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ON SUBNORMALITY OF GENERALIZED
DERIVATIONS AND TENSOR PRODUCTS

BoJAaN MaGcAJUNA

Subnormal and quasinormal tensor product operators and
generalized derivations on the Hilbert-Schmidt class will be

characterized.

Introduction

Let H be a complex Hilbert space, B(H) the algebra of all bounded
linear operators on H . For 1 £ p < *® the von Neumann-Schatten class,

Cp(H) , is defined to be the set of all elements 7T in B(H) such that
)3 Ty, , ¥ >|p < @ for each orthonormal system {¢, : k € K} in H
KeK k> 'k k

(see [9]). For fixed A, B € B(H) 1let GA B and T4 be the operators
on B(H) defined by

(1) 6A’B(X) = AX - XB ,

(2) TA,B(X) = AXB .

Operators of the form (1) are called generalized derivations and they (as

well as their restrictions GA Blcp ) have been extensively studied in the

past, especially their spectral properties (see, for example, [§], p. 79
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for some historical notes). 1In [71] Anderson and Foias obtained the
characterization of spectral generalized derivations and Shaw characterized

in [10] Hermitian and normal operators of the form GA B|X where X 1is a
L]

subspace of B{(H) which satisfies suitable conditions [in particular X

can be Cp(H) ). Now C2(H) is a Hilbert space with respect to the inner

product

(3) (X, ¥) = tx(¥X) , X, Y € C,(H)

(where +tr denotes the trace) and so the concepts of subnormality and
quasinormality make sense. It is a purpose of this note to characterize

subnormal and quasinormal operators of type GA’BlC2(H) and TA,B,C2(H) .
Note that T, B|C2(H) can be identified with 4 ® B* (see [7]) and thus we
3

will obtain in this way a characterisation of subnormal and quasinormal

tensor products.

Since the Hilbert space H and the operators 4, B will be fixed in

what follows, we shall denote simply C2 = C2(H) , &= GA,B|C2 ,

T = T‘4’B|C2 .

1. Subnormality

By (a special case of) Theorem 2.2 in [10], § 1is normal if and only
if A and B are normal operators. The following theorem characterizes
subnormal operators 6 and T . Recall that an operator S € B(H) is
subnormal if and only if there exists a bounded normal operator N on some
larger Hilbert space K D H such that the restriection of ¥ to H is

S . N is then called the normal extension of S .
THEOREM 1. Let & and T be defined on C2 by (1) and (2). Then

8§ is subnormal if and only if A and B* are subnormal operators.
Moreover, if A # 0 and B # O the same statement holds for T .

Proof. Suppose first that 4 and B* are subnormal and denote by M
and N* their (not necessarily minimal) normal extensions. Clearly we may

assume that M and N act on the same Hilbert space KD H . Relative to

1
the decomposition K = H@®#H the operators M and N* can be

represented by the matrices
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(1) M = , Nt = .

B., B, are certain bounded operators. Now we can regard

2> 71 T2
C2 = C2(H) as a subspace of CQ(K) via the embedding

where- Al, A

X 0
X , X €C

o 0 2

A straightforward computation with matrices (4) shows that C2 is an
invariant subspace for the operator GM ¥ defined on C2(K) by
k]

GM,N(X) = MX - XN and that 6M,1v‘c2 = § . By Theorem 2.2 of [10], GM,IV
is a normal operator on C2(K) (this can be also verified directly using

(3)]. Thus ¢ is subnormal. The proof that T is subnormal is the same

since an easy computation gives that the operator is normal on

Tv,n
¢, (K) .

To prove the converse we shall use the following theorem of Halmos and
Bram (see [2] or [41).

An operator T € B(H) 1is subnormal if and only if

n .
(5) > Arf 1) =0
J k=0

for every finite subset f., ..., fh of H .

