
TVGROUPS AND A CHARACTERIZATION OF THE 
FINITE GROUPS OF MOEBIUS TRANSFORMATIONS 

P. J. LORIMER 

In recent years a number of algebraic characterizations of the groups of 
Moebius transformations over finite fields have been given in the literature; 
see (1, 3, 6). H. W. E. Schwerdtfeger has noticed (4) that the group G of 
Moebius transformations over the real, complex, and certain other fields has 
the property: 

G contains a subgroup H such that 
(i) if a d H, bab~l $ H, and a2 ^ 1, then there exists exactly one h £ H such 

that hah~l = bab~l\ 
(ii) if a $ H y bab~l £ H, and a2 = 1, then there exist exactly two hi, h2 G H 

such that hi ah\~l = h2 ah2~
l = bab~l. 

Any group G having this property he has called a TYgroup with respect to the 
subgroup H; and H is said to be a TYsubgroup of G. If, further, G — H con
tains an involution, then G is called an 52-group with respect to the subgroup 
H; and H is called an 52-subgroup of G. 

This paper is a study of SVgroups, and includes a description of all finite 
52-groups. The following theorem is the main one of interest. 

THEOREM. / / G is a finite group, then G is an S2-group and the centre of G is 
trivial if and only if G is one of the groups of Moebius transformations over a finite 
field of characteristic 9^2. 

Many of the results of this paper are also proved for infinite groups and are 
stated without restriction. In particular, all S2-groups with non-trivial centre, 
whether finite or infinite, may be considered together, and are shown to lie 
in one of two well-known families of groups. 

1. Notations. Upper case latin letters stand for groups and fields; lower case 
latin letters, and sometimes greek letters, for their elements. C(a) is the 
centralizer of the element a, N(K) the normalizer of the subgroup K, and 
Z{K) the centre of the group K. \K\ is the order of the group K and (0, 1) is 
the group with two elements. 
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2. Examples of S2-groups. 

Example I. Let F be any field of characteristic 5^2. Let G be the group of 
all regular Moebius transformations 

z —> ;—11 a,b, c,d £ F and ad — be 9e 0 
cz -\- a 

and let H be the subgroup of G of all similarities 

2 __> — — ^ a,b,d £ F,ad 5* 0. 

Then 77 is an 52-subgroup of G. Schwerdtfeger has given a geometrical proof 
of this result for certain fields in (4). 

G may be represented as a group of congruence classes of elements of the 
group GL(2, F) of all regular 2 X 2 matrices over F. If A, B € GL(2, F) we 
define A ~ B if and only if there exists a X 6 P, X ̂  0 such that 4̂ = \B. 
We denote the congruence class containing A by [A]. H is then the subgroup 
of congruence classes 

:e Î). 
with c = 0. We use these congruence classes in the following proof that G is 
an 52-group. 

Proof. Suppose that 

and that 

w-tC'fth 
Vi -[(* à 

is a conjugate of [A], Then there exists a X Ç P such that XP is a conjugate of 
yl in GL(2, F). Without loss of generality we may suppose that X = 1. Then 

(1) P + s = a + d, 

(2) ps — qr — ad — be. 

Suppose that [A] £ H, [F] g H. Then 

(3) r 5* 0, c ?* 0. 

Further 

(4) [A]2 - [P]2 = l^p + s=a + d=0. 

We seek solutions [H] 6 H to the equation [H][A] = [P][i?]f which is 
equivalent to seeking solutions to HA = \PH, X Ç P, where to maintain the 
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values of the determinants we must have X2 = 1. Now char F 9e 2. Thus the 
equation X2 = 1 has two distinct solutions in F, viz. 1 and — 1 . 

Suppose that 

H 

Then xz 9^ 0 and hence 
(5) x 5* 0, 

Now HA = XPH implies that 

(x y\ 
\0 zj' 

z ?* 0. 

(6) 

(7) 

(8) 

(9) 

From (6) and (3) 

(10) 

and from (7) and (3) 

(ID 

(a — \p)x + cy = 0, 

Xrx — cz = 0, 

bx + (d — \p)y — \qz = 0, 

Xry + (Xs - d)z = 0. 

y = — c~l{a — \p)x 

z = c~l\rx. 

