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TEST VECTORS FOR LOCAL CUSPIDAL
RANKIN–SELBERG INTEGRALS

ROBERT KURINCZUK and NADIR MATRINGE

Abstract. Let π1, π2 be a pair of cuspidal complex, or `-adic, represen-

tations of the general linear group of rank n over a nonarchimedean local

field F of residual characteristic p, different to `. Whenever the local Rankin–

Selberg L-factor L(X, π1, π2) is nontrivial, we exhibit explicit test vectors in

the Whittaker models of π1 and π2 such that the local Rankin–Selberg integral

associated to these vectors and to the characteristic function of onF is equal

to L(X, π1, π2). As an application we prove that the L-factor of a pair of

banal `-modular cuspidal representations is the reduction modulo ` of the L-

factor of any pair of `-adic lifts.

§1. Introduction

The integral representation of local L-factors, of pairs of complex irre-

ducible representations of general linear groups over a nonarchimedean

local field F , was developed in the fundamental paper [5] of Jacquet–

Piatetski-Shapiro–Shalika. These L-factors are Euler factors which are the

greatest common divisors, in a certain sense, of families of integrals I of

Whittaker functions. For n>m, as a by-product of the definition, if π1

and π2 are irreducible smooth complex (or `-adic) representations of GLn(F )

and GLm(F ) respectively with Whittaker modelsW (π1, ψ) andW (π2, ψ
−1),

extended to all irreducible representations via the Langland’s classification,

then it is known that there is a finite number r of Whittaker func-

tions Wi ∈W (π1, ψ) and W ′i ∈W (π2, ψ
−1), and a finite number of Schwartz

functions Φi on Fn if n=m, such that the L-factor L(X, π1, π2) can be

expressed as
∑r

i=1 I(X,Wi, W
′
i ), or

∑r
i=1 I(X,Wi, W

′
i , Φi) when n=m. A

natural question which thus arises is whether one can find an explicit family

of such test vectors.

A famous instance of test vectors is the essential vectors for generic

representations (cf. [4, 6, 9]). It is shown in these references that these

Received July 28, 2016. Revised August 8, 2017. Accepted August 13, 2017.
2010 Mathematics subject classification. 11F70.

c© 2017 Foundation Nagoya Mathematical Journal

https://doi.org/10.1017/nmj.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.32
https://doi.org/10.1017/nmj.2017.32


TEST VECTORS FOR LOCAL CUSPIDAL RANKIN–SELBERG INTEGRALS 171

vectors are test vectors for L(X, π1, π2) when π1 is a generic representation

of GLn(F ), π2 is an unramified standard module of GLm(F ), and n >m.

Interesting partial results have been obtained in [7], and, as indicated

in [7], the theory of derivatives and its interpretation in terms of restriction

of Whittaker functions (cf. [3, 9]) should reduce the general problem to the

cuspidal case. Here, we establish the cuspidal case: that for pairs of cuspidal

representations π1 and π2, we can choose r = 1, and moreover, we exhibit

explicit test vectors, in the interesting case, whenever L(X, π1, π2) is not

equal to one. The fact that r can be chosen to be 1 when L(X, π1, π2) = 1, for

any pair of irreducible representations π1 and π2 of GLn(F ) and GLm(F ), is

explained in the proof of [5, Theorem 2.7] and follows from standard facts on

Kirillov models. We do not provide completely explicit test functions in this

case, possibly a quite technical problem, and we in fact do not consider this

case in the remainder of this article, as it is not needed for our application

to reduction modulo `.

Before we state our main theorem, we explain our normalization of Haar

measure (Section 4), as for our application to reduction modulo ` some care

needs to be taken with the normalization. Let oF denote the ring of integers

of F with unique maximal ideal pF , and let q denote the cardinality of

the residue field oF /pF and p its characteristic. We fix our Haar measure

on GLn(F ) to give the pro-p unipotent radical K1
n of GLn(oF ) volume one.

It will turn out that this is a good choice of normalization for reduction

modulo ` for primes ` not equal to p because K1
n is a pro-p subgroup. In

particular, the volume of any pro-p subgroup of GLn(F ) which occurs in

our computation will be a power of q.

Now we state our main theorem. Let π1 and π2 be cuspidal complex,

or `-adic, representations of GLn(F ) such that L(X, π1, π2) is nontrivial,

so that π2 ' χπ∨1 for some unramified character χ of F×. Let e denote the

common ramification index of π1 and π2 (see Section 6). We denote by W1

andW2 the explicit Whittaker functions for π1 and π2, as constructed in [12],

with respect to a suitable nondegenerate character of the standard maximal

unipotent subgroup of GLn(F ) and suitable maximal extended simple types

in π1 and π2.

Theorem 9.1. There is an integer r such that

I(X,W1, W2, 1onF ) = (q − 1)(qn/e − 1)qr
1

1− (ν($F )X)n/e

= (q − 1)(qn/e − 1)qrL(X, π1, π2).

https://doi.org/10.1017/nmj.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.32


172 R. KURINCZUK AND N. MATRINGE

The factor qr occurs in our computation as a product of volumes, with

respect to certain quotient measures, of quotients of pro-p subgroups related

to the groups of Bushnell–Kutzko [2] in their explicit construction of π1, π2.

Clearly, after our computation we could simply renormalize our measure

by the factor (q − 1)(qn/e − 1)qr and under the new normalization have an

equality between the integral and the L-factor, hence (W1, W2, 1onF ) is a test

vector in the sense described earlier. However, it is important to keep track

of these factors for our application to reduction modulo `.

We now describe the proof of this theorem. In Section 7, we carefully

choose an appropriate basis of Fn and simple types in our cuspidal

representations, so that the subgroup of GLn(F ) defined by these simple

types decomposes well with respect to the Iwasawa decomposition and

satisfies some other important properties (see Proposition 7.1). In Section 8,

we analyze the support of the explicit Whittaker functions of Paskunas

and Stevens in terms of this well chosen group (Proposition 8.4). This

preparation, which constitutes a substantial amount of the path to our main

result, then allows us to compute the integral in Section 9.

