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COMPLEX SUBSPACES OF HOMOGENEOUS COMPLEX

MANIFOLDS II—HOMOTOPY RESULTS

ANDREW JOHN SOMMESE

To the memory of my brother Joseph

The Lefschetz hyperplane section theorem has roots going back at
least to Picard, but it was Lefschetz [20] who first stated and proved it
in the modern form for integer homology. Later it was improved up to
the homotopy level by Andreotti-Frankel [1] and Bott [8] using an idea
of Thorn. Numerous generalizations along the same lines have appeared,
e.g. [14, Theorem H], [19], [24, App. II] etc.

In [4] Barth proved an unexpected generalization of Lefschetz's the-
orem for the complex cohomology of arbitrary complex submanifolds of Pc.

Hartshorne [15, 16], Ogus [23], and more recently Hartshorne-Speiser
[17] have algebraicized these results for projective spaces even over other
fields. Barth and Larsen [cf. 5] improved Barth's theorem for A, a sub-
manifold of Pc, to the level of homotopy:

πj(Pg, A, x) = 0 for x e A and j < 2 dimc A - N + 1 .

This paper is devoted to generalizations of the Barth-Larsen results
to arbitrary not necessarily compact homogeneous complex manifolds.

One special corollary [cf. §3] that gives the flavour of my results is:

COROLLARY. Let B and A be complex submanifolds of a homogeneous
connected complex manifold X where A is assumed connected. There is
an integer λ such that:

πj(A, A f] B, x) = 0 for xe A Pi B and j < min{dimc A, d im c B + 1} — λ

a) If X is a simple Abelian variety (i.e., X has no sub Abelian
varieties), then λ can be taken to be codcJ3.

b) // X is Π?=i Gr (riy nt) where Gr (ri? nt) is the Grassmannίan of Ptf's
in Pc', then λ can be taken to be codc B — min^ {n^ + dim^ X,

c) If B is compact and has an ample normal bundle then λ can be
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102 ANDREW JOHN SOMMESE

taken to be codc B where X and A are not necessarily compact

The plan of the paper and the proof goes as follows.
In § 0 I give a variant of the basic result of Morse theory on complex

manifolds in the form I need it. In § 1 I prove a parametrized variant
of this result. It says roughly that if At is a continuous family of com-
plex submanifolds of a complex manifold X, and if B is a complex sub-
space with a 'suitably concave' neighborhood, then the homotopy groups
πj(At, At Π B, xt) with xt e At Π B, are independent of t in a certain range
of dimensions, j .

Results in § 1 lead to maps /: Xf —• Ύf which resemble fibrations up
to a certain dimension. In § 2, which is mainly topology, I prove the
existence of a long exact homotopy sequence for these / up to the ap-
propriate dimension. The types of maps I study are reminiscent of the
"quasi-faserungen" of Dold-Thom [10]. Unfortunately, my maps are not
as well behaved as their maps, and this causes difficulties. The hardest
part of the proof is, as expected, dealing with the difficulties entailed by
the fundamental groups. As a trivial consequence we show (2.4) that
Pc+1 — A! cannot be λ convex for λ < N — 2 where A' is the cone on a
projective submanifold A of Pg with non-zero first Betti number.

In § 3, I use the machinery of § 1 and § 2 to give an 'easy proof of
the 'generalized Lefschetz theorem' [cf. the above corollary]. I refer to
[25] where I discuss the argument used in § 3 in the case of a simple
Abelian variety. I recommend that the reader keep this case of X, a
simple Abelian variety, in mind. This is conceptually the simplest case
because isotropy groups do not obscure matters, but technically the most
difficult case for fundamental group reasons.

In §4, I discuss some open problems and give some examples.
I would like to thank I. Berstein, W. Dwyer, L. Kaup, and the late

H. C. Wang for helpful comments and discussions. I am especially grateful
to N. Goldstein for a list of corrections that helped in revising this paper.
I would also like to thank the NSF and Sonderforschungsbereich 'The-
oretische Mathematik' der Universitat Bonn for their support.

§0. Background material

In this section I will recall the basic facts about Morse theory on
complex manifolds. These results are standard, but not usually stated in
the form that I need.
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HOMOGENEOUS COMPLEX MANIFOLDS 103

(0.1) Given a set S in a topological space X, let S denote the closure

of S in X.

The following is standard.

(0.2.1) LEMMA. Let A be a compact analytic subset of X, a connected

complex manifold. Let h:X-+R be a continuous bounded non-negative

function on X with h~\O) = A. Assume that h is C°° on X — A. Then

given any compact set K c: X — A, any ε > 0, and any open set V 3 A,

one can choose a C°° function H on X such that:

a) H is a Morse function on (X — V) U K

b) sup x | i f — h\ < ε,

c) H is as close as one wants to h in the uniform C2 topology on K.

In particular if the Levi form of h has at most q — 1 non-negative

eigenvalues at each point of K, then the same can be assumed of H.

Proof First [22, p. 37] one can choose C°° Morse function H on X

— A that satisfies c) and:

sup|iϊ-/ι|< — .
X-A 2

Let p be a C°° non negative function bounded by 1 on X, that is 0

in some neighborhood of A and 1 on X — h~\[09 δ]), where δ is chosen

< e/2 and small enough so that h~ι([0, δ]) ̂  V - K Γ\ V.

Now let H = Hp.

H is a Morse function on (X — V) (j K since H is a Morse function

on X- A and H = H on X- /^([O, J ] ) D Ϊ - ( 7 - V Π K) = (X- V)

U K.

Next note:

sup \H - h\ = sup \Hp - h\< sup |(H - h)p\ + sup |Λ - hp\ < δ + — < ε .
X X-A X-A X-A 2

Finally note that H - H on K.

The last assertion about the Levi form follows by compactness, since

the condition of a Levi form of a function having a certain number of

negative eigenvalues is an open condition in the C2 topology. •

The following notation will be helpful. Given a real valued function,

h, on a set Z, let E(h9a,β) = h~\{a, β)), and let E(h,a) = /r1^—oo,αr)).

(0.2.2) LEMMA. Lei g and F be two real valued functions on a set X.

Assume sup z \g — F\ < ε. TTien /or a/Z cei?, one
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104 ANDREW JOHN SOMMESE

E(F, c) c E(g, c + ε') £ J5(F, c + e")

/or αZZ e' > ε and all ε" > ε' + e.

Proo/. Trivial. •

(0.3) Letting / be a C°° real valued function on complex manifold X,

I follow [12; p. 258] and define:

where Tx\x is the holomorphic tangent space to Z a t a e X

Recall that a C°° real valued function / on a complex manifold X is

called q convex if at each point x e X, the Levi form of / has at most

q — 1 non-positive eigenvalues on Tz\x.

(0.3.1) DEFINITION. Let A be an analytic subset of a connected com-

plex manifold, X. An asymptotically q convex exhaustion f of X — A is a

C°° real valued function / on X — A such that:

(0.3.1.1) given any sequence {xn} c: X — A with xn converging to

aeA, then lim^*,/(#„) = oo,

and,

(0.3.1.2) the Levi form of / restricted to HJJ) has at most q — 1 non-

positive eigenvalues where xe X — A.