These solutions for y and z are consistent with (8) if and only if 
PiP + s)(\ - 1) = 0 and with (9) if and only if (X - l)(p + s) = 0. 

Thus if [A]2 9e 1, (10) and (11) give a solution if and only if X = 1, while 
if [A]2 = 1, p + 5 = 0 and (10) and (11) give a solution for both values of X; 
i.e. if [A]2 9^ 1 the only solution is 

[H] t -:*)] 
while if [A]2 = 1, there is a further solution 

[H] = 
(c -a - p\~\ 
A0 -r /J 

The congruence class 

( ! - ! ) 
lies in G — H and is an involution. Hence G is an 52-group. 

Example II. Let / be a commutative integral domain with unit 1 such that 
1 + 1 ^ 0 , and let 5 be the set of all regular 2 X 2 matrices with elements 
in J. We define an equivalence relation ~ on the elements A, B> . . . of 5 by 
setting A ~ B if and only if there are non-zero X, \i Ç I such that X̂4 = \xB* 
It is easily shown that S/~ is a group which is isomorphic to the group of 
Moebius transformations of the field of quotients of / and is hence an 52-group. 
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Example III . Suppose that G ~ (0, l ) a , where (0, 1) is the group with two 
elements and a is any cardinal number. Let H be any subgroup of G such that 
H ~ (0, 1). Then if is a SVsubgroup of G. 

Example IV. Let H be any abelian group containing just one involution. 
We extend H to a group G by adjoining to H an element t : t2 = 1 and iht~l = h~1 

for all h £ H. H is then a 52-subgroup of G. 

In the following it is shown, in the case where G is a finite group, that groups 
of these types are the only 52-groups. The result is extended to the infinite 
case when the centre of G is not trivial. 

3. Five l e m m a s . The following five lemmas, giving general information on 
TYgroups, will be useful in later theorems. The lemmas in this section are 
denoted by numbers; all other lemmas of the paper are denoted by upper case 
latin letters. 

LEMMA 1. If H is a T2-subgroup of G, h G H, and h commutes with an element 
of G - H, then h2 = 1. 

LEMMA 2. / / Hi and H2 are proper T2-subgroups of G and Hi Ç H2, then 
Hi = H2. 

LEMMA 3. If H is a T2-sub group of G and K is a subgroup of G such that 
H Ç K, then H is a T2-subgroup of K. 

LEMMA 4. If H is a T2-subgroup of G and g d H, then 
(i) g has exactly \H\ conjugates in G — H if g2 ^ 1, 

(ii) g has exactly J \H\ conjugates in G — H if g2 = 1. 

LEMMA 5. If H ~ (0, 1) is an S2-subgroup of a group G, then G o^ (0, l)a for 
some a. 

Proof. Suppose that H = {1, h}, h2 = 1. Then C(h) = {g\g G G, g2 = 1}. 
Thus every element of C(h) is an involution and hence C(h) ^ (0, l ) a for 
some a. 

Suppose that Oi, a2 G C(h) — H and that a2 is a conjugate of a\. Then, by 
the property S2 there is an h Ç H such that haji~l = a2f which is impossible 
as h commutes with both ai and a2. Thus, if a £ C(h) — H and a is not a 
conjugate of h, then a G Z(G). Furthermore, h has at most one conjugate in G. 

Suppose that hi is a conjugate of h. Then C(h) — Z{G) = {hy hi}. Hence, 
as C(h) C\ Z(G) is a subgroup of C(h), C(h) C\ Z(G) = { l ,Mi} and thus 
C(h) = {l,h,huhhi}. 

Now h has only one conjugate in G. Therefore CQi) has only one coset in G. 
Suppose that a G G — CQï). Then aha~l = hi and a2 G C(h). Obviously 
a2 is different from 1, h, or hi and a2 ^ hhi, for then (ha)2 = (hhhi)2 = hi2 = 1 
and thus a G H. 

Thus we have derived a contradiction and h can have no conjugates in G, 
i.e. h G Z(G). Hence G = C(h) ~ (0, 1)". 
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4. Normal S2-subéroups. Suppose that G has the property S2 with respect 
to H. The main result of this section is that the following are equivalent: 

(i) H^G, 
(ii) Z(G) * 1, 

(iii) G and H are described in either Example III or Example IV. 
Many of the results have applications later in the paper. 