Suppose that & 1is subnormal. 1In order to apply (5) with & instead
of T express the povers &7 by

dx = i (-1)s(§]4j‘sx33 , X€C

s=0 2

Taking into account also the definition (3) of inner product in C2 ve see

that (5) assumes the form

k .
T8 (dy (k 48y ag K-8 J-r -
sZ-:O -1 (9) (s]tr[B X348 ka” >0

]
Il (%,
o

n
(6) Y
j k=0

Jds

https://doi.org/10.1017/5S0004972700004718 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700004718

238 Bojan Magajna

where Xl’ cees Xn are arbitrary elements of C2 . Now let fﬁ, g; »

J=1, ..., n be any vectors in H and put Xj = f3 @)gj (that is,
Xj(h) = (h, gj)ﬁj , h €H ). Then, after a simple computation, we get,
from (6),

n J k . . _
¥ 8T " DO, 47 e ) 2 0

We will show how (7) implies that A is subnormal. The proof that B* is
subnormal is similar and will be omitted. Without loss of generality we

may assume that O is an approximate eigenvalue of B*. (Otherwise we can
replace A and B with A - a and B - a respectively, where o is an

approximate eigenvalue for B* ; this is possible since

GA,B = 6A_a,3-a .) Let (hm) be the corresponding sequence of approximate
eigenvectors (that is, Hhm" =1 and lim”B*hmH =0 ). For fixed m put
gy =9y, = -o- =g, = hm in (7), then let m tend to infinity. It follows
that

RO

and this implies that A4 is subnormal by the Bram~Halmos theorem.

The proof that subnormality of T implies subnormality of A and B*
is similar. Instead of (7) we have here an analogous condition (derived in

the same way as (7))

(8) . %:o (48 AkijB*kgj’ B*jgk) z0

£

Since A #0, B # 0 by assumption it follows that T # O and hence
o(t) # {0} by subnormality. Now the theorem of Brown and Pearcy in [3]
tells that O(T) = 0(4) * O(B) , hence there is a B # 0 in the boundary
of O(B*) . Then B is an approximate eigenvalue of B* ; let (hm) be

the corresponding sequence of eigenvectors. Replace now in (8) all gj N
=1, ..., n , with the same vector hm and then take the limit as m

tends to infinity. It follows
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n k=i 3 k
Yy 8 §3<A fro Af5)z 0

J k=0
and this implies that A 1is subnormal since f3 are arbitrary and

B # 0. The proof that B* is subnormal is similar. //

2. Quasinormality

An operator T € B(H) is called quasinormal if and only if it
commutes with T*7 ([41, [61).

THEOREM 2. et & and T be defined on C, by (1) and (2).

(L) & <s quasinormal if and only if one of the following holds:

(a) A and B are both normal;

(b) there exists X € C such that A = X and (B-MI)* 1is

quasinormal;

AI and A - AI s

(e) there exists X € C such that B

quasinormal.
Here of course I ig the identity operator on H .

(i2) If A#0 and B # 0 then T 18 quasinormal if and only if A

and B* are quasinormal.

In the proof of this theorem the following result of Fong and Sourour

will be used (see [51]).
(FS) Let A = {Al, cees An} and B = {Bl, cees Bn} be finite

subsets of B(H) . Suppose that

+ ... + =

AlXBl AnXBn 0

for all X € C2 and that Al, vees Ak are linearly independent. Then
Bl’ N Bk can be expressed as linear combinations of Bk+l’ ceey Bn .
{In particular for k = n +this means B, = ...=B =0. Also the role

of A and B can be interchanged.)
Actually in [5] this result is stated for B(X) (where X is any

Banach space) instead of C2 but (FS) follows at once since C2 is
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strongly dense in B(H) .

Proof of Theorem 2. (Z) Since 6* , the adjoint of & , is given by

8*(X) = A*X - XB* (as a direct verification would show) the quasinormality
condition 6*62 ~ 88%6 = 0 can be written as
(9) (A*A°-A4*A)XT + (4A*-A*A)XB - AX(B*B-BB*) - X(B°B*-BB*B) = 0 ,

for all X € C2 .
where I denotes the identity operator.

If B is not normal then I and B*B - BB* are linearly independent
since O 1is the only scalar commutator ([6]1, Problem 230). Hence it
follows from (9) by (FS) that A4 can be expressed as a linear combination
of commuting self-adjoint operators I and AA* - A*4 . Thus A is
normal and in fact a scalar multiple of I . If we put 4 = Al in (9) we
get

323* - BB*B + A(B#*B-BB*) = 0 .