(0.3.2) Let A, X, and / be as in (0.3.1). If A is also compact, then

it follows that there is a neighborhood U of A and a C € 2? such that
(/ICT-4) — C is a proper map from U — A to (0, 00). This is easy to see,
e.g. [28, (0.3.3)].

(0.4) PROPOSITION. Let A be a compact analytic subset of a connected
complex manifold X Let f: X — A —> (0, 00) be a proper map which is an
asymptotically q convex exhaustion of X — A. Let Xa — {x e X — A | f(x)
> a} U -A. Giue/i α se£ {c, 11 < j < k) c 2? wj£/& 0 < Cj < < cfc,

open sets {Bό\l <j<k — ΐ\ with smooth boundaries such that:

(0.4.1) I ^ δ ^ I ^ O XC

Ck ,

(0.4.2) given any xe A , πt(Bj9 A , x) = 0 /or £ < d i m c X — q and all j .

Proof. N o t e t h a t e~f i s C°° o n X — A a n d e x t e n d s t o a c o n t i n u o u s
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HOMOGENEOUS COMPLEX MANIFOLDS 105

function g on X with ^ ( O ) = A. It is clear that (0.4.1) and (0.4.2) will

follow if it is shown that (in the notation of (0.2.2)):

(0.4.3) given any {c, d) c: R, with 0 < c < d < 1, then there is an open

set B of X with a smooth boundary such that E(g, c) c: B cr E(g, d) and

π^B, A, x) = 0 for any x e A and all i < dimc X — q.

Choose a neighborhood W of A in E(g, c) such that A is a strong

deformation retract of W. This is possible since X can be triangulated

so that A is a sub-simplicial complex of X, and since E(g, c) 2 A is

open in X.

Since g is continuous, there exists a n α > 0 such that E(g, a) cr W".

Let if = E(g, a\ d) where 0 < a! < a.

(0.4.4) Let F = 1 — e~Cg where the real number C > 0 has been chosen

so that e~Cg is q convex in a neighborhood of K. This is possible [cf.

27, II (1.6)].

Since φ(x) — 1 — e~c* is a homeomorphism from [0, 1] to [0, 1 — e~c],

(0.4.3) is the same as:

(0.4.5) an open set B of X with smooth boundary can be found such

that E(F, φ(c)) c ΰ c E(F, φ(d)), and such that πt{B, A, x) = 0 for any x

e A and i < dimc X — q.

Use (0.2.1) and (0.4.4) to choose a C°° function F o n I such that:

a) sup x | F - F\ < ε = min {RJ4, i?2/4} where i?x - φ(a) - φ(a') and

i?2 = Φ(d)- φ{c),

b) Ĵ  is a Morse function in a neighborhood of K,

and,

c) the Levi form of F has at most q — 1 non-negative eigenvalues

at each point of a neighborhood of if.

By (0.2.2) I have:

4 £ ( F , #c)) JS(F, ̂ (C) + β') c

for ε7 with ε < ε7 < ^(d) - φ(c) - ε = i?2 - ε

and

for ε" with ε < ε" < φ(a) - φ(a') - ε = R, - ε .

Since F is a Morse function on K, dF equals 0 on only a discrete

set of K. Thus using (0.4.6) and the fact that K 3 E(F, φ(c), φ(d)), I can
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106 ANDREW JOHN SOMMESE

choose an e' e (e, R2 — ε) such that B = E(F, φ(c) + ε') has a smooth

boundary and:

(0.4.8) E(F, φ(c)) c B c E(F, φ(d)) .

Note that the real index of F at any point of K is at least as large as

the index of the Levi form of F at the same point. Thus since E{F, φ{a'),

φ{a)) <^K, I conclude that B is obtained from E(F, φ(a') + ε") for ε" e

(ε, i?j — ε) by attaching at least dim^X — q + 1 cells. Thus:

π,(B, E(F, φ(a') + e"), *) = 0
(0.4.9)

for J < dimc X — q, xe A, and ε" e (ε, i?j — ε) .

I have:

A c £(.F, ̂ («0 + e;/) S ^ W ^(α)) = ^(ft «) £ ^ £ 5

where W was defined right before (0.4.4).

Therefore:

πt(A9 x) > πt(E(F9 φ(a') + e"), x) > πt(W9 x) > πt(B9 x)

for x e A. Using (0.4.9) and the fact that the composition of the first two

maps is a bijection for all j , I get (0.4.5). •

(0.4.10) COROLLARY. Let X,A,f, {c;} and {Bj} be as in (0.4). For all

sufficiently large cj9

πt{A, x) > πάBj, x)

is an injection for all i and all xe A.

Proof. Looking at the last paragraph of the proof of (0.4), we see

that for Cj sufficiently large, Bj c W and that:

τr,(A, x) > πt(Bj9 x) • πt(W, x)

with the composition an isomorphism for all i and all xe A. •

(0.5) In § 2 it will be very convenient to work with simplicial com-

plexes and polyhedra. I refer to [30, Chap. 3] as my basic reference.

Here I will simply recall the major definitions and facts, assuming the

reader knows what a simplicial complex is.

A polyhedron [30, p. 113], X, is a space which can be triangulated,

i.e. it is the realization of a simplicial complex, K. When we want to

emphasize K we write X= \K\. A polyhedral pair [30, p. 114] (X, A), is
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HOMOGENEOUS COMPLEX MANIFOLDS 107

a pair consisting of a polyhedron X = \K\ and a subspace A = \L\ where

L i s a subcomplex of K. Letting (X, A) = (\K\, \L\) and (Y, 5) = (|M|, |JV|)

be two polyhedral pairs, a continuous map /: (X, A) —> (Y, J3) is by abuse

of language said to be simplicial if it is the realization, \ψ\, of a simplicial

map [30, p. 109], φ from (K, L) to (Λf, iV).

The following summarizes some of the basic facts I will use repeatedly.

(0.5.1) PROPOSITION. Let (X, A) = (\K\, \L\) and (Y, B) = (\M\, \N\) be

two polyhedral pairs and let Z = \P\ be a polyhedron.

(0.5.1.1) If f: (X, A) —> (Y, B) is a continuous map, there exists a sim-

plicial map g:(X9 A) -»(Y, B) associated to a subdivision of K which is

homotopic to f. If f\A is a simplicial map then g can be chosen so that

g\A=f\A

(0.5.1.2.) A is a strong deformation retract of some neighborhood of A

in X.

(0.5.1.3) Let f: X-> Y and h: Z-• Y be simplicial maps, i.e. f = \φ\ and

h = |ψ|, and consider the commutative diagram:

'4 l
z-rγ

where X is the fibre product of f and h, and, f and h are the induced

maps. Then X is a polyhedron and f and h are simplicial maps.

Proof. (0.5.1.1) follows from Theorem 8 and the discussion after it

in [30, p. 128] and Lemmas 1 and 2 of [30, p. 126].

Next, (0.5.1.2) is Corollary 11 of [30, p. 124].

