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Abstract

We study the p-adic variation of triangulations over p-adic families of (ϕ,Γ)-modules. In

particular, we study certain canonical sub-filtrations of the pointwise triangulations and

show that they extend to affinoid neighborhoods of crystalline points. This generalizes

results of Kedlaya, Pottharst and Xiao and (independently) Liu in the case where one

expects the entire triangulation to extend. We also study the ramification of weight

parameters over natural p-adic families.
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1. Introduction

Let p be a prime number. Results, and questions, in the p-adic Langlands program may be
naturally phrased, or asked, by studying p-adic families of automorphic forms [Eme, Bre15].
Regarding p-adic automorphic forms in their own right, the variation of the associated (ϕ,Γ)-
modules is a central tool [BC09]. One recent result, see [KPX14, Liu15], is that if a p-adic
family of (ϕ,Γ)-modules is pointwise completely reducible, i.e. a successive extension of rank-one
objects, then it is also completely reducible in the family, at least generically. In language perhaps
known to the reader, and used in this paper, pointwise triangulations in p-adic families extend
to triangulations over open dense loci. This follows in the tradition of the famous reducibility of
local Galois representations over Hida families [MW86].

However, there are arithmetically interesting points which fail to lie in global triangulation
loci. The most concrete example is a point on the Coleman and Mazur eigencurve [CM98]
corresponding to the non-unit p-stabilization of a p-ordinary CM form. Such points lie in the
image of one of Coleman’s θ-maps [Ber14] and the associated p-adic L-function exhibits curious
behavior [Bel12].

The aim of this article is to give a detailed account of the variation of (ϕ,Γ)-modules near
classical points in p-adic families of automorphic forms, especially those which are known not
to lie in a global triangulation locus. Note that we will be concerned with (ϕ,ΓK)-modules for
K/Qp a finite extension, but for the purposes of the introduction we will assume K = Qp. There
is no loss of content, only notation.

1.1 Trianguline (ϕ,Γ)-modules
We use R to denote the Robba ring over Qp. It is the ring consisting of analytic functions f
converging on a p-adic half-open annulus r(f) 6 |T | < 1, for some radius r(f) depending on f .
There are continuous commuting actions of a Frobenius operator ϕ and the group Γ ' Z×p .

A (ϕ,Γ)-module D is a finite free R-module equipped with commuting, R-semilinear actions
of ϕ and Γ, such that ϕ(D) generatesD as aR-module (see [Ber02]). The rank-one (ϕ,Γ)-modules
are parameterized by continuous characters δ of Q×p . If δ is such a character we denote the
corresponding (ϕ,Γ)-module by R(δ).

A triangulation of a (ϕ,Γ)-module D is a filtration P•

0 = P0 ( P1 ( · · · ( Pd−1 ( Pd = D

by (ϕ,Γ)-submodules, such that each successive quotient Pi/Pi−1 ' R(δi) is a rank-one (ϕ,Γ)-
module. The ordered tuple (δ1, . . . , δd) is called the parameter of P•. We say D is trianguline
if it may be equipped with a triangulation. Examples coming from Galois representations show
there may be many ways to triangulate a given D.

By the work of Fontaine, Cherbonnier–Colmez, Kedlaya and Berger, see [Ber02], there is
a fully faithful embedding V 7→ Drig(V ) which associates a (ϕ,Γ)-module to each continuous,
finite-dimensional representation V of GQp . If V is crystalline, then Drig(V ) is trianguline and,
generically, the triangulations of Drig(V ) are in bijection with the orderings of eigenvalues for
the crystalline Frobenius acting on Dcris(V ).
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The global context of trianguline (ϕ,Γ)-modules, and thus this article, is spaces of p-adic
automorphic forms. It is a folklore conjecture, generalizing a conjecture of Fontaine and Mazur
[FM95], that an irreducible Qp-linear, finite-dimensional representation of the global Galois group
GQ which is:

– unramified at all but a finite set of primes; and

– trianguline at p;

should (essentially) appear in a space of finite slope p-adic automorphic forms. A precise
statement was written down by Hansen recently, see [Han14, Conjecture 1.2.3]. The only known
result is due to Emerton and settles the question in dimension two, via local–global compatibility
in the p-adic Langlands program for GL2/Q (see [Eme, Theorem 1.2.4(1)]). The converse, that
global representations attached to p-adic automorphic forms are trianguline at p, is known in
many situations by [KPX14, Liu15], including eigenvarieties attached to definite unitary groups.
This plays a role in recent conjectures of Breuil [Bre15] regarding aspects of the p-adic local
Langlands program for GLn(Qp) with n > 2.

