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Abstract

The existence of positive solutions, vanishing at infinity, for the semilinear eigenvalue problem
Lu = X • f(x, y) in R^ is obtained, where L is a strictly elliptic operator. The function / is
assumed to be of subcritical growth with respect to the variable u .

1991 Mathematics subject classification (Amer. Math. Soc.): 35 J 60.

1. Introduction

In a recent paper, Noussair and Swanson [3] study the semilinear problem

(1) \M = k'f(x,u) inRN {N>3),

where Lw = - Z)f m=1 9m{alm(x) • dtu) is a strictly elliptic operator, meaning
that there exists a positive constant a0 such that

2

/,m=l

holds for all { s / and almost all jce
The function / is supposed to satisfy

(2)

© 1993 Australian Mathematical Society 0263-6115/93 $A2.00 + 0.00

254

https://doi.org/10.1017/S1446788700037150 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037150


[2] Generalized Emden-Fowler equations 255

for all x e RN and / > 0, where the constants yi

(3) (i = l , . . . , / ) satisfy 1 < y,. < ^ | .

Furthermore, the authors of [3] assume

(Al) that the function / is locally Holder continuous on RN x [0, oo[, and
that the functions alm satisfy alm e c£a(RN) and ||a/m|lco,0(^v) <
oo for a constant 0 < a < 1;

(A2) that there exists an open subset Q / 0 of RN such that f(x, t) > 0
holds on Qx]0, oo[;

(A3) that the functions ft ( / = 1 , . . . , / ) are nonnegative, bounded and
continuous such that fi e L9i(RN) holds for a constant 1 < ql <

IN .

i

(A4) and that t-f(x,t)>C- F(x, t) holds for all x e / and t > 0,
where C is a positive constant and F(x, t) = /0' f(x, s)ds.

Then, it is shown (see [3, Theorem 1]) that there is a positive solution pair
(A, u) of equation (1) such that u e LQ{RN) holds for all 2N/(N - 2) <
Q < oo, and |VM(X)| as well u(x) has uniform limit zero as |x| -+ oo. It
should be mentioned that the authors of [3] do not require explicitly that
the functions alm are uniformly Holder continuous on RN. But, when they
show that |VM(JC)| vanishes uniformly at infinity (see [3, p. 58]), they use the
estimate (8.86) in [2] which depends on max||a/m||co,<,; so the proof only
works if IKJ Ico , , , ^ < o o .

The aim of this paper is to show that assumption (A4) is superfluous and
that the assumptions (A2) and (A3) can be weakened considerably (see Corol-
lary 1). Furthermore, we will prove the existence of a X > 0 and a weak so-
lution u > 0 of equation (1) if (Al) is replaced by the following condition:

(Bl) The function / : R t f x [ 0 , OO[H-> R+ is measurable and, for x e RN,
the function / H-» f(x, t) is continuous on [0, +oo[. Furthermore,
the functions alm satisfy alm e L°°(K ) .

Instead of (A2), we will assume:

(B2) There exist an open subset Q ^ 0 of R and constants 0 < <50 <
<5, < oo such that f{x, t) > 0 holds on Q,x]d0, d{[.

Assumption (A3) will be replaced by

(B3) The functions ft are nonnegative and for each / = 1, . . . , / there

exists a constant 0 < e( < oo such that ft 6 Lq(HLN) holds for all

Q € [p,, pt + e , ] , where pt = 2N_{N
2_N

2Hl+yi).

Then, we will prove the following
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THEOREM 1. Suppose the operator L is strictly elliptic and the assumption
(2), (3) and (B1)-(B3) are fulfilled. Then there exists a constant X > 0
and a positive function u such that equation (1) holds in the weak sense.
Moreover, the function u is locally Holder continuous, satisfies u e LQ(RN)
for all 2N/(N - 2) < Q < oo, and vanishes uniformly at infinity.

COROLLARY 1. Suppose that the assumptions of Theorem 1 are satisfied,
that (Al) is fulfilled and e(. > N - pi holds for i = 1, . . . , / . Then, the
function u satisfies u e C (R ) , and the pair (X, u) solves equation (1) in
the classical sense. Moreover, |VM(JC)| —• 0 uniformly as \x\ —> oo.

