL only depends on a, in which case the
corresponding flux is zero and ∂DL/∂t = 0 and dIDL/dt = 0 follow directly
because (3.39) has no time dependence whatsoever. Any attribute attached to a
fluid element only depends on the label a and this has a trivial conservation law
of this form. However, such trivial Lagrangian conservation laws yield non-trivial
Eulerian conservation laws. Observe, even though Γ̄DE ≡ 0 by (3.42), ΓDE = vDE 6= 0.

https://doi.org/10.1017/S0022377820000331 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377820000331


22 P. J. Morrison, T. Andreussi and F. Pegoraro

Consider the case of the entropy where DL = s0(a), whence s(x, t) = s0(a(x, t)) and
by (3.36),

∂s
∂t
+ v · ∇s= 0, (3.43)

with the quantity s= s0/J being according to (3.42) the Eulerian conserved density, as
can be verified using (3.37). But, as it stands, this density cannot be written in terms
of Eulerian fluid variables. However, σ0 = ρ0s0 is also a trivial Lagrangian conserved
density and according to (3.42) we have the Eulerian density ρ0s0/J = ρs = σ that
satisfies

∂σ

∂t
+∇ · (vσ)= 0. (3.44)

Thus, it follows that any advected scalar has an associated conserved quantity obtained
by multiplication by ρ.

As another example, consider the quantity Bi
0∂qj/∂ai. This quantity is the limit

displacement between two nearby fluid elements, i.e. q(a, t)− q(a+ δa, t) along the
initial magnetic field as δa→ 0. Evidently,

˙
(

Bi
0
∂qj

∂ai

)
= Bi

0
∂ q̇j

∂ai
=

∂

∂ai
(Bi

0q̇j), (3.45)

where the second equality follows if the initial magnetic field is divergence free. This
is of course another trivial conservation law, for the time derivative of a density that
is a divergence will always be a divergence. However, let us see what this becomes
in the Eulerian description. According to (3.42) the corresponding Eulerian density is
DE =DL/J ; so, the density associated with this trivial conservation law (3.45) is

Bj(x, t)=
Bi

0

J
∂qj

∂ai

∣∣∣∣
a=q−1(x,t)

, (3.46)

which as we saw in § 3.3 is the expression one gets for the MHD magnetic field
because of flux conservation. That the divergence-free magnetic field satisfies a
conservation law is clear from

∂B
∂t
=−v · ∇B+B · ∇v −B∇ · v =∇ ·

↔

T , (3.47)

where the tensor
↔

T of the last equality is
↔

T =B⊗ v − v⊗B. (3.48)

Thus we have another instance where a trivial Lagrangian conservation law leads to
a non-trivial Eulerian one.

Although Bi
0∂qj/∂ai does not map into an expression entirely in terms of our set of

Eulerian variables, we can divide it by ρ0, a quantity that only depends on the label
a, and obtain

Bi
0

ρ0

∂qj

∂ai

∣∣∣∣
a=q−1(x,t)

=
Bj

ρ
. (3.49)

Eulerianizing the counterpart of (3.45) for this expression gives

∂

∂t

(
B
ρ

)
+ v · ∇

(
B
ρ

)
=

B
ρ
· ∇v, (3.50)
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which is not an Eulerian conservation law. This is to be expected because, unlike
what we did to get (3.47), we have Eulerianized without using (3.42). In light of
its relationship to q(a, t) − q(a + δa, t), the quantity B/ρ has been described as
a measure of the distance of points on a magnetic field line (see e.g. Kampen &
Felderhoff (1967)). This was predated by analogous arguments for vorticity (see e.g.
Serrin (1959)).

4. Constraint theories for the incompressible ideal fluid
4.1. The incompressible fluid in Lagrangian variables

In order to enforce incompressibility, Lagrange added to his Lagrangian the constraint
J = 1 with the Lagrange multiplier λ(a, t),

Lλ[q, q̇] = T[q̇] + λJ , (4.1)

with T given (3.10). Here we have dropped V because incompressible fluids contain
no internal energy. Upon insertion of (4.1) into the action of Hamilton’s principle it
is discovered that λ corresponds to the pressure. The essence of this procedure was
known to Lagrange. (See Serrin (1959) for historical details and Sommerfeld (1964)
for an elementary exposition.) This procedure yields

ρ0q̈i
=−Ai

j
∂λ

∂aj
, (4.2)

where use has been made of (3.7). The Eulerian form of (4.2) is clearly ρ(∂v/∂t +
v · ∇v) = −∇λ, whence it is clear that λ is the pressure. Although Lagrange knew
the Lagrange multiplier was the pressure, he could only solve for it in special cases.
The general procedure of § 1.1 was not available because Green’s function techniques
and the theory of elliptic equations were not at his disposal.

4.1.1. Lagrangian volume preserving geodesic flow
If the constraint is dropped from (4.1), we obtain free particle motion for an

infinite-dimensional system, the ideal fluid case of (2.80) of § 2.4, which is analogous
to the finite-dimensional case of § 2.1.1. Because the constraint J = 1 only depends
on the derivatives of q, it is a configuration space constraint; thus, it is an holonomic
constraint. As is well known and reviewed in § 2.1.1, free particle motion with
holonomic constaints is geodesic flow. Thus, following Lagrange, it is immediate that
the ideal incompressible fluid is an infinite-dimensional version of geodesic flow.

Lagrange’s calculation was placed in a geometric/group theoretic setting in Arnold
(1966) (see also appendix 2 of Arnold (1978) and Arnold & Khesin (1998)). Given
that the transformation a ↔ q, at any time, is assumed to be a smooth invertible
coordinate change, it is a Lie group, one referred to as the diffeomorphism group.
With the additional assumption that these transformations are volume preserving,
Lagrange’s constraint J = 1, the transformations form a subgroup, the group
of volume preserving diffeomorphisms. Thus, Lagrange’s work can be viewed as
geodesic flow on the group of volume preserving diffeomorphisms.

Although Arnold’s assumptions of smoothness etc. are mathematically dramatic,
his description of Lagrange’s calculations in these terms has spawned a considerable
body of research. Associated with a geodesic flow is a metric, and whence one can
calculate a curvature. In his original work, Arnold added the novel calculation of the
curvature in the mathematically more forgiving case of two-dimensional flow with
periodic boundary conditions.
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4.2. Lagrangian–Dirac constraint theory
More recently there have been several works (Morrison et al. 2009; Tassi et al.
2009; Chandre et al. 2013), following Nguyen & Turski (1999, 2001), that treat
the enforcement of the incompressibility constraint of hydrodynamics by Dirac’s
method of constraints (Dirac 1950). In these works the compressibility constraint
was enforced in the Eulerian variable description of the fluid using the noncanonical
Poisson bracket of § 3.3 as the base bracket of a generalization of Dirac’s constraint
theory. We will return to this approach in § 3.3 where we revisit and extend Dirac’s
constraint results for the fluid in the Eulerian variable description. Here, apparently
for the first time, we consider the incompressibility constraint in the Lagrangian
variable description, where the canonical Poisson bracket of (3.15) is the base for the
construction of a Dirac bracket.

