T ${ }_{2}$-GROUPS AND A CHARACTERIZATION OF THE FINITE GROUPS OF MOEBIUS TRANSFORMATIONS

P. J. LORIMER

In recent years a number of algebraic characterizations of the groups of Moebius transformations over finite fields have been given in the literature; see (1, 3, 6). H. W. E. Schwerdtfeger has noticed (4) that the group G of Moebius transformations over the real, complex, and certain other fields has the property:
G contains a subgroup H such that
(i) if $a \notin H, b a b^{-1} \notin H$, and $a^{2} \neq 1$, then there exists exactly one $h \in H$ such that $h a h^{-1}=b a b^{-1}$;
(ii) if $a \notin H$, $b a b^{-1} \notin H$, and $a^{2}=1$, then there exist exactly two $h_{1}, h_{2} \in H$ such that $h_{1} a h_{1}^{-1}=h_{2} a h_{2}^{-1}=b a b^{-1}$.

Any group G having this property he has called a T_{2}-group with respect to the subgroup H; and H is said to be a T_{2}-subgroup of G. If, further, $G-H$ contains an involution, then G is called an S_{2}-group with respect to the subgroup H; and H is called an S_{2}-subgroup of G.

This paper is a study of S_{2}-groups, and includes a description of all finite S_{2}-groups. The following theorem is the main one of interest.

Theorem. If G is a finite group, then G is an S_{2}-group and the centre of G is trivial if and only if G is one of the groups of Moebius transformations over a finite field of characteristic $\neq 2$.

Many of the results of this paper are also proved for infinite groups and are stated without restriction. In particular, all S_{2}-groups with non-trivial centre, whether finite or infinite, may be considered together, and are shown to lie in one of two well-known families of groups.

1. Notations. Upper case latin letters stand for groups and fields; lower case latin letters, and sometimes greek letters, for their elements. $C(a)$ is the centralizer of the element $a, N(K)$ the normalizer of the subgroup K, and $Z(K)$ the centre of the group $K .|K|$ is the order of the group K and $(0,1)$ is the group with two elements.
[^0]
2. Examples of S_{2}-groups.

Example I. Let F be any field of characteristic $\neq 2$. Let G be the group of all regular Moebius transformations

$$
z \rightarrow \frac{a z+b}{c z+d}, \quad a, b, c, d \in F \text { and } a d-b c \neq 0
$$

and let H be the subgroup of G of all similarities

$$
z \rightarrow \frac{a z+b}{d}, \quad a, b, d \in F, a d \neq 0 .
$$

Then H is an S_{2}-subgroup of G. Schwerdtfeger has given a geometrical proof of this result for certain fields in (4).
G may be represented as a group of congruence classes of elements of the group $\mathrm{GL}(2, F)$ of all regular 2×2 matrices over F. If $A, B \in \operatorname{GL}(2, F)$ we define $A \sim B$ if and only if there exists a $\lambda \in F, \lambda \neq 0$ such that $A=\lambda B$. We denote the congruence class containing A by $[A]$. H is then the subgroup of congruence classes

$$
\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right]
$$

with $c=0$. We use these congruence classes in the following proof that G is an S_{2}-group.

Proof. Suppose that

$$
[A]=\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right] \in G
$$

and that

$$
[P]=\left[\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)\right]
$$

is a conjugate of $[A]$. Then there exists a $\lambda \in F$ such that λP is a conjugate of A in GL $(2, F)$. Without loss of generality we may suppose that $\lambda=1$. Then

$$
\begin{align*}
p+s & =a+d, \tag{1}\\
p s-q r & =a d-b c . \tag{2}
\end{align*}
$$

Suppose that $[A] \notin H,[P] \notin H$. Then

$$
\begin{equation*}
r \neq 0, \quad c \neq 0 \tag{3}
\end{equation*}
$$

Further

$$
\begin{equation*}
[A]^{2}=[P]^{2}=1 \leftrightarrow p+s=a+d=0 \tag{4}
\end{equation*}
$$

We seek solutions $[H] \in H$ to the equation $[H][A]=[P][H]$, which is equivalent to seeking solutions to $H A=\lambda P H, \lambda \in F$, where to maintain the
values of the determinants we must have $\lambda^{2}=1$. Now char $F \neq 2$. Thus the equation $\lambda^{2}=1$ has two distinct solutions in F, viz. 1 and -1 .

Suppose that

$$
H=\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right) .
$$

Then $x z \neq 0$ and hence

$$
\begin{equation*}
x \neq 0, \quad z \neq 0 \tag{5}
\end{equation*}
$$

Now $H A=\lambda P H$ implies that

$$
\begin{gather*}
(a-\lambda p) x+c y=0, \tag{6}\\
\lambda r x-c z=0, \tag{7}\\
b x+(d-\lambda p) y-\lambda q z=0, \tag{8}\\
\lambda r y+(\lambda s-d) z=0 . \tag{9}
\end{gather*}
$$

From (6) and (3)

$$
\begin{equation*}
y=-c^{-1}(a-\lambda p) x \tag{10}
\end{equation*}
$$

and from (7) and (3)

$$
\begin{equation*}
z=c^{-1} \lambda r x . \tag{11}
\end{equation*}
$$

These solutions for y and z are consistent with (8) if and only if $p(p+s)(\lambda-1)=0$ and with (9) if and only if $(\lambda-1)(p+s)=0$.