The last is a straightforward check. Essentially X is the realization

of the abstract simplicial complex obtained by taking the fibre product

of φ: K-> M and ψ: P^» M in the category of abstract simplicial com-

plexes. •

The next trivial lemma will also be useful.

(0.5.2) LEMMA. Let B be the closed unit ball in Rn. Let 3B denote

its boundary and let y e 3B. Let φi: B —• Y with i e {1, 2} be two continuous

maps into a topological space Y. Assume that there exists a continuous

map h:B-+B such that h\dB is the identity and such that:
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108 ANDREW JOHN SOMMESE

commutes. Then φλ and φ2 give rise to the same element of πn(Y, Z, x) where

Φi(dB) c Z = Z c Y and x = φt(t) for some t e dB. If φx(dB) = φ2(dB) = x

e Y, then φx and φ2 induce the same element of πn(Y, x).

Proof This is an immediate consequence of the fact that:

th + (1 - ί) id* 0 < t < 1

gives an homotopy between h and id5, the identity map of B. •

The following form of the Hurewicz-Whitehead theorem is needed.

(0.6) LEMMA. Let f:X-+ Y be, a continuous map between connected

and simply connected CW complexes. Then

U:πj(X,a)—>πj(Y,f(a))

is for each a e X, an isomorphism for j < k and an epίmorphism for j = k

if and only if for each Abelίan group &,

f*: H3(Y, &) > Hj(X9 &)

is an isomorphism for j < k and an injection for j — k.

Proof. By the Hurewicz theorem the homotopy condition is equi-

valent to:

U:Hj(X,Z) >Hj(Y,Z)

is an isomorphism for j < k and a surjection for j — k. By considering

the mapping cylinder Jί(f) of /: X -> Y, one sees by the relative homology

sequence that the above is equivalent to:

H5(J£(f), X,Z) = 0 for j <k .

The latter is equivalent to:

(0.6.1) J5Γ,(ΐf(/), Z) = 0 for 0 < j < k and Hl^{f\ Z) = Z

where #(/) = Jl(f)\X is the mapping cone of /. The above, by the uni-

versal coefficient theorem, implies:

(0.6.2) Hj(V(f), SO = 0 for 0 < j < k
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and HX<#(f), &) = & for, all coefficient groups 9.

Conversely (0.6.2) implies (0.6.1). To see this, assume (0.6.2) and

assume Hλ(%(f\ Z) Φ 0 for some λ with 0 < λ < k. Let 9 = ZJBλ where

Zλ is the λth term of the singular chain complex of &(/) and Bλ is the

submodule of Zλ consisting of boundaries. There is a natural homo-

morphism of Zλ to & = ZλjBλ and it is easy to see that this shows

Hx(V(f), <&) cannot be zero.

Now note (0.6.2) is equivalent to H\Jt(f), X,&) = 0 for j < k for all

Abelian groups, &, which by the relative cohomology sequence is equi-

valent to:

/*: W(Y, 9) > W(X, 9)

being an isomorphism for j < k and a surjection for j = k for all Abelian

groups 9. •

§1. Morse theory with parameters

In this section I prove a parametrized version of (0.4). X always

denotes a connected complex manifold and S denotes a connected finite

dimensional polyhedron (cf. (0.5)). Let p:Xχ S-+S and q:Xχ S-+X

denote the product projections.

si denotes a closed subset of X X S and s/s = p'^s) Π s/. It is as-

sumed that:

(1.0.1) q(^s) is an analytic subset of X for all s e S, and p\y. so -> S

is a proper map.

It is assumed further that there is a neighborhood U of stf in X X S

and a real valued non-negative continuous function / on U — si such that:

(1.0.2) lim^eo f(xn) = oo for any sequence {xn} cz U — si converging

to a point of J / ,

and

(1.0.3) for each te S,f is asymptotically Λ convex on U Π p- 1(ί) — si't
where λ < dimc X.

(1.1) PROPOSITION, si t is non-empty for all te S if it is non-empty for

one t in S.

Proof. This is a consequence of the maximum principle. For a proof

see [28, (1.1)] with A = X and B = si. D
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(1.2) PROPOSITION. Let te S. There exists an open set B of X with

a smooth boundary and a neighborhood W of t in S such that:

(1.2.1) j * Πp-WcBx W,

( 1 2 2 ) πt(B X {p(x)}, <zfp{x), *) = 0

for i < dimc X — λ and each x e s/ Π P " 1 ^ ) ,

and,

(1 2 g ) ? r K w , *) • ^ ( £ X {p(x)}, X)

is cm injection for all i and all x e stt .

Proof. Given t e S, I claim that there is a relatively compact open

set V of X and a relatively compact neighborhood K oΐ t such that:

(1.2.4) F χ { s } D ^ s for all s e K and V χ f c [ J ,

and

(1.2.5) there exists a ceR such that i?(s, c) = {(x, s)eVχ{s} —

sfs\f(x, s) > c} U ̂ /s is relatively compact in V X {s}.

These are easy; for a proof see [28, (1.2.1) and (1.2.2)].

Let g(x, s) denote the continuous extension of e~f to V X K so that

g-\ϋ) = stf Π p~\K).

Now consider g(;y, 5) as a function gs(;y) on V. After shrinking if one

has (using the notation of (0.2.2)):

(1.2.6) E(gs)d) is relatively compact in V for all seK and d < e~°

where d e R and c is as in (1.2.5), and,

(1.2.7) there exists an ε > 0 and a d' < d — ε such that:

c E(gt, df - 4ε) c E(gt, df - 3ε) c £ ( f t , d' - 2ε)

c E(gt, d' - ε) c E ( A , d') c £J(^, d7 + e) for all 5 e K .

The above are easy consequences of (0.2.2); for more details see [28,

(1.2.5) and (1.2.6)].

By (0.4) and (0.4.10) there exist open sets Bx(s)y Bx(t), and B2(t) with

smooth boundaries such that:

E(gt, df - 4β) c B&) c E ( f t , d' - 3e) ,

(1.2.8) E(gt9 d') c B2(ί) c £?( f t, d' + β) , and

E(gs, df - 2e) c 5,(5) c ί?( A , d' - ε) ,
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2 9) π>(Bt®> g ( j / ί ) > x ) = ° = ^ ^ ^ ^ y)

for j < dimc X — λ, xe q(s/t), y e q(jf,)9 and i = 1 or 2 ,

and

(1 2 1(Λ π^q^^9 °^ > πj(Bi(t)> χ) i s a n injection for i = 1 or 2 ,
for all j , and x e q(^t) .

Combine (1.2.7) and (1.2.8) into a sequence of inclusions. Using (1.2.9)

and (1.2.10) on this sequence, the result immediately follows with B =

B2(t). D

(1.3) COROLLARY. Assume the assumptions of (1.2) and also assume

that si is a polyhedron and f = p\^\ stf -> S is a sίmplίcίal map. If dim c X

> λ then f factors as goh where h: stf -+ Z is a simplicial map with con-

nected fibres between polyhedra and g:Z->S is a finite covering map.

