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Abstract

A bounded continuous function u : [0,∞)→ X is said to be S-asymptotically ω-periodic if
limt→∞[u(t + ω)− u(t)] = 0. This paper is devoted to study the existence and qualitative properties
of S-asymptotically ω-periodic mild solutions for some classes of abstract neutral functional differential
equations with infinite delay. Furthermore, applications to partial differential equations are given.
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1. Introduction

In this paper we study the existence and uniqueness of S-asymptotically ω-periodic
mild solutions for two classes of initial value problems modeled by abstract neutral
functional differential equations with infinite delay. Throughout this paper, X denotes
a Banach space endowed with a norm ‖ · ‖ and A is the infinitesimal generator of a
strongly continuous and uniformly exponentially stable semigroup of bounded linear
operators (T (t))t≥0 on X . We are concerned with the problems

d

dt
(u(t)− f (t, ut ))= Au(t)+ g(t, ut ), t ≥ 0, (1.1)

and
d

dt
D(t, ut )= AD(t, ut )+ g(t, ut ), t ≥ 0, (1.2)

with initial condition
u0 = ϕ ∈ B. (1.3)

In these equations, u(t) ∈ X , the history ut : (−∞, 0] → X defined by ut (θ)

= u(t + θ), belongs to some abstract phase space B defined axiomatically, D(t, ψ)
= ψ(0)− f (t, ψ), and f, g :R× B→ X are appropriate functions.
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The literature concerning S-asymptotically ω-periodic functions is very restricted
and limited essentially to the study of the existence of S-asymptotically ω-periodic
solutions of ordinary differential equations described on finite-dimensional spaces.
The interested reader is referred to [22, 6, 8, 30, 31]. To the best of the authors’
knowledge, the existence of S-asymptotically ω-periodic mild solutions for abstract
functional differential equations (in particular, abstract neutral functional differential
equations with unbounded delay) is a subject that has not been treated in the literature.
This fact and the interesting relationship between S-asymptotically ω-periodic and
asymptotically ω-periodic functions are the main motivations of this work.

Neutral differential equations arise in many areas of applied mathematics. For
this reason, this type of equation has received much attention in recent years. Partial
neutral differential equations with finite delay arise, for instance, in the transmission
line theory. Wu and Xia have shown in [33] that a ring array of identical resistively
coupled lossless transmission lines leads to a system of neutral functional differential
equations with discrete diffusive coupling, which exhibit various types of discrete
waves. By taking a natural limit, they obtained from this system of neutral equations
a scalar partial neutral functional differential equation with finite delay defined on the
unit circle. This partial neutral functional differential equation was also investigated
by Hale in [9] under the more general form

d

dt
Dut (x)=

∂2

∂x2 Dut (x)+ f (ut )(x), t ≥ 0,

u0 = ϕ ∈ C([−r, 0]; C(S1,R)),

where

D(ψ)(s)= ψ(0)(s)−
∫ 0

−r
[dη(θ)]ψ(θ)(s)

for s ∈ S1, ψ ∈ C([−r, 0], C(S1
;R)) and η(·) is a function of bounded variation and

non-atomic at zero.

Partial neutral differential equations with infinite delay arise in the theory elaborated
by Gurtin and Pipkin [7] and Nunziato [27] for the description of heat conduction in
materials with fading memory. In the classic theory of heat conduction, it is assumed
that both the internal energy and the heat flux are linearly dependent on the temperature
u(·) and its gradient ∇u(·). Under these conditions, the classic heat equation is
sufficient for describing the evolution of the temperature in different types of materials.
However, this description is not satisfactory in materials with fading memory. In the
theory developed in [7, 27], the internal energy and the heat flux are described as
functionals of u(·) and ux . The next system,
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d

dt

[
c0u(t, x)+

∫ t

−∞

k1(t − s)u(s, x) ds

]
= c14u(t, x)+

∫ t

−∞

k2(t − s)4u(s, x) ds, (1.4)

u(t, x)= 0, x ∈ ∂�, (1.5)

(see, for instance, [4, 23, 29]), has been used frequently to describe this phenomenon.
In this system, �⊆Rn is open, bounded with smooth boundary; (t, x) ∈ [0,∞)×�;
u(t, x) represents the temperature in the position x and at the time t ; c0, c1 are physical
constants and ki :R→R, i = 1, 2, are the internal energy and the heat flux relaxation,
respectively. By assuming that the initial distribution of temperature u(·) is known on
(−∞, 0] ×� and that k1 = k2 or k2 ≡ 0, we can transform this system into an abstract
neutral functional differential equation. For more details on partial neutral functional
differential equations we refer the reader to Hale [9], Wu and Xia [34, 33, 32],
Adimy [1] for finite delay equations, and Hernández and Henrı́quez [15, 16, 12] for
equations with infinite delay.