Thus if $[A]^{2} \neq 1$, (10) and (11) give a solution if and only if $\lambda=1$, while if $[A]^{2}=1, p+s=0$ and (10) and (11) give a solution for both values of λ; i.e. if $[A]^{2} \neq 1$ the only solution is

$$
[H]=\left[\left(\begin{array}{cc}
c & -a+p \\
0 & r
\end{array}\right)\right],
$$

while if $[A]^{2}=1$, there is a further solution

$$
[H]=\left[\left(\begin{array}{cc}
c & -a-p \\
0 & -r
\end{array}\right)\right] .
$$

The congruence class

$$
\left[\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\right]
$$

lies in $G-H$ and is an involution. Hence G is an S_{2}-group.
Example II. Let I be a commutative integral domain with unit 1 such that $1+1 \neq 0$, and let S be the set of all regular 2×2 matrices with elements in J. We define an equivalence relation \sim on the elements A, B, \ldots of S by setting $A \sim B$ if and only if there are non-zero $\lambda, \mu \in I$ such that $\lambda A=\mu B$. It is easily shown that S / \sim is a group which is isomorphic to the group of Moebius transformations of the field of quotients of J and is hence an S_{2}-group.

Example III. Suppose that $G \simeq(0,1)^{\alpha}$, where $(0,1)$ is the group with two elements and α is any cardinal number. Let H be any subgroup of G such that $H \simeq(0,1)$. Then H is a S_{2}-subgroup of G.

Example IV. Let H be any abelian group containing just one involution. We extend H to a group G by adjoining to H an element $t: t^{2}=1$ and $t h t^{-1}=h^{-1}$ for all $h \in H$. H is then a S_{2}-subgroup of G.

In the following it is shown, in the case where G is a finite group, that groups of these types are the only S_{2}-groups. The result is extended to the infinite case when the centre of G is not trivial.
3. Five lemmas. The following five lemmas, giving general information on T_{2}-groups, will be useful in later theorems. The lemmas in this section are denoted by numbers; all other lemmas of the paper are denoted by upper case latin letters.

Lemma 1. If H is a T_{2}-subgroup of $G, h \in H$, and h commutes with an element of $G-H$, then $h^{2}=1$.

Lemma 2. If H_{1} and H_{2} are proper T_{2}-subgroups of G and $H_{1} \subseteq H_{2}$, then $H_{1}=H_{2}$.

Lemma 3. If H is a T_{2}-subgroup of G and K is a subgroup of G such that $H \subseteq K$, then H is a T_{2}-subgroup of K.

Lemma 4. If H is a T_{2}-subgroup of G and $g \notin H$, then
(i) g has exactly $|H|$ conjugates in $G-H$ if $g^{2} \neq 1$,
(ii) g has exactly $\frac{1}{2}|H|$ conjugates in $G-H$ if $g^{2}=1$.

Lemma 5. If $H \simeq(0,1)$ is an S_{2}-subgroup of a group G, then $G \simeq(0,1)^{\alpha}$ for some α.

Proof. Suppose that $H=\{1, h\}, h^{2}=1$. Then $C(h)=\left\{g \mid g \in G, g^{2}=1\right\}$. Thus every element of $C(h)$ is an involution and hence $C(h) \simeq(0,1)^{\alpha}$ for some α.

Suppose that $a_{1}, a_{2} \in C(h)-H$ and that a_{2} is a conjugate of a_{1}. Then, by the property S_{2} there is an $\bar{h} \in H$ such that $\bar{h} a_{1} \bar{h}^{-1}=a_{2}$, which is impossible as \bar{h} commutes with both a_{1} and a_{2}. Thus, if $a \in C(h)-H$ and a is not a conjugate of h, then $a \in Z(G)$. Furthermore, h has at most one conjugate in G.

Suppose that h_{1} is a conjugate of h. Then $C(h)-Z(G)=\left\{h, h_{1}\right\}$. Hence, as $C(h) \cap Z(G)$ is a subgroup of $C(h), C(h) \cap Z(G)=\left\{1, h h_{1}\right\}$ and thus $C(h)=\left\{1, h, h_{1}, h h_{1}\right\}$.

Now h has only one conjugate in G. Therefore $C(h)$ has only one coset in G. Suppose that $a \in G-C(h)$. Then $a h a^{-1}=h_{1}$ and $a^{2} \in C(h)$. Obviously a^{2} is different from $1, h$, or h_{1} and $a^{2} \neq h h_{1}$, for then $(h a)^{2}=\left(h h h_{1}\right)^{2}=h_{1}{ }^{2}=1$ and thus $a \in H$.

Thus we have derived a contradiction and h can have no conjugates in G, i.e. $h \in Z(G)$. Hence $G=C(h) \simeq(0,1)^{\alpha}$.
4. Normal S_{2}-subgroups. Suppose that G has the property S_{2} with respect to H. The main result of this section is that the following are equivalent:
(i) $H \triangleleft G$,
(ii) $Z(G) \neq 1$,
(iii) G and H are described in either Example III or Example IV.

Many of the results have applications later in the paper.
Theorem 1. If H is a normal T_{2}-subgroup of G, then either
(i) $g^{2}=1$ for all $g \in G-H$ or
(ii) $g^{2} \neq 1$ for all $g \in G-H$.

Proof. Suppose that $a, g \in G-H, a^{2}=1, g^{2} \neq 1$. By property T_{2}, there exists an $h \in H, h \neq 1$, such that $h a h^{-1}=a$. Hence $C(a) \cap H=\{1, h\}$. But, as $H \triangleleft G, C(a) \cap H \triangleleft C(a)$, and hence every element of $C(a)$ is an involution. This is obviously true for every $b \in G-H$ satisfying $b^{2}=1$.

Suppose that $c \in G$. Then, as $H \triangleleft G, c a c^{-1} \notin H$ and hence there is an $h_{1} \in H$ such that $h_{1} a h_{1}^{-1}=c a c^{-1}$. Hence $c \in h_{1} C(a) \subseteq \mathrm{H} C(a)$. Here c is any element of G and thus $G=H C(a)$. Similarly $G=H C(g)$.

Since $g^{2} \neq 1$, property T_{2} implies that $C(g) \cap H=1$. Hence $C(g) \simeq G / H$. Also $C(a) \cap H=\{1, h\} ;$ therefore $C(a) /\{1, h\} \simeq G / H$ and $C(g) \simeq C(a) /\{1, h\}$. But every element of $C(a)$ is an involution. Hence every element of $C(g)$ is an involution, which is a contradiction as $g^{2} \neq 1$.

