FOR SEMI-GROUP RINGS

Bernhard Banaschewski

(received May 12,1961)

For any semi-group S and any ring \wedge with unit 1 (always taken to be distinct from 0 , the neutral element of \wedge under addition) there is known to exist a ring $\wedge[S] \supset S$ which is a \wedge-bimodule such that (i) S is a subsemi-group of the multiplicative semi-group of $\wedge[s]$, (ii) $\lambda s=s \lambda$, (iii) $\lambda(s t)=(\lambda s) t=s(\lambda t)(s, t \in S$ and $\lambda \in \wedge)$ and (iv) S is a \wedge-basis of $\wedge[S]$. This ring is uniquely determined by the se conditions and is usually called the semi-group ring of S over \wedge. It may be described explicitly as consisting of the functions $\mathrm{f}: \mathrm{S} \rightarrow$ ^ which vanish at all but finitely many places, with functional addition $(f+g)(s)=f(s)+g(s)$ and convolution $(f g)(s)=\Sigma f(u) g(v)$ (uv $=s$) as the ring operations, the functional \wedge-bimodule operations ($\lambda \mathrm{f})(\mathrm{s})=\lambda \mathrm{f}(\mathrm{s})$ and $(\mathrm{f} \lambda)(\mathrm{s})=$ $f(s) \lambda$, and each $s \in S$ identified with the characteristic function of $\{s\}$ with values in \wedge.

Via the correspondence $S \rightarrow \mathcal{N}[S]$, every property of rings induces a property of semi-groups, and the natural problem arising here is that of characterizing the latter directly in semi-group terms. In the present note, this problem will be studied for the following condition on semi-groups S :
(NZ) If \wedge has no zero divisors then $\wedge[S]$ also has no zero divisors.

Concerning this and the further condition
(O) S is totally orderable,
(i.e., there exists a total ordering \leq of S such that $s<t$ implies us < ut and su <tu) one has the well-known implication
$(\mathrm{O}) \Rightarrow(\mathrm{NZ})$.

Proof. Any non-zero $x \in \mathbb{N}[S]$ is a sum $\xi_{1} s_{1}+\ldots+\xi_{n} x_{n}$ of $n \geq 1$ terms with uniquely determined non-zero $\xi_{i} \in \Lambda$ if the Canad. Math. Bull., vol. 4, no. 3, September 1961
s_{i} are taken to be distinct. Moreover, it may be assumed that $s_{1}<s_{2}<\ldots<s_{n}$. Now, given any two non-zero elements of $\Lambda[S]$ in this form, $a=\alpha_{1} s_{1}+\ldots+\alpha_{n} s_{n}$ and $b=\beta_{1} t_{1}+\ldots+\beta_{m}{ }^{t} m$, one sees that the product $a b$, if also written in this manner, will have the "leading" term $\alpha_{n} \beta_{m}{ }^{s} n^{t}{ }_{m}$ which is non-zero since $\alpha_{n} \beta_{m} \neq 0$ by hypothesis on Λ. Thus one has ab $\neq 0$.

The essential feature of (0) used in this proof is that it implies a certain other condition for S, namely
(U) For any two finite subsets $F, G \subseteq S$, there exists a unique product in $F G$, i.e., there exists a pair (a, b), $a \in F$ and $b \in G$, such that $a b=x y, x \in F$ and $y \in G$, implies $a=x$ and $b=y$. It is clear that this is all one uses of (O) and that, the refore,

$$
(\mathrm{U}) \Rightarrow(\mathrm{NZ})
$$

Whether the converse of this implication also holds seems an interesting open question. In the case of abelian S this is indeed so, as will be seen later; however, the proof of this draws heavily on the commutativity of S, leaving no indication as to how it might carry over to non-abelian S.

Turning from sufficient to necessary conditions for (NZ), one may consider the Cancellation Law
(C) If $s x=s y$ or $x s=y s$ then $x=y$
for which one has

$$
(N Z) \Rightarrow(C)
$$

Proof. If $x \neq y$ in S then $x-y \neq 0$ in $\wedge[S]$, and since $s \neq 0$ in $\wedge[S]$ for any $s \in S$ one obtains from (NZ) that $s(x-y)$ and ($x-y$)s are both non-zero. Back in S this means that $s x \neq s y$ and $x s \neq y s$.

A similar result, though less general, is ${ }^{1}$

$$
(N Z) \underset{A}{\Rightarrow}(P C)
$$

with the Power Cancellation Law

$$
\text { (PC) If } x^{n}=y^{n} \text { then } x=y \text { for any } n=1,2, \ldots
$$

[^0]Proof. Let $\mathrm{x} \neq \mathrm{y}$ and suppose there exist natural numbers $n>1$ such that $x^{n}=y^{n}$. Then, let k be the first one of these and consider the equations

$$
0=x^{k}-y^{k}=(x-y)\left(x^{k-1}+x^{k-2} y+\ldots . .+x y^{k-2}+y^{k-1}\right)
$$

from which

$$
x^{k-1}+x^{k-2} y+\ldots+x y^{k-2}+y^{k-1}=0
$$

follows in view of $x \neq y$. This latter equation, however, cannot hold if all summands on its left-hand side are distinct, since S is a basis for $\wedge[S]$. Hence one must have $x^{k-i} y^{i-1}=x^{k-j} y^{j-1}$ for some $i, j>i$. By cancellation this leads to $x^{j-i}=y^{j-i}$ with $0<\mathrm{j}-\mathrm{i}<\mathrm{k}$, which contradicts the choice of k .