THEOREM 1. If H is a normal T2-subgroup of G, then either 
(i) g2 = 1 for all g G G - H or 

(ii) g2 9* 1 for all g e G - H. 

Proof. Suppose that a, g Ç G — if, a2 = 1, g2 ^ 1. By property T2, there 
exists an h 6 H, h ^ 1, such that hahr1 = a. Hence C(a) C\ H = {l, h}. But, 
as ijT<3 G, C(a) Pi iJ<d C(a), and hence every element of C(a) is an involu
tion. This is obviously true for every b G G — H satisfying b2 = 1. 

Suppose that c £ G. Then, as H<3 G, cac~l g if and hence there is an 
hi £ H such that Ai aAr 1 = cac~l. Hence c G hi C(a) C HC(a). Here c is any 
element of G and thus G = HC(a). Similarly G = HC(g). 

Since g2 ^ 1, property T2 implies that C(g) C\ H = 1. Hence C(g) ~ G/H. 
Also C(a)C\H = {1, A} ; therefore C(a)/{1, A} ~ G / i f a n d C(g) ~ C(a)/{1, A}. 
But every element of C(a) is an involution. Hence every element of C{g) is an 
involution, which is a contradiction as g2 ^ 1. 

THEOREM 2. If H is a normal S2-subgroup of G and g £ G — H, h £ H, then 
ghg~l = h~l. 

Proof. G — H contains an involution and hence, by Theorem 1, every element 
of G — H is an involution. Therefore g2 = 1 and if h £ H", (gA)2 = 1, i.e. 
ghg-1 = h~\ 

COROLLARY 1. H contains exactly one involution-, for if A 6 H is an involution, 
gAg"1 = A. 

COROLLARY 2. H is abelian; for A —» A-1 is an automorphism of H. 

COROLLARY 3. If A w /Ae involution of H, then Z(G) = {1, A}. 

THEOREM 3. If H is a normal S2-subgroup of G, then either (i) if ~ (0, 1) and 
G c^ (0, l ) a /or same a or (ii) G/i? ~ (0, 1). 

Proof. Suppose that t £ G - H. Then t2 = 1 and |C(*) H if| = 2 . Suppose 
that \G\/\H\ > 2. 

Suppose that u Q H, u $ £if. Then ut & H and hence by Theorem 1, 
^2 = 1 (w/)2 = 1. Thus w^ _ 1 = t. Hence / commutes with every element of 
G — {H \J tH}. Thus t commutes with every element of uH and hence with 
every element of H. This yields 

H^ C(t)nH~ (0,1). 
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Hence i ï ~ (0, 1) and every element of G is an involution, i.e. G ~ (0, l ) a 

for some a. 
Alternatively G/H ~ (0, 1). 

THEOREM 4. H is a normal Si-subgroup of G if and only if H and G are de
scribed by either Example III or Example IV. 

THEOREM 5. Let H be a T2-subgroup of G but not necessarily a normal subgroup 
of G. Let h be an involution of H. Then C(h) P H is a normal T2-subgroup of C(h). 

Proof. Write C(h) P H = K and suppose that a G CQi) - K. Let bab~l be 
any conjugate of a such that bab~l G C(h) — K. Suppose that hi G H and 
hiahc1 = bab~l. Then bab~l G C(h) and thus h\ah{~1 G C(h), i.e. 

hi ahi~lh = h.hi ahr1. 

Therefore hrlhhi G C(a) P H. But C(a) C\ H = {I, h}. Hence hrlhhx = h, 
i.e. hi G C(h). This yields hi G C(h) P i / . 

Now a G C(A) and hence a2 = 1. Hence by the property T2, there are 
hih2 (z H such that 

&i a/^r1 = h2 ah2~
l = i a i - 1 , 

and by the above hi, h2 G C{a) C\ H. Thus C(&) P 27 is a ZVsubgroup of C(a). 
Suppose that t G C(a) — K, hi G i£. Then t2 = 1 and (^i)2 = 1. Hence 

/ ^ r 1 = hr1. Therefore tKtr1 = K, i.e. K <i C(a), i.e. C(a) P # < 3 C(a). 