1.2 Critical triangulations
The basic notions of p-adic Hodge theory (for example, Hodge–Tate–Sen weights and crystalline
objects) extend to the category of (ϕ,Γ)-modules. If D =R(δ), then the Hodge–Tate–Sen weight
is

wt(δ) = − ∂

∂γ

∣∣∣∣
γ=1

δ(γ).

If D is triangulated with parameter (δ1, . . . , δd) then the Hodge–Tate–Sen weights of D are
{wt(δi)}i=1,...,d. The following definition is key for the statement of our theorem. A more general
definition will be given in the text (see § 3.2).

Definition 1.1. Let D be a crystalline (ϕ,Γ)-module with distinct Hodge–Tate weights k1 <
· · · < kd. If P ⊂ D is a saturated (ϕ,Γ)-submodule of rank i, then P is called non-critical if the
lowest i weights {k1, . . . , ki} are the Hodge–Tate weights of P .

Note that D is always a non-critical (ϕ,Γ)-submodule of itself. We extend the notion of
non-critical to a triangulation P• by declaring a triangulation P• to be non-critical if Pi is
non-critical for each i. This agrees with the original definition of Bellaïche and Chenevier [BC09].
More generally, we have the following construction. If D is a crystalline (ϕ,Γ)-module and P• is
a triangulation, then we define the non-critical indices

Inc = {i : Pi is non-critical} = {0 = i0 < i1 < i2 < · · · < is = d}
and a filtration (called a parabolization, rather than a triangulation, following Chenevier [Che11])

P nc
• : 0 = P nc

0 ( P nc
1 ( · · · ( P nc

s = D

by declaring that P nc
j = Pij for j = 0, 1, . . . , s. In short, P nc

• only knows the non-critical steps in
the triangulation P•; it is called the maximal non-critical parabolization of P•.

1.3 Refined families and p-adic variation
Now suppose that X is a reduced rigid analytic space over Qp. In § 6.1 we will define and consider
so-called refined families (ϕ,Γ)-modules over X. For now it suffices to know that a refined family
DX = {Dx}x is a family of (ϕ,Γ)-modules over a relative Robba ring RX with the following
properties:
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– there exists continuous characters δi : Q×p → Γ(X,O)×; and
– Zariski-dense sets of points Xnc

cl ⊂ Xcl ⊂ X(Qp);

such that:

– if x ∈ Xcl, then Dx is crystalline with distinct Hodge–Tate weights; and
– if x ∈ Xnc

cl , then Dx is triangulated by a non-critical triangulation P•,x whose parameter is
(δ1,x, . . . , δd,x).

Here, δi,x : Q×p → L(x)× is the character with values in the residue field L(x) obtained by
post-composing with the evaluation map at x. It follows from [KPX14, Theorem 6.3.13] or [Liu15,
Theorem 5.45] that in a neighborhood of a point x0 ∈ Xcl, each (ϕ,Γ)-module Dx is triangulated
by a triangulation P•,x, which is essentially canonical as long as x0 is sufficiently generic (see
Proposition 6.5). But note that the parameter of P•,x may (and will in critical cases) differ from
the natural choice (δ1,x, . . . , δd,x).

Our main result shows that despite the possible non-variation of the pointwise parameters,
the maximal non-critical parabolization of P•,x0 varies analytically. Strictly speaking, we only
defined P nc

•,x for certain points x ∈ Xcl but there is a way of extending the definition to every
point (which requires reference to the family).

Theorem A (Theorem 6.8). If DX is a refined family of (ϕ,Γ)-modules and x0 ∈ Xcl is very
ϕ-regular,1 then there exists an open affinoid neighborhood x0 ∈ U ⊂ X and a filtration

0 = P nc
0 ( P nc

1 ( · · · ( P nc
s−1 ( P nc

s = D|U
where each P nc

i is a refined family of (ϕ,Γ)-modules over U , such that P nc
i,x = P nc

i,U ⊗O(U) L(x)
for all x ∈ U .

The result is optimal in the following sense. If x ∈ Xcl is non-critical, then the Hodge–Tate
weights of Pi,x are {wt(δ1,x),wt(δ2,x), . . . ,wt(δi,x)}. Thus, for general x ∈ Xcl Sen’s theory of
Hodge–Tate weights in families [Sen88] implies one can only hope that Pi,x extends to an affinoid
neighborhood of x provided that the Hodge–Tate weights of Pi,x are {wt(δ1,x), . . . ,wt(δi,x)},
i.e. Pi,x can only vary well in a family if it is a non-critical step in the triangulation at x.