This equation can be written also as

(B-AT)2(B=AI)* ~ (B=AI)(B-AI)*(B-\I) = 0
which is obviously equivalent to the quasinormality of (B-AI)}* .

The case when A 1is not normal is treated in the same way. Now only

the case wvhen 4 and B are both normal remains, but then 6 is normal.

(Z2) Since T*(X) = A*XB* , X € C the quasinormality condition

2 k]

2 . .
T - TT* = 0 is equivalent to

2
(10) AA*AXBB*B - A*AEXB B*=0, X € 02 .
If A and B* are quasinormal then obviously (10) is satisfied.

Conversely, if (10) is satisfied then A4*4 and A*A2 are linearly
dependent. (Otherwise it would follow that BB*B = 0 by (FS) and hence

-
Bl = |IB*BB*B]]l = 0 , but B # 0 by assumption.) Thus we have

(11) A*4° = aaara

for some X € C. If we prove that A =1 then 4 will be quasinormal
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and since the quasinormality of B* can be proved similarly this will
complete the proof of the theorem. Now (11) implies that

(12) 4%24% = araata .

Since A*°4°
(12) implies that A =2 0 . From Theorem 1 and the fact that every quasi-

and A*4A*A are non-negative operators different from O ,

normal operator is subnormal ([é], Problem 195) we see that A is

subnormal, hence HAZH = HA"2 . From comparing the norms of the left and
the right side of (12) it follows that A =1 . //

3. Hyponormality

An operator T € B(H) is hyponormal (by definition) if and only if
AT - TT* =2 0 .

If A and B* are hyponormal operators then & is also hyponormal
by [10], p. 141. Actually the argument of [710] together with the fact that
0 is always in the closure of the numerical range of A4*4 - 44*% (where
A € B(H) ] imply that the converse is also true. A similar statement can

be proved for T .

PROPOSITION., Suppose A #0, B#0 . Then T <is hyponormal if and

only if A and B* are hyponormal.
Proof. ©Note first that the hyponormality condition for T ,

(13) 0 = ((T*1-TT*)X, X) = tr(X*(A*4XBB*-AA*XB*B)) , X € C, ,

can be written in the form
(1k4) tr(B*X*(A*A-AA*)XB) + tr(A*X(BB*-B*B)X*4) 20 , X € C, -
(Here we have used the identity tr(¥2) = tr(2Y) for Y € B(H) ,
Z € Cl(H) and for Y , Z ¢ C2(H) (91, p. 100).] If A and B* are
hyponormal then (XB)*(A*4-AA*)}XB = 0 and (X*A)*(BB*-B*B)X*A4 = 0 for all
X € (22 and so (14) holds.

Conversely, if T is hyponormal them put X = f ® g in (13) where

fs g € H. It follows, after a short computation,

(15) lasiie*gll - la*flliBgll = o .
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We shall prove that B* is hyponormal, the proof that A is hyponormal is

similar. Assume for a moment that there exists a sequence (fﬁ] of unit
vectors in H such that lim”A*fh” = 1imHAfh" > 0 . Then the hypo-~
normality of B* follows at once from (15) if we put f = ﬁﬂ and take the
limit when m tends to infinity. To prove that the sequence (fh) exists

put C = A* - AA* . If C =20 (respectively C =<0 ) let a be any non-
zero approximate eigenvalue for A (respectively A* ); then the
corresponding sequence of unit approximate eigenvectors satisfies the

requirement. (Proof. The relations lim(A—a)fh =0 and
(A-a)*(A-0) - (4-a)(4-a)* = C = 0 imply lim(A—a)*fh =0 , thus
lim”A*fh“ = |a] = lim”AfﬁH .) If neither C =0 nor C <0 then there

exists f €H , |fll =1 , such that ¢Cf, f) =0 and |icfll # 0 . (This
can be seen from the spectral theorem when ( is represented as a multi-
plication with a bounded measurable real function on a suitable L2(U) .)

Now the constant sequence, f = f , satisfies the requirement. //

m
Let us finally remark that the same kind of characterization can not

hold for general elementary operators. For example the operator

X > AXB + A*XB* is self-adjoint on C2 for arbitrary A, B € B(H) .
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