COROLLARY. / / & w aw involution of H and h commutes with an element of 
G — H, then C(h) P H contains fust one involution, viz. h. 

Proof. From Theorem 4, C{h) C\ H must be one of the TYsubgroups of 
Examples III or IV. 

The following theorem based on Theorems 4 and 5 will be useful in later 
sections. 

THEOREM 6. (0, l ) 2 cannot be an S2-subgroup of any group. 

Proof. By Theorem 4, (0, l ) 2 cannot be a normal 52-subgroup of any group. 
Suppose that H ~ (0, l ) 2 is an 52-subgroup of G and h G H. Then h2 = 1, 

and by Theorem 5 C(h) P H is a normal S2-subgroup of C(h). But H is abelian 
and hence C{h) P H = H. Hence C(h) = H. Thus no element of H commutes 
with an element of G — H and G is not an 52-group. 

THEOREM 7. If H is an S2-subgroup of G and Z(G) ^ 1, then F < d G . 

Proof. Suppose that Z{G) P H ^ 1. Let h G Z(G) C\H. Then A commutes 
with an element of G — H. Hence h2 = 1, and by Theorem 5 C(h) P H <3 C(&), 
i.e. ff<G. 

Suppose that Z(G) P if = 1. Then G — H contains an element, g say, of 
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the centre, g commutes with an element of H and hence g2 = 1. Thus g com
mutes with exactly two elements of H and commutes with every element of G. 

Thus H o^ (0, 1). Hence, by Lemma 6, G ~ (0, l ) a for some a and H<^G. 

We have now proved the main theorem of this section. 

THEOREM 8. If H is an S2-subgroup of G, then the following are equivalent: 
(1) H^G, 
(2) Z(G) * 1, 
(3) H and G are described by either Example III or Example IV. 

5. Structure theorems for S2-êroups. 

THEOREM 9. If H and H are two T2-subgroup s of a group G and 
(1) G * HH, 
( 2 ) # o o ( 0 , l ) , 

then H and H are conjugate subgroups of G. In fact if g G G — HH, then 
gHr1 = B. 

The proof proceeds by a number of lemmas. 

LEMMA A. Let g G HH. If h £ H, then g~lh G H; and ifhQH, then gh G H. 

LEMMA B. If g £ HH, h G H - H, and h2 ?* 1, then ghg~l G H. 

Proof. Suppose that ghg~x G H. Then h G H, ghg~l G H, and hence by the 
property T2 there is an h G H such that ghg~l = hhhr1. Then g~xh G C(h). 
But by Lemma A g~xh G H and hence h2 = 1. 

LEMMA C. If g G HH, h £ H - H, and h2 ^ 1, then g~lhg G i ï . 

The rest of the proof consists in proving the equivalent of Lemma B for 
the case h2 = 1. 

LEMMA D. If g i HH and g2 = 1, then g Q H, g Q H and hence, by the 
property T2, there are h G H, h (z H, h 9e 1, Â ̂  1 swcA £to g& = Ag awd 
gh = /îg. JFe SÂOW that h = h £ H C\ H. 

Proof. Suppose that h G H and h ^ H. We show firstly that M^_ 1 = h. 
h G iifand, by Lemma 1, h2 = 1. Thus there exists a unique hi £ H, hi ?* 1, 

such that hi hhf1 = h. Then h = g^g-1 = hi hhc1. Hence g~lhi G C(h). But 
g2 = 1; hence g = g -1. Thus ghi G C(Â) and by Lemma A, ghi G H. Thus by 
the property T2, (ghi)2 = 1, i.e. Ai ghr1 = g as Z^2 = 1, g2 = 1. But AgA-1 = g 
and h is determined uniquely. Hence h — hi and MA-1 = Â. 

We now show that if h\ G H — i î , hi ^ A and /h2 = 1, then g&g-1 G H. 
Suppose the contrary, i.e. there is an element 

hi G H - H, hi ^ h, Ai2 = 1 and gfti g"1 $ 5". 