We adapt (2.78) for the fluid case at hand with the supposition of only two local
constraints, which we write as

Da(a′)=
∫

d3a Da(a) δ(a− a′), (4.3)

where a= 1, 2 and Da(a) is a shorthand for a function of q(a, t) and π(a, t) and their
derivatives with respect to a. Then the matrix D is a 2×2 matrix with the components

Dab(a, a′)= {Da(a),Db(a′)}, (4.4)

using the canonical bracket of (3.15). To construct the Dirac bracket

{F,G}∗ = {F,G} −
∫

d3a
∫

d3a′ {F,Da(a)}D−1
ab (a, a′){Db(a′),G}, (4.5)

we require the inverse, which satisfies∫
d3a Dac(a′, a)D−1

cb (a, a′′)= δa
b δ(a

′
− a′′). (4.6)

Rather than continuing with the general case, which is unwieldy, we proceed to
the special case for the incompressible fluid, an infinite-dimensional version of the
holonomic constraints discussed in § 2.3.1.

4.2.1. Lagrangian–Dirac incompressibility holonomic constraint
Evidently we will want our holonomic incompressibility constraint to be J .

However, it is convenient to express this by choosing

D1
= ln

(
J
ρ0

)
. (4.7)

This amounts to the same constraint as J = 1 with the value D1
= − ln(ρ0). The

scaling of J in (4.7) by ρ0(a) is immaterial because it is a time-independent quantity.
To obtain the second constraint we follow suit and set

D2
= Ḋ1

=
Ak
`

J
∂

∂ak

(
π`

ρ0

)
= η`j

Ak
`

J
∂

∂ak

(
πj

ρ0

)
, (4.8)

where recall we assume η`j = δ`j and πj is given by (3.13). That the constraint D2

is the time derivative of D1 requires the definition of πj of (3.13) that uses the
Hamiltonian

∫
d3a |π|2/(2ρ0).
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Observe, that constraints D1 and D2 are local constraints in that they are enforced
pointwise (see e.g. Flierl & Morrison (2011)), i.e. they are enforced on each fluid
element labelled by a. Equation (4.7) corresponds in the Eulerian picture to − ln(ρ),
while the second constraint of (4.8), the Lagrangian time derivative of the first
constraint, corresponds in the Eulerian picture to ∇ · v, which can be easily verified
using the second equation of (3.35). Note, the particular values of these constraints
of interest are, of course, J = 1 and ∇ · v = 0, but the dynamics the Dirac bracket
generates will preserve any values of these constraints. For example, we could set
J = f (a) where the arbitrary function f is less than unity for some a and greater
for others, corresponding to regions of fluid elements that experience contraction and
expansion. Also note, we have used π with the up index in (4.8); thus as seen in the
second equality it depends on the metric. This was done to make it have the Eulerian
form ∇ · v.

For the constraints (4.7) and (4.8), D only depends on two quantities because D1

does not depend on π, i.e. {D1,D1
} = 0 and {D1,D2

} = −{D2,D1
}. Thus the inverse

has the form

D−1
=

(
D−1

11 D−1
12

D−1
21 0

)
, (4.9)

giving rise to the conditions

D−1
12 ·D

21
= I =D−1

21 ·D
12 and D−1

11 ·D
12
+D−1

12 ·D
22
= 0, (4.10)

where I is the identity. Thus, the inverse is easily tractable if the inverse of D12 exists;
whence,

D−1
11 =−D

−1
12 ·D

22
·D−1

21 . (4.11)
In the above the symbol ‘·’ is used to denote the product with the sum in infinite
dimensions, i.e. integration over d3a as in (4.6). Equation (4.11) can be rewritten in
an abbreviated form with implied integrals on repeated arguments as

D−1
11 (a

′, a′′)=D−1
21 (a

′, â) ·D22(â, ǎ) ·D−1
21 (ǎ, a′′). (4.12)

In order to obtain D and its inverse, we need the functional derivatives of D1 and
D2. These are obtained directly by writing these local constraints as in (4.6), yielding

δD1(a′)
δqi(a)

=−Ak
i
∂

∂ak

δ(a− a′)
J

, (4.13)

δD1(a′)
δπi(a)

= 0, (4.14)

where use has been made of (3.7), and

δD2(a′)
δqi(a)

=
∂

∂au

(
Ak

i A
u
`

J 2

∂

∂ak

(
π`

ρ0

)
δ(a− a′)

)
, (4.15)

δD2 (a′)
δπi(a)

=−
ηij

ρ0

∂

∂am

(
Am

j

J
δ
(
a− a′

))
, (4.16)

where use has been made of (3.8) and recalling we have (3.6) at our disposal.
Let us now insert (4.13)–(4.16) into the canonical Poisson bracket (3.15), to obtain

D12(a, a′) = {D1(a),D2(a′)}

= −
A`i
J

∂

∂a`

(
ηij

ρ0
Ak

j
∂

∂ak

(
δ(a− a′)

J

))
, (4.17)
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which corresponds to the symmetric matrix S of (2.27) and (2.42) and

D22(a, a′) = {D2(a),D2(a′)}

=
Ak

i A
u
`

J 2

∂

∂ak

(
π`

ρ0

)
∂

∂au

[
ηij

ρ0

∂

∂am

(
Am

j

J
δ
(
a− a′

))]
−

Am
i

J
∂

∂am

[
ηij

ρ0

∂

∂au

(
Ak

j A
u
`

J 2

∂

∂ak

(
π`

ρ0

)
δ(a− a′)

)]
, (4.18)

which corresponds to the antisymmetric matrix A of (2.28). Observe the symmetries
corresponding to the matrices S and A, respectively, are here∫

d3a′D12(a, a′) φ(a′)=
∫

d3a′D12(a′, a) φ(a′), (4.19)∫
d3a′D22(a, a′) φ(a′)=−

∫
d3a′D22(a′, a) φ(a′), (4.20)

for all functions φ. The first follows from integration by parts, while the second is
obvious from its definition.

Using (4.6), the first condition of (4.10) is∫
d3a′′ D12(a′, a′′)D−1

21 (a
′′, â)= δ(a′ − â), (4.21)

which upon substitution of (4.17) and integration gives

−
A`i
J

∂

∂a`

[
ηij

ρ0
Ak

j
∂

∂ak

(
D−1

21 (a, a′′)
J

)]
= δ(a− a′′). (4.22)

We introduce the formally self-adjoint operator (cf. (3.6))

∆ρ0 f :=
A`i
J

∂

∂a`

[
ηij

ρ0
Ak

j
∂

∂ak

(
f
J

)]
, (4.23)

i.e. an operator that satisfies∫
d3a f (a)∆ρ0g(a)=

∫
d3a g(a)∆ρ0 f (a), (4.24)

a property inherited by its inverse ∆−1
ρ0

. Thus we can rewrite equation (4.22) as

D−1
21 (a, a′′)=−G0

(
a, a′′

)
=−∆−1

ρ0
δ(a− a′′), (4.25)

where G0 represents the Green function associated with (4.22).
In order to obtain D−1

21 , we find it convenient to transform (4.25) to Eulerian
variables. Using x= q(a, t) we find

D−1
21 (a, a′)
J

=−G(x, x′)=−G(q(a), q(a′)), (4.26)
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where G satisfies

∇ ·

(
1
ρ
∇G
)
=−∆ρ

D−1
21 (a, a′)
J

=J δ(x− x′). (4.27)

Here use has been made of identities (3.6) and (3.35). As noted in § 1.1, under
physically reasonable conditions, the operator

∆ρ f =∆ρ0(J f )=∇ ·
(

1
ρ
∇f
)

(4.28)

has an inverse. Thus we write

D−1
21 (a, a′)=−J∆−1

ρ

(
J δ
(
q(a, t)− q(a′, t)

))
. (4.29)

Now, using D−1
21 =−D−1

12 , the element D−1
11 follows directly from (4.11).