Our interest in test vectors originated in the study of `-modular Rankin–

Selberg L-factors, for ` 6= p, as introduced in [8]. Let π1 and π2 be integral

cuspidal `-adic representations of GLn(F ) and GLm(F ), and τ1 = r`(π1)

and τ2 = r`(π2) their reductions modulo `, which are cuspidal `-modular

representations. By [8, Theorem 3.13], the local factor L(X, τ1, τ2) always

divides r`(L(X, π1, π2)). In particular, L(X, τ1, τ2) = r`(L(X, π1, π2)) when-

ever L(X, π1, π2) = 1. Hence the interesting case, where a strict division can

happen is when L(X, π1, π2) is not equal to 1, and, in particular, n=m.

In [10], it was shown that for banal representations the `-modular

Godement–Jacquet L-factor is equal to the reduction modulo ` of the `-adic

Godement–Jacquet L-factor. It is thus natural to ask: if π1 and π2 are `-

adic integral cuspidal representations of GLn(F ) with banal reductions τ1

and τ2, does one have L(X, τ1, τ2) = r`(L(X, π1, π2))? As a corollary of our

main result on test vectors applied to `-adic Rankin–Selberg integrals, we

answer this question in the affirmative.

Corollary 10.1. Let τ1 and τ2 be two banal cuspidal `-modular

representations of GLn(F ), and π1 and π2 be any cuspidal `-adic lifts, then

L(X, τ1, τ2) = r`(L(X, π1, π2)).
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In [8], this corollary plays a key role in the classification of L-factors

of generic `-modular representations, and their relationship with `-adic L-

factors via reduction modulo `.

It would be interesting to pursue the methods of this paper for integral

representations of other L-factors, such as the Asai, exterior square, and

symmetric square L-factors.

§2. Notations

Let F be a nonarchimedean local field of residual characteristic p and

residual cardinality q. Throughout, R will denote one of the fields C, Q`,

and F` and we assume that ` 6= p. For E any extension of F , we denote

by oE the ring of integers of E; by $E a uniformizer of E; by pE = ($E)

the unique maximal ideal of oE ; by qE the residual cardinality of E; and

let ||E,R : E×→R× denote the unramified character defined by |$E |E,R =

q−1
E , thus ||E,C is the restriction of the absolute value to E× normalized in

the usual way. When the field R considered is clear we remove the index R

from ||E,R, and when E = F we remove the index F as well.

Let Gn = GLn(F ), Kn = GLn(oF ), K1
n = 1 + Matn,n(pF ), and let Zn be

the center of Gn. For g in Gn, by abuse of notation, we denote by |g|
the quantity |det(g)|. Put ηn = (0 · · · 0 1) ∈Mat1,n(F ), and let Pn be

the standard mirabolic subgroup of Gn, that is, the set of all matrices g

in Gn such that ηng = ηn. Let Nn be the unipotent radical of the standard

Borel subgroup of upper triangular matrices in Gn. For k ∈ Z, let G
(k)
n =

{g ∈Gn : |g|F = q−k}. For any subset X of Gn, let X(k) =X ∩G(k)
n , and

let 1X denote the characteristic function of X.

Let Q` denote an algebraic closure of the `-adic numbers, Z` denote its

ring of integers, and F` denote its residue field which is an algebraic closure

of the finite field of `-elements.

§3. Representations with coefficients in R

We only consider smooth R-representations, that is smooth representa-

tions with coefficients in R, and we use ∨ as an exponent to denote the

contragredient. We call a representation on a Q`-vector space an `-adic

representation, and a representation on an F`-vector space an `-modular

representation. Let (π, V) be an irreducible `-adic representation of Gn. We

call π integral if V contains a Gn-stable Z`-lattice. Notice that for an `-adic

character ν :Gn→Q`
×

this just means that ν takes values in Z`
×

.
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An R-representation is called cuspidal if it is irreducible and never

appears as a quotient of a properly parabolically induced representation.

By [13, II 4.12], a cuspidal `-adic representation is integral if and only if

its central character is integral, hence the contragredient of a cuspidal `-

adic representation π is integral if and only if π is integral. Let π be

an integral cuspidal `-adic representation and L be a Gn-stable Z`-lattice

in the space of π. Let rL(π) be the `-modular representation induced on

the space L⊗Z`
F`. This `-modular representation is also cuspidal (and

irreducible) by [13, III 5.10], and hence independent of the choice of

the lattice L by the Brauer–Nesbitt principle [14, Theorem 1], we thus

write r`(π) for rL(π) and call r`(π) the reduction modulo ` of π. We also say

that π lifts r`(π), and it follows from [13, III 5.10] that all cuspidal `-modular

representations lift to cuspidal `-adic representations. Following [11, Remark

8.15], we call a cuspidal `-modular representation τ banal if τ 6' τ ⊗ ||F
(notice that the definition in [11, Remark 8.15] refers to a condition given

in Proposition 8.9 of this reference, which in the cuspidal case reduces to the

condition we give here). For H a closed subgroup of G, we write IndGH for the

functor of smooth induction taking representations of H to representations

of G, and write indGH for the functor of smooth induction with compact

support.

§4. Normalization of Haar measures

We now discuss our normalization of Haar measures. The basic reference

forR-Haar measures is [14, I 2], but we also refer the reader to [8, Section 2.2]

for more details on the splitting of Haar measures with respect to standard

decompositions. Let dg be the Haar measure on Gn normalized to give K1
n

volume 1.

We normalize the right Haar measure on Pn so that dp(Pn ∩K1
n) = 1,

on Nn so that dn(Nn ∩K1
n) = 1, and on Zn so that dz(Zn ∩K1

n) = 1. For

the remainder of this section, let G denote a closed subgroup of Gn with

Haar measure dGg. For any open subgroup U of G, we define the Haar

measure dUg on U as the restriction of dGg, in particular dUg is normalized

as soon as dGg is.