Further given any xesf, there is a neighborhood V of h(x) in Z and an

open set t/12 h~\V) such that:

(1.3.1) πj(U, h-\h{υ))9 v) = 0 for j < dimc X - λ and all v e h~\V) .

Proof. To see that the factorization goh exists with g a finite cover-

ing it suffices to work locally on S. Let W be a neighborhood of a point

f(x) = t e S which is contractible and small enough so that (1.2.1), (1.2.2),

and (1.2.3) hold.

Let F be a set with one point corresponding to each connected com-

ponent of B. The factorization p\B: B X W-> W into a: B X W-+ F X W

and b: F x W-> W induces a factorization boh of plonp-iσn] where h =
a\ι*np-HW)γ Since s/t is a compact analytic space it has finitely many

components. By (1.2.2) and dimc X > λ each component of B contains

precisely one connected component of q(j/s) for any s e W. By the last

two sentences F is finite and h is surjective with connected fibres.

Thus we have a global factorization f — goh where h: srf' —• Z is a

continuous map with connected fibres onto a topological space Z and

where g:Z-+ S is a covering projection. Since g is a covering and / is

simplicial, the simplicial structure of S induces the structure of a poly-

hedron on Z in such a way that g and h are simplicial.

Now let us turn to (1.3.1).

Letting W be as above, it is clear that we can assume without loss

of generality that / has connected fibres. Let U be a neighborhood of

f-\t) that is a strong deformation retract of /"J(ί) Let V be a neighbor-
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hood of t such that f~\V) c U. This is possible by (0.5.1.2) and the fact

that / is proper. Now consider the diagram with qv = q\Ό and qυ =

, Φ))

Letting υ = t we see by (1.2.2), (1.2.3) and the definition of U that (qv)*

is an isomorphism for j < k = dimc X — Λ, since (qr̂ ^ and the inclusion

&)* are. Since U is connected, (cfo)* has this property for all υeU.

By (1.2.2) applied to (qυ)* and the above, we conclude that

*j(U, Γ(f(v)), υ) = 0 for j < k and υ e f-\V) . •

§2. A long exact homotopy sequence

(2.1) DEFINITION. Let / be a simplicial map from a connected poly-

hedron X onto a polyhedron Y. We say f is a fe quasί-fibration if:

(2.1.1) there is a polyhedron Z such that / factors as qp where p:

X-+Z is a proper simplicial surjection with connected fibres and q:Z-^

Y is a covering map.

(2.1.2) given any z e Z, there exist a contractible open set V of Z

containing z and an open set U of X containing p"\V) such that

KjWp-'ipix)), x) = 0 for j < A and ^V)

(2.2) Remark. The above codifies (1.3) in a form useful for applica-

tions. It is reminiscent of the Dold-Thom [10] definition of quasi-

faserungen. Unfortunately it is a priori weaker; this section would be a

corollary of [10] if we knew that the V of the preceding definition could

be chosen so that φ - ^ λ p " 1 ^ ) ) , x) = 0 for j < k and all xep~\V).

The next result is the object of this section.

(2.3) PROPOSITION. Let f:X^Y be a k quasί-fibratίon. Given any

point x e X one has that:

(2.3.1) πj(Y, f(x)) < πj(X, Πfix)), x)
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is an isomorphism for j < k and a surjectίon for j = k + 1. In particular,

one has the long exact homotopy sequence

πk(r(f(x)), x) — > πt(X, x) — > πk(Y, f(x)) •

> M f(x)) —+ πo(r(f(x)), x) —> 0 .

The sequence (2.3.2) is functorίal with respect to morphisms of k quasi-

fibratίons.

Proof. If (2.3.1) is proven, then the rest of the proof will follow from

the long exact homotopy sequence of a pair.

The idea is that [30, p. 100] any continuous map is homotopic to a

map of Serre fibrations. This gives us a commutative diagram

where the vertical arrows are homotopy equivalences and f is a Serre

fibration. Since there is a long exact homotopy sequence for /, we would

be done if the map from a fibre of / to a fibre of / induced an isomorphism

of homotopy groups in the proper range. It is easy to use the Leray

spectral sequence, (2.1.2), and the Hurewicz-Whitehead theorem (0.6) to

prove this if everything is simply connected. But we cannot assume this;

so we prove a sequence of lemmas leading up to (2.3.8), where we prove

(2.3) for contractible Y by using a modified form of the above idea. Then

we use this partial result to get the full result in quick order. I suggest

that the reader look over the statements of the various lemmas to get a

more precise idea of the proof before he works through it in detail.

(2.3.3) LEMMA. Let γ: [0,1] -> Y be a simplίcial map with γ(0) — f(x).

Let f':X' -+ [0,1] be the pullback of f by γ. Let x' eX' be the point in

f~ι(ϋ) corresponding to x in X. There exists a sίmplίcial map f: [0,1] ->

X> with r'(0) = xf and f'{γ'{l)) = 1. The map /*: πt(X, t\f(x)), x) - πtf, /(*))

is a surjectίon.

Proof. In showing that yf exists, it can be assumed that / and hence

Z7 have connected fibres. Indeed, replace γ by the unique lift f: [0,1] ->Z

of r , with f(0) = p(x).

Now Xr is a compact polyhedron by (0.5.1.3). If it is connected, it
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will be path connected and γf will then clearly exist. To see that it is
connected, assume otherwise. Thus let X' — U U V where U (Ί V = φ
and U and V are non-trivial open sets. One quickly concludes that U =
f'-\A) and V = f;~ι(B) for some disjoint sets A and B of [0, 1]. Since U
and V are closed and compact, so are A and JB. This contradiction implies
Xf is connected.

Now let γ represent an element of πx(Y, f(x)). The map γ"\ [0, 1] ->X
that γf induces represents an element of πx{X,p~ι(p{x)), x). Considering
(0.5.2) and the commutative diagram:

[0,1] ±^X

r

[o, I]-UY

we see that the lemma is proven. •
By (2.3.3) k can be and is assumed > 1 without loss of generality.

(2.3.4) LEMMA. In proving (2.3), it can be assumed without loss of
generality that f has connected fibres.

Proof. Let / = gop as in (2.1) and consider the commutative diagram:

),x)-^π}{Z,p{X))

(2.3.4.1)

The vertical arrows are of course isomorphisms for j > 1 and thus, for
j > 1, p% is an isomorphism if and only if /* is. Let j = 1 and assume
that p* is an isomorphism. By (2.3.3), f^ is a surjection. Assume it is
not an injection. Let γ: [0,1] ->X with f(0) = x be a simplicial map re-
presenting an element of πλ(X, f~\f(x)), x) going to zero under /*. Since
foγ represents the trivial loop in Y, one concludes there is a unique lift
γ':[091]->Z of foγ satisfying γ\l) = γ'(0) = p(x) and representing the
trivial loop in Z. Noting that y' = p o γ we see that γ represents an ele-
ment of πx{X9 p~λ(p(x)), x)> Since p*(γ) is trivial and p* is an isomorphism,
it follows that γ is trivial as an element of πx{X,p~x(p{x))y x) and hence
of ffl(X,/-V(4 4 D

(2.3.5) LEMMA. If k > 1 in (2.3), ί/iβn πi(Y9f(x)) « πx{X9f'
ι{f{x)\ x) if

Ύ is simply connected.

https://doi.org/10.1017/S0027763000019814 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000019814


HOMOGENEOUS COMPLEX MANIFOLDS 115

Proof. We can by (2.3) assume without loss of generality that / has

connected fibres. Using the exact homotopy sequence of the pair

(X,f~\f{%))), and the facts that Y is simply connected, and f~\f{x)) is

connected, we see that we must show:

(2.3.5.1) πx(f-\f(x)\ x) > π^X, x) > 0 .