Then Ai $ i î , g/h g""1 $ i î and hence by the property T2, there are hi, h2£ H 
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such that ghi g~l = hi hi hi~l = h2 hi h2~
l. Thus g~lhi G C(hi) and by Lemma 

A, g~lhi G H. Hence, by the property T2, (g^hi)2 = 1, i.e. g~lhig = hi"1 as 

? = L 

Suppose that h\ G H, and thus hf1 G i î . Then Ai2 = 1; for if hi2 7^ 1, we 
have by Lemma C that g~l hi g £ H, i.e. &i G # . Hence g_1 hi g = hi. But 
g_1% = ^ a n d this determines Â uniquely. Hence h\ = h and 

g^i g - 1 = hi hi hi~l = hhi hrl. 

Therefore g~l h G C(hi). But g - 1 h commutes with h £ H and this determines h 
uniquely. This yields h = hiy contrary to supposition. Thus we must have 
hi G H\ similarly h2 G H. 

Now the element hi~l h2 lies in 3 and commutes with hi G 3. Hence 
(hx~

l h2)
2 — 1. Also ^ i _ 1 h2 G H and hi G i7. Therefore, by Theorem 5, 

C(hi) G H. But g - 1 Ai G C(hi) and g_1 Ai G # , which is a contradiction. Thus, 
if hi G H - H,hi9± h and hi2 = 1, then g/^ g-1 G 5". 

By this result and Lemma B, we have that if hi G H — H and ghi g~l G 3, 
then hi = h. Thus gHg~~l — 3 contains at most two elements. Therefore 
\gHg~l\ < 4 and hence \H\ < 4. H contains the involution h. Hence either 
H~ (0, 1) o r ^ ~ (0, l)2 . The first possibility is excluded by the conditions 
of the theorem and the second by Theorem 5, Corollary, which gives a con
tradiction. Hence either h G B or h G H. In either case, because of the 
uniqueness of h and h, we have h = h £ H C\ 3, which proves Lemma D. 

LEMMA E. / / g G BH, g2 = 1, and h G B - H, then g~l hg G H. 

Proof. If g~l Kg G # , then by the property T2, there is an hi G H such that 
g - 1 % = ^ i - 1 ^ i - Thus gAf"1 G C(Â), and g/zi_1 G 3H and hence by Lemma D, 
h G B C\H, which is a contradiction. 

Proof of Theorem 9. Either gH contains an involution or it contains no such 
element. Suppose the former, i.e. (gh)2 = 1 for some h G H. Then, by Lemma 
E, (gh)-'(B -H)(gh)^H. 

Suppose the latter and suppose that h G B — H. Then if g~l hg G H, there 
is an hi G H such that g~1 hg = hi hhi~l. Thus h commutes with ghi and 
ghi G gH. Hence (ghi)2 = 1 which is a contradiction. This yields 

g-i(B -H)gQH. 

Thus, in either case, there is an h G H such that (gh)~1(3) (gh) C iJ, i.e. 
g - 1 3g C i7. Hence by Lemma 2, g~l3g = H, which proves Theorem 9. 

LEMMA F. If K is a subgroup ofG,HC!K and H ^ K, then 3 C K> BH C i£. 

COROLLARY 1. 7V(#) = H. 

Proof. Suppose that H ^ N(H). Then by Lemma F, 3H C iV(iï). But 
G — /?7J forms just one coset of H in G. Therefore BH = N(H) and hence 
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N(H) o G. By Lemma F, ffC N{H) and, as N(H) <i G and as 
g g HH — N{H) implies gHg~l = H, we must have that H is a normal but 
not characteristic subgroup of N(H). 

If H is a ZVsubgroup of N(H), then by (5), H is a characteristic subgroup. 
Hence by Theorem 8, H and N(H) must be described by either Example III 
or Example IV. Hence i f ~ (0, 1), which is excluded by the conditions of 
Theorem 8. 

COROLLARY 2. If g e G - HH, then G - HH = gH. 

COROLLARY 3. H is a maximal subgroup of G. 

COROLLARY 4. If K is an extension of G and H is a T2-subgroup of K, then 
G = K. 

COROLLARY 5. If G is a finite group, 

\G\/\H\ = \H\/\H H H\ + 1. 

THEOREM 10. If Hu Hi, and Hz are three different conjugate Si-subgroups of a 
group G, then Hir\H2(^Hd = 1. 

The proof follows Theorem 11. 