The history of our result is relatively short. In the case where x0 is non-critical, so an entire
triangulation extends to affinoid neighborhoods, Theorem A has two independent proofs, given
essentially at the same time. One proof was given by Liu [Liu15] using a generalization of Kisin’s
interpolation of crystalline periods [Kis03, BC09] over general affinoid bases. The other proof was
given by Kedlaya et al. [KPX14] and relied explicitly2 on the finiteness of Galois cohomology for
families of (ϕ,Γ)-modules (also proven in [KPX14]). Neither work makes any general comment
on what to expect at a general classical point, especially in the critically triangulated case.

Our technique is inspired by the latter proof [KPX14] and separate work of Liu emphasizing
the utility of torsion (ϕ,Γ)-modules [Liu07]. To explain this, let us recall the Kedlaya–Pottharst–
Xiao proof of Theorem A in the non-critical case.

Under mild regularity assumptions one can check, using the finiteness of Galois cohomology
in families, that Hom(ϕ,Γ)(RX(δ1), DX) is locally free of rank one near x0. Indeed, it may be
checked point-by-point, and essentially just at the point x0 and the points in Xnc

cl . Choose an
everywhere non-vanishing morphism e : RX(δ1)→ DX . The non-critical hypothesis on x0 means

1 This is a technical condition, and is the same as ‘sufficiently generic’ above. See Definition 6.2.
2 The author has been told that Liu’s work established some of these results, implicitly.
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that the specialized morphism ex0 : R(δ1,x0)→ Dx0 has saturated image and, thus, coker(ex0)
is free. An easy argument shows that one can shrink X so that coker(e) is a (ϕ,Γ)-module over
X. The rest of the proof of Theorem A is carried about by induction from this case.

A generalization of this strategy, to critical points, requires us to define an a priori candidate
for the first step P nc

1 of the sought after parabolization. In the non-critical case P nc
1 is handed to

us on a platter as RX(δ1). However, there seems to be no easy way to guess P nc
1 ahead of time.3

The key feature of our proof is to embrace the non-saturatedness of the morphism ex0 in the
critical case. Thus, we proceed by studying more general families of (ϕ,Γ)-modules whose fibers
haveR-torsion in them. We call such modules generalized (ϕ,Γ)-modules following Liu [Liu07]. In
§ 3, we give a generalization of the notion of a triangulation of a generalized (ϕ,Γ)-modules which
is well-adapted to attacking Theorem A. The novelty of our proof is the introduction of torsion
into the fibers at every point in order to canonically describe a candidate for coker(P nc

1 → D),
thus producing P nc

1 as needed for Theorem A.

1.4 Ramification of weights
Let us finish by mentioning an auxiliary result we prove here on the ramification of weights
in refined families. Let DX be a refined family and x0 ∈ Xcl. Consider the triangulation P•,x0
and denote its parameter by (δ̃1,x0 , . . . , δ̃d,x0). As shown in the text, the lists of distinct weights
{wt(δ̃i,x0)} and {wt(δi,x0)} are the same. Thus, we may define a permutation πx0 by the formula
wt(δ̃i,x0) = wt(δπx0 (i),x0). We remark that πx0 = id if and only if x0 is non-critical.

We now let Tx0X be the Zariski tangent space to X at x0. If f is the germ of a function at x0

and v is a tangent vector, we let ∇v(f) denote the directional derivative of f with respect to v.
Our second theorem is that certain differences of weights are constant in every tangent direction.

Theorem B (Theorem 7.1). If DX is a refined family over X and x0 ∈ Xcl is very ϕ-regular,
then

∇v(wt(δπx0 (i),u)− wt(δi,u)) = 0

for all i = 1, . . . , d and v ∈ Tx0X. In particular, if x0 is critical, then the weight map ramifies.

Theorem B was noticed independently by the author and Breuil. We reproduce an argument
similar to [Bre15, Théorème 9.7] in § 7. Our proof will make use Liu’s results on crystalline periods
[Liu15]. But we note that such a theorem could have been proven using only the (infinitesimal)
study of crystalline periods in the weakly refined families ∧iD (as in [BC09, § 4.3], for example)
combined with deformation calculations similar to [Ber14, Proposition 2.4].

1.5 Organization
Section 2 briefly recalls the theory of (ϕ,Γ)-modules and the important theorems. Section 3
introduces triangulations and parabolizations, including a definition for torsion (ϕ,Γ)-modules.

3 We thank E. Hellmann for pointing out the following example which concretely illustrates the issue involved. It
is possible to construct two families of rank two of (ϕ,Γ)-modules D and D′, over certain reasonable loci on a
Coleman–Mazur eigencurve such that:

– Du ' D′u, and both are étale, for all u except one point u0; and

– Du0 is étale but D′u0
is not.