I proceed to do this with a trick I learned from [5]. Let g: X—• Xbe the

connected covering associated to the image of πx(f~\f{x)), x) in πx(X, x).

Let £f be the sheaf of germs of sections of g. Let f*(Sf) be the direct

image sheaf of Sf under /. Recall that /*(«*% = l i m ^ ^ Γ(f-\G), S?) where

°ll(y) denotes the set of open sets of Y containing y. Now f*(<S?) is locally

constant. To see this, let U and V with UΌ.f~\V) Ώ.f^iy) be the open

sets of (2.1.2) for a point yeY. Now (2.1.2) implies that the images of

πxiUyZ), πtif-^V), z), and πtf^ifiz)), z) in πx(X,z) are the same for ze

f~\V). Thus any section of g:X-+ X over f~ι(f{z)) extends to a section

of g: X-> X over /-'(V). Thus Γ{f-\V), 2>) « Γ(V, f^)) « UW\m for

all zef~x{V). Thus / ^ ( ^ is locally constant and hence constant, since Y

is simply connected. Now if (2.3.5.1) is false, then f^)\nx) has at least

two elements and therefore Γ(Y,f*(y)) & Γ*(X,έ?) has a non-trivial ele-

ment. This contradicts the fact that g\X->X is a non-trivial connected

cover. •

(2.3.6) LEMMA. Let f:X—>Y be a k quasi fibratίon with k > 1 and

connected fibres. Given any point yeY, there is a neighborhood V of y

such that given any contractible open set W of V, we have:

(2.3.6.1) tfiίΛW, z) « πtfΛfiz)), z)

for any zef~\W).

Proof. Let V and U be as in (2.1.2). Let Wbe any contractible open

set of V. By (2.1.2), the map πι(f~ι(f(z)\ z)->πι(U,z) is an injection for

zef~\V). Thus the map πtf-Wz)), z)-+πtf-^W), z) is an injection for

zef-\W). Now by (2.3.5) the map π1(f-1(f(z)),z)^π1(f~1(W),z) is a sur-

jection for zef'\W). D

(2.3.7) LEMMA. Let B be the closed unit ball of Rn. Given an ε > 0,

there exists a set {Fu , FN) of open sets of B for some N> 0 such that:

(2.3.7.1) Ei = {Jj^i Fj is contractible for each i ,

(2.3.7.2) the diameter of each Ft in the Euclidean metric on B is <ε ,
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B = EN = [JJ^N Fj and for all i, Et (Ί Fi+1 is contractible and

non-empty.

Proof. I will assume n = 3 for simplicity of notation. Note that B

is homeomorphic to 7 X / X I where I is the unit interval. Let a, 6, and

c be positive integers less than or equal to a positive integer n. Let

Fn(a, 6, c) denote the set

z)elx Ix

b-ί 1

a - l

n Sn n Sn

< _£_ + 1 \
n Sn)< : y < + <

?ι 372 71 3 r c ' 7i 3n

Now choose τι large enough so that the Fn(a, 6, c) satisfy (2.3.7.2). Order

the set of triples {(α, 6, c) | α, 6, c are positive integers less than or equal

to a positive integer ή\ by setting (αt, 6U c\) < (α2, 62, c j if αt < α2, or if αt

= az and δi < b2, or if αt = a2 and 6t = δ2 and cx < c2. Using this order-

ing, let Fj denote the j th element of the set of Fn(a, b, c) with α, b and

c less than or equal to n. Clearly the Fά satisfy (2.3.7.1)-(2.3.7.3). •

(2.3.8) LEMMA. Assume Y is homeomorphic to the unit ball, B, in RM

for some M>\ and that f has connected fibres. Then (2.3.1) holds.

Proof. By (2.3.5) it can be assumed that k > 1. First let me show

that:

(2.3.8.1) πx{f-\f{x)\ x) > π^X, x)

is an isomorphism for all xe X*

Surjection was shown in (2.3.5).

Use Lemma (2.3.6) and (2.3.7) and the compactness of B to choose

contractible open sets {Fu , FN} of B such that:

(2.3.8.2) Et = Ujzi Fj is contractible for each i,

(2.3.8.3) B = EN and Et Π Fi+ι is contractible and non-empty,

and

(2.3.8.4) πtΓifiz)), z) • πtf'^iT), z)

is an isomorphism for each contractible open set Ψ* Q Fj where j < N

and each zef*\iT).

Now assume as an induction hypothesis that given an Nf < iV we

have
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(2.3.8.5) πtΠfiz)), z) • πx{f-\EΛ z)

is an isomorphism for all zef~1{EN,).

Let zef-\EN, Π FN,+1). By (2.3.8.4) applied to IT = FN,+ί and EN, Π

FN'+D by (2.3.8.5) and by the Seifert-van Kampen theorem, one concludes

that:

(2.3.8.6) πtf-m*)), z) > πx(Γ{EN,+x\ z)

is an isomorphism for zef'1{FNf+x Γ) EN,). Now as soon as we show that

(2.3.8.6) holds for all zef~ι(EN,+ϊ) then by induction we will have shown

π^f^ifix)), x) injects into πλ(X, x) for all xeX and will have established

(2.3.8.1). Thus we need only the claim:

(2.3.8.7) CLAIM. Let f:X->Y be a k quasi-fibration with connected

fibres. If k > j > 1, then π//" 1 (/(#)), x) injects into ττ;(X, x) for one xe X

if and only if it injects for each xe X.

Proof of Claim. Indeed using (2.1.2) we note that the condition of

being an injection holds for xef~\y) where y belongs to open set W of

points of y. Considering (2.1.2) at a point ω e W — W where it is not an

injection, we get an immediate contradiction. •

Now let g:X-+X denote the simply connected cover of X. Let f:X

—>B denote the map fog. By (2.3.8.1) it has connected and simply con-

nected fibres. Let U and V be as in (2.1.2) for some y e B. By taking

the inverse image of U under g we get an open set U such that:

(2.3.8.8) P2ΠV)

and

(2.3.8.9) given any z e f'\V) we have that TΓ/C/, f'ι(f{z)\ z) = 0 for j < k .

Now we see that given any Abelian group &9 we have by (0.6) that

for ze

(2.3.8.10) H'(U9 f-\f(z))> &) = 0 for j < k .