For convenience we write the Dirac bracket of (4.5) as follows:

{F,G}∗ = {F,G} − [F,G]D, (4.30)

where

[F,G]D :=
2∑

a,b=1

[F,G]Dab =

∫
d3a

∫
d3a′ {F,Da(a)}D−1

ab (a, a′){Db(a′),G}. (4.31)

Because D−1
22 = 0 and [F, G]D12 = −[G, F]D21, we only need to calculate [F, G]D11 and

[F,G]D21.
As above, we substitute (4.13), (4.14), (4.15), and (4.16) into the bracket (3.15) and

obtain {
F,D1(a)

}
=−

Ak
i

J
∂

∂ak

(
δF
δπi

)
, (4.32)

{
F,D2(a)

}
=

Ak
`

J
∂

∂ak

(
ηi`

ρ0

δF
δqi

)
+

Ak
i

J
Au
`

J
∂

∂ak

(
π`

ρ0

)
∂

∂au

(
δF
δπi

)
. (4.33)

Then, exploiting the antisymmetry of the Poisson bracket, it is straightforward to
calculate analogous expressions for the terms {D1,2,G}.

We first analyse the operator

[F,G]D11 =

∫
d3a
∫

d3a′
∫

d3â
∫

d3ǎ{F,D1(a)}D−1
21 (a, â)D22(â, ǎ)D−1

21 (ǎ, a′){D1(a′),G},

(4.34)
where we used the second condition of (4.10) to replace D−1

11 . Upon inserting (4.25)
and (4.32), this equation can be rewritten as

[F,G]D11 = −

∫
d3a

∫
d3a′

∫
d3â

∫
d3ǎ

[
Ah

j

J
∂

∂ah

(
δF
δπj

)
∆−1
ρ0
δ(a− â)

]
a=a

×D22(â, ǎ)
[

As
r

J
∂

∂as

(
δG
δπr

)
∆−1
ρ0
δ(ǎ− a)

]
a=a′

, (4.35)

where the subscripts on the right delimiters indicate that a is to be replaced after the
derivative operations, including those that occur in J and Aj

i.
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Integrating this expression by parts with respect to a and a′ yields

[F,G]D11 = −

∫
d3â

∫
d3ǎ

[
∆−1
ρ0

(
Ah

j

J
∂

∂ah

(
δF
δπj

))]
a=â

×D22(â, ǎ)
[
∆−1
ρ0

(
As

r

J
∂

∂as

(
δG
δπr

))]
a=ǎ
, (4.36)

and then substituting (4.18) gives

[F,G]D11 = −

∫
d3â
∫

d3ǎ

[
∆−1
ρ0

(
Ah

j

J
∂

∂ah

(
δF
δπj

))]
a=â

×

{
Ak

i A
u
`

J 2

∂

∂ak

(
π`

ρ0

)
∂

∂au

[
ηin

ρ0

∂

∂am

(
Am

n

J
δ
(
a− ǎ

))]
−

Am
i

J
∂

∂am

[
ηin

ρ0

∂

∂au

(
Ak

n

J
Au
`

J
∂

∂ak

(
π`

ρ0

)
δ(a− ǎ)

)]}
a=â

×

[
∆−1
ρ0

(
As

r

J
∂

∂as

(
δG
δπr

))]
a=ǎ
. (4.37)

Then, by means of integrations by parts we can remove the derivatives from the term
δ(a − ǎ) and perform the integral. After relabelling the integration variable as a to
simplify the notation, equation (4.37) becomes

[F,G]D11 =

∫
d3a
{
ρ0η

ui A
k
u

J
∂

∂ak

(
π`

ρ0

)(
Pρ0⊥

δF
δπ

∣∣∣∣
`

Pρ0⊥

δG
δπ

∣∣∣∣
i

− Pρ0⊥

δF
δπ

∣∣∣∣
i

Pρ0⊥

δG
δπ

∣∣∣∣
`

)
+ ηniAu

`

∂

∂au

[
Ak

n

J
∂

∂ak

(
π`

ρ0

)] [
Pρ0⊥

δG
δπ

∣∣∣∣
i

∆−1
ρ0

J

(
Ah

j

J
∂

∂ah

(
δF
δπj

))

− Pρ0⊥

δF
δπ

∣∣∣∣
i

∆−1
ρ0

J

(
Ah

j

J
∂

∂ah

(
δG
δπj

))]}
, (4.38)

where we introduced the projection operator(
Pρ0⊥

)i

j zj
=
ηi`

ρ0
Au
`

∂

∂au

[
∆−1
ρ0

J

(
Ah

j

J
∂

∂ah
zj

)]
=: Pρ0⊥z

∣∣i, (4.39)

where in the last equality we defined a shorthand for convenience; thus,

Pρ0⊥

δF
δπ

∣∣∣∣
`

:=
1
ρ0

Au
`

∂

∂au

[
∆−1
ρ0

J

(
Ah

j

J
∂

∂ah

δF
δπj

)]
. (4.40)

It is straightforward to prove that Pρ0⊥ represents a projection, i.e. Pρ0⊥(Pρ0⊥z) =
Pρ0⊥z for each z, which in terms of indices would have an ith component given
by (Pρ0⊥)

i
j(Pρ0⊥)

j
k zk
= (Pρ0⊥)

i
k zk. Also, Pρ0⊥ is formally self-adjoint with respect to

the following weighted inner product:∫
d3a ρ0 wi (Pρ0⊥)

i
j z j
=

∫
d3a ρ0 zi (Pρ0⊥)

i
j wj. (4.41)

The projection operator complementary to Pρ0⊥ is given by

Pρ0 = I − Pρ0⊥, (4.42)

where I is the identity.
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Now let us return to our evaluation of [F,G]D and analyse the contribution

[F,G]D21 =

∫
d3a

∫
d3a′

{
F,D2(a)

}
D−1

21 (a, a′)
{

D1(a′),G
}
. (4.43)

Using (4.29), (4.32) and (4.33), this equation can be rewritten as

[F,G]D21 = −

∫
d3a

∫
d3a′

[
Ak

i

J
∂

∂ak

(
ηin

ρ0

δF
δqn

)
+

Ak
i

J
Au
`

J
∂

∂ak

(
π`

ρ0

)
∂

∂au

(
δF
δπi

)]
×∆−1

ρ0
δ(a− a′)

[
Ah

j

J
∂

∂ah

(
δG
δπj

)]
a=a′

(4.44)

and, integrating by parts to simplify the δ(a− a′) term, results in

[F,G]D21 =

∫
d3a

{
δF
δqi

Pρ0⊥

δG
δπ

∣∣∣∣i + ρ0
Ak

i

J
∂

∂ak

(
π`

ρ0

)
δF
δπi

Pρ0⊥

δG
δπ

∣∣∣∣
`

+Au
`

∂

∂au

[
Ak

i

J
∂

∂ak

(
π`

ρ0

)]
δF
δπi

∆−1
ρ0

J

(
Ah

j

J
∂

∂ah

(
δG
δπj

))}
. (4.45)

We can now combine the operators [F, G]D11, [F, G]D21, and [F, G]D12 = −[G, F]D21,
given by (4.38) and (4.45), to calculate the Dirac bracket (4.30). First, we rewrite
(4.31) as

[F,G]D =
∫

d3a

{
δF
δqi

Pρ0⊥

δG
δπ

∣∣∣∣i − δGδqi
Pρ0⊥

δF
δπ

∣∣∣∣i
+ ρ0

Ak
i

J
∂

∂ak

(
π`

ρ0

) (
Pρ0

δF
δπ

∣∣∣∣i Pρ0⊥

δG
δπ

∣∣∣∣
`

− Pρ0

δG
δπ

∣∣∣∣i Pρ0⊥

δF
δπ

∣∣∣∣
`

)