Theorem 2. If H is a normal S_{2}-subgroup of G and $g \in G-H, h \in H$, then $g h g^{-1}=h^{-1}$.

Proof. $G-H$ contains an involution and hence, by Theorem 1, every element of $G-H$ is an involution. Therefore $g^{2}=1$ and if $h \in H,(g h)^{2}=1$, i.e. $g h g^{-1}=h^{-1}$.

Corollary 1. H contains exactly one involution; for if $h \in H$ is an involution, $g h g^{-1}=h$.

Corollary 2. H is abelian; for $h \rightarrow h^{-1}$ is an automorphism of H.
Corollary 3. If h is the involution of H, then $Z(G)=\{1, h\}$.
Theorem 3. If H is a normal S_{2}-subgroup of G, then either (i) $H \simeq(0,1)$ and $G \simeq(0,1)^{\alpha}$ for some α or (ii) $G / H \simeq(0,1)$.

Proof. Suppose that $t \in G-H$. Then $t^{2}=1$ and $|C(t) \cap H|=2$. Suppose that $|G| /|H|>2$.

Suppose that $u \notin H, u \notin t H$. Then $u t \notin H$ and hence by Theorem 1 , $u^{2}=1(u t)^{2}=1$. Thus $u t u^{-1}=t$. Hence t commutes with every element of $G-\{H \cup t H\}$. Thus t commutes with every element of $u H$ and hence with every element of H. This yields

$$
H \subseteq C(t) \cap H \simeq(0,1)
$$

Hence $H \simeq(0,1)$ and every element of G is an involution, i.e. $G \simeq(0,1)^{\alpha}$ for some α.

Alternatively $G / H \simeq(0,1)$.
Theorem 4. H is a normal S_{2}-subgroup of G if and only if H and G are described by either Example III or Example IV.

Theorem 5. Let H be a T_{2}-subgroup of G but not necessarily a normal subgroup of G. Let h be an involution of H. Then $C(h) \cap H$ is a normal T_{2}-subgroup of $C(h)$.

Proof. Write $C(h) \cap H=K$ and suppose that $a \in C(h)-K$. Let $b a b^{-1}$ be any conjugate of a such that $b a b^{-1} \in C(h)-K$. Suppose that $h_{1} \in H$ and $h_{1} a h_{1}^{-1}=b a b^{-1}$. Then $b a b^{-1} \in C(h)$ and thus $h_{1} a h_{1}^{-1} \in C(h)$, i.e.

$$
h_{1} a h_{1}^{-1} h=h \cdot h_{1} a h_{1}^{-1} .
$$

Therefore $h_{1}^{-1} h h_{1} \in C(a) \cap H$. But $C(a) \cap H=\{1, h\}$. Hence $h_{1}^{-1} h h_{1}=h$, i.e. $h_{1} \in C(h)$. This yields $h_{1} \in C(h) \cap H$.

Now $a \in C(h)$ and hence $a^{2}=1$. Hence by the property T_{2}, there are $h_{1} h_{2} \in H$ such that

$$
h_{1} a h_{1}^{-1}=h_{2} a h_{2}^{-1}=b a b^{-1},
$$

and by the above $h_{1}, h_{2} \in C(a) \cap H$. Thus $C(a) \cap H$ is a T_{2}-subgroup of $C(a)$.
Suppose that $t \in C(a)-K, h_{1} \in K$. Then $t^{2}=1$ and $\left(t h_{1}\right)^{2}=1$. Hence $t h_{1} t^{-1}=h_{1}^{-1}$. Therefore $t K t^{-1}=K$, i.e. $K \triangleleft C(a)$, i.e. $C(a) \cap H \triangleleft C(a)$.

Corollary. If h is an involution of H and h commutes with an element of $G-H$, then $C(h) \cap H$ contains just one involution, viz. h.

Proof. From Theorem 4, $C(h) \cap H$ must be one of the T_{2}-subgroups of Examples III or IV.

The following theorem based on Theorems 4 and 5 will be useful in later sections.

Theorem 6. $(0,1)^{2}$ cannot be an S_{2}-subgroup of any group.
Proof. By Theorem 4, (0,1$)^{2}$ cannot be a normal S_{2}-subgroup of any group. Suppose that $H \simeq(0,1)^{2}$ is an S_{2}-subgroup of G and $h \in H$. Then $h^{2}=1$, and by Theorem $5 C(h) \cap H$ is a normal S_{2}-subgroup of $C(h)$. But H is abelian and hence $C(h) \cap H=H$. Hence $C(h)=H$. Thus no element of H commutes with an element of $G-H$ and G is not an S_{2}-group.

Theorem 7. If H is an S_{2}-subgroup of G and $Z(G) \neq 1$, then $H \triangleleft G$.
Proof. Suppose that $Z(G) \cap H \neq 1$. Let $h \in Z(G) \cap H$. Then h commutes with an element of $G-H$. Hence $\hat{h}^{2}=1$, and by Theorem $5 C(h) \cap H \triangleleft C(h)$, i.e. $H \triangleleft G$.

Suppose that $Z(G) \cap H=1$. Then $G-H$ contains an element, g say, of
the centre. g commutes with an element of H and hence $g^{2}=1$. Thus g commutes with exactly two elements of H and commutes with every element of G.

Thus $H \simeq(0,1)$. Hence, by Lemma $6, G \simeq(0,1)^{\alpha}$ for some α and $H \triangleleft G$.
We have now proved the main theorem of this section.
Theorem 8. If H is an S_{2}-subgroup of G, then the following are equivalent:
(1) $H \triangleleft G$,
(2) $Z(G) \neq 1$,
(3) H and G are described by either Example III or Example IV.