Thus, even knowing that D is an extension of two characters on the complement of a point is not enough to
determine an extension over the puncture.
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Section 4 is a digression into the theorems of [KPX14] and applications. Section 6 contains our
result on the variation of parabolizations in p-adic families, and § 5 plays a supporting role. Finally
we study the ramification of the weight parameters in § 7. A short appendix is included to deal
with a ‘relative’ version of Nakayama’s lemma.

1.6 Notation and conventions
Throughout the text we will make the following conventions. They will follow [KPX14] closely.

We fix an algebraic closure Qp and a p-adic valuation on Qp so that |p| = p−1.
Here K will always denote a finite extension Qp. We let F be the maximal subfield of K

unramified over Qp, fK = (F : Qp) the inertial degree of K and eK the ramification index of K.
We will let K∞ = lim−→n

K(ζpn) be the extension obtained by adjoining to K all the p-power
roots of unity. The maximal absolutely unramified subextension of K∞ is denoted by F ′. If HK =
Gal(Qp/K∞), then we define ΓK = GK/HK . The cyclotomic character ΓQp → Z×p identifies ΓK
with an open subgroup of Z×p .

Write ΣK for the set of all of the embeddings K ↪→ Qp. Then L will always denote a finite
extension of Qp contained in Qp such that τ(K) ⊂ L for each τ ∈ ΣK . We allow L to change at
will. Note that L⊗QpK '

∏
τ L and we denote by eτ the idempotent in L⊗QpK which projects

onto the τ -component.

2. Review of (ϕ,ΓK)-modules

We give a short review of (generalized) (ϕ,ΓK)-modules, their relationship with Galois
representations and the p-adic arithmetic theory (cohomology, p-adic Hodge theory, etc.). All
of the notation from § 1.6 are enforced, including the choice of L for a generic coefficient field
containing the image of each embedding of K into Qp.

2.1 The Robba ring
We quickly remind the reader of the definition of the Robba ring R, setting notation for the most
part. We note that K is fixed throughout, but that the definition of R depends on K (we simply
suppress it from the notation).

For each pair of rational numbers 0 < s 6 r 6∞ we define a p-adic annulus

A1
/F ′ [s, r] = {T : p−r/(p−1) 6 |T | 6 p−s/(p−1)}

over F ′. When r =∞ this is a p-adic disc. We also let

A1
/F ′(0, r] = {T : p−r/(p−1) 6 |T | < 1}.

be the half-open annulus. We denote by R[s,r] the formal substitution of a certain indeterminate
πK , arising from the field of norms, for the variable T in the ring of functions on A1

/F ′ [s, r]. This
is the ring denoted by R[s,r](πK) in [KPX14].

If A is a Qp-affinoid algebra, then we denote R[s,r]
A = R[s,r] ⊗̂Qp A. Let X = Sp(A) be the

associated affinoid space to A. Then R[s,r]
A is abstractly isomorphic to the ring of rigid analytic

functions on X [s,r] := A1[s, r]/F ′ ×SpQp SpA. Thus, it is a noetherian Banach algebra when
equipped with the usual Gauss norm.

If 0 < s < s′ 6 r 6∞, then there is an injective restriction morphism R[s,r]
A → R[s′,r]

A which
is flat and has dense image. We then define RrA :=

⋂
0<s6rR

[s,r]
A and the relative Robba ring
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over A is

RA =
⋃
0<r

RrA.

The ring RrA is the global sections on the rigid space Xr := A1
/F ′(0, r]×SpQp X, the relative half

open annulus. We will also use the notation RrX and RX with the obvious meaning.
Returning to the closed annuli, for any 0 < s 6 r there is a continuous action of the group

ΓK � Gal(F ′/F ) on the F ′ coefficients in R[s,r]; we can extend this canonically, up to the choice
of πK , to the ringR[s,r]. When r is sufficiently small there is also an operator ϕ :R[s,r]

→R[s/p,r/p]

called Frobenius which acts on the coefficients in F ′ via the usual Frobenius action and acts on
πK by a choice,4 again, canonically up to πK . The operator ϕ turns R[s/p,r/p] into a finite free
R[s,r]-module of rank p. Furthermore, ϕ extends to an operator ϕ : Rr → Rr/p and thus also
extends to an operator on R. When X is an affinoid space we extend the actions of ΓK and ϕ to
the relative Robba rings by acting trivially on the coefficients A.

