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O N T H E N O N - E X I S T E N C E O F A P R O J E C T I O N O N T O 
T H E S P A C E O F C O M P A C T O P E R A T O R S 

BY 

M O S H E F E D E R * 

ABSTRACT. Let X and Y be Banach spaces, L(X, Y) the space of 
bounded linear operators from X to Y and C(X, Y) its subspace of 
the compact operators. A sequence {TJ in C(X, Y) is said to be an 
unconditional compact expansion of TeL(X, Y) if XT^x converges 
unconditionally to Tx for every xeX. We prove: (1) If there exists a 
non-compact TeL(X, Y) admitting an unconditional compact ex
pansion then C(X, Y) is not complemented in L(X, Y), and (2) Let 
X and Y be classical Banach spaces (i.e. spaces whose duals are 
some LP(|LL) spaces) then either L(X, Y) = C(X, Y) or C(X, Y) is 
not complemented in L(X, Y). 

1. Introduction. The following problem has been considered by many au
thors (see [1], [4], [5], [6], [7], [12], and [13]). 

PROBLEM 1. Are the following two properties equivalent for every pair of 
Banach spaces? 

(a) There is a projection from the space L(X, Y) onto its subspace C(X, Y). 
(b) L(X, Y) - C(X, Y), i.e. every operator from X to Y is compact. 

For definitions and notations, see Section 2. Clearly (b) implies (a). Recently, J. 
Johnson [5] observed that (a) and (b) are equivalent for many pairs of classical 
Banach spaces. However, the following cases were left open (see [5], Table 1): 
X=C(K) where K is non-dispersed (including X=lao) and Y = Lt or Y-
C(S); X = LX and Y= C(S). These problems are solved in Section 4 and the Lx 

preduals are also discussed. The solution is obtained using the following 
theorem which is a generalization of [4, Lemma 2] and of the main results of 
the before-mentioned papers. 

THEOREM 1. Let X and Y be Banach spaces. Suppose that there exists a 
non-compact TeL(X, Y) admitting an unconditional compact expansion. Then 
C(X, Y) is uncomplemented in L(X, Y). 

In particular, if X is infinite dimensional and c0
 Œ Y, then C(X, Y) is 

uncomplemented in L(X, Y). We go on to prove 
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THEOREM 2. Let X and Y be classical Banach spaces. Then either every 
operator from X to Y is compact or C(X, Y) is uncomplemented in L(X, Y). 

Recall that a Banach space Z is said to be "classical" if its conjugate Z* is 
isometric to an Lp(jLt) space. Among these spaces are: the C(K) spaces, LP(IJL) 

spaces, lv spaces, c0 and the other Li-preduals. 

2. Preliminaries. An "operator" in this paper is always bounded and linear. 
X, Y, E, and F will always denote Banach spaces. L(X, Y) denotes the Banach 
space of all operators from X to Y, with the sup norm. C(X, Y) is the subspace 
of L(X, Y) consisting of the compact operators. We will not distinguish 
between an operator T.X-+Y and its astriction Ta : X - » T(X) (given by 
Tax = Tx). A "projection" P is an idempotent (P2 = P) operator from a Banach 
space X to itself. We will also regard P as an operator from X onto P(X) 
which extends the identity I : P(X) —» P(X). A subspace Y of X is com
plemented in X if there exists a projection from X onto Y. We denote the ith 
coordinate of £ G L by ê, i-e., ê = (ê)- £ is supported on the set M of integers if 
è ^ 0 implies i G M. 

Let TeL(X, Y). A sequence {TJ in C(X, Y) is said to be an unconditional 
compact expansion of T if X Ttx converges unconditionally to Tx for every 
x e X. In this case we shall write Y,Tt = T. Note that if £ e L, I ê ^ G L(X, Y) is 
well defined (i.e. there is a T 0 G L ( X , Y) with an unconditional compact 
expansion T0 = ^i$iTi). 

A series X *i in £ is s aid to be weakly unconditionally Cauchy (w.u.C.) if 
X|x*(Xj)|<o° for every X * G E * . X^i is weakly subseries convergent if S x ^ 
converges weakly to some element of E for every increasing sequence of 
integers. This implies, by the Orlicz-Pettis theorem, that £*i is subseries 
convergent in norm, hence unconditionally convergent in norm (see Day [3, pp. 
78-80]). 

3. Proof of Theorem 1. We generalize and use ideas of Kalton [6]. 

Proof. Let {Tt} be a sequence in C(X, Y) such that X Ttx converges uncondi
tionally to Tx for every x e X. We will consider two cases. 

CASE 1. There is a y*GY* such that X Tfy* is not weakly subseries 
convergent. 