5. Structure theorems for S_{2}-groups.

Theorem 9. If H and \bar{H} are two T_{2}-subgroups of a group G and
(1) $G \neq \bar{H} H$,
(2) $H \nsim(0,1)$,
then H and \bar{H} are conjugate subgroups of G. In fact if $g \in G-\bar{H} H$, then $g H^{-1}=\bar{H}$.

The proof proceeds by a number of lemmas.
Lemma A. Let $g \notin \bar{H} H$. If $\bar{h} \in \bar{H}$, then $g^{-1} \bar{h} \notin H$; and if $h \notin H$, then $g h \notin \bar{H}$.
Lemma B. If $g \notin \bar{H} H, h \in H-\bar{H}$, and $h^{2} \neq 1$, then $g h g^{-1} \in \bar{H}$.
Proof. Suppose that $g h g^{-1} \notin \bar{H}$. Then $h \notin \bar{H}, g h g^{-1} \notin \bar{H}$, and hence by the property T_{2} there is an $\bar{h} \in \bar{H}$ such that $g h g^{-1}=\bar{h} h \bar{h}^{-1}$. Then $g^{-1} \bar{h} \in C(h)$. But by Lemma A $g^{-1} \bar{h} \notin H$ and hence $h^{2}=1$.

Lemma C. If $g \notin \bar{H} H, \bar{h} \in \bar{H}-H$, and $\bar{h}^{2} \neq 1$, then $g^{-1} \bar{h} g \in H$.
The rest of the proof consists in proving the equivalent of Lemma B for the case $h^{2}=1$.

Lemma D. If $g \notin \bar{H} H$ and $g^{2}=1$, then $g \notin H, g \notin \bar{H}$ and hence, by the property T_{2}, there are $h \in H, \bar{h} \in \bar{H}, h \neq 1, \bar{h} \neq 1$ such that $g h=h g$ and $g \bar{h}=\bar{h} g$. We show that $h=\bar{h} \in H \cap \bar{H}$.

Proof. Suppose that $\bar{h} \notin H$ and $h \notin \bar{H}$. We show firstly that $\bar{h} h \bar{h}^{-1}=h$.
$\bar{h} \notin H$ and, by Lemma $1, \bar{h}^{2}=1$. Thus there exists a unique $h_{1} \in H, h_{1} \neq 1$, such that $h_{1} \bar{h} h_{1}^{-1}=\bar{h}$. Then $\bar{h}=g \bar{h} g^{-1}=h_{1} \bar{h} h_{1}^{-1}$. Hence $g^{-1} h_{1} \in C(\bar{h})$. But $g^{2}=1$; hence $g=g^{-1}$. Thus $g h_{1} \in C(\bar{h})$ and by Lemma A, $g h_{1} \notin \bar{H}$. Thus by the property $T_{2},\left(g h_{1}\right)^{2}=1$, i.e. $h_{1} g h_{1}{ }^{-1}=g$ as $h_{1}{ }^{2}=1, g^{2}=1$. But $h g h^{-1}=g$ and h is determined uniquely. Hence $h=h_{1}$ and $h \bar{h} h^{-1}=\bar{h}$.

We now show that if $h_{1} \in H-\bar{H}, h_{1} \neq h$ and $h_{1}{ }^{2}=1$, then $g h g^{-1} \in \bar{H}$.
Suppose the contrary, i.e. there is an element

$$
h_{1} \in H-\bar{H}, h_{1} \neq h, h_{1}{ }^{2}=1 \text { and } g h_{1} g^{-1} \notin \bar{H} .
$$

Then $h_{1} \notin \bar{H}, g h_{1} g^{-1} \notin \bar{H}$ and hence by the property T_{2}, there are $\bar{h}_{1}, \bar{h}_{2} \in \bar{H}$
such that $g h_{1} g^{-1}=\bar{h}_{1} h_{1} \bar{h}_{1}^{-1}=\bar{h}_{2} h_{1} \bar{h}_{2}^{-1}$. Thus $g^{-1} \bar{h}_{1} \in C\left(h_{1}\right)$ and by Lemma A, $g^{-1} \bar{h}_{1} \notin H$. Hence, by the property $T_{2},\left(g^{-1} \bar{h}_{1}\right)^{2}=1$, i.e. $g^{-1} \bar{h}_{1} g=\bar{h}_{1}^{-1}$ as $g^{2}=1$.

Suppose that $\bar{h}_{1} \notin H$, and thus $\bar{h}_{1}{ }^{-1} \notin H$. Then $\bar{h}_{1}{ }^{2}=1$; for if $\bar{h}_{1}{ }^{2} \neq 1$, we have by Lemma C that $g^{-1} \bar{h}_{1} g \in H$, i.e. $\bar{h}_{1} \in H$. Hence $g^{-1} \bar{h}_{1} g=\bar{h}_{1}$. But $g^{-1} \bar{h} g=\bar{h}$ and this determines \bar{h} uniquely. Hence $\bar{h}_{1}=\bar{h}$ and

$$
g h_{1} g^{-1}=\bar{h}_{1} h_{1} \bar{h}_{1}^{-1}=\bar{h} h_{1} \bar{h}^{-1} .
$$

Therefore $g^{-1} \bar{h} \in C\left(h_{1}\right)$. But $g^{-1} \bar{h}$ commutes with $h \in H$ and this determines h uniquely. This yields $h=h_{1}$, contrary to supposition. Thus we must have $\bar{h}_{1} \in H$; similarly $\bar{h}_{2} \in H$.

Now the element $\bar{h}_{1}^{-1} \bar{h}_{2}$ lies in \bar{H} and commutes with $h_{1} \notin \bar{H}$. Hence $\left(\bar{h}_{1}^{-1} \bar{h}_{2}\right)^{2}=1$. Also $\bar{h}_{1}^{-1} \bar{h}_{2} \in H$ and $h_{1} \in H$. Therefore, by Theorem 5 , $C\left(h_{1}\right) \in H$. But $g^{-1} h_{1} \in C\left(h_{1}\right)$ and $g^{-1} h_{1} \notin H$, which is a contradiction. Thus, if $h_{1} \in H-\bar{H}, h_{1} \neq h$ and $h_{1}{ }^{2}=1$, then $g h_{1} g^{-1} \in \bar{H}$.