Now let me show that

(2.3.8.11) f(j)($)\y = H>(Γ(y), 9)

for any y e B where fU){^) denotes the j th direct image sheaf of of. This

follows since we could use (0.5.1.2) and the properness of / to choose a

cofinal set of open sets, {Uλ} around f~ι(y) such that f~\y) was a strong
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deformation retract of each Uλ. Now f~ι(y) is a strong deformation retract

of each g'^Uχ) and given any open set J^f By, there is a Uλ with f~\y) <Ξ

g~\Uλ) £ Λ 1 ^ ) . Thus (2.3.8.11) is shown.

Now note:

(2.3.8.12) fω(9) is constant for j < k, and

0 > H%B, fω(9)) > fw(9)\v for all y e B .

The first assertion is an immediate consequence of (2.3.8.10) and (2.3.8.11).

To see the second assertion, note that the first assertion and the

contractibility of B imply by the Leray spectral sequence that H°(B, f(k)(&))

= Hk(X, @). Let e be a non-zero element of H°(B, f(k)(@)). Assume e goes

to zero in fm(&)\y for yeB. Choose a strong deformation retract g~\U^)

of f~\y) as in the paragraph after (2.3.8.11). Using this and (2.3.8.11),

λ 9) « H\f-\y\ 9) « fw(9)\v. Thus, noting that

I
I

where f~\z) e UXf we see that e must go to zero in fik)(9)\t for z in a

neighborhood of y. Thus the set F oΐ y such that e goes to 0 in fw(9)\y

is open in B, Using (2.3.8.10), F is seen to be closed also. Thus using

the fact that B is connected, F — B or the empty set. If e is non-zero

than F must be the empty set.

Now recall [30, p. 100] that there exists a Serre fibration s:Sf -> B

where £f is some CW complex and a continuous map μ: X-> Sf such that

(2.3.8.13)

commutes. Further μ is an homotopy equivalence and thus Sf is simply

connected, since X is simply connected. From the long exact homotopy

sequence of a Serre fibration, the fact that μ is a homotopy equivalence,

and the fact that B is contractible, we conclude that the fibres of s are

simply connected.
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Let E2

ab(ϊ) = Ha(B, sm(&)) and E2

ab(2) = Ha(B,f{b)(&)) where ^ is an

arbitrary Abelian group.

We have, by means of (2.3.8.13), a morphism μ*: Ef{l) -* #2

αδ(2) between

these Leray spectral sequences, which gives rise to an isomorphism on the

JSoo terms, since μ is an homotopy equivalence. Now /(δ)(^) is a constant

sheaf for b < k by (2.3.8.12) and s(6)(^) is a constant sheaf for all 6 since

s is a Serre fibration. Thus E2

b(ί) = 0 if a Φ 0 and b <. k for i = 1 and

i = 2 since B is contractible. Thus #3

w(i) = ®a+β=λ EaJ{i) for Λ < k. Thus

we conclude that:

μ*:siλ)(&)\v >fω(?)\v

is an isomorphism for λ < k and an injection for λ — k. The latter fol-

lows from the fact (2.3.8.12) that:

is an injection. Now this implies:

is for all y e B an isomorphism for λ < k and an injection for j = k. Thus

since 9 is arbitrary and all fibres are connected and simply connected,

we conclude from (0.6) that:

(2.3.8.14) μ*: πjCfXfix)), x) > π^Mμix))), μ{x))

is for all xe X, an isomorphism for j < k and a surjection for j = £.

Now consider the long exact sequences of the pairs (X, /^(/(x))) and

))), which for simplicity I denote (X, F^) and (^, F2) respectively:

0

ί
(2.3.8.15) 0 —* πk(F2,μ(x)) — > π£

J χ) _ Jχ) _ β ( } F χ) _ _ ίr _o

Now using (2.3.8.14), (2.3.8.15) and the five lemma, we conclude that :

(2.3.8.16) πj(X, Fu x) > π&Sf, F2, μ{x))

is an isomorphism for all j < ft. And by noting the fact that:
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JΓ/X, FU X) • *W

commutes and that the right vertical arrow is an isomorphism, we are

finished. •

(2.3.9) LEMMA. Let g: W -> Y be a sίmplicίal map from a polyhedron

to Y. Assume f has connected fibres. Let f'\Xf -> W be the pullback of

/: X-> Y. Then f: Xr -> W is a k quasί-fibratίon.

Proof. By (0.5.1.3) X' is in a natural way a polyhedron and /' is a

simplicial map. Note that /' has connected fibres. Let y eW and let V

and U be as in (2.1.2) for g(y) = z. Let if and y be neighborhoods of

ff~ι(y) in Xr and y in W respectively such that:

(2.3.9.1) fr~\y) is a strong deformation retract of if, "f is contractible,

and ff'\r) c TΓ, and

(2.3.9.2) gif'VT)) £ ^ .

Note that (2.3.9.1) is possible by (0.5.1.2). Now let gf: Xr ->X be the map

induced by g. We have the commutative diagram:

(2.3.9.3)

if -?-> U

for u e f , Now the top arrow is a homeomorphism and the left vertical

arrow is a homotopy equivalence when υ = y. Thus, letting v = y, we

conclude from (2.1.2) that:

(2.3.9.4) gί: πj(if, x) • *,(£/, g'(x))

is, for xef'~ι(y), an isomorphism when j < k and a surjection when jf =

k. Since / has connected fibres, it follows that f'~x(y) « f~ι(g{y)) is con-

nected and hence if and U are connected. Thus since if is a polyhedron

it is pathwise connected. It follows that g* is an isomorphism in (2.3.9.4)

for j < k and a surjection for j = k for all weif. The desired vanishing

oΐ πj(if,f'-\f'(w)),w) for we/'^OO follows from the last sentence and

(2.1.2) applied to (2.3.9.3). •
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Consider:

(2.3.10) πj(X, Γ(f(x)), x) —~> *j(Y, /(*))

where we assume without loss of generality that / has connected fibres.

(2.3.11) CLAIM. (2.3.10) is an injection for j < k.

Proof. Let B be the closed unit ball in Rj and let e = (1, 0, 0, , 0).

Let γ:(B,dB)->{X,f~λ{f(x))) be a simplicial map with γ(e) = x, such that

the element foγ induces in π/Y,/(#)) i β trivial. Let Bf be the closed unit

ball in R3+1 and let h: dB' -* Y be the map induced by /o γ. Let h: B; ->

Y with h\BB> = Λ be a simplicial map which exists by (0.5.1.1) and the fact

that h gives rise to a trivial element of π/Y,/(x)). By (2.3.9), one pulls

/ back to get a k quasi-fibration /': X7 —> B' with h!: X' —> X the induced

map. Let x' e X7 be such that h!(x!) = x. Now p induces a map / : (B, dB)

-+ (X'9 f-ι(fW>)) By (2.3.8) the map πj(X\ f'-ι(f'&)\ xf) -> πj(B\ f'(x)) « 0

is an isomorphism. This implies that yf and hence γ are trivial elements

of πjiX'tf'-WixO), x') and π3{XJ-\f{x)\ x) respectively. Π

(2.3.12) CLAIM. (2.3.10) is a surjection j < k + 1.

Proo/. Let B be the closed unit ball in R3 with e = (1, 0, 0, , 0).