Neutral systems with unbounded delay also appear in control theory. A method
to stabilize lumped control systems is to use a hereditary proportional–integral–
differential (PID) feedback control [2, 21]. Consider a linear distributed hereditary
system with unbounded delay in the form

x ′(t)= Ax(t)+ a(t)λ(xt )+ Bu(t), (1.6)

where x(t) ∈ X represents the state, u(t) ∈Rm denotes the control, A is the generator
of an analytic semigroup on a Banach X , B :Rm

→ X is a bounded linear operator
and a(·), λ(·) are appropriated functions. By using a PID-hereditary control defined
by

u(t)= K0x(t)+
∫ t

−∞

K2(t − s)x(s) ds −
d

dt

∫ t

−∞

K1(t − s)x(s) ds (1.7)

where K0 : X→Rm is a bounded linear operator and K1, K2 : [0,∞)→ L(X;Rm)

are strongly continuous operator valued maps, we obtain the neutral system with
unbounded delay

d

dt

[
x(t)+

∫ t

−∞

BK1(t − s)x(s) ds

]
= (A + BK0)x(t)+ a(t)λ(xt )+

∫ t

−∞

BK2(t − s)x(s) ds.

On the other hand, owing to its intrinsic mathematical interest as well as to
its relevance in numerous applications to physics, biology, control theory, and so
on, the existence of solutions with some periodicity property is one of the most
attractive subjects of the qualitative theory of differential equations. In particular,
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the existence of almost-periodic, asymptotically almost-periodic, almost-automorphic,
asymptotically almost-automorphic and pseudo-almost-periodic solutions, to mention
some of them, have been investigated widely; see, for instance, [3, 11, 18, 20, 26].
Recent contributions on the existence of solutions with some of the previously
enumerated properties or another type of almost periodicity to neutral functional
differential equations have been made in [25, 35] for the case of neutral ordinary
differential equations, and in [17, 14, 5] for partial functional differential systems.

Our notation follows the usual conventions in operator theory. In particular, for
Banach spaces X , Y , we denote by L(X, Y ) the Banach space of bounded linear
operators from X into Y and L(X)= L(X, X).

This paper is organized as follows. In the next section, we introduce definitions
and we establish some preliminary properties needed to establish our results. In
Section 3, we study the existence of S-asymptotically ω-periodic mild solutions for
the neutral systems (1.1)–(1.3) and (1.2)–(1.3). In the same section, we discuss some
relationships between S-asymptotically ω-periodic and asymptotically ω-periodic
functions. Section 4 is dedicated to exhibiting some applications.

2. Preliminaries

Throughout this paper (X, ‖ · ‖) is a Banach space, ω is a positive real number,
A : D(A)⊂ X→ X is the infinitesimal generator of a uniformly stable strongly
continuous semigroup of bounded linear operators (T (t))t≥0 on X , and we denote by
M0, µ positive constants such that ‖ T (t) ‖≤ M0e−µt for every t ≥ 0. For the concepts
and properties of strongly continuous semigroups we refer the reader to [28].

In this work, we employ the axiomatic definition of the phase space B introduced
in [19]. Specifically, B will be a linear space of functions mapping (−∞, 0] into X
endowed with a seminorm ‖ · ‖B and verifying the following axioms.

(A) If x : (−∞, σ + a) 7→ X , a > 0, σ ∈R, is continuous on [σ, σ + a) and xσ ∈ B,
then for every t ∈ [σ, σ + a) the following hold:

(i) xt is in B;
(ii) ‖x(t)‖ ≤ H‖xt‖B ;
(iii) ‖xt‖B ≤ K (t − σ) sup{‖x(s)‖ | σ ≤ s ≤ t} + M(t − σ)‖xσ‖B ;

where H > 0 is a constant, K , M : [0,∞) 7→ [1,∞), K is continuous, M is
locally bounded and H, K , M are independent of x(·).

(A1) For the function x(·) in (A), the function t→ xt is continuous from [σ, σ + a)
into B.

(B) The space B is complete.
(C2) If (ψn)n∈N is a uniformly bounded sequence of continuous functions with

compact support and ψn
→ ψ , n→∞, in the compact-open topology, then

ψ ∈ B and ‖ψn
− ψ‖B → 0 as n→∞.
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We introduce the space B0 = {ψ ∈ B | ψ(0)= 0} and the operator S(t) : B→ B
given by

[S(t)ψ](θ)=

{
T (t + θ)ψ(0), −t ≤ θ ≤ 0,

ψ(t + θ), −∞< θ <−t.

It is well known that (S(t))t≥0 is a C0-semigroup [19].

DEFINITION 2.1. The phase space B is called a fading memory space if ‖S(t)ψ‖B
→ 0 as t→∞ for every ψ ∈ B0.

REMARK 2.2. Since B satisfies axiom (C2), the space Cb((−∞, 0], X) consisting
of continuous and bounded functions ψ : (−∞, 0] → X , is continuously included
in B. Thus, there exists a constant L ≥ 0 such that ‖ψ‖B ≤ L‖ψ‖∞, for every
ψ ∈ Cb((−∞, 0], X) [19, Proposition 7.1.1].

Moreover, if B is a fading memory space, then K , M are bounded functions
(see [19, Proposition 7.1.5]).

EXAMPLE 2.3 (The phase space Cr × L p(ρ, X)). Let r ≥ 0, 1≤ p <∞ and let ρ :
(−∞,−r ] 7→R be a nonnegative measurable function which satisfies the
conditions (g-5)–(g-6) in the terminology of [19]. Briefly, this means that ρ is
locally integrable and there exists a non-negative locally bounded function γ on
(−∞, 0] such that ρ(ξ + θ)≤ γ (ξ)ρ(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r) \ Nξ , where
Nξ ⊆ (−∞,−r) is a set whose Lebesgue measure zero.