IfH is a closed subgroup ofG with right Haar measure dHh, and such that

the modulus character of G restricts to H as the modulus character of H,

we descend dGg to a right-invariant measure dH\Gg on H\G as explained

in [14, I 2.8]. For f a smooth map from G to R with compact support,
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denoting by fH the map on H\G defined by

fH(g) =

∫
H
f(hg) dHh,

the usual relation is satisfied:∫
H\G

fH(g) dH\Gg =

∫
G
f(g) dGg.

This implies that dH\Gg is normalized as soon as dGg and dHg are.

Indeed, if K is a compact subgroup of G, applying the equality above

to f = 1K , so that

fH = dH(K ∩H)1H\HK

gives the relation

(1) dG(K) = dH\G(H\HK)dH(K ∩H).

This gives for example the normalization

dH\G(H\HK1
n) = dH(H ∩K1

n)\dG(G ∩K1
n).

With these normalizations, we have the splitting

dg = |p|−1
F dp dz dk.

This splitting descends on Nn\Gn, in which case dg denotes the normalized

right-invariant measure on Nn\Gn and dp the right-invariant measure on

Nn\Pn. Notice that with such normalizations, the volume of all pro-p

subgroups of Gn, of Pn and of Zn will be (positive or negative) powers of q.

Moreover, for such choices, reduction modulo ` commutes with integration

(cf. [8, Remark 2.1]), that is, if f ∈ C∞c (X, Z`) for X equal to Gn or any of

the homogeneous spaces K\L with L a subgroup of Gn considered above,

then
∫
X f(x) dx ∈ Z`, and

r`

(∫
X
f(x) dx

)
=

∫
X
r`(f(x)) dx.

For the rest of this section, we suppose that R has characteristic zero, and

we recall some classical equalities, which all follow from Relation (1).
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For a finite set A, we let |A| denote its cardinality in R. Suppose that

G=K compact, and U is an open subgroup of K, then

(2) dU\K(U\K) =
dK(K)

dK(U)
= |U\K| ∈R.

Finally, if V is a closed subgroup of K (using the fact that K is unimodular,

hence that dK(UV ) = dK(V −1U−1) = dK(V U)), one obtains

dV \K(V \V U) =
dK(V U)

dV (V )
=
dK(UV )

dK(U)

dV (V ∩ U)

dV (V )

dK(U)

dV (V ∩ U)

=
|U\UV |
|V ∩ U\V |

dK(U)

dV (V ∩ U)
=

dK(U)

dV (V ∩ U)
= dV ∩U\U (V ∩ U\U).(3)

By convention, from now on, we use the same letter for the measure on G

and its descent to H\G (and when the context is clear for its restriction to

an open subgroup as well).

§5. Rankin–Selberg integrals and local factors

Let ψ be an additive character of F which is trivial on pF , but nontrivial

on oF . By abuse of notation, also denote by ψ the nondegenerate character

of Nn defined for x= (xi,j) ∈Nn by

ψ(x) = ψ

(n−1∑
i=1

xi,i+1

)
,

which is necessarily integral in the `-adic case because Nn is exhausted

by its pro-p subgroups. If π is a cuspidal representation of Gn, then

it is generic (cf. [1] in the complex or `-adic case, and [13, III 5.10]

for R= F`), meaning dim(HomNn(π, ψ)) = 1, and hence it has a unique

Whittaker model W (π, ψ), equal to the image of π in IndGn
Nn

(ψ). Suppose

that π is an integral cuspidal `-adic representation of Gn, then the Z`-
submodule We(π, ψ) of W (π, ψ) consisting of all functions in W (π, ψ) which

take values in Z` is a Gn-stable lattice in π (cf. [14, Theorem 2]). Then

by definition r`(π)'We(π, ψ)⊗Z`
F`, which is irreducible and cuspidal

(cf. Section 2.1 and the references given there). Thus We(π, ψ)⊗Z`
F`

is a space of Whittaker functions for π with values in F`, hence equal

to W (r`(π), r`(ψ)). For W ∈We(π, ψ), we write r`(W ) for the image of W

in W (r`(π), r`(ψ)).
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Finally, we recall the definition of the Rankin–Selberg local L-factors for a

pair of cuspidal R-representations of Gn. The construction is originally due

to Jacquet–Piatetski-Shapiro–Shalika [5] for complex representations, and

works equally well for Q`-representations. This construction was extended

to a construction for representations over any algebraically closed field of

characteristic prime to p in [8]. As we are ultimately interested in C,Q`

and F` representations we give precise references to the construction in [8].

Let π1 and π2 be cuspidal representations of Gn, W1 ∈W (π1, ψ), W2 ∈
W (π2, ψ

−1), and Φ ∈ C∞c (Fn) be a locally constant function from Fn to R

with compact support. By [8, Proposition 3.3], for k ∈ Z, the coefficients

ck(W1, W2, Φ) =

∫
Nn\G(k)

n

W1(g)W2(g)Φ(ηng) dg

are well defined and vanish for k sufficiently negative. In fact, these

coefficients vanish for k sufficiently negative because both W1 and W2 vanish

on P
(k)
n for such k, as a consequence of [5, Proposition 2.2]. Hence the local

Rankin–Selberg integral

I(X,W1, W2, Φ) =
∑
k∈Z

ck(W1, W2, Φ)Xk

is a formal Laurent series with coefficients in R. In fact, by [8, Theo-

rem 3.5], I(X,W1, W2, Φ) ∈R(X) is a rational function, and as W1 varies

in W (π1, ψ), W2 varies in W (π2, ψ
−1), and Φ varies in C∞c (Fn), the R-

submodule of R(X) spanned by I(X,W1, W2, Φ) is a fractional ideal of

R[X±1], and has a unique generator L(X, π1, π2) which is an Euler factor.

