ENGEL CONGRUENCES IN GROUPS OF PRIME-POWER EXPONENT

N. D. GUPTA AND M. F. NEWMAN

It is a well-known result of Sanov (5) that groups of exponent p^{k} (p prime) satisfy the $\left(k p^{k}-1\right)$ th Engel congruence (definition below). Recently, an alternative proof of this has been given by Glauberman, Krause, and Struik (3). Bruck (2) has conjectured that such groups satisfy the $\left(k p^{k}-(k-1) p^{k-1}-1\right)$ th Engel congruence. In this note we go some way towards proving this.

Theorem 1. Groups of exponent p^{k} satisfy the $\left(k p^{k}-1-\sum_{i=0}^{k-1} p^{i}+k\right) t h$ Engel congruence.

For $k=2$, a slight modification of our argument proves Bruck's conjecture.
Theorem 2. Groups of exponent p^{2} satisfy the $\left(2 p^{2}-p-1\right)$ th Engel congruence.

This result is close to best possible for there are metabelian groups ($\mathbf{1}$, Corollary 2) of exponent p^{2} which do not satisfy the $\left(2 p^{2}-2 p-1\right)$ th Engel congruence.

As usual, we write $[a, b]$ for the commutator $a^{-1} b^{-1} a b$, use the left-normed convention $[a, b, c]=[[a, b], c]$ and define $[a, n b]=[a,(n-1) b, b]$ for $n \geqq 2$. The nth term $\gamma_{n}(G)$ of the lower central series of a group G is the normal subgroup generated by the commutators $\left[a_{1}, \ldots, a_{n}\right.$] for all a_{1}, \ldots, a_{n} in G. If $[a, n b] \in \gamma_{n+2}(G)$, then G satisfies the nth Engel congruence.

Let p be a prime and k a positive integer; let F be free in the variety of groups of exponent p^{k} freely generated by $Y=\left\{y_{0}, y_{1}, \ldots\right\}$. For each commutator c with entries in Y, let $w_{i}(c)$ denote its weight in y_{i} and $w(c)$ its weight. Let Z be the subset of commutators-in- Y defined (recursively) by: $c \in Z$ if
(a) $w_{0}(c) \geqq 1$ and $w(c) \geqq 2$; thus $c=\left[c_{1}, c_{2}\right]$, and
(b) $c_{1} \in Z$, or $c_{2} \in Z$, or for all i in $\{1,2\}, w_{0}\left(c_{i}\right) \geqq 1$ or $w\left(c_{i}\right) \geqq 2$.

Clearly, Z is closed under commutation. The subgroup K generated by Z is normal because F has finite exponent. Consider $G=F / K$ and let d be the coset $y_{0} K$. Obviously, the normal closure N of d is abelian. Let Γ be the multiplicative subgroup of the endomorphism ring E of N consisting of the automorphisms induced in N by the action of G, that is, $\xi \in \Gamma$ if and only if there is an x in G such that $d^{*} \xi=x^{-1} d^{*} x$ for all $d^{*} \in N$. Let \mathbf{P} be the subring of E generated by Γ, then, clearly, P is a commutative ring with identity one.

Since G has exponent dividing p^{k}, we have (4, equation (3)) that

$$
\begin{equation*}
p^{h} \prod_{r=h}^{k-1} \prod_{i=1}^{f(r)}\left(\xi_{i r}^{p^{r}}-1\right)=0 \tag{I}
\end{equation*}
$$

for all $\xi_{i r}$ in Γ and all $h \in\{0, \ldots, k-1\}$, where $f(r)=p^{k-r}-p^{k-r-1}$.
We now prove by double induction on $t-h \in\{0, \ldots, k-h-1\}$ and $s \in\{0, \ldots, f(t)\}$ that

$$
\begin{align*}
p^{h} \prod_{r=h}^{t-1} \prod_{i=1}^{f(r)+\delta(r)}\left(\xi_{i r}-1\right)^{p^{r}} \prod_{i=1}^{f(t)-s}\left(\xi_{i 1}^{p^{t}}-1\right) & \prod_{i=f(t)-s+1}^{f(t)+1-\delta_{h, t}}\left(\xi_{i t}-1\right)^{p^{t}} \tag{2}\\
& \times \prod_{r=t+1}^{k-1} \prod_{i=1}^{f(r)}\left(\xi_{i r}^{p^{r}}-1\right)=0
\end{align*}
$$