THEOREM 11. If Hly H2, and Hz are three different conjugate S2-subgroups of a 
group G, then Hi C\ H2 is abelian, contains exactly one involution, and there 
exists an element hi £ Hi such that hi H2 h*rl — H%. Further, if a is the involution 
of Hi H H2, then 

C(a) C\Hi = C(a) C\H2= HXC\ H2. 

Proof. Hi is an 52-subgroup of G and hence G — Hi contains an involution, 
say t. Suppose that t commutes with ax G Hi, ax

2 = 1. Now ax Ç Hi C\ tHi t~l 

and it is easily seen, by Theorem 6, that 

C{ai) r\HiQHiC\ tHi r 1 . 

An argument similar to that in Theorem 5 shows that Hi C\ tHi t~l is a normal 
52-subgroup of the group 

(Hi n tHi r1) u t(Hi n / Hi r1). 
Hence HiC\t Hi t~l is abelian and so 

C(ai) r\Hi= Hxr\ tHi t~\ 

Similarly, 

Ciai) r\ tHi r1 = Hi r\ tHx t-\ 
Furthermore, Hi C\ tHi t~l contains just one involution, viz. a\. 

We now prove that if H is any other conjugate of Hi, then there exists 
h Ç Hi such that hShr1 = tHx tr1. By Theorem 9, if g € tHx t~l H, then 
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gHg~l = tHi t~l. It is thus sufficient to prove that there exists h G Hi such 
that h G tHx t~lB. 

Suppose the contrary. Then Hi C tH\ t~lH and hence Hi H C tHi f1 H. 
Thus, by Theorem 9, if g G tHi t~lH, then gHg~l = Hi, which is a contra
diction as gHg~l = tHi t~l 9^ Hi. Thus there exists h G Hi such that 
hHh~l = /iJi r 1 . 

Theorem 11 now follows easily. 

Proof of Theorem 10. Suppose that h G Hi P 7J2 P i73, h j* 1. Then 
i7i P 772 Ç 77i P 772 P Hs, for otherwise h £ H% commutes with an element 
k oi HiC\ H2, k G H3. Now, by Theorem 11, either &2 5* 1 or k2 9* 1 which 
contradicts either the definition of T2, or Lemma 1. Therefore 

Hi p H2 = # ! p 772 p i73. 

Hence, by the principle of generalization, if H is any conjugate of Hi different 
from Hi and H2, then Hxr\H2 = # 1 H i72 Pi 77. Thus 

Therefore, i7i P 772 is a normal subgroup of G and a is the only involution of 
Hi P H2. Hence a G Z(G), which contradicts Theorem 8, as Hi is not a normal 
subgroup of G. Thus Hi P H2 P H3 = 1. 

THEOREM 12. 7/ 77i awd i72 are any two conjugate S 2-sub group s of a group G 
and \Hi\/\Hi P H2\ = s, then 

\Hi P 772| = 5 - 1, |i7x| = (s - l)s, and \G\ = (s - l)s(s + 1). 

Proof. In the light of Theorem 9, Corollary 5, it is sufficient to prove that 
\G\/\Hi\ = |77i P 772| + 2. 

LEMMA A. If a £ HI, a commutes with t G G — Hi and bab~l G Hi for some 
b G H, then hah~x = bab~x for some h G 77i. 

Proof. If b G 77i, the result is obvious. 
If b G tHutskeh = J r 1 . 
If £ $ 77i, b G £77i, then TẐ , bHi b~l, and /i7x £

_1 are three different conjugate 
52-subgroups of G. Hence by Theorem 11, there is an h G 77i such that 
h(tHi t~l)h~l = bHi b~\ Therefore 

h{Hi P tHi t-")h~l = Hi P bHi b~\ 

But a is the only involution of Hi P £Z7i /_1 and bab~x is the only involution 
of 77i P iff! b~\ Hence to"1 = JaJ-1. 

LEMMA B. If a G Hi and a commutes with t G G — Hi, then 

C(a) = (C(a) P Hi) U /(C(a) P i7x). 
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Proof. Suppose that u e C(a), u $ C(a) H Hu u g t(C(a) O i 7 i ) . Then 
u Q H, u Q tH. Thus H, tHt~l, and uHu~l are three different conjugate 
52-subgroups of G and a £ H C\ tHt~l C\ uHu~l, which contradicts Theorem 
10. Hence C(a) = (C(a) H Hi) U t(C(a) H Hi). 