Combining the last two implications one obtains
$(N Z) \underset{A}{\Rightarrow}(C) \&(P C)$.
Now, here one has arrived at a proposition whose converse (restricted to the abelian case) also holds; i.e.,
$(C) \&(P C) \vec{A}(N Z)$.
It seems that, so far, transfinite methods have always been employed in obtaining this result. Thus a typical proof proceeds through the following steps: (i) By (C), S can be imbedded in a group G and (ii) (PC) implies that this G is torsion free. Hence (iii) G, written additively now, can be imbedded in a module \widetilde{G} over the rational field. (iv) \widetilde{G} has a basis which (v) can be totally ordered and (vi) then be used to order \widetilde{G} lexicographically. This establishes that S is orderable and thus (O) $\Rightarrow(\mathrm{NZ})$ completes the proof. Clearly, the steps (iv) and (v) require transfinite arguments. Of course, this line of reasoning may be shortened somewhat: the orderability of S can actually be deduced directly, without the intervention of \mathbb{G}, by a suitable application of Zorn's Lemma. However, that does not change the essential nature of the proof.

The question which naturally arises here is : Can the implication (C) \& $(P C) \vec{A}(N Z)$ be obtained without the use of transfinite methods? The answer to this turns out to be: yes, and it will now be shown how this can be done.

We introduce the following concept:
DEFINITION. An element a of a subset $F \subseteq S$ is called an extremity of F if, for any natural number $k>0, a^{k}=c_{1} c_{2} \ldots c_{k}$, $c_{i} \in F$, implies $c_{i}=a$ for all i.

Using this notion, one can formulate a further condition on S :
(E) Any non-void finite subset of S has extremities.

In passing, we note that $(O) \Rightarrow(E)$, for if (O) then the greatest and the least element of a finite $F \subseteq S$ with respect to any total ordering of S are clearly extremities of F.

The first step is:
$(C) \&(P C) \underset{A}{\vec{A}}(E)$
Proof. Let the finite set $F \subseteq S$ have an extremity a and consider $F^{\prime}=F \cup\{b\}$ where $b \bar{\epsilon} S$ but $b \notin F$. If b is not an extremity of F^{\prime} there esist $c_{1}, \ldots, c_{k} \in F^{\prime}$, not all equal to b, such that $b^{k}=c_{1} c_{2} \ldots c_{k}$ with $c_{i} \in F^{\prime}$. Cancelling out all $c_{i}=b$ one obtains, after suitable renumbering, $b^{I}=c_{1} c_{2} \ldots c_{1}$. Now, if a also fails to be an extremity of F^{\prime} one has $a^{m}=d_{1} d_{2} \ldots d_{m}$ with certain $d_{i} \in F^{\prime}$, not all equal to a. Moreover, since a is an extremity of F, not all d_{i} can belong to F, i.e., some must be equal to b. Let the se be exactly the d_{i} with $i \leq r$ where $r \leq m$; here, one actually has $r<m$ since $r=m$ leads to $a=b$ which contradicts $b \notin F$. Then, $a^{m}=b^{r} p$ where p is a product of $m-r$ terms from F. Now, $a^{m l}=b^{\operatorname{lr}} p^{I}=c_{1}^{r} c_{2}^{r} \ldots c_{1}^{r} p^{I}$ shows $a^{m l}$ to be a product of $r l+(m-r) l=m l$ factors, all in F, and by the choice of a this implies $c_{1}=\ldots=c_{1}=a$. It follows that $b^{I}=a^{I}$ and hence $\mathrm{b}=\mathrm{a}$ which contradicts $\mathrm{b} \notin \mathrm{F}$.

Thus $F^{\prime}=F \cup\{b\}$ has a or b as extremity. Since the collection of all non-void finite $F \subseteq S$ satisfies the minimum
condition and each $F=\{c\}$ clearly has an extremity, the statement is proved by induction.

Next, we prove
(C) \& (E) $\overrightarrow{\mathrm{A}}(\mathrm{U})$.