We call L(X, π1, π2) the local Rankin–Selberg L-factor, and note that it

does not depend on the choice of the character ψ. If R= Q`, it is shown in

[8, Corollary 3.6] that the L-factor is the inverse of a polynomial in Z`[X],

and thus it makes sense to talk of its reduction modulo `. Moreover, it follows

from [8, Theorem 3.13], that if π1 and π2 are two integral cuspidal `-adic

representations of Gn, then one has

L(X, r`(π1), r`(π2))|r`(L(X, π1, π2)).

Now by [5, Proposition 8.1, (ii)], the L-factor L(X, π1, π2) is equal to 1

unless π2 ' χπ∨1 for some unramified character χ of F×. Hence if π2 6'
χπ∨1 then L(X, r`(π1), r`(π2)) = r`(L(X, π1, π2)) = 1.

For our computations to come, we use a decomposition of the Rankin–

Selberg integral in the special case where π2 ' π∨1 , in particular their central
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characters are inverse of each other. Thus we assume this is the case for the

rest of this section. For k ∈ Z, we set

bk(W1, W2) =

∫
Nn\P (k)

n

W1(p)W2(p) dp,

which, similarly to ck, vanishes for k sufficiently negative, and we put

I(0)(X,W1, W2) =
∑
k∈Z

bk(W1, W2)qkXk.

Let Φ ∈ C∞c (Fn) be a Kn-invariant function, for i ∈ Z, we set

ani(Φ) =

∫
z∈G(ni)

1

Φ(ηnz) dz,

which vanishes for i sufficiently negative, and we put

Z(X, Φ) =
∑
i∈Z

ani(Φ)Xni.

As G
(k)
n =

∐
i∈Z P

(k−ni)
n Z

(ni)
n Kn, from the splitting of Section 4 we find

ck(W1, W2, Φ) =
∑
i∈Z

ani(Φ)qk−ni
∫

(Kn∩Pn)\Kn

bk−ni(ρ(k)W1, ρ(k)W2) dk,

from which we deduce

I(X,W1, W2, Φ) = Z(X, Φ)

(∫
(Kn∩Pn)\Kn

I(0)(X, ρ(k)W1, ρ(k)W2) dk

)
.

Taking Φ equal to the characteristic function 1onF
, we obtain the formula

(4) I(X,W1, W2, 1onF
) =

q − 1

1−Xn

∫
(Kn∩Pn)\Kn

I(0)(X, ρ(k)W1, ρ(k)W2) dk.

The equality Z(X, 1onF
) = (q − 1/1−Xn) is standard (cf. [10, Theorem 3.1])

except that in our setting, we get the extra constant q − 1 from our choice of

normalization on Zn, as we set dz(Zn ∩K1
n) = 1 instead of the usual dz(Zn ∩

Kn) = 1.
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§6. Simple types and reduction modulo `

For the beginning of this section we assume that R= C or Q`. Let V

be an n-dimensional F -vector space, let EndF (V ) denote the F -algebra

EndF (V ) of F -endomorphisms of V and let G denote the group AutF (V )

of F -automorphisms of V . Hence G identifies with Gn as soon as we choose

a basis of V . In [2], every cuspidal R-representation of G is constructed

explicitly as indGJ (Λ), where J is an open and compact-mod-center subgroup

of G, and Λ is an irreducible representation of J of finite dimension. The

pairs (J, Λ) are called extended maximal simple types, and for any such

pair indGJ (Λ) is (irreducible and) cuspidal by [2, Chapter 6]. We briefly

explain the construction of the group J, focusing on the properties which

we shall use.

An oF -lattice chain L in V is a nonempty set of oF -lattices {Li :

i ∈ Z} such that, for all i ∈ Z, Li+1 ( Li and there exists e(L) ∈ Z such

that Li+e(L) =$FLi. The construction of [2], starts with data (β, L) called

maximal simple strata consisting of

(1) an element β ∈ EndF (V ) which generates a simple field extension

E = F [β];

(2) an oF -lattice chain L in V such that E×L ⊂ L (i.e., for any x ∈ E× and

L ∈ L we have xL ∈ L); in particular L is an oE-lattice chain, and it is

required (as (β, L) is maximal) that Li+1 =$ELi;

which satisfy a technical condition (cf. [2, 1.5.5] where the simple strata we

consider are among those denoted [A,−, 0, β]).

Let (β, L) be a maximal simple strata. We denote by A = A(L) the oF -

order in EndF (V ) and B = B(β, L) the oE-order in EndE(V ) defined by L,

A = EndoF (L) =
⋂
k

EndoF (Lk), B = B(β, L) = EndoE (L) = EndoE (L0).

In [2, 3.1] Bushnell–Kutzko define compact open subgroups of G denoted

by H1 =H1(β, L), J1 = J1(β, L), and J = J(β, L). The properties we need

are:

(1) the groups H1 6 J1 are pro-p (by definition), are normalized by E×

and are normal subgroups of J by [2, 3.1.15], moreover J ⊂AutoF (L0)

(by definition).

(2) Put m= n/[E : F ], by [2, 3.1.15] we have
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J = B×J1, B× ∩ J1 = 1 +$EB and

J/J1 'B×/(1 +$EB)'Gm(kE).

We then set J = J(β, L) = E×J , in particular J is compact mod E× and

hence compact mod F×. Notice that if π ' indGJ Λ, the center F× of G

acts by the central character ωπ of π through Λ. Finally, we note that the

construction of Λ depends on our fixed additive character ψ (cf. [2, 3.2]).

The definitions above do not include the groups of the maximal simple

types for level zero cuspidal representations (see [2, 5.5.10(b)]), although

these can be considered formally as part of the construction described above

for the maximal zero strata (0, L) with β = 0 and e(L) = 1. In this case, we

put J = A×, J = F×J , H1 = J1 = 1 +$FA, and J/J1 = A×/(1 +$FA)'
Gn(kF ).