There are two ways to view Rr/pX as a module over RrX , either by the restriction map or
the operator ϕ. If Q is a module over RrX , then we denote by ϕ∗Q the extension of scalars
ϕ∗Q := Q⊗RrX ,ϕ R

r/p
X and Q|(0,r/p] the Rr/pX -module obtained by using the restriction map.

Definition 2.1. A generalized ϕ-module over Xr is a finitely presented RrX -module Q together
with an isomorphism ϕ∗Q ' Q|(0,r/p] of Rr/pX -modules. We say that Q is a ϕ-module if Q is also
projective.

We now fix r0 > 0. Since X is affinoid, so is X [s,r]. Thus, by Kiehl’s theorem [BGR84,
Theorem 9.4.3/3], global sections give an equivalence of categories

{finite R[s,r]
X -modules}←→ {coherent sheaves on X [s,r]}.

Since Xr0 is admissibly covered by affinoid opens {X [s,r]}0<s6r6r0 , a coherent sheaf Q on Xr0

is the same as a system Q = (Q[s,r])0<s6r6r0 of finite R[s,r]
X -modules satisfying the obvious

compatibilities. The global sections of a sheaf Q may be calculated by

Q = Γ(Xr0 ,Q) = lim
←−
0<s

Q[s,r0].

If Q is a finitely presented module over Xr0 , then there is a coherent sheaf defined by the
compatible family Q[s,r] := Q ⊗Rr0X R

[s,r]
X . We pause to include an auxiliary result on finitely

presented modules over Xr. It applies, in particular, to all generalized ϕ-modules.

Lemma 2.2. Suppose that Q is a finitely presented RrX -module and f ∈ Rr. Then Q/f is finite
projective over RrX/f if and only if Q[s,r]/f is finite projective over R[s,r]/f for each 0 < s 6 r.

Proof. Since Q is assumed to be finitely presented over RrX , the same is true for Q/f over RrX/f
and thus by [Mat89, Corollary 7.12] it suffices to replace ‘projective’ with ‘flat’ in the statement
of the lemma.

Even without that, one direction is clear: ifQ/f is finite projective overRrX/f , thenQ[s,r]/f =
Q/f ⊗RrX/f R

[s,r]/f is finite projective over R[s,r]/f for each 0 < s 6 r.

4 When K = Qp then the choice of πK can be made so that ϕ(πK) = (1+πK)p−1 and γ(πK) = (1+πK)χcycl(γ)−1.
Moreover, the operator ϕ is defined as soon as r < 1.
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We will now prove the reverse direction, so assume that Q[s,r]/f is flat over R[s,r]
X /f for each

0 < s 6 r. By [Mat89, Theorem 7.7] it suffices to show that

I ⊗RrX/f Q/f → Q/f (1)

is injective for every finitely generated ideal I ⊂RrX/f . Now we use the language of ‘co-admissible’
modules originally due to Schneider and Teitelbaum [ST03], and we will reference [KPX14, § 2.1].
By [KPX14, Lemma 2.1.4(7)] the RrX -module RrX/f is co-admissible, and thus so is I ⊂ RrX/f
by [KPX14, Lemma 2.1.4(6)]. Since Q is co-admissible so is Q/f = coker(Q

f−→ Q) by [KPX14,
Lemma 2.1.4(5)]. Thus, (1) is a morphism of co-admissible RrX -modules and hence is injective if
and only if

(I ⊗RrX/f Q/f)[s,r]
→ Q[s,r]/f (2)

is injective for each 0 < s 6 r. But we see

(I ⊗RrX/f Q/f)[s,r] ' (I ⊗RrX/f R
[s,r]
X /f)⊗R[s,r]

X /f
Q[s,r]/f

and then since RrX/f → R
[s,r]
X /f is flat we see that I ⊗RrX/f R

[s,r]
X /f = I · R[s,r]

X /f is an ideal in
R[s,r]
X /f . In particular, this shows that the map (2) may be identified with the natural map

I · R[s,r]
X /f ⊗R[s,r]

X /f
Q[s,r]/f → Q[s,r]/f,

which is injective because Q[s,r]/f is flat over R[s,r]
X /f by assumption. This completes the proof.

2

Returning to ϕ-modules, if Q is a generalized ϕ-module, then the isomorphism ϕ∗Q '
Q|(0,r0/p] translates into the choice of a compatible system of isomorphisms ϕ∗Q[s,r] ' Q[s/p,r/p].
In fact, all generalized ϕ-modules arise this way.

Proposition 2.3. There is an equivalence of categories{
generalized ϕ-modules

over Xr0

}
←→

{coherent sheaves Q = (Q[s,r]) on Xr0 equipped

with naturally compatible isomorphisms

ϕ∗Q[s,r] ∼= Q[s/p,r/p]

}
.