Our method of proof is different from that used by Noussair and Swanson.
The authors of [3] minimize the functional

subject to the constraints u e Hl(RN) and JRN F(X , u(x))dx = 1, and show
that the infimum is attained by a function uk e H\RN) satisfying

= kk- f f(X,Uk(x))-v(X)dx

for all v e Hl(RN) and a constant Xk > 0.
Then, making essential use of (A4), the authors show that a subsequence

of (Xk, uk) converges to a solution (X, u) (X > 0, u > 0) of equation (1).
In contrast to this method, we will maximize the functional

J(u) = JF(X, u(x))dx/(\\ufL + ||«||f)

on Hl = Hl(RN) = {ue L2'(RN)\Vu e {L2{RN))N} , where

* = 2N/(N-2) and \\u\\2
L = £ J alm -d,u -dmudx;

so, we need not assume (A4).
To prove that the function u is in Theorem 1 satisfies u e L for all

2* < Q < oo, we will use a method of Stampacchia [4] and not the device
of Brezis and Kato [1]; so we need not assume that the functions ft satisfy
ft G Lq{RN) for some q<pr
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2. Preliminaries

By \f = LP(RN) (1 < p < oo), we denote the usual Lebesgue space and
\\p is the norm on if . For u,veHl,we define

N r
(u,v)L= £ aIm(x)-d1u(x)-dmv(x)dx

lml
l,m=l

and |M|L = (u,u>l/2.
Since L is strictly elliptic, we conclude from the Sobolev inequality that

there is a constant Co > 0 such that

(4) ||M||2. <CQ'\\U\\L holds for all u e Hl.

Hence, Hx is a Hilbert space with scalar product (•, -)L . The function u e
Hl is called a weak solution of equation ( l ) , i f (M, V)L = X- Jf(x, u(x)) •
v(x)dx holds for all v e H1.

For x e RN and t < 0 , we define f{x, t) = 0 . Moreover, we set
F{x, t) = /0' f(x, s)ds for t € R and x eRN . Then, it follows that

(5)

holds on R x R, where t+ = max(<, 0).
From assumption (B2), we conclude that

(6) F(x ,t)>0 holds on Qx]S0, oo[.

Further, from (4), (5) and Holder's inequality, we obtain the following

LEMMA 1. For i = I,... , I, the constant pi may be chosen as in (B3).
Then, for 0 < R < oo and u e H1, we have

1 , / r \l/Pi

F(x, u{x))dx < Y\{\ + yt)~
l • / \ff'dx • (Co • ||w||,)1+r'.

>_R ~[ \J\x\>R J

Lemma 1 shows that J(u) is well defined for all 0 ^ u € H1. Further-
more, since 2 < I + y( < 2*, Lemma 1 implies the existence of a constant
Sl < oo such that

(7) J(u)<S1 holds for all 0 # « € / / ' .

Thus, 5? = supQ ~, J{u) is a well defined real number.
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The function q>0 e C£° may be chosen such that supp ip0 c ft and
sup^ g>0(x) > d0, where So is the constant from (B2). Then, according to
(6), we see that

(8) S0 = ±.J(<p0)>0 and S" > SQ.

3. Proof of the results

In the following, we always suppose that the assumptions of Theorem 1
are fulfilled.

PROOF OF THEOREM 1. Let (un)n c Hl be a sequence such that un ̂  0
and J(un) —> S' as n -» oo.

According to (8), we may assume without restriction that

(9) J(un)>S0 holds for all n.

Since J({un)+) > J(un), we may assume further that un > 0. Then, Lemma
1 implies

for all n and a constant C.
Hence, there exist constants 0 < UQ < Ux < oo such that

(10) UQ < \\un\\L < Ux holds for all n.

So, we can find a subsequence of {un)n, still denoted by (un)n, and u,
0 < u e Hx, such that un—m in Hl. According to Lemma 1 and (10), for
each e > 0, there exists a constant Re > 0 such that J^>R F(x, u{x))dx <
e, and

(11) / F(x,un(x))dx<e

holds for all n .
Using the Rellich-Kondrachov theorem and the fact that ft € Lp'+e', it

can be shown that

(12) / F(x,un(x))dx^ f F(x,u(x))dx

as n - » o o . But (11) and (12) then imply

(13) jF(x,un(x))dx-+ j ' F{x,u(x))dx.
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From (9), (10) and (13) it follows that

F(x,u(x))dx>S0.(ul + U2')>0

and therefore, that u ^ 0.
From the uniform boundedness principle, we obtain

(14) ||M||L + ||w||L < liminf(||Mn||L + \\un\\L ) .

Now, (13) and (14) imply J(u) > limsup/(Mn) — S^ and, consequently,
that J(u) = S".

For any v e Hx, we can find an e0 = so(v), such that ||« + e • v\\L > 0
holds for all |e| < e 0 . For e e ] - e 0 , e o [ , we define »/(e) = J(u + e-v). But
^'(O) = 0 then implies

(15) (u,v)L = X- f(x,u(x))-v(x)dx, where

/ 2 2'\ ( f * 2"-2 \ ~ '

= (ll«lli + IMli ) • ( / F(x, u(x))dx • (2 + 2* • Hull2- 2 ) ) > 0.
For each i = 1 , . . . , / , there exists a constant e*, satisfying 0 < e* <

$ . - (N - 2), such that

pt + e,. = 2N/(2N -(N-2 + e*) • (1 + y.)).