Now we consider F`-representations. It follows from [13, Chapitre IV] that

the Bushnell–Kutzko classification of cuspidal Q`-representations adapts

well to F`-representations. We only need to know the following facts:

Let τ be a cuspidal `-modular representation of G. As we recalled in

Section 3, there exists an integral cuspidal `-adic representation π such

that τ = r`(π). Choose an extended maximal simple type (J, Λ) such

that π ' indGJ (Λ), as in the beginning of this section. A cuspidal `-adic

representation is integral if and only if its central character ωπ is integral,

by [13, II 4.13] (the direction integral implies integral central character being

clear). We recall why this is true. First as J is compact mod F×, we claim

that the irreducible representation Λ is integral if and only if ωπ is integral.

Again, one direction is clear. For the other, suppose that ωπ is integral

and choose a random not necessarily J-stable lattice L0 in the space VΛ

of Λ. It is stabilized by a compact open subgroup U of J, and choosing

representatives c1, . . . , cr of J/F×U , one has Λ(J)(L0) =
∑r

i=1 Λ(ci)(L0),

hence LΛ = Λ(J)(L0) is a J-stable lattice in VΛ by [13, 9.3]. The induced Z`-
representation indGJ (LΛ) is then a lattice in π by [13, 9.3]. Moreover

τ = r`(π)' indGJ (r`(Λ)), and r`(Λ) is an irreducible representation of J by

irreducibility of τ .

Finally, we give another characterization of banal cuspidal representa-

tions: recall, from Section 3, by definition τ is banal if and only if the

cardinality of the cuspidal line Zτ = {||kτ, k ∈ Z} is greater than 1. By

[11, Lemme 5.3], this cardinality is the same as the integer o(τ) introduced in

[11, Section 5.2, (5.4)]. From [11, Section 5.2, (5.4)], o(τ) is the order of qn/e

in F`
×

, where e= e(E/F ) is the ramification index attached to (J, Λ) which

https://doi.org/10.1017/nmj.2017.32 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.32


TEST VECTORS FOR LOCAL CUSPIDAL RANKIN–SELBERG INTEGRALS 181

in particular does not depend on the choice of extended maximal simple

type. Hence τ is banal if and only if qn/e − 1 6= 0 in F`.

§7. The modified Paskunas–Stevens basis

For this section R= C or Q`. Let π be a cuspidal R-representation of G

and (J = J(β, L), Λ) be an extended maximal simple type in π. According

to [12, Corollaries 3.4 and 4.13], there exists an F -basis B = (v1, . . . , vn)

of V particularly suited to relating the Whittaker model of π and the

model indGJ (Λ) defined via type theory. In particular, B splits L, that

is, Lk =
⊕n

i=1 p
ai(k)
F vi with ai(k) ∈ Z for all k ∈ Z, and is such that if N is

the maximal unipotent subgroup of G attached to the maximal flag defined

by B, and if ψ, by abuse of notation, denotes the nondegenerate character

of N defined for x ∈N by

ψ(x) = ψ

(n−1∑
i=1

MatB(x)i,i+1

)
,

where MatB(x) denotes the matrix of x with respect to the basis B, then

the triple (J, Λ, ψ) satisfies

HomN∩J(ψ, Λ) 6= 0.

Let P be the mirabolic subgroup defined by

P = {g ∈G, (g − Id)V ⊂VectF (v1, . . . , vn−1)}.

We put M= (P ∩ J)J1, which is a group as J1 is normal in J . It follows

from [12] that the image ofM in J/J1 'Gm(kE) is isomorphic to Pm(kE).

We now explain how to extract this from [12]: in the notation of [12], our

group P is denoted MF and [12, Corollary 4.8] shows that

(5) M= (P ∩B×)J1.

In [12, Section 4.1], Paskunas–Stevens introduce another mirabolic group

they denote byME which satisfies P ∩B× =ME ∩B× by the equality just

before [12, Corollary 4.7], and they also denote by MB the group (ME ∩
B×)(1 +$EB). Hence Equation (5) gives M=MBJ

1 as (1 +$EB) =

B× ∩ J1. Finally, from the discussion after the proof of [12, Lemma 4.10], the

image of MB in B×/1 +$EB'Gm(kE) is isomorphic to Pm(kE), hence

the same is true for the image of M in J/J1 'B×/1 +$EB'Gm(kE).
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In particular, the following index will appear in our computation:

|J/M|= |Gm(kE)/Pm(kE)|= qmE − 1 = qn/e − 1.

For i ∈ {1, . . . , n}, the functions ai : Z→ Z satisfy the relation ai+e(k) =

ai(k) + 1. In particular, this holds for i= n, and the map k 7→ an(k) is

increasing with values in Z, so there is k0 between 1 and e such that an(k0) =

an(k0 − 1) + 1, and then an(k0 + i) = an(k0) for i ∈ {0, . . . , e− 1}. Hence

by reindexing the lattice chain L if necessary, by a translation, k 7→ k − k0,

we can suppose that

an(0) = an(−1) + 1 = 0, and an(1) = · · ·= an(e− 1) = 0.

We recall that L0 =
⊕n

i=1 p
ai(0)
F vi, and we set B′ = ($

a1(0)
F v1, . . . , $

an(0)
F vn),

which we write as B′ = (w1, . . . , wn).

We use this basis to identify G with Gn. With this choice, one has J ⊂Kn

because J ⊂AutoF (L0). The group P identifies with Pn, the group N

identifies with Nn, and the character ψ of Nn identifies with

ψt : n 7→ ψ

(n−1∑
i=1

tini,i+1

)
,

where ti =$
ai(0)−ai+1(0)
F .