Proof of Theorem 12. By the property S2 and Theorem 11, Hi P\ H2 contains 
exactly one involution which commutes with an element of G — Hi. Now, a 
has \Hi\/\C(a) C\ Hi\ conjugates in Hi by elements of H\\ and by Lemma B 
it has no others. Further, a has |G|/|C(a)| conjugates in G. Thus, by Lemma 4, 

IGi/lctoi-iWIcMntfxi 
is either equal to zero or to \Hi\. In the first case |G| = 2\Hi\, in which case H 
is a normal subgroup of G, which is impossible. Hence the second case holds. 
Replacing \C{a) C\ Hx\ by \HX C\ H2\ (Theorem 11) and \C(a)\ by 2\HX f\ H2\ 
(Lemma B), we have \G\/\Hi\ = \H± H H2\ + 2. 

6. A characterization of the Moebius groups. The object of this section 
is to prove: 

THEOREM 14. If G is a finite S2-group with trivial centre, then G is one of the 
groups of Moebius transformations over a finite field of characteristic 9^2. 

We use the method developed by H. Zassenhaus (6). We first represent G 
as a permutation group. 

The symbols of the permutations are the members of the set 2 = {H} of 
52-subgroups of G. The permutation g representing the element g of G is the 
permutation g: H —> gHhr1 for all H in 2. This is obviously a faithful repre
sentation of G. 

THEOREM 13. As a permutation group on the symbols of 2, G is three-fold 
transitive and any element of G is uniquely determined by the image of any three 
symbols of 2. 

Proof. Suppose that Ht and Hu i = 1, 2, 3, are any two triples of symbols 
of 2. Then we must prove that there is a g G G such that gHt g~l = Hiy 

i = 1,2,3. 
Now the elements of 2 are conjugate subgroups and hence there are elements 

x, yj z in G satisfying xHx x~l = Hif yH2 y~l = H2} zHz z~l = i?3. 

LEMMA A. \xHx C\ yH2\ ^ 0. 

Proof. Suppose that \xHi P\ yH2\ = 0. Then xHi Ç G - yH2 = H2 H2 by 
Theorem 9. Hence xHi H2 Q H2 H2. Now 

\xHiH2\ = \HiH2\ = \Hi\\H2\/\Hi ^ H2\ = s*(s - 1), 

where 5 = | i ï i | / | i ï i H H2\, and similarly \H2 H2\ = s2(s - 1). Thus xHx H2 = 
H2 H2. Hence 

G-xHxH2 = G-H2H2 = yH2. 
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This yields x(G — Hi H2) = yH2 or G — Hi H2 = x~xyH2. Hence 

Thus yH2 y~l = xHi x"1, i.e. Hi = H2, which is impossible as the symbols of 
2 are distinct. 

LEMMA B. \XHI P yH2 P z# 3 | ^ 0. 

Proof. Suppose that \xHx P yH2 P zH,\ = 0. Then zH*QG - {xHx P yH2). 
By Lemma A, there is an a £ xH\ P yH\. Then xi7i P yH2 = a(ffi P H2). 
Therefore zHz C G — a (#1 P i72) and hence 

a"1 zHsQG - (Hi P ff2) = (G - # i ) U (G - # 2 ) . 

Thus a"1 s G (G - Hi Hz) U (G - H2 if8). Hence either «-i* £ G - HiHzor 
a~lz Ç G — H2Hz. Suppose the former. Then ( « " ^ ^ ( a - 1 ^ ) - 1 = i?\. There
fore 

si73 s
_1 = a£Ti a - 1 = xi7i x~l. 

Thus i?3 = -ffi, which is a contradiction. Thus we must have 

\xHi P yH2 P z# 3 | ^ 0, 

which proves Lemma B. 

Proof of Theorem 13. By Lemma B, there is a g Ç xi / i P 3^2 P zi/3. 
Obviously gGtg~l = 2/*, i = 1, 2, 3. The second part follows by Theorem 10. 