By this result and Lemma B, we have that if $h_{1} \in H-\bar{H}$ and $g h_{1} g^{-1} \notin \bar{H}$, then $h_{1}=h$. Thus $\mathrm{gHg}^{-1}-\bar{H}$ contains at most two elements. Therefore $\left|g^{H g}\right| \leqslant 4$ and hence $|H| \leqslant 4$. H contains the involution h. Hence either $H \simeq(0,1)$ or $H \simeq(0,1)^{2}$. The first possibility is excluded by the conditions of the theorem and the second by Theorem 5, Corollary, which gives a contradiction. Hence either $h \in \bar{H}$ or $\bar{h} \in H$. In either case, because of the uniqueness of h and \bar{h}, we have $h=\bar{h} \in H \cap \bar{H}$, which proves Lemma D.

Lemma E. If $g \notin \bar{H} H, g^{2}=1$, and $h \in \bar{H}-H$, then $g^{-1} \bar{h} g \in H$.
Proof. If $g^{-1} \bar{h} g \notin H$, then by the property T_{2}, there is an $h_{1} \in H$ such that $g^{-1} \bar{h} g=h_{1}^{-1} \bar{h} h_{1}$. Thus $g h_{1}^{-1} \in C(\bar{h})$, and $g h_{1}^{-1} \notin \bar{H} H$ and hence by Lemma D, $\bar{h} \in \bar{H} \cap H$, which is a contradiction.

Proof of Theorem 9. Either $g H$ contains an involution or it contains no such element. Suppose the former, i.e. $(g h)^{2}=1$ for some $h \in H$. Then, by Lemma $\mathrm{E},(g h)^{-1}(\bar{H}-H)(g h) \subseteq H$.

Suppose the latter and suppose that $\bar{h} \in \bar{H}-H$. Then if $g^{-1} \bar{h} g \notin H$, there is an $h_{1} \in H$ such that $g^{-1} \bar{h} g=h_{1} \bar{h} h_{1}^{-1}$. Thus \bar{h} commutes with $g h_{1}$ and $g h_{1} \in g H$. Hence $\left(g h_{1}\right)^{2}=1$ which is a contradiction. This yields

$$
g^{-1}(\bar{H}-H) g \subseteq H
$$

Thus, in either case, there is an $h \in H$ such that $(g h)^{-1}(\bar{H})(g h) \subseteq H$, i.e. $g^{-1} \bar{H} g \subseteq H$. Hence by Lemma $2, g^{-1} \bar{H} g=H$, which proves Theorem 9.

Lemma F. If K is a subgroup of $G, H \subseteq K$ and $H \neq K$, then $\bar{H} \subseteq K, \bar{H} H \subseteq K$.
Corollary 1. $N(H)=H$.
Proof. Suppose that $H \neq N(H)$. Then by Lemma F, $\bar{H} H \subseteq N(H)$. But $G-\bar{H} H$ forms just one coset of H in G. Therefore $\bar{H} H=N(H)$ and hence
$N(H) \triangleleft G$. By Lemma $\mathrm{F}, \bar{H} \subseteq N(H)$ and, as $N(H) \triangleleft G$ and as $g \notin \bar{H} H=N(H)$ implies $g H^{-1}=\bar{H}$, we must have that H is a normal but not characteristic subgroup of $N(H)$.

If H is a T_{1}-subgroup of $N(H)$, then by (5), H is a characteristic subgroup. Hence by Theorem 8, H and $N(H)$ must be described by either Example III or Example IV. Hence $H \simeq(0,1)$, which is excluded by the conditions of Theorem 8.

Corollary 2. If $g \in G-\bar{H} H$, then $G-\bar{H} H=g H$.
Corollary 3. H is a maximal subgroup of G.
Corollary 4. If K is an extension of G and H is a T_{2}-subgroup of K, then $G=K$.

Corollary 5. If G is a finite group,

$$
|G| /|H|=|H| /|H \cap \bar{H}|+1
$$

Theorem 10. If H_{1}, H_{2}, and H_{3} are three different conjugate S_{2}-subgroups of a group G, then $H_{1} \cap H_{2} \cap H_{3}=1$.

The proof follows Theorem 11.
Theorem 11. If H_{1}, H_{2}, and H_{3} are three different conjugate S_{2}-subgroups of a group G, then $H_{1} \cap H_{2}$ is abelian, contains exactly one involution, and there exists an element $h_{1} \in H_{1}$ such that $h_{1} H_{2} h_{1}^{-1}=H_{3}$. Further, if a is the involution of $H_{1} \cap H_{2}$, then

$$
C(a) \cap H_{1}=C(a) \cap H_{2}=H_{1} \cap H_{2} .
$$

Proof. H_{1} is an S_{2}-subgroup of G and hence $G-H_{1}$ contains an involution, say t. Suppose that t commutes with $a_{1} \in H_{1}, a_{1}{ }^{2}=1$. Now $a_{1} \in H_{1} \cap t H_{1} t^{-1}$ and it is easily seen, by Theorem 6 , that

$$
C\left(a_{1}\right) \cap H_{1} \subseteq H_{1} \cap t H_{1} t^{-1}
$$

An argument similar to that in Theorem 5 shows that $H_{1} \cap t H_{1} t^{-1}$ is a normal S_{2}-subgroup of the group

$$
\left(H_{1} \cap t H_{1} t^{-1}\right) \cup t\left(H_{1} \cap t H_{1} t^{-1}\right)
$$

Hence $H_{1} \cap t H_{1} t^{-1}$ is abelian and so

$$
C\left(a_{1}\right) \cap H_{1}=H_{1} \cap t H_{1} t^{-1}
$$

Similarly,

$$
C\left(a_{1}\right) \cap t H_{1} t^{-1}=H_{1} \cap t H_{1} t^{-1}
$$

Furthermore, $H_{1} \cap t H_{1} t^{-1}$ contains just one involution, viz. a_{1}.
We now prove that if \bar{H} is any other conjugate of H_{1}, then there exists $h \in H_{1}$ such that $h \bar{H} h^{-1}=t H_{1} t^{-1}$. By Theorem 9 , if $g \notin t H_{1} t^{-1} \bar{H}$, then
$g \bar{H} g^{-1}=t H_{1} t^{-1}$. It is thus sufficient to prove that there exists $h \in H_{1}$ such that $h \notin t H_{1} t^{-1} \bar{H}$.