By (2.3.3) we can assume that j > 1. Let γ: (B9 dB) -> (Y,f(x)) be a sim-

plicial map representing an element of πj(Y9f(x)).

Now let f':X'-+Bbe the pullback of / by r. By (2.3.9) it is a A

quasi-fibration. Let h:dB-+X' be the continuous map such that /Ό/ι is

the identity and γ' oh(e) = x where γ':X' ->X is the map induced by j \

By (2.3.8) we have the exact sequence:

πUf'ΛΠ*')), x') —> *UX', «0 —> 0 .

Thus there is a continuous map H: dB X [0,1] —> X' with H\dBx0 = /i,

ff(3B χ l ) c f'-\f'(x))9 and H(e, ί) = x' for all ί e [0,1]. Let H'\ (B9 dB) ->

(X9f~
1{f(x))) be the map induced by γoH. We will be done if we show

that f°H' induces the same element of TΓ/Y, f(x)) as γ. This will follow

from (0.5.2) by showing that the map H: B->B induced by f © H is the

identity on dB. This is clear since f oH\dBx0 — f oh is the identity. •

It is not hard to use the above to prove 'generalized Lefschetz' theo-

rems of a type somewhat different than those in § 3. Here we will content

ourselves with a simple application that illustrates some of the restrictions
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imposed by λ convexity. Recall that a connected complex manifold W is

λ convex in the sense of Andreotti-Grauert [2] if there is a proper C°°

map /: W—> [0, oo) whose Levi form has at most λ — 1 non-positive eigen-

values on the complex tangent space of each point of W outside of a

compact set K c: W. If X is a compact complex manifold and A is an

analytic subspace of X, then X — A is λ convex if and only if X — A

possesses an asymptotically λ convex exhaustion function [see 28, Lemma

(0.3.3) for a proof of this].

(2.4) COROLLARY. Let A be a connected complex submanifold of P^.

Let A! be the cone on A from a point, x, in Pc+1 where P£ is assumed to

be a linear subspace of Pg+ί. Then H\A, C) Φ 0 implies P^+ 1 - Af cannot

be λ convex for λ < N — 2.

Proof, Let £ denote the P% in the hypotheses that contains A. Then

H\L Π A!, C) = IΓ(A, C) φ 0. Further H\U Π A', C) = 0 where U is any
Pc gotten by taking the cone from the x of the hypotheses on a P^" 1

inside L. But an easy consequence of (2.3) and (1.3) is that as an abstract

group, H\L Π A', C) is independent of the hyperplane L of P^+1 if 2 <

dimc L — λ = N — λ. •

§3. The generalized lefschetz theorem

(3.0) The following, unless otherwise stated, will be standing notation

and assumptions throughout this section.

(3.0.1) X is a connected homogeneous complex manifold, i.e. there

is a connected Lie group G and a transitive real analytic action p: G X

X-+X where for any geG, p(g,x):{g} X l - > I is a biholomorphism.

Let A be a connected complex submanifold of X and let B be an analytic

subspace of X.

(3.0.2) Assume that there exists a C°° asymptotically λ convex ex-

haustion function / o n U — B where U is an open set of X containing B.

(3.0.3) Assume all irreducible components of A and B have dimension

at least λ.

(3.0.4) Assume that if B is non-compact, then B is connected and

A is compact.

(3.1) I now need some notation and a lemma that do not come into
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the hypotheses of the main results. I therefore suggest that the reader

go directly to the statements and proofs of (3.2), (3.3), and (3.4) and come

back to (3.1) only as needed.

(3.1.1) For convenience I will often denote p(g, x) by xg where geG

and x is either an element or a subset of X. Given a subset S of X,

denote by ps the restriction of p to G X S and by ίs the inclusion of S

in X. Let B = {(g, α) e G X A\age B}, and let β: B -> G X A be the

inclusion map. Let μ:G X B-+ G X Xhe the map μ(g, b) = (g, bg'1). Let

j : B -> G X B denote the map j(g, a) = (g, ag)f and let j : G X A -> G X X

denote the inclusion map. There is the commutative diagram:

GXA

(3.1.2)

w h e r e p , q, π a n d γ a r e p r o d u c t pro jec t ions , p = poμfq = qoμ, a n d π =

π o μ.

(3.1.3) L E M M A . p(B) = G α ^ d p is a d i m c A — λ quasί-fibratίon.

Proof. Let °U = p-\U). Note that μ(G X B) = p~\B). Define F(g, x)

= f(xg) and note that F(xn) -> co for any sequence {xn} c= ̂  — μ(G X B)

that converges to a point in μ{G X B). Since either A or B is compact,

p is proper. This implies that the hypotheses of § 1 are satisfied with

A, G, B , A « i l ( G x A), λ, and F | , n ( f f X i l ) equal to X, S, s/,p, U, λ, and /.

By the transitivity of G, B is non-empty and thus p(B) = G by (1.1).

By (1.2), (1.3), and the definition (2.1) of k quasi-fibration, (3.1.3) is prov-

en. D

(3.2) PROPOSITION. B is connected.

Proof. This is part of Proposition (3.1) of [28]. D

(3.3) PROPOSITION. Given a d < dim c A — λ, πj(A, A Γi B, x) = 0 for

xe A Π B and j < d if and only if π^X, B,b) = 0for beB and j < d.

Proof. We do this in a sequence of lemmas that move us around

(3.1.2). I leave to the reader in each case the check that basepoints are

no problem. This check is trivial on noting that B, A, and G are con-

nected.
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(3.3.1) LEMMA. π/A, A Π B, x) = 0 for x e A Π B and j <d< dim^ A

— λif and only if πό{G X A, β(B), y) = 0 /or ye β(B) and j <d< dimc A — λ.

Proof. Using (3.1.3) and (2.3) we have the following commutative

diagram with exact rows:

Vd d ^ *d+1(G, ̂ ) > π*(p-Kg), β(b)) > πa(G X A , fi(b)) > πd(G, g) > . . .

i
0

where geG and bep~\g), and d = dim cA — λ

Note that p'^iid^) = A Π J5, and use the five lemma to get (3.3.1). •

(3.3.3) LEMMA. TΓ/G X A, β(B), y) = 0 /or jf < d cmd y e /i(S) i/ and

only if πό{q-ι(q(y)\ β(ςrι(q(y))> y) = 0 /or jf < d and y e β(B).

Proof. There is the commutative diagram (cf. (3.1.2))

(3.3.4)

of fiber bundles.