Proof. Let $F, G \subseteq S$ be finite and non-void, a an extremity of F and $G=\left\{b_{1}, \ldots, b_{n}\right\}$. If $F G$ does not contain any unique product then the re exists, for each pair (a, b_{i}) some $\operatorname{pair}\left(a_{i}, b_{j}\right)$ with $a_{i} \in F, b_{j} \in G,\left(a_{i}, b_{j}\right) \neq\left(a_{i}, b_{i}\right)$ and $a b_{i}=a_{i} b_{j}$. Hence, there exists a mapping ϕ of $\{1, \ldots, n\}$ into itself such that

$$
a b_{1}=a_{1} b_{\phi(1)}, a b_{2}=a_{2} b_{\phi(2)}, \cdots, a_{n}=a_{n} b_{\phi(n)}
$$

where $a \neq a_{i}$ or $b_{i} \neq b_{\phi(i)}$. By (C) it follows that both conditions, $a \neq a_{i}$ and $b_{i} \neq b_{\phi(i)}$ hold for each i, and the latter means that $\phi(i) \neq i$ for each i. Now, there exists a set $\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{k}\right\} \subseteq\{1, \ldots \mathrm{n}\}$ on which ϕ acts as a cyclic permutation: for instance, the numbers $\phi(1), \phi^{2}(1), \ldots, \phi^{n+1}(1)$ cannot all be distinct, hence there exists a first r such that $\phi^{r}(1)=\phi^{s}(1)$ with some $s<r$ and $\left\{\phi^{s}(1), \ldots, \phi^{r-1}(1)\right\}$ is such a set. Now one obtains

$$
a^{k} b_{i_{1}} b_{i_{2}} \ldots b_{i_{k}}=a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}} b_{\phi\left(i_{1}\right)} b_{\phi\left(i_{2}\right)} \cdots b_{\phi\left(i_{k}\right)}
$$

and hence, by the choice of $\left\{i_{1}, \ldots, i_{k}\right\}$ and by (C),
$a^{k}=a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}$. However, a was taken as an extremity
of F and, therefore, this leads to $a_{i_{1}}=\ldots=a_{i_{k}}=a$ which is a contradiction.

The final step in our argument is $(\mathrm{U}) \Rightarrow(N Z)$ which has already been dealt with, and thus $(C) \&(P C) \underset{A}{\vec{A}}(N Z)$ is established.

Some further relations between the conditions considered
here are:

$$
(N Z) \underset{A}{\Rightarrow}(U), \quad(E) \Rightarrow(P C), \quad(U) \Rightarrow(C)
$$

The first one immediately follows from $(N Z) \vec{A}(C)$ \& (PC)
and $(C) \&(P C) \underset{A}{\underset{A}{*}}(U)$, the second one is obtained by applying (E) to two-element sets and the last one by applying (U) to sets $\{a, b\}$ and $\{c\}$. For abelian S, one now has that the four conditions (U), (C) \& (PC), (C) \& (E), (U) \& (E) are all equivalent to (NZ), and one wonders whether it might be possible to modify any one of these in order to obtain a condition which is generally equivalent to (NZ). In a similar vein, the implications $(O) \Rightarrow(E) \&(U)$ and $(E) \&(U) \underset{A}{\Rightarrow}(O)$ raise the question whether (E) \& (U), or some modification thereof, might be equivalent with (O), either in general or, perhaps, for a restricted class of S such as groups.

In conclusion, we give, as another application of the notion of extremal elements, a characterization of the additive semi-groups of rational numbers. The condition to be considered here is
(2E) Any finite subset of S of at least two elements has exactly two extremities.

Now one has the proposition
(C) \& (2E) $\underset{A}{\Leftrightarrow} S$ is isomorphic to a subsemigroup of Q^{+}.

Here, Q^{+}denotes the additive group of the rational field Q.

Proof. Let S be abelian and satisfy (C) and (2E).
Since $(2 E) \Rightarrow(E) \Rightarrow(P C), \quad S$ is a subsemigroup of a torsion free group G. If rank $G>1$ there exist independent elements $a, b \in S$. Now, for any $c \in S$, consider $F=\{a c, b c, c\}$. If $(a c)^{k+1}=(b c)^{k} c^{l}$ with $k, 1 \geq 0$ and $k+1 \neq 0$ one has $a^{k+1}=b^{k}$ which either contradicts the independence of a and b or the fact that G is torsion free. Hence, $a c$ and, similarly, bc are extremities of F. Next, if $c^{k+1}=(a c)^{k}(b c)^{l}$ with $k, l \geq 0$ and $k+1 \neq 0$ one has $1=a b^{k}$ which again is not possible; thus c is also an extremity of F. However, this contradicts (2E) and the refore rank $G=1$. It follows now from a known theorem that G is isomorphic to a subgroup of Q^{+}, and this
proves the assertion concerning S.
Conversely, let S be a subsemigroup of Q^{+}and suppose $F \subseteq S$ has at least three elements a, b and c. Let $a=f / n$, $b=g / n$ and $c=h / n$ with integers f, g, h and n where $n>0$ and $f<g<h$. Then $(h-f) g=(h-g) f+(g-f) h$ and therefore $(h-f) b=(h-g) a+(g-f) c$ where all coefficients are positive and $h-f=(h-g)+(g-f)$. This shows that b is not an extremity of F. On the other hand, any finite $F \subseteq S$ of at least two elements does have two extremities, namely its least and its greatest element with respect to the natural ordering of Q. Hence, S satisfies (2E).

Hamilton College, McMaster University

[^0]: ${ }^{1}$ In the following, $\Rightarrow \vec{A}$ denotes implication for all abelian S.