Suppose the contrary. Then $H_{1} \subseteq t H_{1} t^{-1} \bar{H}$ and hence $H_{1} \bar{H} \subseteq t H_{1} t^{-1} \bar{H}$. Thus, by Theorem 9 , if $g \notin t H_{1} t^{-1} \bar{H}$, then $g \bar{H} g^{-1}=H_{1}$, which is a contradiction as $g \bar{H} g^{-1}=t H_{1} t^{-1} \neq H_{1}$. Thus there exists $h \in H_{1}$ such that $h \bar{H} h^{-1}=t H_{1} t^{-1}$.

Theorem 11 now follows easily.
Proof of Theorem 10. Suppose that $h \in H_{1} \cap H_{2} \cap H_{3}, h \neq 1$. Then $H_{1} \cap H_{2} \subseteq H_{1} \cap H_{2} \cap H_{3}$, for otherwise $h \in H_{3}$ commutes with an element k of $H_{1} \cap H_{2}, k \notin H_{3}$. Now, by Theorem 11, either $h^{2} \neq 1$ or $k^{2} \neq 1$ which contradicts either the definition of T_{2}, or Lemma 1 . Therefore

$$
H_{1} \cap H_{2}=H_{1} \cap H_{2} \cap H_{3}
$$

Hence, by the principle of generalization, if H is any conjugate of H_{1} different from H_{1} and H_{2}, then $H_{1} \cap H_{2}=H_{1} \cap H_{2} \cap H$. Thus

$$
H_{1} \cap H_{2}=\bigcap_{\rho \in G} g H_{1} g^{-1}
$$

Therefore, $H_{1} \cap H_{2}$ is a normal subgroup of G and a is the only involution of $H_{1} \cap H_{2}$. Hence $a \in Z(G)$, which contradicts Theorem 8, as H_{1} is not a normal subgroup of G. Thus $H_{1} \cap H_{2} \cap H_{3}=1$.

Theorem 12. If H_{1} and H_{2} are any two conjugate S_{2}-subgroups of a group G and $\left|H_{1}\right| /\left|H_{1} \cap H_{2}\right|=s$, then

$$
\left|H_{1} \cap H_{2}\right|=s-1, \quad\left|H_{1}\right|=(s-1) s, \quad \text { and }|G|=(s-1) s(s+1)
$$

Proof. In the light of Theorem 9, Corollary 5, it is sufficient to prove that $|G| /\left|H_{1}\right|=\left|H_{1} \cap H_{2}\right|+2$.

Lemma A. If $a \in H_{1}$, a commutes with $t \in G-H_{1}$ and $b a b^{-1} \in H_{1}$ for some $b \in H$, then $h a h^{-1}=b a b^{-1}$ for some $h \in H_{1}$.

Proof. If $b \in H_{1}$, the result is obvious.
If $b \in t H_{1}$, take $h=b t^{-1}$.
If $b \notin H_{1}, b \notin t H_{1}$, then $H_{1}, b H_{1} b^{-1}$, and $t H_{1} t^{-1}$ are three different conjugate S_{2}-subgroups of G. Hence by Theorem 11, there is an $h \in H_{1}$ such that $h\left(t H_{1} t^{-1}\right) h^{-1}=b H_{1} b^{-1}$. Therefore

$$
h\left(H_{1} \cap t H_{1} t^{-1}\right) h^{-1}=H_{1} \cap b H_{1} b^{-1}
$$

But a is the only involution of $H_{1} \cap t H_{1} t^{-1}$ and $b a b^{-1}$ is the only involution of $H_{1} \cap b H_{1} b^{-1}$. Hence $h a h^{-1}=b a b^{-1}$.

Lemma B. If $a \in H_{1}$ and a commutes with $t \in G-H_{1}$, then

$$
C(a)=\left(C(a) \cap H_{1}\right) \cup t\left(C(a) \cap H_{1}\right) .
$$

Proof. Suppose that $u \in C(a), u \notin C(a) \cap H_{1}, u \notin t\left(C(a) \cap H_{1}\right)$. Then $u \notin H, u \notin t H$. Thus $H, t H t^{-1}$, and $u H u^{-1}$ are three different conjugate S_{2}-subgroups of G and $a \in H \cap t H t^{-1} \cap u H u^{-1}$, which contradicts Theorem 10. Hence $C(a)=\left(C(a) \cap H_{1}\right) \cup t\left(C(a) \cap H_{1}\right)$.

Proof of Theorem 12. By the property S_{2} and Theorem 11, $H_{1} \cap H_{2}$ contains exactly one involution which commutes with an element of $G-H_{1}$. Now, a has $\left|H_{1}\right| /\left|C(a) \cap H_{1}\right|$ conjugates in H_{1} by elements of H_{1}; and by Lemma B it has no others. Further, a has $|G| /|C(a)|$ conjugates in G. Thus, by Lemma 4,

$$
|G| /|C(a)|-\left|H_{1}\right| /\left|C(a) \cap H_{1}\right|
$$

is either equal to zero or to $\left|H_{1}\right|$. In the first case $|G|=2\left|H_{1}\right|$, in which case H is a normal subgroup of G, which is impossible. Hence the second case holds. Replacing $\left|C(a) \cap H_{1}\right|$ by $\left|H_{1} \cap H_{2}\right|$ (Theorem 11) and $|C(a)|$ by $2\left|H_{1} \cap H_{2}\right|$ (Lemma B), we have $|G| /\left|H_{1}\right|=\left|H_{1} \cap H_{2}\right|+2$.
6. A characterization of the Moebius groups. The object of this section is to prove:

Theorem 14. If G is a finite S_{2}-group with trivial centre, then G is one of the groups of Moebius transformations over a finite field of characteristic $\neq 2$.