From (3.3.4) we get a commutative diagram of the long exact sequences

of homotopy groups associated to q and q. Exactly as in the last lemma

we prove (3.3.3) by a double use of the five lemma. •

Note (cf. (3.1.2)) that (3.3.4) is the pullback of:

GXB •GXX

(3.3.5)

In particular, j gives a homeomorphism of the pairs (q~ι(q(x)),

'iqix)))) and (TΓ' 1 ^/(Λ))), ̂ TΓ"1 (£(/(*))))) for xeB. This and the same

reasoning as in (3.3.3) applied to (3.3.5) gives:

(3.3.6) LEMMA. π3(q-'(qiy)), βiq-Wy))), y) = 0 for j < d and y e β(B)

if and only if πά(G X X, μ(G X B), x) = 0 for j < d and x e μ(G x B).
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Consider:

G x B • G X Z

(3.3.7)
\

G

where the vertical maps are the product projections. Note that

μ \ V l ά G } x B : {idG} X B > {iάG} X X

is simply the inclusion. By the same reasoning as (3.3) this gives:

(3.3.8) LEMMA. TΓ/G X X, μ(G x B), x) = 0 for j <d and x e μ(G X B)

if and only if πό(X, B, b) = 0 for beB and j < d.

Now simply combine (3.3.1), (3.3.3), (3.3.6), and (3.3.8). •

(3.4) PROPOSITION. If p(g, A) c B for some geG, then πj(X, B,b) = O

for j < dimc A — λ + 1. In particular if B is a compact complex submani-

fold of X, then πj(X, B, b) = 0 for all beB and j < d im c B - λ + 1.

Proof. If p(g, A) cz B then β gives a homeomorphism of p~\g) with

Now consider the commutative diagram of exact sequences with d —

dimc A — λ:

Kd+iiP'Kg), b) > τcd+i(B, b) > πd+1(B, P~\g\ b) >
(3 4-i) I 1 I

**+i(p-\g), β(b)) > πd+ί(G X A, β(b)) > πd+1(G, p(b)) > .

Since A is connected and p'^g) is homeomorphic to A, we have

KoiP'Kg), b) « π*{p~ι(g\ β{b)) = 0. We also have from (2.3) that the right

hand vertical arrow of (3.4.1) is a surjection. Now note that (3.4.1) can

be continued as (3.3.2). Thus by the five lemma πό(G X A, fi(B), β(b)) = 0

for beB and j < d im c A - λ + 1. Using the lemmas (3.3.3), (3.3.6), and

(3.3.8), we get πό(X, B, b) = 0 for b e B and j < dimc A - λ + 1. Take A

— B if B is a compact complex manifold, in order to finish. •

(3.5) COROLLARY. Let X, B, λ etc. be as in (3.0). Let it be assumed

that B is protective with singular set B'. Then
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for all be B and j < d im c B — άimcB' — λ where άimcB' = —1 if Bf is

empty.

Proof. Let A be a submanifold of B of dimension dimc B — dimc B'

— 1 whose intersection with B' is empty. This is possible since B is

projective. Then by (3.4), πό(X, B, b) = 0 for j < dimc A - λ + 1 = dimc B

- dimc β
/ - l - λ + l = dimc B - dimc B' - λ. D

(3.6) PROPOSITION. In, the above results λ can be chosen as:

(3.6.1) codcj3, if B is a manifold and X is a simple Abelian variety,

(3.6.2) codc B, if B is a compact manifold with ample {in the sense

of Hartshorne, i.e., Grauert positive or cohomologically positive in the sense

of Griffiths) normal bundle,

(3.6.3) codc B — min* {n%} + dimc X, if B is a reduced local complete

intersection with at worst isolated singularities, and X = \[ t Gr (rίf nt) where

Gr (rί9 nt) is the Grassmannian of Ptf's in Fg*-

Proof. The above are the main results of [27]. D

(3.7) Remark. The above results are easily checked to be true if A

is replaced by a proper holomorphic immersion φ: A —> X. In this case

we work with the pair (A, φ~\B)) instead of (A, A Π B).

§4. Closing remarks

I have recently shown [cf. 29]:

(4.1) PROPOSITION. Let X = X1 x X2 where Xί is an Abelian variety

with k the minimum of the dimensions of the non-zero Abelian varieties of

Xu and X2 — Π<GΓ( roΛ<) a s ^n (3.6.3). Then given a pure dimensional

complex submanifold A of X, X — A is λ = codc A + dimc X — mini {k, nt}

convex.

Thus, by looking over (3.6), we see that the results of this paper and

[28] immediately apply to a considerably larger class of manifolds.

The next problem is a very pressing one:

(4.2) PROBLEM. Given an analytic set B in a homogeneous complex

manifold X, how do the singularities of B affect the choice of the best /

and λ in (3.0.2).
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The simple result (2.4) shows that the singularities impose interesting

and strong 'local' constraints. It would be hoped that one could show

that the best λ globally allowed for smooth manifolds, would work for B

subject only to the restrictions imposed by singularities [cf. 19 and the

interesting notion t.a.b.].

Now let me mention a few examples.

(4.3) PI X P2

c

n+1 is a submanifold of J 4 n + 2 the An + 2 dimensional

hyperquadric. To see this let {z09 z^ and {w0, , w2n+1} be homogeneous

coordinates on P\ and Pcn+1 respectively. Let <&i3 = w$z5 be the Segre

embedding of P\ X P2

c

n+1 into Pp+\ Let J24w+2 be defined by

n

2-1 (^22,0^22 + 1,1 ^22 + 1,0^22,1/
2 = 0

Note that H\l"n+\ Pλ

c X P2

c

n+\ Z) Φ 0 for n > 1. Thus the bound for A,

a submanifold of l4n+2:

Hq(£An+2, AyZ) = 0 q<2 d i m c A - (An + 2) = 2

that one gets from Barth's theorem for J 4 π + 2 in P£*+3, is sharp.

(4.4) Let Gr (k, n) be the Grassmannian of P£'s in Pg. By using the

formula in [18] or the last chapter of [9], one deduces that the first j such

that Hj (Gr (k, 1 + ή), Gr (k, n), Z) is non-zero is j = 2(n — k + 1). Our

result says that it is zero for j < n — 2k.

(4.5) If X is a simple Abelian variety, then generically, relative to

the moduli of X, H\X, T$) Π H\X, Q) = Q. Thus one can use Proposition

(3.6), Corollary (3.4), and the argument [13, cf. also 7] to show in this

case that any codimension two submanifold of X with dimc X > 6, is

defined by the vanishing to the first order of a holomorphic section of a

holomorphic rank two vector bundle on X. I know no example of a co-

dimension two submanifold of a simple Abelian variety X which is not

topologically a complete intersection, though it is easy to produce ex-

amples that are not holomorphically complete intersections. Indeed, let

0 > φx > E > Θx > 0

be a non-trivial extension of the trivial bundle itself. E is irreducible.

Now by tensoring E with a high power of a very ample line bundle,

one gets sections whose zero sets are not complete intersections.
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I think that the methods of [21] will lead to some non-trivial non-
complete intersections.

Note added in proof. I would like to call attention to the paper
Ampleness and connectedness in complex G/p by N. Goldstein, to appear
in Trans. Amer. Math. Soc. In it the λ that occur in the bounds of our
theorems are computed for all rational homogeneous manifolds. I would
also like to call attention to the generalized '2nd Lefschetz theorem' fo
N. Goldstein, Math. Ann. 246 (1979), 41-68, that bears the same relation
to the 2nd Lefschetz theorem for hyperplane sections as the results in
this paper bear to the 1st Lefschetz theorem for hyperplane sections.
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