Moreover, the ϕ-modules on the left-hand side correspond to sheaves on the right-hand side for
which each Q[s,r] is projective.

Proof. We have just explained how to go from the left-hand side to the right-hand side. Suppose
we start on the right-hand side with a coherent sheaf Q = (Q[s,r]). It is clear that all we need to
do is show that its global sections are finitely presented. Choose a finite presentation for Q[r0/p,r0].
By assumption this uniformly (in terms of generators and relations) gives a finite presentation for
(ϕ∗)nQ[r0/p,r0] ' Q[r0/pn+1,r0/pn]. Thus Q is uniformly finitely presented in the sense of [KPX14,
§ 2.1]. By [KPX14, Proposition 2.1.13], the global sections of Q are finitely presented. 2

Remark. The global sections of a coherent sheaf on Xr0 need not have any finiteness properties
(see the example in [Bel15, § 2.1.2, p. 380]). The key for the previous proposition is that the
presence of the ϕ-operator imposes a uniformly finitely presented condition over the closed annuli.

Corollary 2.4. The category of generalized ϕ-modules over Xr0 is abelian.
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Proof. The category of coherent sheaves on Xr0 is abelian by [BGR84, Proposition 9.4.3/2]. Thus
we just need to show that if f : Q→ P is a morphism of the corresponding sheaves, then ker(f)

and coker(f) satisfy the obvious compatibilities. But ϕ∗ is exact because ϕ presents R[s/p,r/p]
X as

free over R[s,r]
X , so this is immediate. 2

There is another way one might think about the ϕ-pullback condition on generalized ϕ-
modules. If Q is a generalized ϕ-module over Xr0 then the choice of isomorphism ϕ∗Q ' Q|(0,r0/p]
defines an operator, by Q ↪→ ϕ∗Q ' Q|(0,r0/p] which we also denote by ϕ. If f ∈ Rr0X and x ∈ Q,
then ϕ(fx) = ϕ(f)ϕ(x) and so this version of ϕ is naturally a semilinear operator (albeit with a
different source than target).

Definition 2.5. A generalized (ϕ,ΓK)-module Q over Xr0 is a generalized ϕ-module over Xr0

equipped with a continuous Rr0X -semilinear action of ΓK which commutes with ϕ. If we drop the
word generalized, we insist that Q be a ϕ-module.

Note that we insist that ΓK preserve the radius r0 of the generalized (ϕ,ΓK)-module. We are
now ready to remove the finite radius assumption.

Definition 2.6. A generalized (ϕ,ΓK)-module Q over X is the base change of a generalized
(ϕ,ΓK)-module Q = Qr0 ⊗Rr0X RX over Xr0 for some r0 > 0. If we drop the word generalized, we
insist that Q be a (ϕ,ΓK)-module.

If Q is a generalized (ϕ,Γ)-module, then there exists an r0 > 0 such that Q arises via base
change from a generalized (ϕ,ΓK)-module Qr0 over Xr0 . Thus, for any r0 > r′0, Q also arises
geometrically from Qr

′
0 := Q|(0,r′0]. In particular, if Q is a generalized (ϕ,ΓK)-module, then we

may always take a radius sufficiently small to make sense of the notation Qr0 .
By a morphism f : Q→ Q′ of generalized (ϕ,ΓK)-modules we mean a continuous (ϕ,ΓK)-

equivariant morphism of RX -modules. By definition, there must exist an r0 > 0 so that f arises
from base change of a map f r0 : Qr0 → (Q′)r0 for r0 sufficiently small. The space of all morphisms
will be denoted by Hom(Q,Q′). This is also a generalized (ϕ,ΓK)-module in the natural way.
Taking Q′ = RX we obtain the dual module Q∨, which we will only use if Q is a (ϕ,ΓK)-module.

At various points in §§ 5 and 6 we will need to shrink an affinoid space X to an affinoid
subdomain U = SpB ⊂ X. Given such a U and a generalized (ϕ,ΓK)-module Q over X we
denote by Q|U the RU -module defined by

Q|U := Q ⊗̂RX RU = Q ⊗̂AB.

Note since Q is finitely presented over RA, the first part of the definition could equivalently be
taken to be Q|U = Q⊗RX RU . We record the following result for later use.

Proposition 2.7. If U ⊂ X is an affinoid subdomain, then the association Q 7→ Q|U defines
an exact functor from the category of generalized (ϕ,ΓK)-modules over X to the category of
generalized (ϕ,ΓK)-modules over U .