+Au
`

∂

∂au

[
Ak

i

J
∂

∂ak

(
π`

ρ0

)] [
Pρ0

δF
δπ

∣∣∣∣i ∆−1
ρ0

J

(
Ah

j

J
∂

∂ah

(
δG
δπj

))

− Pρ0

δG
δπ

∣∣∣∣i ∆−1
ρ0

J

(
Ah

j

J
∂

∂ah

(
δF
δπj

))]}
. (4.46)

Using the identity of (3.9) with z` set to π`/ρ0,

Au
`

∂

∂au

[
Ak

i

J
∂

∂ak

(
π`

ρ0

)]
= Ak

i
∂

∂ak

[
Au
`

J
∂

∂au

(
π`

ρ0

)]
, (4.47)

and integrating by parts, equation (4.46) becomes

[F,G]D =
∫

d3a

{
δF
δqi

Pρ0⊥

δG
δπ

∣∣∣∣i − δGδqi
Pρ0⊥

δF
δπ

∣∣∣∣i
+ ρ0

Ak
i

J
∂

∂ak

(
π`

ρ0

) (
Pρ0

δF
δπ

∣∣∣∣i Pρ0⊥

δG
δπ

∣∣∣∣
`

− Pρ0

δG
δπ

∣∣∣∣i Pρ0⊥

δF
δπ

∣∣∣∣
`

)

− ρ0
Au
`

J
∂

∂au

(
π`

ρ0

) (
Pρ0

δF
δπ

∣∣∣∣i Pρ0⊥

δG
δπ

∣∣∣∣
i

− Pρ0

δG
δπ

∣∣∣∣i Pρ0⊥

δF
δπ

∣∣∣∣
i

)}
, (4.48)
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where we used

Ak
i
∂

∂ak
Pρ0z

∣∣i = Ak
i
∂

∂ak

(
Pρ0

)i

j z j
= 0, for all z, (4.49)

which follows from the definitions (4.39), viz.

Ak
i

J
∂

∂ak

(
Pρ0⊥

)i

j zj
=

Ak
i

J
∂zi

∂ak
, (4.50)

and (4.42). Also, upon inserting Pρ0⊥ = I − Pρ0 in the last line of (4.48), symmetry
implies we can drop the Pρ0⊥. Finally, upon substituting (4.48) into (4.30), we obtain

{F,G}∗ =
∫

d3a

{
δF
δqi

Pρ0

δG
δπ

∣∣∣∣i − δGδqi
Pρ0

δF
δπ

∣∣∣∣i
− ρ0

Ak
i

J
∂

∂ak

(
π`

ρ0

) (
Pρ0

δF
δπ

∣∣∣∣i Pρ0⊥

δG
δπ

∣∣∣∣
`

− Pρ0

δG
δπ

∣∣∣∣i Pρ0⊥

δF
δπ

∣∣∣∣
`

)

+ ρ0
Ak
`

J
∂

∂ak

(
π`

ρ0

) (
Pρ0

δF
δπ

∣∣∣∣i δGδπi
− Pρ0

δG
δπ

∣∣∣∣i δFδπi

)}
. (4.51)

Once more inserting Pρ0⊥ = I − Pρ0 , rearranging and reindexing gives

{F,G}∗ = −
∫

d3a ρ0

{
1
ρ0

δG
δqi

Pρ0

δF
δπ

∣∣∣∣i − 1
ρ0

δF
δqi

Pρ0

δG
δπ

∣∣∣∣i +Amn Pρ0⊥

δF
δπ

∣∣∣∣m Pρ0⊥

δG
δπ

∣∣∣∣n
+ Tmn

(
δF
δπm

Pρ0⊥

δG
δπ

∣∣∣∣n − δG
δπm

Pρ0⊥

δF
δπ

∣∣∣∣n)} , (4.52)

where
Anm := η`mD`

n − η`nD`
m and Tmn := η`nD`

m + ηmnD2, (4.53)

with

D`
m =

Ak
m

J
∂

∂ak

(
π`

ρ0

)
. (4.54)

Note the trace D`
` = D2, which we will eventually set to zero. Equation (4.52) gives

the Dirac bracket for the incompressibility holonomic constraint. This bracket with the
Hamiltonian

H =
∫

d3a
|π|2

2ρ0
=

∫
d3a ηmn πmπn

2ρ0
, (4.55)

produces dynamics that fixes J and thus enforces incompressibility provided the
constraint D2

= 0 is used as an initial condition. For MHD we add to H the following:

HB =

∫
d3a ηmn

Bj
0Bk

0

2J
∂qm

∂aj

∂qn

∂ak
. (4.56)

We note, any Hamiltonian that is consistent with (4.8) can be used to define a
constrained flow.
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Proceeding to the equations of motion, we first calculate q̇i,

q̇i
= {qi,H}∗ =

(
Pρ0

)i

j

δH
δπj
=
δH
δπi
−
ηi`

ρ0
Au
`

∂

∂au

[
∆−1
ρ0

J

(
Ah

j

J
∂

∂ah

δH
δπj

)]

=
πi

ρ0
−
ηi`

ρ0
Au
`

∂

∂au

[
∆−1
ρ0

J

(
Ah

j

J
∂

∂ah

πj

ρ0

)]
. (4.57)

The equation for π̇i is more involved. Using the adjoint property of (4.41), which is
valid for both Pρ0⊥ and Pρ0 , we obtain

π̇i = {πi,H}∗ =−ρ0
(
Pρ0

)j

i

1
ρ0

δH
δqj
− ρ0

(
Pρ0⊥

)m

i

(
Amn

(
Pρ0⊥

)n

k

δH
δπk

)
+ ρ0

(
Pρ0⊥

)n

i

(
Tmn

δH
δπm

)
− ρ0 Tin

(
Pρ0⊥

)n

k

δH
δπk

= −ρ0 (Pρ0⊥)
m
i

(
Amn(Pρ0⊥)

n
k
πk

ρ0

)
+ ρ0 (Pρ0⊥)

n
i

(
Tmn

πm

ρ0

)
− ρ0 Tin(Pρ0⊥)

n
k
πk

ρ0
,

(4.58)

which upon substitution of the definitions of Pρ0 , Amn and Tmn of (4.39) and (4.53)
yields a complicated nonlinear equation.

Equations (4.57) and (4.58) are infinite-dimensional versions of the finite-
dimensional systems of (2.33) and (2.34) considered in § 2.3.1. There, equations
(2.33) and (2.34) were reduced to (2.37) and (2.38) upon enforcing the holomomic
constraint by requiring that initially D2

= 0. Similarly we can enforce the vanishing of
D2 of (4.8), which is compatible with the Hamiltonian (4.55). Instead of addressing
this evaluation now, we find the meaning of various terms is much more transparent
when written in terms of Eulerian variables, which we do in § 4.3. We then return to
these Lagrangian equations in § 4.4 and make comparisons. Nevertheless, the solution
of equations (4.57) and (4.58), q(a, t), with the initial conditions D1

= − ln ρ0 and
D2
= 0, is a volume preserving transformation at any time t.