For our computation to come, it will be useful to notice the following

property of B′: one has

L0 =
n⊕
i=1

oFwi, Lk =
n−1⊕
i=1

p
ai(k)−ai(0)
F wi ⊕ oFwn,

for k ∈ {1, . . . , e− 1}. As $ELk = Lk+1 for any k ∈ Z, the properties above

and the fact that Lk+e =$FLk, imply that the last row of $i
E ∈Gn belongs

to (oF )n − (pF )n for i= 0, . . . , e− 1, and more generally that it belongs

to (plF )n − (pl+1
F )n if i= le+ r, with r ∈ {0, . . . , e− 1}. As an immediate

consequence, if we write an Iwasawa decomposition of $i
E ,

$i
E = piziki, pi ∈ Pn, zi ∈ Zn, ki ∈Kn,

we can choose zi = In for i= 0, . . . , e− 1, and more generally zi =$l
F In

for i= le+ r, with r ∈ {0, . . . , e− 1}. In particular |pi|= q−in/e, for

i= 0, . . . , e− 1.

For clarity, we list the properties of the data (J, Λ, ψt) that we use.
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Proposition 7.1. With the above choice of basis we have:

(1) The inclusion J ⊂Kn.

(2) The space HomNn∩J(ψt, Λ) 6= 0.

(3) Set M= (Pn ∩ J)J1, then |J/M|= qn/e − 1.

(4) The element $i
E ∈ PnKn if and only if i ∈ {0, . . . , e− 1} and, in this

case, if we choose pi ∈ Pn and ki ∈Kn, such that $i
E = piki, then we

have |pi|= |$i
E |= q−in/e.

For the remainder, we consider the ki ∈Kn and pi ∈ Pn chosen in

Proposition 7.1 Statement (4) as fixed.

As Pn ∩ J1 is a pro-p subgroup of Pn, and J1 is a pro-p subgroup of Gn,

the volume

dk(Pn ∩ J1\J1) =
dk(J1)

dp(Pn ∩ J1)

is a power of q thanks to our normalization of measures, and we write

dk(Pn ∩ J1\J1) = qr1 .

A certain volume will appear in our later computation, we compute it in

the next lemma.

Lemma 7.2. For any i ∈ {0, . . . , e− 1}, we have

dk((Pn ∩Kn)\(Pn ∩Kn)kiJ) = qr1(qn/e − 1)q−in/e.

Proof. We have

dk((Pn ∩Kn)\(Pn ∩Kn)kiJ) = dk((Pn ∩Kn)\(Pn ∩Kn)kiJk
−1
i )

= dk((Pn ∩ kiJk−1
i )\kiJk−1

i ),

the last equality thanks to Relation (3). Now, dk(kiJk
−1
i ) = dk(J). We also

notice that

pi(Pn ∩ kiJk−1
i )p−1

i = Pn ∩$i
EJ$

−i
E = Pn ∩ J,

hence

Pn ∩ kiJk−1
i = p−1

i (Pn ∩ J)pi.

As for any compact open subset A of Pn, one has dp(pAp−1) = |p|dp(A),

as is easily seen by writing dp= dgdu, with dg on Gn−1 and du on Un, we
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obtain the relation

dp(Pn ∩ kiJk−1
i ) = |pi|−1dp(Pn ∩ J) = qin/edp(Pn ∩ J).

We then obtain from Relations (1) and (2):

dk((Pn ∩ kiJk−1
i )\kiJk−1

i ) =
dk(kiJk

−1
i )

dp(Pn ∩ kiJk−1
i )

= q−in/e
dk(J)

dp(Pn ∩ J)

= q−in/edk((Pn ∩ J)\J).

Now by Relations (1) and (2) again, one has

dk((Pn ∩ J)\J)) =
dk(J)

dp(Pn ∩ J)
=

dk(J)

dk(M)

dk(M)

dp(Pn ∩ J)

= |J\M|dk(Pn ∩ J\M).

Finally, because M= (Pn ∩ J)J1, applying Relation (3) gives:

dk((Pn ∩ J)\J)) = |J\M|dk(Pn ∩ J1\J1) = qr1(qn/e − 1)

by Proposition 7.1(3) and our definition of r1. This concludes the proof.

§8. Explicit Whittaker functions of Paskunas–Stevens

In this section we continue to assume that R= C or Q`. We now recall the

definition and some properties of the explicit Whittaker functions of [12].

We set

U = (Nn ∩ J)H1.

We extend ψt to the group U as in [12, Definition 4.2], and, by abuse

of notation, denote this extension by ψt. We fix a normal compact open

subgroup N of U contained in ker(ψt). We also denote by ρ the trace

character of Λ and ρ∨ that of Λ∨.

Definition 8.1. (Bessel functions) For j ∈ J, we define

J (j) = |N\U|−1
∑
N\U

ψt(u)−1ρ(ju), and

J ∨(j) = |N\U|−1
∑
N\U

ψt(u)ρ∨(ju).
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The Bessel functions enjoy the following properties:

Proposition 8.2.

(1) We have the equality J (1) = 1.

(2) J (uj) = J (ju) = ψt(u)J (j) for u ∈ U and j ∈ J.

(3) For all j ∈ J, we have the relation

J ∨(j) = J (j−1).

(4) For all j1 and j2 in J, we have∑
m∈U\M

J (j1m
−1)J (mj2) = J (j1j2).

Proof. See [12, Proposition 5.3 and Theorem 5.6]. The third property fol-

lows from a simple change of variables, and the relation ρ∨(ab) = ρ(b−1a−1)

for any a and b in J. The final property follows from [12, Proposition 5.3,

Property (v)], thanks to the bijection m↔m−1 between M/U and U\M.

We can now define the explicit Whittaker functions W and W∨ of

Paskunas–Stevens following [12, Section 5.2] and recall a first property.

Definition 8.3. Both W and W∨ are supported on NnJ, and

W (nj) = ψt(n)J (j)

for n ∈Nn and j ∈ J, whereas

W∨(nj) = ψ−1
t (n)J ∨(j) = ψ−1

t (n)J (j−1)

for n ∈Nn and j ∈ J. Moreover, W belongs to W (π, ψt) and W∨ belongs

to W (π∨, ψ−1
t ).

We now prove further properties of W and W∨.

Proposition 8.4. For l > 0, let Wl = 1
G

(l)
n
W, and W∨l = 1

G
(l)
n
W∨.