Proof. The proposition reduces to the same result for generalized (ϕ,ΓK)-modules over Xr0

for each r0 > 0 (and the corresponding open affinoid subdomain U r0 ⊂ Xr0). Once that
reduction has been made, we deduce our result from Proposition 2.3. The main point is that
the exactness follows from the corresponding result for coherent sheaves on rigid spaces (see
[BGR84, Proposition 9.4.1/1] for example). 2
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2.2 Galois representations
It will be useful to remind ourselves of the following connection between Galois representations
and (ϕ,ΓK)-modules. If A is an affinoid Qp-algebra, then by an A-linear representation of GK
we mean a finite projective A-module V together with a continuous A-linear action of the Galois
group GK .

Theorem 2.8. Let X = Sp(A). There is a fully faithful, exact embedding

Drig : {A-linear representations V of GK} ↪→ {(ϕ,ΓK)-modules over RX}

such that:

(a) Drig commutes with base change A→ A′; and

(b) when A is finite over Qp, Drig is essentially surjective onto the category of étale (ϕ,ΓK)-
modules.

The theorem as we have stated it can be read off from [KL10, Theorems 3.11 and 0.2]. The
earliest results were proven when A is a field. For that, Fontaine and separately, Cherbonnier
and Colmez, gave proofs with the caveat that the Robba ring is replaced with a different ring
of analytic functions on affinoid subdomains of discs (see [Fon90] and [CC98]). The key step
in extending the theorem to the Robba ring as we have discussed it was Kedlaya’s theorem on
slope filtrations [Ked04]. The family results are more recent and one does not in general have a
description of the essential image.

2.3 Rank-one (ϕ,ΓK)-modules
Rank-one (ϕ,ΓK)-modules over A are parametrized, essentially, by continuous characters δ :
K× → A×. Let us recall the construction of (ϕ,ΓK)-modules of character type. Note that by
[KPX14, Theorem 6.2.14] every rank-one (ϕ,ΓK) arises, locally on A, from one of character type.

Choose a uniformizer $K of K. We can write δ = δnrδwt where δnr|O×K = 1 and δwt($K) = 1.
Then, δwt extends in a unique manner to the abelianization of the Galois group Gab

K , using the
local Artin map, and we denote δ̂wt the corresponding Galois character δ̂wt : GK → A×. On the
other hand, by [KPX14, Lemma 6.2.3] there is a unique rank-one free (F⊗QpA)-module Dδnr($K)

equipped with an operator ϕ, semilinear with respect to ϕ⊗ 1, such that ϕfK = 1⊗ δnr($K). We
give it the trivial ΓK-action and define the rank-one (ϕ,ΓK)-module

RA(δ) := (Dδnr($K) ⊗F⊗QpA
RA)⊗RA Drig(δ̂wt).

This is independent of any choices made and satisfies RA(δδ′) ' RA(δ) ⊗RA RA(δ′). Thus, it
makes sense to define D(δ) := D ⊗RA RA(δ) for any generalized (ϕ,ΓK)-module over A.

Assume now that A is an L-algebra for L as in § 1.6. If δ : K×→ A× is a character, then we
can define its weights as follows. The groupK×, as a group over Qp, has a Lie algebra of dimension
(K : Qp) = #ΣK . The differential action gives rise to a weights (wtτ (δ))τ∈ΣK ∈K⊗QpA '

∏
τ Aτ

such that

0 = lim
a→0
a∈OK

|δ(1 + a)− 1 +
∑

τ∈ΣK
wtτ (δ)τ(a)|

|a|K
.

It is easy to see that (wtτ (δ))τ only depends only δwt in the decomposition of the previous
paragraph (thus the notation). We have normalized the weights so that if z : K× → K× is the
identity character, then wtτ (z) = −1 for each τ ∈ ΣK .
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2.4 p-adic Hodge theory
The definition of weight given above is a special case of extending the usual Fontaine functors
DSen, DdR, Dcris, etc. from p-adic Hodge theory to the category of (ϕ,ΓK) modules. In particular,
we have the notions of Hodge–Tate–Sen weights, crystalline (ϕ,ΓK)-modules, etc. We will not
recall the definitions and will refer to [Ber02, Ber08] as needed.

One of Berger’s main results [Ber08, Théorème A] is that the functor Dpst(−) induces an
equivalence

{potentially semistable (ϕ,ΓK)-modules over L} Dpst−→ {filtered (ϕ,N,GK)-modules over L}.

The subcategory of crystalline (ϕ,ΓK)-modules is equivalent to the full subcategory of filtered
ϕ-modules over L. The étale (ϕ,ΓK)-modules (the Galois representations, following Theorem 2.8)
correspond to the weakly admissible modules on the right-hand side.