4.3. Eulerian–Dirac constraint theory

Because we chose the form of constraints D1,2 of (4.7) and (4.8) to be Eulerianizable,
it follows that we can transform easily the results of § 4.2.1 into Eulerian form. This
we do in § 4.3.1. Alternatively, we can proceed as in Nguyen & Turski (1999, 2001),
Tassi et al. (2009), Chandre et al. (2013) and Morrison et al. (2009), starting from
the Eulerian noncanonical theory of § 3.3 and directly construct a Dirac bracket with
Eulerian constraints. This is a valid procedure because Dirac’s construction works for
noncanonical Poisson brackets, as shown, e.g. in Morrison et al. (2009), but it does
not readily allow for advected density. This direct method with uniform density is
reviewed in § 4.3.2, where it is contrasted with the results of § 4.3.1.

4.3.1. Lagrangian–Dirac constraint theory in the Eulerian picture
In a manner similar to that used to obtain (3.26) and (3.27), we find the functional

derivatives transform as

δF
δπi
=

1
ρ

δF̄
δvi
,

1
ρ0

δF
δqi
=

∂

∂xi

δF̄
δρ
−

1
ρ

δF̄
δs
∂s
∂xi
−

1
ρ

δF̄
δv`

∂v`

∂xi
, (4.59)
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where the expressions on the left of each equality are clearly Lagrangian variable
quantities, while on the right they are Eulerian quantities represented in terms of
Lagrangian variables. Substituting these expressions into (2.78) and dropping the bar
on F and G gives the following bracket in terms of the Eulerian variables:

{F,G}∗ = −
∫

d3x

{(
Pρ

δF
δv

∣∣∣∣i ∂∂xi

δG
δρ
− Pρ

δG
δv

∣∣∣∣i ∂∂xi

δF
δρ

)

+
1
ρ

∂s
∂xi

(
δF
δs

Pρ

δG
δv

∣∣∣∣i − δGδs Pρ

δF
δv

∣∣∣∣i
)

+
1
ρ

∂v`

∂xi

(
Pρ

δF
δv

∣∣∣∣
`

Pρ

δG
δv

∣∣∣∣i − Pρ

δG
δv

∣∣∣∣
`

Pρ

δF
δv

∣∣∣∣i
)

+
1
ρ

∂v`

∂x`

(
Pρ

δF
δv

∣∣∣∣i δGδvi
− Pρ

δG
δv

∣∣∣∣i δFδvi

)}
, (4.60)

where we used the relations (3.19) and (3.35) and we introduced the Eulerian
projection operator

Pρ

δF
δv

∣∣∣∣i = (Pρ)
i
j
δF
δvj
= ρPρ0

δF
δπ

∣∣∣∣i and Pρ

δF
δv

∣∣∣∣
i

= ηij Pρ

δF
δv

∣∣∣∣j , (4.61)

with (
Pρ

)i

j z j
= δi

j − η
ik ∂

∂xk

[
∆−1
ρ

∂

∂xj

(
z j

ρ

)]
, (4.62)

which is easily seen to satisfy (Pρ)
i
j(Pρ)

j
k = (Pρ)

i
k. Observe, like its Lagrangian

counterpart, Pρ is formally self-adjoint; however, this time we found it convenient
to define the projection in such a way that the self-adjointness is with respect to a
different weighted inner product, viz.∫

d3x
ρ

wi (Pρ)
i
j z j
=

∫
d3x
ρ

zi (Pρ)
i
j wj. (4.63)

In terms of usual Cartesian vector notation

Pρ

δG
δv
=
δG
δv
−∇∆−1

ρ ∇ ·

(
1
ρ

δG
δv

)
. (4.64)

Upon writing Pρ = I −Pρ⊥ and decomposing an arbitrary vector field as

z=−∇Φ + ρ∇×A, (4.65)

this projection operator yields the component Pρz = ρ∇ × A. Therefore, if ∇ρ ×
A= 0, then this operator projects into the space of incompressible vector fields. For
convenience we introduce the associated projector

Pρv := v −
1
ρ
∇∆−1

ρ ∇ · v =
1
ρ
Pρ(ρv), (4.66)
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which has the desirable property

∇ · (Pρv)= 0 ∀v compared to ∇ ·

(
1
ρ
Pρw

)
= 0 ∀w. (4.67)

Upon writing Pρ = I − Pρ⊥ and decomposing an arbitrary vector field v as

v =−
1
ρ
∇Φ +∇×A, (4.68)

this projection operator yields the component Pρv=∇×A, while Pρ⊥v=∇Φ/ρ. Note,
Pρ is the Eulerianization of Pρ0 and it is not difficult to write (4.69) in terms of this
quantity.

Upon adopting this usual vector notation, the bracket (4.60) can also be written as

{F,G}∗ = −
∫

d3x
[
∇
δG
δρ
·Pρ

δF
δv
−∇

δF
δρ
·Pρ

δG
δv

+
∇s
ρ
·

(
δF
δs

Pρ

δG
δv
−
δG
δs

Pρ

δF
δv

)
+
∇× v

ρ
·

(
Pρ

δG
δv
×Pρ

δF
δv

)
+
∇ · v

ρ

(
δF
δv
·Pρ

δG
δv
−
δG
δv
·Pρ

δF
δv

)]
. (4.69)

For MHD there is a magnetic field contribution to (4.59) and following the steps that
lead to (4.69) we obtain

{F,G}∗B = −
∫

d3x
[

B ·
(

1
ρ
Pρ

δF
δv
· ∇

δG
δB
−

1
ρ
Pρ

δG
δv
· ∇

δF
δB

)
+B ·

(
∇

(
1
ρ
Pρ

δF
δv

)
·
δG
δB
−∇

(
1
ρ
Pρ

δG
δv

)
·
δF
δB

) ]
. (4.70)

With the exception of the last term of (4.69) proportional to ∇ · v and the presence
of the Eulerian projection operator Pρ , equation (4.69) added to (4.70) is identical to
the noncanonical Poisson bracket for the ideal fluid and MHD as given in Morrison
& Greene (1980). By construction, we know that (4.69) satisfies the Jacobi identity
– this follows because it was obtained by Eulerianizing the canonical Dirac bracket
in terms of Lagrangian variables. Guessing the bracket and proving Jacobi for (4.69)
directly would be a difficult chore, giving credence to the path we have followed in
obtaining it.

To summarize, the bracket of (4.69) together with the Hamiltonian

H =
1
2

∫
d3x ρ |v|2, (4.71)

the Eulerian counterpart of (4.55), generates dynamics that can preserve the constraint
∇ · v = 0. If we add HB =

∫
d3x |B|2/2 to (4.71) and add (4.70) to (4.69), then we

obtain incompressible MHD. The fluid case is the Eulerian counterpart of the volume
preserving geodesic flow, described originally by Lagrange in Lagrange variables.
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Upon performing a series of straightforward manipulations, we obtain the following
equations of motion for the flow:

∂ρ

∂t
= {ρ,H}∗ =−∇ ·Pρ

δH
δv
=−∇ρ · Pρv, (4.72)

∂s
∂t
= {s,H}∗ =−

∇s
ρ
·Pρ

δH
δv
=−∇s · Pρv, (4.73)

∂v

∂t
= {v,H}∗ =−

1
ρ
Pρ

(
ρ∇

δH
δρ

)
+

1
ρ
Pρ

(
∇s
δH
δs

)
−

1
ρ
Pρ

(
(∇× v)×Pρ

δH
δv

)
−
∇ · v

ρ
Pρ

δH
δv
+

1
ρ
Pρ

(
∇ · v

δH
δv

)
= −Pρ∇

|v|2

2
− Pρ

(
(∇× v)× Pρv

)
− (∇ · v)Pρv + Pρ (v∇ · v) . (4.74)

If we include HB we obtain additional terms to (4.74) generated by (4.70) for the
projected J×B force. Observe, equation (4.74) is not yet evaluated on the constraint
D2
= 0, which in Eulerian variables is ∇ · v= 0. As noted at the end of § 4.2, we turn

to this task in § 4.4.