(1) The functions (Wl) |PnKn and (Wl)
∨ |PnKn are zero unless l = in/e for

some i ∈ {0, . . . , e− 1}, and in this case

(Wl) |PnKn= 1Nn$i
EJ
W |PnKn , (W∨l ) |PnKn= 1Nn$i

EJ
W∨ |PnKn .

(2) If Win/e(pk) 6= 0, then i ∈ {0, . . . , e− 1}, k ∈ Pn$i
EJ , and, in fact, k ∈

(Pn ∩Kn)kiJ .

(3) If Win/e(p$
i
Ej) 6= 0 with p ∈ Pn and j ∈ J , then p ∈Nn(Pn ∩ J).
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Proof. The first statement follows from the fact that W is supported

on NnJ =
∐
i∈Z Nn$

i
EJ , this is a disjoint union because the absolute

value of the determinant on Nn$
i
EJ is q−ni/e, and Statement (4) of

Proposition 7.1. Hence, if Win/e(pk) 6= 0, then W (pk) 6= 0, so pk ∈Nn$
l
EJ

for a unique l ∈ {0, . . . , e− 1}, but this l must be equal to i, and this gives

the first assertion of the second statement. In particular k ∈ p−1Nn$
i
EJ ⊂

Pn$
i
EJ . But Pn$

i
EJ = PnpikiJ = PnkiJ , hence k ∈ PnkiJ ∩Kn = (Pn ∩

Kn)kiJ . This proves the second statement. For the third, we observe

that if Win/e(p$
i
Ej) 6= 0, then p$i

Ej ∈Nn$
i
EJ , hence p ∈Nn$

i
EJj

−1$−iE =

NnJ , which implies that p ∈Nn(Pn ∩ J).

§9. Test vectors

Again, we assume that R= C, or Q`, and π1 and π2 are cuspidal R-

representations of Gn. We denote by (J, Λ) the extended maximal simple

type of π1, by e= e(E/F ) the ramification index of the field extension

associated to (J, Λ), and by W,W∨ the explicit Whittaker functions

associated to π1 (see Definition 8.3). This section is dedicated to proving

our main result on test vectors.

Theorem 9.1. Suppose that L(X, π1, π2) is nontrivial, so that π2 ' χπ∨1
for some unramified character χ of F×. Then there is an integer r such that

I(X,W, χW∨, 1onF ) =
qr(q − 1)(qn/e − 1)

1− (χ($F )X)n/e
= qr(q − 1)(qn/e − 1)L(X, π1, π2).

We are now ready to prove the following crucial proposition. We recall

that for all integers l > 0, the restriction Wl has been defined in Proposi-

tion 8.4.

Proposition 9.2. Let Fl : (Kn ∩ Pn)\Kn/J
1→R be defined by

Fl(k) =

∫
j∈J1

∫
Nn\Pn

Wl(pkj)W
∨
l (pkj) dp dj.

Then Fl is nonzero if an only if l = in/e and i ∈ {0, . . . , e− 1}, and in this

case, it is supported on (Kn ∩ Pn)kiJ . Moreover, for i ∈ {0, . . . , e− 1}, and

for k ∈ (Kn ∩ Pn)kiJ , there is an integer r2 independent of i such that

Fin/e(k) = qr2 .

Proof. If Fl(k) is nonzero, then Wl(pkj) is nonzero at least for

some p ∈ Pn and j ∈ J , but then according to Statements (1) and (2)
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of Proposition 8.4, this implies that l is of the form l = in/e with i ∈
{0, . . . , e− 1}, and k ∈ (Kn ∩ Pn)kiJ . Moreover, from Statement (2) of the

same proposition, we can write k = p0$
i
Ej0 for p0 ∈ Pn and j0 ∈ J . But now

notice that for such a k, we have

Fl(k) =

∫
j∈J1

∫
Nn\Pn

Wl(pp0$
i
Ej0j)W

∨
l (pp0$

i
Ej0j) dp dj

=

∫
j∈J1

∫
Nn\Pn

Wl(p$
i
Ej0j)W

∨
l (p$i

Ej0j) dp dj.

Hence by Statement (3) of Proposition 8.4

Fl(k) =

∫
j∈J1

∫
Nn\Nn(Pn∩J)

Wl(p$
i
Ej0j)W

∨
l (p$i

Ej0j) dp dj

=

∫
j∈J1

∫
Nn∩J\Pn∩J

Wl(m$
i
Ej0j)W

∨
l (m$i

Ej0j) dm dj

=

∫
j∈J1

∫
Nn∩J\Pn∩J

J (m$i
Ej0j)J (j−1j−1

0 $−iE m−1) dm dj,

the last equality according to Proposition 8.2(3). Now, as J normalizes J1,

and as for any t ∈Gn normalizing J1, the automorphism j 7→ tjt−1 of J1

has modulus character equal to 1, because J1 is an open subgroup of the

unimodular group Gn, we have

Fl(k) =

∫
j∈J1

∫
Nn∩J\Pn∩J

J (mj$i
Ej0)J (j−1

0 $−iE (mj)−1) dm dj

=

∫
Nn∩J\M

J (m$i
Ej0)J (j−1

0 $−iE m−1) dm.

We write

dm(Nn ∩ J\(Nn ∩ J)H1) = dm(Nn ∩H1\H1) = qr2 ,

which is indeed a power of q as H1 is pro-p. Moreover, as H1 is normal

in J , and as the integrand is invariant under U thanks to Property (2) in

Proposition 8.2

Fl(k) = qr2
∫
U\M

J (m$i
Ej)J (j−1$−iE m−1) dm= qr2 ,

the last equality thanks to Statement (4) of Proposition 8.2.
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Proposition 9.3. The coefficient

bl =

∫
Pn∩Kn\Kn

∫
Nn\Pn

Wl(pk)W∨l (pk) dp dk

is zero unless l = in/e for some i ∈ {0, . . . , e− 1}, in which case there is an

integer r such that

bl = qr(qn/e − 1)q−in/e.