The space B = Cr × L p(ρ, X) consists of all classes of functions ϕ : (−∞, 0]
7→ X such that ϕ is continuous on [−r, 0], Lebesgue measurable and ρ‖ϕ‖p is
Lebesgue integrable on (−∞,−r). The seminorm in Cr × L p(ρ, X) is defined as
follows:

‖ ϕ ‖B:= sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0} +
(∫
−r

−∞

ρ(θ)‖ϕ(θ)‖p dθ

)1/p

.

The space B = Cr × L p(ρ, X) satisfies axioms (A), (A-1) and (B). Moreover, when
r = 0 and p = 2, it is possible to choose H = 1, M(t)= γ (−t)1/2 and

K (t)= 1+
(∫ 0

−t
ρ(θ) dθ

)1/2

∀ t ≥ 0

(see [19, Theorem 1.3.8] for details). Note that if conditions (g-5)–(g-7) of [19] hold,
then B is a fading memory space. (See [19, Example 7.1.8].)

To study S-asymptotically ω-periodic functions, it is convenient to introduce
additional notation. In the rest of this work Cb([0,∞), X), C0([0,∞), X) and
Cω([0,∞), X) denote the spaces
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Cb([0,∞), X) = {x ∈ C([0,∞), X) : sup
t≥0
‖x(t)‖<∞},

C0([0,∞), X) = {x ∈ Cb([0,∞), X) : lim
t→∞
‖x(t)‖ = 0},

Cω([0,∞), X) = {x ∈ Cb([0,∞), X) : x is ω-periodic},

endowed with the norm of the uniform convergence.

DEFINITION 2.4. A function u ∈ Cb([0,∞), X) is called S-asymptotically ω-
periodic if

lim
t→∞

(u(t + ω)− u(t))= 0.

DEFINITION 2.5. A function u ∈ C(R, X) is called almost periodic if for every ε > 0,
there exists a relatively dense subset H(ε, u) of R such that ‖u(t + ξ)− u(t)‖< ε for
every t ∈R and all ξ ∈H(ε, u).

DEFINITION 2.6. A function u ∈ Cb([0,∞), X) is called asymptotically almost
periodic if there exists an almost-periodic function v(·) and w ∈ C0([0,∞), X) such
that u = v + w. If v is ω-periodic, u(·) is said asymptotically ω-periodic.

In the rest of this paper, the notation S APω(X) stands for the space formed by
the X -valued S-asymptotically ω-periodic functions endowed with the norm of the
uniform convergence. It is clear that S APω(X) is a Banach space.

In the following statements, (W, ‖ · ‖W ), (Z , ‖ · ‖Z ) are Banach spaces.

DEFINITION 2.7. A continuous function F : [0,∞)× Z→W is called uniformly
S-asymptotically ω-periodic on bounded sets if F(·, x) is bounded for each x ∈ Z ,
and for every ε > 0 and all bounded set K ⊆ Z there exists L K , ε ≥ 0 such that
‖F(t, x)− F(t + ω, x)‖W ≤ ε for every t ≥ L K , ε and all x ∈ K .

DEFINITION 2.8. A continuous function F : [0,∞)× Z→W is called asymptot-
ically uniformly continuous on bounded sets, if for every ε > 0 and all bounded
sets K ⊆ Z there exist constants L K , ε ≥ 0 and δK , ε > 0 such that ‖F(t, x)
− F(t, y)‖W ≤ ε for all t ≥ L K , ε and every x, y ∈ K with ‖x − y‖Z ≤ δK , ε.

LEMMA 2.9. Assume that F : [0,∞)× Z→W is a function uniformly S-
asymptotically ω-periodic on bounded sets and asymptotically uniformly continuous
on bounded sets. Let u ∈ S APω(Z). Then,

lim
t→∞

(F(t + ω, u(t + ω))− F(t, u(t)))= 0.

PROOF. Since R(u)= {u(t) | t ≥ 0} is a bounded set, for each ε > 0 there exist
constants δR(u),ε > 0 and L1

R(u),ε > 0 such that

max{‖F(t + ω, z)− F(t, z)‖W , ‖F(t, x)− F(t, y)‖W } ≤ ε,

for every t ≥ L1
R(u),ε and x, y, z ∈R(u) with ‖x − y‖Z ≤ δR(u),ε. Likewise, there

exists L2
ε > 0 such that ‖u(t + ω)− u(t)‖Z ≤ δR(u), ε, for every t ≥ L2

ε . Combining
these inequalities, for t ≥max{L2

ε, L1
R(u),ε}, we obtain
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‖F(t + ω, u(t + ω))− F(t, u(t)‖W ≤ ‖F(t + ω, u(t + w))− F(t, u(t + w))‖W

+ ‖F(t, u(t + ω))− F(t, u(t))‖W

≤ 2ε,

which proves the assertion. 2

For fading memory spaces the following property holds.