4.3.2. Eulerian–Dirac constraint theory direct with uniform density
For completeness we recall the simpler case where the Eulerian density ρ is

uniformly constant, which without loss of generality can be scaled to unity. This case
was considered in Nguyen & Turski (1999, 2001) and Chandre et al. (2012, 2013)
(although a trick of using entropy as density was employed in Chandre et al. (2013)
to treat density advection). In these works the Dirac constraints were chosen to be
the pointwise Eulerian quantities

D1
= ρ and D2

=∇ · v, (4.75)

and the Dirac procedure was effected on the purely Eulerian level. This led to the
projector

P := Pρ=1 = 1−∇∆−1
∇ ·, (4.76)

where ∆=∆ρ=1, and the following Dirac bracket:

{F,G}∗ = −
∫

d3x
[
∇s
ρ
·

(
δF
δs

P
δG
δv
−
δG
δs

P
δF
δv

)
−
∇× v

ρ
·

(
P
δF
δv
× P

δG
δv

) ]
. (4.77)

Incompressible MHD with constant density is generated by adding the following to
(4.77):

{F,G}∗B = −
∫

d3x
[

B
ρ
·

(
P
δF
δv
· ∇

δG
δB
− P

δG
δv
· ∇

δF
δB

)
+B ·

(
∇

(
1
ρ
P
δF
δv

)
·
δG
δB
−∇

(
1
ρ
P
δG
δv

)
·
δF
δB

)]
, (4.78)

and adding |B|2/2 to the integrand of (4.71).
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The bracket of (4.77) differs from that of (4.69) in two ways: the projector Pρ is
replaced by the simpler projector P and it is missing the term proportional to ∇ · v.
Given that ∇ · v cannot be set to zero until after the equations of motion are obtained,
this term gives rise to significant differences between the constant and non-constant
density Poisson brackets and incompressible dynamics.

4.4. Comparison of the Eulerian–Dirac and Lagrangian–Dirac constrained theories
Let us now discuss equations (4.72), (4.73) and (4.74). Given that ∇ · Pρv = 0
(cf. (4.67)) it is clear that the density and entropy are advected by the incompressible
velocity field Pρv, as expected. However, the meaning of (4.74) remains to be clarified.
To this end we take the divergence of (4.74) and again use (4.67) to obtain

∂(∇ · v)

∂t
=−∇ ·

(
∇ · v Pρv

)
=−

(
Pρv
)
·∇ (∇ · v). (4.79)

Thus ∇ · v itself is advected by an incompressible velocity field. As with any
advection equation, if initially ∇ · v= 0 , it will remain uniformly zero. After setting
∇ · v = 0 in (4.74) it collapses down to

∂v

∂t
=−Pρ (v · ∇v) ; (4.80)

this is the anticipated equation of motion, the momentum equation of (1.1) with the
insertion of the pressure given by (1.5).

Given the discussion of Lagrangian versus Eulerian constants of motion of § 3.4,
that ∇ · v is advected rather than pointwise conserved is to be expected. Our
development began with the constraints D1,2 of (4.7) and (4.8) both of which
are pointwise conserved by the Dirac procedure, i.e. ḊL ≡ 0. This means their
corresponding fluxes are identically zero, i.e. in (3.38) we have ΓDL ≡ 0 for each.
Thus the flux component Γ̄DE of (3.42) vanishes and the Eulerian flux for both D1

and D2 have the form vDE. Because D1 and D2 Eulerianize to −ln(ρ) and ∇ · v,
respectively, we expected equations of the from of (4.79) for both. We will see in
§ 4.5 that the equation for D1 in fact follows also because the constraints are Casimir
invariants.

Let us return to (4.58) and compare with the results of § 2.3.1. Because the
incompressibility condition is an holonomic constraint and § 2.3.1 concerns holonomic
constraints for the uncoupled N-body problem, both results are geodesic flows. In fact,
one can think of the fluid case as a continuum version of that of § 2.3.1 with an
infinity of holonomic constraints – thus we expect similarities between these results.
However, because the incompressibility constraints are pointwise constraints, the
comparison is not as straightforward as it would be for global constraints of the
fluid.

To make the comparison we first observe that the term Amn of (4.52) must

correspond to the term
↔

Aij of (2.47), since their origin follows an analogous path in
the derivation, both are antisymmetric, and both project from both the left and the
right. The analogue of (2.49) according to (4.39) is

(
Pρ0⊥

)i

j

πj

ρ0
=
ηi`

ρ0
Au
`

∂

∂au

[
∆−1
ρ0

J

(
Ah

j

J
∂

∂ah

πj

ρ0

)]
=
ηi`

ρ0
Au
`

∂

∂au

[
∆−1
ρ0

J
(
D2
)]
≡ 0, (4.81)
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when evaluated on D2
= 0. Unlike (2.49) a sum, which would here be an integral over

d3a, does not occur because the constraint D2 is a pointwise constraint as opposed to

a global constraint. Also, because the constraints are pointwise, the
↔

Tij is analogous
to the terms with Tmn that also have a factor of the projector Pρ0⊥, giving the results
analogous to (2.50). Just as in § 2.3.1, we obtain πi

=ρ0q̇i from (4.57) when evaluated
on the constraint D2

= 0 and only a single term involving the Tmn contributes to the
momentum equation of motion (4.58). We obtain

π̇i = ρ0ηin
(
Pρ0⊥

)n

r

(
q̇m ηrsTms

)
= Au

i
∂

∂au

{
∆−1
ρ0

J

[
Ah
`

J
∂

∂ah

(
q̇m Ak

m

J
∂ q̇`

∂ak

)]}

= Au
i
∂

∂au

{
∆−1
ρ0

J

[
Ah
`

J
∂

∂ah

(
Ak

m

J
∂(q̇mq̇`)
∂ak

)]}
, (4.82)

where the second equality follows upon substitution of

Tms→ η`s
Ak

m

J
∂ q̇`

∂ak
, for D2

= 0, (4.83)

which follows from (4.53), while the third follows again from D2
= 0 according to

(4.8). Thus,

q̈i
= ηi`Au

`

ρ0

∂

∂au

{
∆−1
ρ0

J

[
Ah

j

J
∂

∂ah

(
Af

k

J
∂(q̇j q̇k)

∂af

)]}

=
(
Pρ0⊥

)i

j

(
Af

k

J
∂(q̇j q̇k)

∂af

)
=:− Γ̂ i

jk(q̇
j, q̇k), (4.84)

where in (4.84) we have defined Γ̂ i
jk(q̇

j, q̇k), the normal force operator for geodesic
flow, analogous to that of (2.55).

As was the case for the Γ̂i,jk of (2.56), Γ̂ i
jk possesses symmetry: given arbitrary

vector fields V and W

Γ̂ i
jk(V

j,Wk) :=−ηi`Au
`

ρ0

∂

∂au

{
∆−1
ρ0

J

[
Ah

j

J
∂

∂ah

(
Af

k

J
∂(V j Wk)

∂af

)]}
= Γ̂ i

jk(V
k,W j), (4.85)

where the second equality follows from the commutation relation of (3.9).
Equation (4.84) defines geodesic flow on the group of volume preserving

diffeomorphisms, as was the case in § 2.3.1, it does so in terms of the original
coordinates, i.e. without specifically transforming to normal coordinates on the
constraint surfaces which here are infinite-dimensional.