We use the method developed by H. Zassenhaus (6). We first represent G as a permutation group.

The symbols of the permutations are the members of the set $\Sigma=\{H\}$ of S_{2}-subgroups of G. The permutation g representing the element g of G is the permutation $g: H \rightarrow g H h^{-1}$ for all H in Σ. This is obviously a faithful representation of G.

Theorem 13. As a permutation group on the symbols of Σ, G is three-fold transitive and any element of G is uniquely determined by the image of any three symbols of $\mathbf{\Sigma}$.

Proof. Suppose that H_{i} and $\bar{H}_{i}, i=1,2,3$, are any two triples of symbols of Σ. Then we must prove that there is a $g \in G$ such that $g H_{i} g^{-1}=\bar{H}_{i}$, $i=1,2,3$.

Now the elements of Σ are conjugate subgroups and hence there are elements x, y, z in G satisfying $x H_{1} x^{-1}=\bar{H}_{i}, y H_{2} y^{-1}=\bar{H}_{2}, z H_{3} z^{-1}=\bar{H}_{3}$.

Lemma A. $\left|x H_{1} \cap y H_{2}\right| \neq 0$.
Proof. Suppose that $\left|x H_{1} \cap y H_{2}\right|=0$. Then $x H_{1} \subseteq G-y H_{2}=\bar{H}_{2} H_{2}$ by Theorem 9. Hence $x H_{1} H_{2} \subseteq \bar{H}_{2} H_{2}$. Now

$$
\left|x H_{1} H_{2}\right|=\left|H_{1} H_{2}\right|=\left|H_{1}\right|\left|H_{2}\right| /\left|H_{1} \cap H_{2}\right|=s^{2}(s-1),
$$

where $s=\left|H_{1}\right| /\left|H_{1} \cap H_{2}\right|$, and similarly $\left|\bar{H}_{2} H_{2}\right|=s^{2}(s-1)$. Thus $x H_{1} H_{2}=$ $\bar{H}_{2} H_{2}$. Hence

$$
G-x H_{1} H_{2}=G-H_{2} H_{2}=y H_{2}
$$

This yields $x\left(G-H_{1} H_{2}\right)=y H_{2}$ or $G-H_{1} H_{2}=x^{-1} y H_{2}$. Hence

$$
\left(x^{-1} y\right) H_{2}\left(x^{-1} y\right)^{-1}=H_{1} .
$$

Thus $y H_{2} y^{-1}=x H_{1} x^{-1}$, i.e. $\bar{H}_{1}=\bar{H}_{2}$, which is impossible as the symbols of Σ are distinct.
Lemma B. $\left|x H_{1} \cap y H_{2} \cap z H_{3}\right| \neq 0$.
Proof. Suppose that $\left|x H_{1} \cap y H_{2} \cap z H_{3}\right|=0$. Then $z H_{3} \subseteq G-\left(x H_{1} \cap y H_{2}\right)$. By Lemma A, there is an $\alpha \in x H_{1} \cap y H_{1}$. Then $x H_{1} \cap y H_{2}=\alpha\left(H_{1} \cap H_{2}\right)$. Therefore $z H_{3} \subseteq G-\alpha\left(H_{1} \cap H_{2}\right)$ and hence

$$
\alpha^{-1} z H_{3} \subseteq G-\left(H_{1} \cap H_{2}\right)=\left(G-H_{1}\right) \cup\left(G-H_{2}\right)
$$

Thus $\alpha^{-1} z \in\left(G-H_{1} H_{3}\right) \cup\left(G-H_{2} H_{3}\right)$. Hence either $\alpha^{-1} z \in G-H_{1} H_{3}$ or $\alpha^{-1} z \in G-H_{2} H_{3}$. Suppose the former. Then $\left(\alpha^{-1} z\right) H_{3}\left(\alpha^{-1} z\right)^{-1}=H_{1}$. Therefore

$$
z H_{3} z^{-1}=\alpha H_{1} \alpha^{-1}=x H_{1} x^{-1}
$$

Thus $\bar{H}_{3}=\bar{H}_{1}$, which is a contradiction. Thus we must have

$$
\left|x H_{1} \cap y H_{2} \cap z H_{3}\right| \neq 0
$$

which proves Lemma B.
Proof of Theorem 13. By Lemma B, there is a $g \in x H_{1} \cap y H_{2} \cap z H_{3}$. Obviously $g G_{i} g^{-1}=\bar{H}_{i}, i=1,2,3$. The second part follows by Theorem 10.

We now apply the method of Zassenhaus to this three-fold transitive group. Denote the symbols of Σ by $a, b, c, \ldots, x, y, z, \ldots$ and choose three of them, arbitrarily, to be denoted by 0,1 , and ∞. Now the symbols of Σ are S_{2}-subgroups. Denote the subgroup corresponding to a in Σ by H_{a}, and if $g \in G$, write $g(a)=b$ if and only if $g H_{a} g^{-1}=H_{b}$. Now, because $N\left(H_{a}\right)=H_{a}$ for all $a \in \Sigma$, we have $H_{a}=\{g \in G: g(a)=a\}$. We are interested particularly in H_{0} and H_{∞} and it is convenient to denote the elements of H_{∞} by upper case latin letters.