LEMMA 2.10. Assume that B is a fading memory space. Let u :R→ X be a function
with u0 ∈ B and u|[0,∞) ∈ S APω(X). Then the function t→ ut belongs to S APω(B).
PROOF. Since K (t) and M(t) are bounded functions, from axiom (A)(iii) we obtain
that the function t→ ut is bounded on [0,∞). We define the function

y(t)= u(t + ω)− u(t)= uω(t)− u(t) for t ∈R.
Clearly y(·) is continuous on [0,∞) and y0 = uω − u0 ∈ B. Since y(t)→ 0 as
t→∞, it follows from [19, Proposition 7.1.3] that ‖yt‖B = ‖ut+ω − ut‖B → 0 as
t→∞, which completes the proof that t→ ut is S-asymptotically ω-periodic. 2

3. S-asymptotically ω-periodic mild solutions for neutral systems with
unbounded delay

In this section, we discuss the existence of S-asymptotically ω-periodic mild
solutions for the neutral systems (1.1)–(1.3) and (1.2)–(1.3).

Initially we study the existence of S-asymptotically ω-periodic mild solutions for
the neutral system (1.1)–(1.3). For completeness we recall the concept of a mild
solution introduced in [15].

DEFINITION 3.1. A function u :R→ X is called a mild solution of the system (1.1)–
(1.3) if u0 = ϕ, u(·) is continuous on [0,∞), the functions s→ AT (t − s) f (s, us)

and s→ T (t − s)g(s, us) are integrable on [0, t) for every t ≥ 0 and

u(t) = T (t)(ϕ(0)− f (0, ϕ))+ f (t, ut )+

∫ t

0
AT (t − s) f (s, us) ds

+

∫ t

0
T (t − s)g(s, us) ds t ≥ 0.

We next introduce the following general assumptions.

(H1) There exists a Banach space (Y, ‖ · ‖Y ) continuously included in X and a
function H ∈ L1([0,∞);R+) such that ‖AT (t)‖L(Y,X) ≤ H(t) for every t > 0.

(H2) The function f ∈ C([0,∞)× B, Y ) and there exists L f > 0 such that

‖ f (t, ψ1)− f (t, ψ2)‖Y ≤ L f ‖ψ1 − ψ2‖B, (t, ψi ) ∈ [0,∞)× B.
(H3) The function g ∈ C([0,∞)× B, X) and there exists Lg > 0 such that

‖g(t, ψ1)− g(t, ψ2)‖ ≤ Lg‖ψ1 − ψ2‖B, (t, ψi ) ∈ [0,∞)× B.
REMARK 3.2. The conditions (H1) and (H2) are linked to the integrability of the
function s→ AT (t − s) f (s, us) over [0, t). We remark that except for the trivial

https://doi.org/10.1017/S0004972708000713 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000713


372 H. R. Henrı́quez et al. [8]

cases, the operator function t→ AT (t) is not integrable over [0, a]. If conditions
(H1) and (H2) are verified, then from the Bochner’s criterion for integrable functions
and the estimate

‖AT (t − s) f (s, us)‖ ≤ ‖AT (t − s)‖L(Y,X)‖ f (s, us)‖Y ≤ H(t − s)‖ f (s, us)‖Y ,

it follows that the function s 7→ AT (t − s) f (s, us) is integrable over [0, t] for every
t > 0. For additional remarks related to this type of condition in the theory of partial
neutral differential equations, we refer the interested reader to [1, 15, 16], and in
particular to [12, 13].

REMARK 3.3. We note that the condition (H1) is verified in several situations that
arise in concrete problems. If, for instance, (T (t))t≥0 is an analytic semigroup, we
can assume that Y is some interpolation space between X and [D(A)]. For concrete
examples, see Lunardi [24].

LEMMA 3.4. Assume that condition (H1) holds. Let u ∈ S APω(Y ) and let v :
[0,∞)→ X be the function defined by

v(t)=
∫ t

0
AT (t − s)u(s) ds. (3.1)

Then v ∈ S APω(X).

PROOF. The estimate

‖v(t)‖ ≤
∫ t

0
‖AT (t − s)‖L(Y,X)‖u(s)‖Y ds ≤ ‖u‖Y,∞

∫
∞

0
H(s) ds,

shows that v ∈ Cb([0,∞), X). Furthermore, for t ≥ L1 > 0, we can write

‖v(t + ω)− v(t)‖ ≤
∫ ω

0
‖AT (t + ω − s)‖L(Y,X)‖u(s)‖Y ds

+

∫ L1

0
‖AT (t − s)‖L(Y,X)‖u(s + ω)− u(s)‖Y ds

+

∫ t

L1

‖AT (t − s)‖L(Y,X)‖u(s + ω)− u(s)‖Y ds.

For ε > 0, we select L1 > 0 such that ‖u(s + ω)− u(s)‖ ≤ ε for all s ≥ L1 and∫
∞

L1
H(s) ds < ε. Hence, for t ≥ 2L1 we obtain

‖v(t + ω)− v(t)‖ ≤ ‖u‖Y,∞

∫ t+ω

t
H(s) ds + 2‖u‖Y,∞

∫ t

L1

H(s) ds

+ ε

∫
∞

0
H(s) ds

≤ ε‖u‖Y,∞

(
3+

∫
∞

0
H(s) ds

)
.

This completes the proof. 2
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Using the fact that (T (t))t≥0 is uniformly stable, and arguing as in the proof of
Lemma 3.4, we can state the following result.

LEMMA 3.5. Let u ∈ S APω(X) and let v : [0,∞)→ X be the function defined by

v(t)=
∫ t

0
T (t − s)u(s) ds. (3.2)

Then v ∈ S APω(X).