We now apply the method of Zassenhaus to this three-fold transitive group. 
Denote the symbols of 2 by a, b, c, . . . , x, y, z, . . . and choose three of them, 
arbitrarily, to be denoted by 0, 1, and 00. Now the symbols of 2 are S2-sub-
groups. Denote the subgroup corresponding to a in S by Ha, and if g G G, 
write g (a) = b if and only if gHa g~l = Hb. Now, because N(Ha) = Ha for 
all a G 2, we have Ha = {g G G:g(a) = a). We are interested particularly 
in H0 and Hm and it is convenient to denote the elements of Hœ by upper case 
latin letters. 

Consider Hœ P H0. From Theorem 13, Hœ P H0 is obviously a transitive 
group on the symbols of 22 = 2 — {0, 00 } and each element of Hœ P H0 is 
uniquely determined by the image of any one symbol of 22. We denote the 
element of Hœ P H0 which takes 1 onto x by Mx and define a binary relation, 
on the symbols of 22, by defining xy — Mx(y). 

LEMMA A. 22is a group isomorphic to Hœ P Ho. 

Proof. I t is sufficient to show that Mx My = Mxy. We have 
(i) xl = x for Mx(l) = x, 

(ii) Mxy(l) = foOl = x;y by (i), 
Jlfx M„(l) = x(yl) = xy by (i). 

Hence Mxy(l) = M* Afy(l) and hence Mxy = Mx My. Thus the group 22 is 
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isomorphic to Hœ P\ H0. In particular we have that S2 is abelian and contains 
an involution. 

Now Hœ is a two-fold transitive group on the symbols of Si = S — { oo } 
and only the unit element of H leaves two symbols fixed. Therefore, by the 
Theorem of Frobenius (2, p. 181), the elements of H which leave no symbol 
of Si fixed form a transitive normal abelian subgroup K of Hœ. Obviously 
each element of K is uniquely determined by the image of one symbol of Si. 
We denote the element of K which takes 0 onto x by Ax, and define a binary 
relation + on Si by defining x + y = Ax(y). 

LEMMA B. 2 I W a group isomorphic to K. 

Proof. It is sufficient to prove that Ax^.y — Ax Ay. We have 
(i) x + 0 = x for Ax(0) = x, 

(ii) Ax+y(0) = (x + y) + 0 = x + y by (i), 
Ax Ay(0) = x + (y + 0) = x + y by (i). 

Therefore Ax+y = AxAy and hence Si is isomorphic to K. In particular Si is 
abelian. 

LEMMA C. S I with the two binary relations is afield. 

Proof. As both the groups of Si are abelian it is sufficient to prove the 
distributive law x(y + z) = xy + xz. We have 

(i) Mx~
l = Mx-i for Mx-i Mx(l) = x-^xl) = 1; hence Mx-i Mx = 1; 

(ii) Mx(0) = OforM, G Ho. 
Now K is a normal subgroup of H\ hence, if Mx G H^ C\ H0 and Ay £ K, 

then Mx Ay Mx~
l = Az for some z £ Si. Now 

MxAyMx-'(0) = MxAy(0) = Mx(y) = xy 

and Az{0) = z. Therefore z = xy and hence MxAy Mx~
l = Axy or 

MxAy = AxyMx. 

But Mx Ay{z) = x(y + z) and ^4^ M" (̂s) = xy + xz. Hence 

x(;y + z) = xy + xz. 

Thus Si is a field. 

Now G contains an involution T such that TMX T~l = Mx~~l = ikf^-i for 
all Mx e i^œ H iJ0. Thus TikT* = Af*-i T and in particular 

TMX(1) = Mx-i T(l). 

Hence 
T(x) = x-'Til) = T^x-1 

as Si is abelian. 
Put I = M r ( i)-i T. Then 

i(x) = jfr(D-ir(x) = r(i)-ir(i)x-1 = x~\ 
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Thus G contains the permutation x —» x~l. Furthermore G contains the per
mutations Ma:x-+ax and Aa\x—>a + x. Thus G contains the group of 
Moebius transformations of the field Si of order 5. But the order of G is 
(s — l)s(s + 1) and hence G is the group of Moebius transformations over 
the field Si. Further, Hœ P\ Ho has order 5 — 1 and contains an involution. 
Thus 5 and hence the characteristic of Si is odd. This completes the proof of 
Theorem 14. 
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