Proof. By definition, bl is equal to∫
Pn∩Kn\Kn/J1

Fl(k) dk = qr3
∫
Pn∩Kn\Kn

Fl(k) dk

with dk(J1) = qr3 (J1 is pro-p). So according to Proposition 9.2, this is zero

if l 6= in/e for i ∈ {0, . . . , e− 1}, and if l = in/e for i ∈ {0, . . . , e− 1}, it is

equal to

qr3
∫
Pn∩Kn\(Pn∩Kn)kiJ

Fl(k) dk = qr2+r3dk(Pn ∩Kn\(Pn ∩Kn)kiJ)

= qr(qn/e − 1)q−in/e,

where we write r = r1 + r2 + r3, from Lemma 7.2.

If π is a cuspidal R-representation of Gn of ramification index e, we denote

by R(π) its ramification group, that is the group of unramified characters ν

of F× which satisfy νπ ' π. It follows from [2, 6.2.5], that R(π) is isomorphic

to the group of n/eth roots of unity in R×, via ν 7→ ν($F ).

Proof of Theorem 9.1. We first suppose that π2 ' π∨1 . By Equation (4),

the integral I(X,W, W∨, 1onF
) is equal to

q − 1

1−Xn

∫
(Kn∩Pn)\Kn

I(0)(X, ρ(k)W, ρ(k)W∨) dk.

Now, as WW∨ =
∑

l∈Z WlW
∨
l , by Statement (1) of Propositions 8.4 and 9.3,

we have∫
(Kn∩Pn)\Kn

I(0)(X, ρ(k)W, ρ(k)W∨) dk =
e−1∑
i=0

bin/eq
in/eXin/e

= qr(qn/e − 1)
e−1∑
i=0

Xin/e = qr(qn/e − 1)
1−Xn

1−Xn/e
.
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This gives the equality

I(X,W, W∨, 1onF
) = (q − 1)(qn/e − 1)

qr

1−Xn/e
.

On the other hand, and by [5, Proposition 8.1], the factor L(X, π, π∨) is

equal to

L(X, π, π∨) =
∏

ν∈R(π)

1

1− ν($f )X
=

1

1−Xn/e
.

Now in general, as we supposed that L(X, π1, π2) is not equal to 1, we

have π2 ' χπ∨1 for some unramified character χ of F×. However, we have

L(X, π1, π2) = L(X, π1, χπ
∨
1 ) = L(χ($F )X, π1, π

∨
1 ).

On the other hand, we have

I(X,W, χW∨, 1onF
) = I(χ($F )X,W, W∨, 1onF

)

= (q − 1)(qn/e − 1)
qr

1− (χ($F )X)n/e
.

However,

L(X, π1, π2) = L(χ($F )X, π, π∨) =
1

1− (χ($F )X)n/e
,

and we are done.

§10. L-factors of banal cuspidal `-modular representations

In this section, we consider the cases R= F`, and R= Q`. In the Q`

setting, we continue with the notations of the last section, and note that

as ψ is integral, so are ψt and ψ−1
t . Our main theorem has the following

interesting corollary.

Corollary 10.1. Let τ1 and τ2 be two banal cuspidal `-modular

representations of Gn, and π1 and π2 be any cuspidal `-adic lifts, then

L(X, τ1, τ2) = r`(L(X, π1, π2)).

Proof. We already noticed in Section 5 that if L(X, π1, π2) is equal to 1,

then

L(X, τ1, τ2) = r`(L(X, π1, π2)) = 1,
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whether τ1 and τ2 are banal or not. Hence we only need to focus on the case

when L(X, π1, π2) is not equal to 1, that is π2 ' χπ∨1 for some unramified

character χ. Let W be the Stevens–Paskunas explicit Whittaker function

associated to an extended maximal simple type of π1 as in the statement of

Theorem 9.1.

Lemma 10.2. The explicit Whittaker functions W and χW∨ lie in

the Z`-submodules We(π1, ψt) and We(π2, ψ
−1
t ) respectively.

Proof. As in the proof of Theorem 9.1, the representation π1 contains an

extended maximal simple type (J1, Λ1) and W is chosen to be the Paskunas–

Stevens Whittaker function of Definition 8.3 relative to this data. As π1 is

integral, Λ1 is integral by the end of Section 6. This implies that the trace

character ρΛ1 of Λ1 has values in Z`. In particular the Bessel function J1 (see

Definition 8.1) associated to the pair (J1, Λ1) takes values in Z`. Hence, as ψt
is integral, W ∈We(π1, ψt) (see Definition 8.3). Now, π2 is of the form χπ∨1
with χ an unramified character of F× (which is integral as χ is unramified),

so Proposition 8.2(3) implies that the Bessel function χJ ∨1 is integral. We

conclude that χW∨ belongs to We(π2, ψ
−1
t ) (see Definition 8.3 again).

Granted W ∈We(π1, ψt) and χW∨ ∈We(π2, ψt), we have

r`(q
r(qn/e − 1))r`(L(X, π1, π2)) = r`(I(X,W, χW∨, 1onF

))

= I(X, r`(W ), r`(χW
∨), r`(1onF

)).

Notice that r`(q
r(q − 1)(qn/e − 1)) is nonzero if and only if π1 (hence π2) is

banal by the end of Section 6. As the integral I(X, r`(W ), r`(χW
∨), r`(1onF

))

belongs to the fractional ideal (L(X, τ1, τ2)) of F`[X±1], we deduce that

r`(L(X, π1, π2)) divides L(X, τ1, τ2). As in any case, thanks to [8, Theo-

rem 3.13], the L-factor L(X, τ1, τ2) divides r`(L(X, π1, π2)), we deduce the

desired equality.

Remark 10.3. As noticed in the introduction and Section 5, the

analogue of Corollary 10.1 is also true when π1 and π2 are cuspidal

representations of general linear groups of different ranks as the L-factors

are all trivial.
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