for all $\xi_{i r}$ in Γ, where $\delta(r)=1-\delta_{h, r}-p\left(1-\delta_{k-1, r}\right)$ and $\delta_{m, n}=0$ for $m \neq n$ and $\delta_{m, m}=1$. For $t-h=0, s=0$ this comes from (1). Suppose that the result is true for some $t-h \in\{0, \ldots, k-h-2\}$ and $s=f(t)$, then putting $\xi_{i t}=\xi_{f(t+1)+1, t+1}$ for $i \in\{f(t)+\delta(t)+1, \ldots, f(t)+\delta(t)+p\}$ gives the result for $t-h+1, s=0$. Finally, suppose that the result is true up to some $t-h \in\{0, \ldots, k-h-1\}$ and some $s \in\{0, \ldots, f(t)-1\}$. Let
$\rho=p^{h} \prod_{r=h}^{t-1} \prod_{i=1}^{f(r)+\delta(r)}\left(\xi_{i r}-1\right)^{p^{p}} \prod_{i=1}^{f(t)-s-1}\left(\xi_{i i}{ }^{p^{t}}-1\right) \prod_{i=f(t)-s+1}^{f(t)+1-\delta_{h, t}}\left(\xi_{i t}-1\right)^{p^{t}}$

$$
\times \prod_{r=t+1}^{k-1} \prod_{i=1}^{f(r)}\left(\xi_{i r}^{p^{r}}-1\right)
$$

then by the inductive hypothesis, $\rho\left(\xi_{f(t)-s, t}^{p t}-1\right)=0$ and $p \rho=0$ (the latter has h replaced by $h+1$ and thus has lower " $t-h$ "). The binomial theorem then gives $\rho\left(\xi_{f(t)-s, t}-1\right)^{p^{t}}=0$ which is the case $t-h, s+1$. Thus (2) is proved.

Putting $h=0, t=k-1$, and $s=f(k-1)$ in (2) yields

$$
\begin{equation*}
\prod_{r=0}^{k-1} \prod_{i=1}^{f(r)+\delta(r)}\left(\xi_{i r}-1\right)^{p^{r}}=0 \tag{3}
\end{equation*}
$$

for all $\xi_{i r}$ in Γ. Let

$$
m_{r}=\sum_{j=0}^{\tau}(f(j)+\delta(j)) \quad \text { and } \quad m=m_{k-1}
$$

then (3) yields, in particular,

$$
c=\left[y_{0}, y_{1}, \ldots, y_{m_{0}}, p y_{m_{0}+1}, \ldots, p y_{m_{1}}, \ldots, p^{k-1} y_{m}\right] \in K
$$

Hence, using a lemma of Higman's (see 6, Lemma 5.1), c can be written as a product of elements of Z each of which has positive weight in y_{1}, \ldots, y_{m}. Putting $y_{1}=y_{2}=\ldots=y_{m}$ in this we have that $\left[y_{0}, k p^{k-1}(p-1) y_{1}\right]$ can be written as a product of commutators of weight at least 2 in y_{0} and at least m in y_{1}. By a lemma of Lyndon (see 3, Lemma 4.1) the 2 in the last sentence can
be replaced by p. Since F is relatively free, y_{0} can be replaced in the resulting expression by

$$
\left[y_{0},\left(k p^{k-1}-\frac{p^{k}-1}{p-1}+k-1\right) y_{1}\right]
$$

to yield

$$
\left[y_{0}, n y_{1}\right] \in \gamma_{n+2}(F), \quad \text { where } \quad n=k p^{k}-1-\frac{p^{k}-1}{p-1}+k
$$

Theorem 1 then follows.
The proof of Theorem 2 is similar. We have (4, equation (10) with $k=2$) that

$$
p \prod_{i=1}^{p(p-1)}\left(\xi_{i}-1\right)=0 \quad \text { for all } \xi_{i} \text { in } \Gamma
$$

and thus, taking $h=0$ and $k=2$ in (1) and applying the binomial theorem, we obtain

$$
\prod_{i=1}^{p(\eta-1)}\left(\xi_{i}-1\right) \prod_{i=1}^{p-1}\left(\eta_{i}-1\right)^{p}=0 \quad \text { for all } \xi_{i}, \eta_{i} \text { in } \Gamma
$$

Hence, in particular,

$$
\left[y_{0}, y_{1}, \ldots, y_{p(p-1)}, p y_{p(p-1)+1}, \ldots, p y_{p^{2}}\right] \in K
$$

and, arguing as before, $\left[y_{0},\left(2 p^{2}-p-1\right) y_{1}\right] \in \gamma_{2 p^{2}-p+1}(F)$, and Theorem 2 follows.

References

1. S. Bachmuth and H. Y. Mochizuki, Cyclotomic ideals in group rings, Bull. Amer. Math. Soc. 72 (1966), 1018-1020.
2. R. H. Bruck, On the restricted Burnside problem, Arch. Math. 13 (1962), 179-186.
3. George Glauberman, Eugene F. Krause, and Ruth Rebekka Struik, Engel congruences in groups of prime-power exponent, Can. J. Math. 18 (1966), 579-588.
4. N. D. Gupta, M. F. Newman, and S. J. Tobin, On metabelian groups of prime-power exponent, Proc. Roy. Soc. London Ser. A 302 (1968), 237-242.
5. I. N. Sanov, On a certain system of relations in periodic groups with period a power of a prime number, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 477-502.
6. Seán Tobin, On a theorem of Baer and Higman, Can. J. Math. 8 (1956), 263-270.

The University of Manitoba, Winnipeg, Manitoba;
The Australian National University, Canberra, Australia