We can establish the main result of this section. In this result, ι denotes the inclusion
from Y into X and L is the constant introduced in Remark 2.2.

THEOREM 3.6. Assume that B is a fading memory space and that conditions (H1)–
(H3) hold. If the functions f and g are uniformly S-asymptotically ω-periodic
on bounded sets and asymptotically uniformly continuous on bounded sets, and
L L f ‖ι‖L(Y,X) < 1, then there exists a unique S-asymptotically ω-periodic mild
solution of problem (1.1)–(1.3).

PROOF. We set S APω, 0(X)= {x ∈ S APω(X) | x(0)= 0}. It is clear that S APω, 0(X)
is a closed subspace of S APω(X). We next identify the elements x ∈ S APω, 0(X)
with its extension to R given by x(θ)= 0 for θ ≤ 0. Moreover, we denote by y(·) the
function defined by y0 = ϕ and y(t)= T (t)ϕ(0) for t ≥ 0. We define the map 0 on
S APω, 0(X) by

0x(t) = −T (t) f (0, ϕ)+ f (t, xt + yt )+

∫ t

0
AT (t − s) f (s, xs + ys) ds

+

∫ t

0
T (t − s)g(s, xs + ys) ds

for t ≥ 0. It follows from our hypotheses, Lemmas 3.4 and 3.5, that 0 is a map from
S APω, 0(X) into S APω, 0(X). Furthermore, the estimate

‖0x(t)− 0z(t)‖ ≤ L f ‖ι‖L(Y,X)‖xt − zt‖B + L f

∫ t

0
H(t − s)‖xs − zs‖B ds

+ M0Lg

∫ t

0
e−µ(t−s)

‖xs − zs‖B ds

≤ L

[
L f

(
‖ι‖L(Y,X) +

∫
∞

0
H(s) ds

)
+

M0Lg

µ

]
× ‖x − z‖∞ (3.3)

shows that 0 is continuous.
On the other hand, we define B : Cb([0,∞))→ Cb([0,∞)) by

Bα(t) = L L f ‖ι‖L(Y,X)α(t)+ L L f

∫ t

0
H(t − s)α(s) ds

+ M0L Lg

∫ t

0
e−µ(t−s)α(s) ds
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for t ≥ 0. It is clear that B is a bounded linear operator. Let B0 : Cb([0,∞))
→ Cb([0,∞)) given by

B0α(t)= L L f

∫ t

0
H(t − s)α(s) ds + M0L Lg

∫ t

0
e−µ(t−s)α(s) ds

for t ≥ 0. Then B = L L f ‖ι‖L(Y,X) I + B0. Using that H(·) is integrable on [0,∞)
it follows that B0 is completely continuous with spectrum σ(B0)= {0}. Therefore,
σ(B)= {L L f ‖ι‖L(Y,X)} and B is an operator with spectral radius re(B) < 1. In
addition, we define m : Cb([0,∞), X)→ Cb([0,∞)) by

m(x)(t)= sup
0≤s≤t

‖x(s)‖, t ≥ 0.

From (3.3), we obtain that

m(0x − 0z)≤ Bm(x − z)

and, applying [10, Theorem 1], we conclude that 0 has a unique fixed point
x ∈ S APω, 0(X). Defining u(t)= y(t)+ x(t) for t ∈R, we can confirm that
u ∈ S APω(X) is a mild solution of problem (1.1)–(1.3). 2

Using similar arguments we can obtain the existence of S-asymptoticallyω-periodic
mild solutions for the neutral system (1.2)–(1.3). We begin by defining our concept of
a mild solution.

DEFINITION 3.7. A function u :R→ X is called a mild solution of the neutral
system (1.2)–(1.3) if u0 = ϕ, u is continuous on [0,∞) and

u(t)= T (t)(ϕ(0)− f (0, ϕ))+ f (t, ut )+

∫ t

0
T (t − s)g(s, us) ds, t ≥ 0.

In the following result we consider the condition (H2) with Y = X .

THEOREM 3.8. Assume that B is a fading memory space and that conditions (H2)–
(H3) hold. If the functions f and g are uniformly S-asymptotically ω-periodic
on bounded sets and asymptotically uniformly continuous on bounded sets, and
L L f < 1, then there exists a unique S-asymptotically ω-periodic mild solution of
problem (1.2)–(1.3).

3.1. On S-asymptotically ω-periodic and asymptotically ω-periodic solutions.
To finish this section we establish conditions under which an S-asymptotically ω-
periodic function is asymptotically ω-periodic. Using these conditions, we discuss
the existence of asymptotically ω-periodic mild solutions.

REMARK 3.9. In the rest of this section, for τ > 0 and p ∈ Cb([0,∞), X), we denote
by Tτ p the left shift defined by Tτ p(t)= p(t + τ). In addition, for t ≥ 0, we consider
the decomposition t = ξ(t)+ τ(t)ω where ξ(t) ∈ [0, ω), τ(t) ∈N ∪ {0}.

We first study some qualitative properties of S-asymptotically ω-periodic functions.
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LEMMA 3.10. Let u ∈ S APω(X) and let (τn)n∈N be a sequence in [0,∞) with
τn→∞ as n→∞. If Tτn u→ v as n→∞ uniformly on compact subsets of [0,∞),
then v ∈ Cω([0,∞), X).