For A: > 0, let uk - (u - k)+ and A(k) = {x\u(x) > k}. Then, it is well
known that uk e Hl, that d,uk = d,u holds on A(k) and that dluk - 0 on
RN\A(k). Inserting v - uk in (15), we conclude from (B3) and (4):

\ 2/2* /0 )

0
A(k) ;P i + , l (meas

1=1

Furthermore, for h > k > 0, we obtain
\2 / 2*
)0 \ 2 / 2

' (u-kfdx) > (h - A:)2 • (measA(h))2/2".
A(k) J
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In the following, the constant k0 > 0 may be chosen such that meas A(k0)
< 1; and the constant y0 may be denned by y0 = min{y1, ... , y{} . Further-
more, £„ may satisfy 0 < e^ < min {e*, . . . , ej} , e^ < 2 • (N - 2)/(l + y0)
and

n-e*0^2-(N-2)/(l+y0) for all n G N.

Then, there exists a constant n0 e N such that

n0.e*0<2.(N-2)/(l+y0) and («0+ 1) • e*0 > 2 • (N - 2)/(l + y0).

Hence, for h > k > kQ, we conclude from (16) and (17):

meas A(h) <C-(h- k)~2' • (meas A(k)f+yo)'e'J2'{N~2) ,

where the constant C is independent of h and k. By part (iii) of [4,
Lemma 4.1], it follows that

(18) meas A(h) < K • h~"

holds for a constant K > 0 and all h > k0, where

For p > 2*, we have

f(u(x))"dx= f (u(x))"dx+ rVcr"" 1 - meas({u > kQ} n {u > a})da

< k%~ • ||M||2. + k% • meas {« > k0}
f°°

+ I p • ap~ meas {u > a}da
K

(see [2, Lemma 9.7]).
Thus, (18) shows that u € IF for all 2* < p < fi. In particular, we see

that u G LPl for

Pl = 4N/(2 .{N-2)-2.e'0) = 2N/((N- 2) - e*).

Moreover, by induction, it can be shown that

u G if" holds for all n = 1, . . . , n0,

where pn = 2N/((N-2)-n-e*0).
Using the fact that u G LPno and proceeding as above, we obtain

meas A(h) <C{h- k)~2' . (meas A{k)fo+mi+yo)'</2'(N-2)

for all h > k > kQ. But now, part (i) of [4, Lemma 4.1] implies u G L°° ;
so, we have u G LQ for all 2* < Q<oo.
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The function h: RN x R -»[0, oo[ may be denned by h(x, t) = f(x, t)/t
if x € RN and / > 0, and by h(x, t) = 0 otherwise. Then, by (2), we
obtain that

(19) 0<h(x,t)

holds for all x€RN and ( e R .
The constant a 0 may be chosen such that 1 < a 0 < y0, and p0 may be

defined by p0 = 2N/(2N -(N-2)-(l+ aQ)). Further, by r,.(i = 1, • . . , / ) ,
we denote the constant

Since u e Lr', we obtain by Holder's inequality:

'\\u\\y/~l for all

Hence, (19) implies h{-, «(•)) G Lp°.
From (15), it follows that

(u, v)L -A.' h(x, u(x)) • u(x)'v(x)dx = 0

holds for all v€Hl.
Then, because p0 > N/2, we conclude from [4, Corollary 8.1] that u is

positive. Since u is bounded and f(x, u{x)) = h(x, u(x)) • u(x), we see
that / ( • , «(•)) G Lp°. Then, using [2, Theorem 8.24] and proceeding as in
[3, p. 58], it can be shown that u is locally Holder continuous and M(JC) -> 0
uniformly as \x\ —> oo .

PROOF OF COROLLARY 1. Now, we assume additionally that (Al) is sat-
isfied and pi + e. > N holds for i = 1, . . . , / . The function u and the
constant A may be chosen as in Theorem 1. Then, the function g(x) =
A«/(JC , u(x)) is locally Holder continuous on RN. In particular, we see that
g G L2

Xoc. Hence, [2, Theorem 8.8] implies u G W^2 and

fl/m ' dmlU + dmalm ' dlU) = 8 a-e- i n E ^ -
l,m=l

Now, we apply [2, Theorem 9.19] and conclude that u G C^.. Furthermore,
we see that (A, M) solves equation (1) in the classical sense.

The constant q0 may be chosen such that

N < q0 < min{pl +elt , p, + er},
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and we let B Ax) denote the ball in R^ with centre x and radius p. Then,
using [2, Problem 4.8(b)] and the remark after (4.46) in [2, p. 70], and
proceeding as in the proof of [2, Theorem 8.32], it can be shown there exists
a constant C, independent of x, such that

(20) IMc'-w*)) ̂  c ' (iMIcHw) +
where 0 < v < min {a, (QQ — N)/q0} . Since u vanishes uniformly at infinity
and

)) ^ K ' 2
( = 1

holds for a constant K which is independent of x, we conclude from (20)
that |VM(X)| has uniform limit zero as |x| -> oo.
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