For every xeX, Y*(TTy*)(.x) = Yiy*(Tix) is absolutely convergent. By a 
result of Orlicz and Mazur (see [11, p. 432, Lemma 15.1]) S Tfy* is w.u.C. By 
Bessaga and Pelczyfiski [2], X contains a complemented subspace isomorphic 
to lt since X ^(i>y* is not weakly convergent for some permutation IT of the 
positive integers. Since T is non-compact, Y is infinite dimensional. By Kalton 
[6, Lemma 3] C(X, Y) is uncomplemented in L(X, Y). 

CASE 2. For every y*G Y*, X Tfy* is weakly subseries convergent. 
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There is a separable subspace E of X such that the restriction T | E is 
non-compact. If J : E -» X denotes the inclusion map, then T | E = TJ. Since 
TJ is non-compact, the series £ T)J diverges in the norm topology of C(E, Y). 
Thus we may assume, without loss of generality, that inf; ||TiJl|>0 (otherwise, 
replace {Tt} by a suitable sequence of blocks {Bn =Yd=+pn+iTi\ with infn ||BnJ||> 
0; T = £ B n is also an unconditional compact expansion of T). Put F = 
spanUTj(E). F is a separable subspace of Y. Let S0 : F—» L be an isometrical 
embedding and let S : Y —> L be an extension of S0. Assume now to the 
contrary, that there exists a projection p : L(X, Y) -»L(X, Y) onto C(X, Y). 
Consider the following string of maps 

L ^> L(X, Y) ^ L(X, Y) -^ L(F, L) 

where w(|) = XêTl, q = JdL(x,y)_P and v(R) = SRJ. Let </> = u ° q ° w : L — » 
L(F, L). Clearly, c^(c0) = 0. By Kalton [6, Prop. 5] there is an infinite set M of 
integers such that <£(£) = 0 whenever £ is supported on M. Let £ e L be 
supported on M; then S X êTiJ = S[pCC êTî)]J is compact. Hence iC€ = £ êT f / 
is compact. Let y * e Y * and £ e L be given. By our assumption, X Tfy* is 
weakly subseries convergent. (By the Orlicz-Pettis Theorem, it is also uncondi
tionally convergent.) For every £ e L which is supported on M, X èi(TtJ)*y* = 
X &J*T*y* converges unconditionally to Kf y*. By Kalton [6, Cor. 3], £iem i y 
is weakly subseries convergent in C(E, Y). By the Orlicz-Pettis Theorem, 
Zisjvfiy converges in norm, contrary to the assumption that inf ||TjJ||>0. 
Hence no projection from L(X, Y) to C(X, Y) exists. 

The following corollary generalizes Theorem 4 of J. Johnson [5]. 

COROLLARY 1. Let X be infinite dimensional and suppose that Y contains an 
isomorphic copy of c0. Then C(X, Y) is not complemented in L(X, Y). 

Proof. A result of Josefson and Nissenzweig (see [4] or [5]) says that if 
dim X = oo then there is a non-compact operator T : X-^>c0. Let V : c0 -» Y be 
an isomorphism (into). VT is non-compact and has an unconditional compact 
expansion. Now use Theorem 1. 

4. Proof of Theorem 2. A result of Zippin [14] states that every infinite 
dimensional Li-predual contains a copy of c0. Combining this with Corollary 1 
we get 

COROLLARY 2. Let X and Y be infinite dimensional and let Y be an 
Lx-predual. Then C(X, Y) is uncomplemented in L(X, Y). 

Proof of Theorem 2. Assume that L(X, Y ) ^ C(X, Y). We have to prove 
that C(X, Y) is uncomplemented in L(X, Y). 

(1) If Y is an Li-predual, we are done by Corollary 2. 
(2) If X = L1(JUL), Kalton [6, Lemma 3] gives the result. 
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(3) If X = Lp(jUL), K p < o o and Y = I*(i/), l < r < o o then by the proof of 
Theorem A2 of Rosenthal [10], there is a non-compact T :X-^Y factoring 
through ip or l2 (since we assumed that L(X, Y) £ C(X, Y)). Now use Theorem 
1. 

(4) If X* = L1(IL) and Y = Lr(v) ( l<r<oo) then jtt cannot be purely atomic 
(otherwise, L(Y*, J ^ I ^ C C Y * , h(T)) for some T, since L(X, Y)^C(X, Y)) 
Also r > 2 or v is not purely atomic. This implies that there is a non-compact 
T : X^>Y factoring through Z2- Again, use Theorem 1. 

We conclude with 

PROBLEM 2. Is there a pair of Banach spaces X and Y such that 
L(X, Y) ^ C(X, Y) and yet no non-compact operator from X to Y admits an 
unconditional compact expansion? 

Clearly a negative answer to Problem 1 would answer Problem 2 positively. 
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