Now we are in position to close the circle by writing (4.84) in Eulerian form. We
will do this for the ideal fluid, but MHD follows similarly. As usual the term q̈i

becomes the advective derivative ∂v/∂t + v · ∇v, the projector Pρ0⊥ becomes Pρ⊥
(using ∆−1

ρ0
=J∆−1

ρ ) when Eulerianized, and the Γ̂ i
jk term becomes Pρ⊥ (∇ · (v⊗ v)).

Thus (4.84) is precisely the Lagrangian form of (4.80), written as follows:

∂v

∂t
=−Pρ

(
∇ · (v⊗ v)

)
=−Pρ (v · ∇v) . (4.86)
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Similarly, the Lagrangian version of (4.79) follows easily from (4.84). To see this
we operate with the counterpart of taking the Eulerian divergence on the first line
of (4.82) and make use of (4.50),

Ah
n

J
∂

∂ah

π̇n

ρ0
=

Ah
n

J
∂

∂ah
(Pρ0⊥)

n
r

(
q̇m ηrsTms

)
=

Ah
n

J
∂

∂ah

(
q̇m ηnsTms

)
= δn

`

Ah
n

J
∂

∂ah

(
q̇m Ak

m

J
∂ q̇`

∂ak

)
, (4.87)

which in Eulerian variables becomes

∇ ·

(
∂v

∂t
+ v · ∇v

)
=∇ · (v · ∇v) or ∇ ·

∂v

∂t
=
∂

∂t
∇ · v = 0. (4.88)

In Lagrangian variables we have the trivial conservation laws

ρ̇0 = 0 and ṡ0 = 0, (4.89)

where the corresponding fluxes are identically zero. However, as is evident from (4.72)
and (4.73) we obtain non-trivial conservation laws for ρ and s with non-zero fluxes.
Thus we see again, consistent with § 3.4, how Lagrangian and Eulerian conservation
laws are not equivalent.

For the special case where ρ0 = J = 1 one could proceed directly from (1.7),
write it in terms of the Lagrangian variables, and obtain (4.84). However, without
the constraint theory, one would not immediately see it is Hamiltonian and in fact
geodesic flow on an infinite-dimensional manifold.

4.5. Incompressible algebra of invariants
In closing this section, we examine the constants of motion for the constrained
system. The Poisson bracket together with the set of functionals that commute with
the Hamiltonian, i.e. that satisfy {H, Ia} = 0 for a = 1, 2, . . . , d, constitute the
d-dimensional algebra of invariants, a subalgebra of the infinite-dimensional Poisson
bracket realization on all functionals. This subalgebra is a Lie algebra realization
associated with a symmetry group of the dynamical system, and the Poisson bracket
with {Ia, · } yields the infinitesimal generators of the symmetries, i.e. the differential
operator realization of the algebra. This was shown for compressible MHD in
Morrison (1982), where the associated Lie algebra realization of the 10 parameter
Galilean group on functionals was described. This algebra is homomorphic to usual
representations of the Galilean group, with the Casimir invariants being in the centre
of the algebra composed of elements that have vanishing Poisson bracket with all
other elements.

A natural question to ask is what happens to this algebra when incompressibility
is enforced by our Dirac constraint procedure. Obviously the Hamiltonian is in the
subalgebra and {H, · }∗ clearly generates time translation, and this will be true for
any Hamiltonian, but here we use Hamiltonian of (4.71).

Inserting the momentum

P=
∫

d3x ρv (4.90)

into (4.69) with the Hamiltonian (4.71) gives

{P,H}∗ = 0 (4.91)
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without assuming ∇ · v = 0. To see this, we use (4.64) to obtain

Pρ

δH
δv
= ρv −∇∆−1

ρ ∇ · v and Pρ

δPi

δvj
= ρ δij, (4.92)

which when inserted into (4.69) gives

{Pi,H}∗ = −
∫

d3x
[
ρ

2
∂|v|2

∂xi
+ vi∇ · (ρv −∇∆−1

ρ ∇ · v)

+ [(∇× v)× (ρv −∇∆−1
ρ ∇ · v)]i

+ (∇ · v)
[
(ρv −∇∆−1

ρ ∇ · v)i − ρvi
]]
= 0, (4.93)

as expected. The result of (4.93) follows upon using standard vector identities,
integration by parts, and the self-adjointness of ∆−1

ρ .
The associated generator of space translations that satisfies the constraints is given

by the operator {P, · }∗, which can be shown directly. And, it follows that

{Pi, Pj}∗ = 0, ∀i, j= 1, 2, 3. (4.94)

Because the momentum contains no s dependence the second line of (4.69) vanishes
and using PρδPi/δvj = ρ δij of (4.92) it is clear the last line involving ∇ · v of (4.69)
also vanishes. The result of (4.94) is obtained because the first and third lines cancel.

Next, consider the angular momentum

L=
∫

d3x ρ x× v. (4.95)

We will show
{Li,H}∗ = 0. (4.96)

Using PρδLi/δv = δLi/δv, which follows from (4.64) with ∂(εik`x`)/∂x` = 0, the fact
that {Li,H} = 0 for the compressible fluid, and Pρ = I −Pρ⊥, we obtain

{Li,H}∗ =
∫

d3x
[
−∇

δLi

δρ
·Pρ⊥(ρv)

+

(
δLi

δv
×
∇× v

ρ
+
∇ · v

ρ

δLi

δv

)
·Pρ⊥(ρv)

]
. (4.97)

Next, recognizing that Pρ⊥(ρv)=∇∆−1
ρ ∇ · v and integrating by parts, we obtain

{Li,H}∗ =
∫

d3x∆−1
ρ (∇ · v)

[
∇

2 δLi

δρ
−∇ ·

(
δLi

δv
×
∇× v

ρ
+
δLi

δv

∇ · v

ρ

) ]
. (4.98)

Then upon inserting

δLi

δρ
= εijkxjvk and

δLi

δvj
= ρ xkεikj, (4.99)

and using standard vector analysis we obtain (4.96).
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Because PρδLi/δv = δLi/δv, the first and third lines of (4.69) produce

{Li, Lj}∗ = εijkLk, (4.100)

just as they do for the compressible fluid (and MHD), while the fourth line manifestly
vanishes. Similarly, it follows that {L, · }∗ is the generator for rotations.

To obtain the full algebra of invariants we need {Li, Pj}∗. However, because
PρδPi/δv = δPi/δv and PρδLi/δv = δLi/δv, it follows as for the compressible fluid
that {Li, Pj}∗ = εijkPk.

Finally, consider the following measure of the position of the centre of mass, the
generator of Galilean boosts,

G=
∫

d3x ρ (x− vt). (4.101)

Calculations akin to those above reveal

{Gi,Gj}∗ = 0, {Gi, Pj}∗ = 0, {Gi,H}∗ = Pi, {Li,Gj}∗ = εijkGk. (4.102)

Thus the bracket (4.77) with the set of ten invariants {H, P, L, G} is at once a
closed subalgebra of the Poisson bracket realization on all functionals and produces
an operator realization of the Galilean group (see e.g. Sudarshan & Makunda (1974))
that is homomorphic to the operator algebra of {Li, ·}∗, {Pi, ·}∗, etc. with operator
commutation relations. This remains true for MHD with the only change being the
addition of HB to the Hamiltonian.