PROOF. It is clear that v is continuous. On the other hand, for each t ≥ 0 and ε > 0,
there exists n0 ∈N such that

‖v(s)− u(s + τn)‖ ≤ ε, s ∈ [t, t + ω],

‖u(µ+ τn + ω)− u(µ+ τn)‖ ≤ ε, µ≥ 0,

for every n ≥ n0. Consequently, for n ≥ n0

‖v(t + ω)− v(t)‖ ≤ ‖v(t + ω)− u(t + ω + τn)‖ + ‖u(t + ω + τn)− u(t + τn)‖

+ ‖u(t + τn)− v(t)‖

≤ 3ε,

which implies that v(t + ω)= v(t). 2

PROPOSITION 3.11. If u is an S-asymptoticallyω-periodic and asymptotically almost
periodic function, then u(·) is asymptotically ω-periodic.

PROOF. We can decompose u = p + q , where the function p is almost periodic
and q ∈ C0([0,∞), X). We select a sequence (τn)n∈N such that τn→∞ and
Tτn p→ p as n→∞ uniformly on [0,∞). Therefore, Tτn u = Tτn p + Tτn q→ p as
n→∞. Applying Lemma 3.10 we infer that p is ω-periodic and u is asymptotically
ω-periodic. 2

COROLLARY 3.12. Let u ∈ Cb([0,∞), X), and assume that there exists a non-
decreasing sequence of natural numbers (n j ) j∈N such that n1 = 1,
α = sup j∈N(n j+1 − n j ) <∞ and

lim
t→∞

(u(t + n jω)− u(t))= 0,

uniformly for j ∈N. Then u(·) is asymptotically ω-periodic.

PROOF. The hypotheses imply that u ∈ S APω(X) is asymptotically almost periodic.
The assertion follows directly from Proposition 3.11. 2

REMARK 3.13. From Corollary 3.12, we note that if u ∈ Cb([0,∞), X) is a
function such that limt→∞(u(t + nω)− u(t))= 0, uniformly for n ∈N, then u(·) is
asymptotically ω-periodic.

It is stated in [8, Lemma 2.1] that every S-asymptotically ω-periodic scalar function
is asymptotically ω-periodic. This assertion is not true, as the following example
shows.
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EXAMPLE 3.14. Let (bn)n∈N0 be a sequence of real numbers such that bn 6= 0
for every n ∈N, bn→ 0 and n→∞, and the sequence (an)n∈N = (

∑n
i=0 bi )n∈N

is bounded and non-convergent. Let w : [0,∞)→R be the function defined by
w(n)= an for n ∈N0 and

w(t)= an+1 + (an+1 − an)(t − n − 1), (3.4)

for n ≤ t ≤ n + 1. Consequently, the graph of w consists of the segments of lines with
corners at the points (n, an). It is clear from this geometrical description that f is
bounded and continuous. Furthermore, w is uniformly continuous. In fact, we set
c =maxn≥1 |an − an−1|. Employing (3.4) for s ∈ [n, n + 1] and t ∈ [n, n + 2], we
obtain that |w(t)− w(s)| ≤ c|t − s|. On the other hand, turning to apply (3.4), we see
that

|w(t + 1)− w(t)| ≤ |an+2 − an+1| + |an+1 − an|,

for t ∈ [n, n + 1]. Therefore, limt→∞(w(t + 1)− w(t))= 0 and w is an
S-asymptotically 1-periodic function.

However,w is not an asymptotically 1-periodic function. To establish this assertion,
we assume that w = β + α, where β is a 1-periodic function and α is a function that
vanishes at infinity. In such case, w(n)= an = β(n)+ α(n)= β(0)+ α(n)→ β(0),
as n→∞, which contradicts our selection of the sequence (an)n .

In the following proposition we establish conditions under which an S-
asymptotically ω-periodic function is asymptotically ω-periodic.

PROPOSITION 3.15. Let u ∈ Cb([0,∞), X) be an S-asymptotically ω-periodic and
uniformly continuous function with relatively compact range. Assume that there
exists a sequence of natural numbers (τn)n∈N with τn→∞ and a sequence of
positive numbers (γn)n∈N such that ‖u(t + ω)− u(t)‖ ≤ γn for every t ≥ τn and∑

j≥0(τ j+1 − τ j )γ j <∞. Then u(·) is asymptotically ω-periodic.

PROOF. Let (m j ) j∈N be a subsequence of (τn)n∈N with m j = τn j and
v ∈ Cω([0,∞), X) such that um jω→ v as j→∞ uniformly on compact sets. We
confirm that v(t)− u(t)→ 0 as t→∞. To establish our claim, for each ε > 0, we
choose n j0 ∈N such that

∑
j≥n j0

(τ j+1 − τ j )γ j ≤ ε and ‖v(s)− u(s + m jω)‖ ≤ ε for
every s ∈ [0, ω] and j ≥ j0.