Consider $H_{\infty} \cap H_{0}$. From Theorem 13, $H_{\infty} \cap H_{0}$ is obviously a transitive group on the symbols of $\Sigma_{2}=\Sigma-\{0, \infty\}$ and each element of $H_{\infty} \cap H_{0}$ is uniquely determined by the image of any one symbol of Σ_{2}. We denote the element of $H_{\infty} \cap H_{0}$ which takes 1 onto x by M_{x} and define a binary relation, on the symbols of Σ_{2}, by defining $x y=M_{x}(y)$.

Lemma A. Σ_{2} is a group isomorphic to $H_{\infty} \cap H_{0}$.
Proof. It is sufficient to show that $M_{x} M_{y}=M_{x y}$. We have
(i) $x 1=x$ for $M_{x}(1)=x$,
(ii) $M_{x y}(1)=(x y) 1=x y$ by (i), $M_{x} M_{y}(1)=x(y 1)=x y$ by (i).
Hence $M_{x y}(1)=M_{x} M_{y}(1)$ and hence $M_{x y}=M_{x} M_{y}$. Thus the group Σ_{2} is
isomorphic to $H_{\infty} \cap H_{0}$. In particular we have that Σ_{2} is abelian and contains an involution.

Now H_{∞} is a two-fold transitive group on the symbols of $\Sigma_{1}=\Sigma-\{\infty\}$ and only the unit element of H leaves two symbols fixed. Therefore, by the Theorem of Frobenius (2, p. 181), the elements of H which leave no symbol of Σ_{1} fixed form a transitive normal abelian subgroup K of H_{∞}. Obviously each element of K is uniquely determined by the image of one symbol of Σ_{1}. We denote the element of K which takes 0 onto x by A_{x}, and define a binary relation + on Σ_{1} by defining $x+y=A_{x}(y)$.

Lemma B. Σ_{1} is a group isomorphic to K.
Proof. It is sufficient to prove that $A_{x+y}=A_{x} A_{y}$. We have
(i) $x+0=x$ for $A_{x}(0)=x$,
(ii) $A_{x+y}(0)=(x+y)+0=x+y$ by (i),

$$
A_{x} A_{y}(0)=x+(y+0)=x+y \text { by (i). }
$$

Therefore $A_{x+y}=A_{x} A_{y}$ and hence Σ_{1} is isomorphic to K. In particular Σ_{1} is abelian.

Lemma C. Σ_{1} with the two binary relations is a field.
Proof. As both the groups of Σ_{1} are abelian it is sufficient to prove the distributive law $x(y+z)=x y+x z$. We have
(i) $M_{x}^{-1}=M_{x^{-1}}$ for $M_{x^{-1}} M_{x}(1)=x^{-1}(x 1)=1$; hence $M_{x^{-1}} M_{x}=1$;
(ii) $M_{x}(0)=0$ for $M_{x} \in H_{0}$.

Now K is a normal subgroup of H; hence, if $M_{x} \in H_{\infty} \cap H_{0}$ and $A_{y} \in K$, then $M_{x} A_{y} M_{x}^{-1}=A_{z}$ for some $z \in \Sigma_{1}$. Now

$$
M_{x} A_{y} M_{x}^{-1}(0)=M_{x} A_{y}(0)=M_{x}(y)=x y
$$

and $A_{z}(0)=z$. Therefore $z=x y$ and hence $M_{x} A_{y} M_{x}^{-1}=A_{x y}$ or

$$
M_{x} A_{y}=A_{x y} M_{x} .
$$

But $M_{x} A_{y}(z)=x(y+z)$ and $A_{x y} M_{x}(z)=x y+x z$. Hence

$$
x(y+z)=x y+x z .
$$

Thus Σ_{1} is a field.
Now G contains an involution T such that $T M_{x} T^{-1}=M_{x}^{-1}=M_{x-1}$ for all $M_{x} \in H_{\infty} \cap H_{0}$. Thus $T M_{x}=M_{x^{-1}} T$ and in particular

$$
T M_{x}(1)=M_{x^{-1}} T(1) .
$$

Hence

$$
T(x)=x^{-1} T(1)=T(1) x^{-1}
$$

as Σ_{1} is abelian.
Put $I=M_{T(1)-1} T$. Then

$$
I(x)=M_{T(1)-1} T(x)=T(1)^{-1} T(1) x^{-1}=x^{-1} .
$$

Thus G contains the permutation $x \rightarrow x^{-1}$. Furthermore G contains the permutations $M_{a}: x \rightarrow a x$ and $A_{a}: x \rightarrow a+x$. Thus G contains the group of Moebius transformations of the field Σ_{1} of order s. But the order of G is $(s-1) s(s+1)$ and hence G is the group of Moebius transformations over the field Σ_{1}. Further, $H_{\infty} \cap H_{0}$ has order $s-1$ and contains an involution. Thus s and hence the characteristic of Σ_{1} is odd. This completes the proof of Theorem 14.

References

1. R. Brauer, M. Suzuki, and G. E. Wall, A characterisation of the one-dimensional unimodular projective groups over finite fields, Ill. J. Math., 2 (1958), 718-45.
2. W. Burnside, Theory of groups of finite order (New York, 1955).
3. Daniel Gorenstein and John H. Walter, On finite groups with dihedral Sylow 2-subgroups, Ill. J. Math., 6 , (1962), 533-93.
4. H. W. E. Schwerdtfeger, On a property of the Moebius group, Annali di Mat. (IV), 54 (1961), 23-32.
5. -Über eine spezielle Klasse Frobeniusscher Gruppen, Arch. d. Math., 13 (1962), 283-9.
6. H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17-40.

University of Canterbury,
Christchurch, New Zealand

[^0]: Received February 10, 1964. Most of this paper is contained in the author's Ph.D. thesis submitted to McGill University in May 1963. The author is indebted to Professor H. W. E. Schwerdtfeger, who laid the ground for this research, for his help and advice. The author also wishes to thank the Canadian Government, who made his stay at McGill possible by granting him a Commonwealth Scholarship.