Thus, the Galilean symmetry properties of the ideal fluid and MHD are not affected
by the compressibility constraint. However, based on past experience with advected
quantities, we do expect a new Casimir invariant of the form

Ĉ[ρ, s] =
∫

d3x Ĉ(ρ, s). (4.103)

To see that {Ĉ,F}∗= 0 for any functional F, where Ĉ(ρ, s) is an arbitrary function of
its arguments, we calculate

{F, Ĉ}∗ =−
∫

d3x
1
ρ

[
ρ∇

∂Ĉ
∂ρ
−
∂Ĉ
∂s
∇s

]
·Pρ

δF
δv
, (4.104)

and since ∇× (ρ∇∂Ĉ/∂ρ − ∂Ĉ/∂s∇s)= 0 we write it as ∇p, giving for (4.104)

{F, Ĉ}∗ =−
∫

d3x
1
ρ
∇p ·Pρ

δF
δv
. (4.105)

Thus, integration by parts and use of (4.67) imply {F, Ĉ}∗ = 0 for all functionals
F. Note, without loss of generality we can write Ĉ(ρ, s) = ρU(ρ, s), in which case
p = ρ2∂U/∂ρ. Thus, it is immaterial whether or not one retains the internal energy
term

∫
d3x ρU(ρ, s) in the Hamiltonian.

Now, equation (4.103) is not the most general Casimir. Because both ρ and ∇ · v
are Lagrangian pointwise Dirac constraints, we expect the following to be an Eulerian
Casimir

Ĉ[ρ, s,∇ · v] =
∫

d3x C(ρ, s,∇ · v), (4.106)
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where C is an arbitrary function of its arguments. To see that {C, F}∗ = 0 for any
functional F, we first observe that

δC
δv
=−∇

∂C
∂∇ · v

(4.107)

and, as is evident from (4.64), that ∇ · (Pρ∇Φ)= 0 for all Φ; hence, all the δC/δv
terms vanish except the first term of the last line of (4.69). This term combines with
the others to cancel, just as for the calculation of Ĉ.

For constant density, entropy and magnetic field, the bracket of (4.77) reduces to

{F,G}∗ =−
∫

d3x
∇× v

ρ
·

(
P
δF
δv
× P

δG
δv

)
, (4.108)

whence it is easily seen that the helicity

Cv·∇×v =

∫
d3x v · ∇× v (4.109)

is a Casimir invariant because P (∇× v)=∇× v. This Casimir is lost when entropy
and density are allowed to be advected, for it is no longer a Casimir invariant of
(4.69).

Now, let us consider invariants in the Lagrangian description. Without the
incompressibility constraints, the Hamiltonian has a standard kinetic energy term
and the internal energy depends on ∂q/∂a, an infinitesimal version of the two-body
interaction, if follows that just like the N-body problem the system has Galilean
symmetry, and because the Poisson bracket in the Lagrangian description (3.15) is
canonical there are no Casimir invariants. With the incompressibility constraint, the
generators of the algebra now respect the constraints, with Dirac constraints being
Casimirs and the algebra of constraints now having a non-trivial centre. Because
the Casimirs are pointwise invariants, we expect the situation to be like that for the
Maxwell Vlasov equation (Morrison 1982), where the following is a Casimir:

C∇·B[B] =
∫

d3x C(∇ ·B, x), (4.110)

with C being an arbitrary function of its arguments. Because both ∇ · B and J are
pointwise constraints, analogous to (4.110) we expect the following Casimir:

Ĉ[J ] =
∫

d3a Ĉ(J , a). (4.111)

Indeed, only the first term of (4.52) contributes when we calculate {Ĉ, G}∗ and this
term vanishes by (4.49) because

δĈ
δqi
=−

∂

∂a`

(
A`i
∂Ĉ
∂J

)
, (4.112)

which follows upon making use of (3.7). Similarly, it can be shown that the full
Casimir is

Ĉ[D1,D2
] =

∫
d3a Ĉ(D1,D2, a), (4.113)
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a Lagrangian Casimir consistent with (4.106).
For MHD, the magnetic helicity,

CA·B =

∫
d3x A ·B, (4.114)

where B=∇×A is easily seen to be preserved and a Casimir up to the usual issues
regarding gauge conditions and boundary terms (see Finn & Antonsen 1985). We
know that the cross-helicity

Cv·B =

∫
d3x v ·B, (4.115)

is a Casimir of the compressible barotropic MHD equations, and it is easy to verify
that it is also a Casimir of (4.77) added to (4.78), that is for uniform density. However,
it is not a Casimir for the case with advected density, i.e. for the bracket of (4.69)
added to (4.70).

5. Conclusions
In this paper we have substantially investigated constraints, particularly incompressi-

bility for the ideal fluid and MHD, for the three dichotomies described in § 1.1: the
Lagrangian versus Eulerian fluid descriptions, Lagrange multiplier versus Dirac
constraint methods and Lagrangian versus Hamiltonian formalisms. An in depth
description of the interplay between the various fluid and MHD descriptions was
given, with an emphasis on Dirac’s constraint method. Although we mainly considered
geodesic flow for simplicity, the Dirac’s Poisson bracket method can be used to find
other forces of constraint in a variety of fluid and plasma contexts.

Based on our results, many avenues for future research are presented. We mention
a few. Since the Hamiltonian structure of extended and relativistic MHD are
now at hand (Charidakos et al. 2014; Abdelhamid, Kawazura & Yoshida 2015;
D’Avignon, Morrison & Pegoraro 2015; D’Avignon, Morrison & Lingam 2016;
Lingam, Miloshevich & Morrison 2016; Kaltsas, Throumoulopoulos & Morrison
2020) calculations analogous to those presented here can be done for a variety of
magnetofluid models. Another valuable class of models that could be studied, ones
that are known to have Lagrangian and Hamiltonian structure, are those with various
finite-Larmor-radius effects (e.g. Tassi et al. 2008; Izacard et al. 2011; Tassi 2014,
2019).

Another avenue for future research would be to address stability with constraints.
In a previous series of papers (Andreussi, Morrison & Pegoraro 2010, 2012, 2013,
2015, 2016) we have investigated Hamiltonian based stability, generalizations of the
MHD energy principle or the ideal fluid Rayleigh criterion, within the Lagrangian,
energy-Casimir, and dynamically accessible frameworks. Because Dirac’s method
adds Casimirs, the Dirac constraints, one gets a richer set of equilibria from the
energy-Casimir variational principle and these can be tested for Lyapunov stability.
Similarly, the method of dynamical accessibility (see Morrison 1998) based on
constrained variations induced by the Poisson operator will enlarge the set of stable
equilibria.

Recently there has been consider research in the development of structure preserving
computational algorithms (see, e.g. Morrison (2017) for review). These are algorithms
that preserve various geometric, Hamiltonian, variational and other structure of fluid,
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kinetic and other physical models. In the plasma community, in particular, we mention
Evstatiev & Shadwick (2013), Qin et al. (2016), Xiao et al. (2016) and Kraus et al.
(2017), but there is a large body of additional work by these and other authors. Given
how the finite-dimensional material of § 2 so strongly parallels the infinite-dimensional
material of § 4, notably the structure of geodesic flow, a natural avenue for future
research would be to develop numerical algorithms that preserve this structure.

Lastly, we mention that there is considerable geometric structure behind our
calculations that could be further developed. Our results can be restated in geometric/
Lie group language (see e.g. Bloch (2002)). Also, Arnold’s program for obtaining
the Riemann curvature for geodesic flow on the group of volume preserving
diffeomorphisms can be explored beginning from our results of § 4. We did not
feel this special issue would be the appropriate place to explore these ideas.
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