Let t ≥ m j0ω. Then there exists an index p ∈N with p ≥ j0 such that
t ∈ [m p, m p+1]. The interval [m p, m p+1] can contain another point of the
original sequence (τn)n∈N, which we describe in the form τn p < τn p+1 < · · ·<

τn p+q = τn p+1 . Similarly, each interval [τn p+i , τn p+i+1], with i = 0, . . . , q − 1,
can contain natural numbers τn p+i + h, with h = 0, . . . , H(i) so that τn p+i + H(i)
= τn p+i+1. We abbreviate the notation by writing k(i)= τn p+i . Moreover, we select
0≤ s < q such that t ∈ [τn p+sω, τn p+s+1ω] and we decompose t = ξ(t)+ η(t)ω
with ξ(t) ∈ [0, ω) and η(t) is a natural number such that η(t)= τn p+s + h(t) where
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0≤ h(t)≤ H(s). With this notation, we obtain

‖v(t)− u(t)‖ = ‖v(ξ(t)+ η(t)ω)− u(ξ(t)+ η(t)ω)‖

≤ ‖v(ξ(t))− u(ξ(t)+ m pω)‖

+ ‖u(ξ(t)+ m pω)− u(ξ(t)+ η(t)ω)‖

≤ ε +

s−1∑
i=0

k(i)+H(i)−1∑
j=k(i)

‖u(ξ(t)+ ( j + 1)ω)− u(ξ(t)+ jω)‖

+

k(s)+h(t)−1∑
j=k(s)

‖u(ξ(t)+ ( j + 1)ω)− u(ξ(t)+ jω)‖

≤ ε +

s−1∑
i=0

k(i)+H(i)−1∑
j=k(i)

γn p+i +

k(s)+h(t)−1∑
j=k(s)

γn p+s

≤ ε +

s∑
i=0

γn p+i H(i)

= ε +

s∑
i=0

γn p+i (τn p+i+1 − τn p+i )

≤ ε +
∑
i≥n p

γi (τi+1 − τi )

≤ 2ε,

which shows that ‖v(t)− u(t)‖ ≤ 2ε for every t ≥ m j0ω. This completes the proof. 2

We next study the existence of asymptotically ω-periodic solutions for the neutral
systems (1.1) and (1.2).

LEMMA 3.16. Assume that condition (H1) holds. Let u ∈ S APω(Y ) and let v :
[0,∞)→ X be the function defined by (3.1). If limt→∞ ‖u(t)− u(t + nω)‖Y = 0
uniformly for n ∈N, then limt→∞(v(t)− v(t + nω))= 0 uniformly for n ∈N.

PROOF. We can prove this statement by arguing as the proof of Lemma 3.4
substituting nω instead of ω. 2

The same argument, with Lemma 3.5 instead of Lemma 3.4 allows us to state the
following result.

LEMMA 3.17. Let u ∈ S APω(X) be a function such that limt→∞(u(t)
− u(t + nω))= 0 uniformly for n ∈N. If v : [0,∞)→ X is the function given
by (3.2), then limt→∞(v(t)− v(t + nω))= 0 uniformly for n ∈N.

As consequence of Corollary 3.12, Lemmas 3.16, 3.17 and arguing as in the proof
of Theorem 3.6, we can state the following result.
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PROPOSITION 3.18. Assume that the hypotheses of Theorem 3.6 hold, and
for each bounded set K ⊆ B, limt→∞ ‖ f (t, ψ)− f (t + nω, ψ)‖Y = 0 and
limt→∞ ‖g(t, ψ)− g(t + nω, ψ)‖ = 0 uniformly for ψ ∈ K and n ∈N. Then there
exists a unique asymptotically ω-periodic mild solution u(·) of (1.1)–(1.3).

Similarly, as a consequence of Theorem 3.8, Corollary 3.12 and Lemma 3.17 we
can state the following result.

PROPOSITION 3.19. Assume that the hypotheses of Theorem 3.8 hold, and for each
bounded set K ⊆ B, limt→∞ ‖ f (t, ψ)− f (t + nω, ψ)‖ = 0 and limt→∞ ‖g(t, ψ)
− g(t + nω, ψ)‖ = 0 uniformly for ψ ∈ K and n ∈N. Then there exists a unique
asymptotically ω-periodic mild solution u(·) of (1.2)–(1.3).

4. Applications

In this section, we apply the previous results to some partial neutral functional
differential equations with infinite delay.

4.1. A neutral equation in the theory of heat conduction. In the following, we
consider the problem of the existence of S-asymptotically ω-periodic mild solutions
for a neutral system of type (1.4)–(1.5) in the one-dimensional case with c0 = c1 = 1
and k1 = k2. Specifically, we consider the differential system

∂

∂t

[
u(t, ξ)+

∫ t

−∞

a(s − t)u(s, ξ) ds

]
=
∂2

∂ξ2

[
u(t, ξ)+

∫ t

−∞

a(s − t)u(s, ξ) ds

]
+

∫ t

−∞

b(s − t)u(s, ξ) ds + c(t)F(u(t, ξ)), (4.1)

u(t, 0)= u(t, π)= 0, (4.2)

u(θ, ξ)= ϕ(θ, ξ), −∞< θ ≤ 0, (4.3)

for t > 0 and ξ ∈ [0, π ].
In what follows we consider the space X = L2([0, π ]) and A : D(A)⊆ X

→ X is the operator defined by Ax = x ′′ with domain D(A)= {x ∈ X | x ′′ ∈ X,
x(0)= x(π)= 0}. It is well known that A is the infinitesimal generator of an
analytic semigroup (T (t))t≥0 on X . Furthermore, the spectrum of A is reduced to
a point spectrum with eigenvalues of the form −n2 for n ∈N, and corresponding
normalized eigenfunctions given by zn(ξ)= (2/π)1/2 sin(nξ). In addition, the
following properties hold:

(a) {zn | n ∈N} is an orthonormal basis of X ;
(b) for x ∈ X , T (t)x =

∑
∞

n=1 e−n2t
〈x, zn〉zn . It follows from this representation

that ‖T (t)‖ ≤ e−t for every t ≥ 0.
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Moreover, it is possible to define the fractional powers of A (see, for instance, [24]).
In particular:

(c) for x ∈ X and α ∈ (0, 1), (−A)−αx =
∑
∞

n=1(1/n
2α)〈x, zn〉zn . Moreover, the

operator (−A)α : D((−A)α)⊆ X→ X is given by

(−A)α =
∞∑

n=1

n2α
〈x, zn〉zn for x ∈ D((−A)α)

=

{
x ∈ X

∣∣∣∣ ∞∑
n=1

n2α
〈x, zn〉zn ∈ X

}
.

As phase space we choose the space B = C0 × L2(ρ, X) defined in Example 2.3,
and we assume that the conditions (g-5)–(g-7) in the nomenclature of [19] are satisfied.
We note that, under these conditions, B is a fading memory space and

L = 1+
( ∫ 0

−∞

ρ(θ) dθ

)1/2

.

To study this system, we assume that the function ϕ(θ)(ξ)= ϕ(θ, ξ) belongs to
B, the functions a, b : (−∞, 0] →R and c : [0,∞)→R are continuous, the function
c(·) is S-asymptotically ω-periodic, F :R→R is globally Lipschitz continuous with
Lipschitz constant L F > 0 and

L f =

(∫ 0

−∞

a2(s)

ρ(s)
ds

)1/2

<∞, L1
g =

(∫ 0

−∞

b2(s)

ρ(s)
ds

)1/2

<∞.

Under these conditions, we can define the functions D, f, g : [0,∞)× B→ X by

f (t, ψ)(ξ) = −
∫ 0

−∞

a(s)ψ(s, ξ) ds,

g(t, ψ)(ξ) =
∫ 0

−∞

b(s)ψ(s, ξ) ds + c(t)F(ψ(0, ξ)),

D(t, ψ)(ξ) = ψ(0)(ξ)− f (t, ψ)(ξ).

With this notation the system (4.1)–(4.3) is reduced to the abstract form (1.2)–
(1.3). Moreover, for every t ≥ 0, the function f (t, ·) is a bounded linear operator
with ‖ f (t, ·)‖L(B,X) ≤ L f and g(t, ·) is globally Lipschitz continuous with Lipschitz
constant Lg(t)= L1

g+ | c(t) |∞ L F . The next result is a consequence of Theorem 3.8
and Proposition 3.19.

PROPOSITION 4.1. Assume that L L f < 1. Then there exists a unique S-
asymptotically ω-periodic mild solution u(·) of the problem (4.1)–(4.3). If, in addition,
limt→∞(c(t + nω)− c(t))= 0 uniformly for n ∈N, then u(·) is asymptotically
ω-periodic.
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4.2. A neutral system in control theory. A method to stabilize lumped control
systems is to use a hereditary PID feedback control, see [2, 21].

Consider the linear distributed hereditary system with unbounded delay (1.6) and
the PID-hereditary control u(t) defined by (1.7). Let B = C0 × L2(ρ, X) and ρ

satisfying conditions (g-5)–(g-7) in the nomenclature of [19]. Assume that B :Rm

→ X is a bounded linear operator such that R(B)⊆ D((−A)β) for some 0< β < 1,
a(·) ∈ S APω(R); λ : B→ X is a bounded linear operator; K0 : X→Rm is a bounded
linear operator and K1, K2 : [0,∞)→ L(X;Rm) are strongly continuous operator
valued functions such that

L i =

(∫ 0

−∞

‖Ki (−θ)‖
2

ρ(θ)
dθ

)1/2

<∞, i = 1, 2.

Under these conditions, the operators λi defined by

λiψ :=

∫ 0

−∞

Ki (−θ)ψ(θ) dθ, i = 1, 2,

are bounded linear operators from B into Rm and ‖λi‖ ≤ L i , i = 1, 2. The closed
system corresponding to the PID-hereditary control (1.7) takes the form

d

dt
(x(t)+ Bλ1(xt ))= (A + BK0)x(t)+ (a(t)λ+ Bλ2)(xt ). (4.4)

The operator A + BK0 is the infinitesimal generator of an analytic semigroup and
we shall assume that this semigroup is uniformly bounded and 0 ∈ ρ(A + BK0).
Under these conditions it follows from [28, formula (2.6.9)] that D(−A − BK0)

β

= D(−A)β , which implies that (−A − BK0)
βBλ1 is bounded.

The following proposition follows from Theorem 3.6 and Proposition 3.18.

PROPOSITION 4.2. Assume L‖(−A − BK0)
βBλ1‖ ‖ι‖L(Xβ ,X) < 1. Then there

exists a unique S-asymptotically ω-periodic mild solution u(·) of problem (4.4).
If, in addition, limt→∞[a(t)− a(t + nω)] = 0 uniformly for n ∈N, then u(·) is
asymptotically ω-periodic.
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