Suppose that D is crystalline. The L⊗QpK-module Dcris(D)K := Dcris(D)⊗F K is equipped
with an exhaustive and separated decreasing filtration Fil•Dcris(D)K . We denote by HTτ (D)
the multi-set of integers such that the induced filtration on the L-vector space Dcris(D)K,τ =
eτDcris(D)K has jumps given with multiplicity by HTτ (D). It is easy to see that if δ : K×→ L×

is a character such thatRL(δ) is crystalline then HTτ (RL(δ)) = wtτ (δ). For example,Dcris(RL) =
F ⊗Qp L with the trivial ϕfK -action and for all τ ∈ ΣK we have HTτ (RL) = 0.

If τ : K ↪→ L is an embedding then we denote the corresponding character K×→ L× by zτ .
It happens that Dcris(RL(zτ )) is a filtered ϕ-module with trivial ϕfK -action and the Hodge–Tate
filtration has weights

HTσ(RL(zτ )) =

{
−1 if σ = τ,

0 if σ 6= τ.

In particular, Dcris(RL(zτ )) ⊂ Dcris(RL) as filtered ϕ-modules. Thus, RL(zτ ) = tτRL for some
tτ , uniquely determined up to unit in RL.

Proposition 2.9. Every (ϕ,ΓK)-submodule of RL is of the form (
∏
τ∈ΣK

trττ )RL for some
collection of non-negative integers rτ > 0.

Proof. See [KPX14, Corollary 6.2.9]. 2

It is easy to see tτRL and tσRL are maximally coprime if σ 6= τ . Indeed, D = tτRL + tσRL
is (ϕ,ΓK)-submodule of RL whose Hodge–Tate weights, computed by passing to Dpst(D), are
zero (for each τ ∈ ΣK). The element t =

∏
τ tτ is, up to a unit, the ubiquitous t which plays the

role of the p-adic 2πi in all of p-adic Hodge theory. The (ϕ,ΓK)-submodule tRL is crystalline,
its τ -Hodge–Tate weight is −1 for each τ and ϕ(t) = pt.

2.5 Galois cohomology
Suppose that A is an affinoid algebra and that Q is a generalized (ϕ,ΓK)-module over A. Let
∆K ⊂ ΓK be the p-torsion subgroup (which only exists if p= 2) and choose a topological generator
γ0 ∈ ΓK/∆K . One then defines the Herr complex [Her98] as the three-term complex C•γ0(D)

Q∆K
x 7→((ϕ−1)x,(γ0−1)x) // (Q∆K )⊕2 (y,z)7→(γ0−1)y−(ϕ−1)z // Q∆K .

The Galois cohomology groups H•(Q) of Q are defined to be the cohomology groups of the
complex C•γ0(Q). The complexes depend on the choice of γ0 up to canonical quasi-isomorphism,
so the cohomology is well-defined.
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When A is finite over L, the Galois cohomology is finite-dimensional and satisfies an Euler–
Poincaré formula [Liu07]

2∑
i=0

(−1) dimLH
i(Q) = −(K : Qp) rankRL Q,

where the rank of a torsion module must be suitably interpreted (see § 2.6). The finiteness is true
over general affinoid L-algebras A in the case of (ϕ,ΓK)-modules by [KPX14]. We will review
that result in § 4.

But now let us review the dimensions of the cohomology of rank-one (ϕ,ΓK)-modules over
a field. To shorten notation, if δ : K× → L× is a continuous character we denote H•(δ) :=
H•(RA(δ)). We let T̂ (L) be the space of continuous characters δ : K×→ L×. Define two special
subsets of T̂ (L) by

T̂ (L)+ =

{
δ : K×→ L× : δ =

∏
τ∈ΣK

zrττ with rτ 6 0 for each τ
}
,

T̂ (L)− =

{
δ : K×→ L× : δ = |NK/Qp

|
∏
τ∈ΣK

zrττ with rτ > 1 for each τ
}
.

The elements of T̂ (L) which are not in T̂ (L)+ or T̂ (L)− are called generic characters.

Proposition 2.10. Let δ : K×→ L× be a continuous character. Then

dimLH
0(δ) =

{
1 if δ ∈ T̂ (L)+,

0 otherwise,

dimLH
1(δ) =

{
2 if δ ∈ T̂ (L)+ ∪ T̂ (L)−,

1 otherwise,

dimLH
2(δ) =

{
1 if δ ∈ T̂ (L)−,

0 otherwise.

Proof. See [KPX14, Proposition 6.2.8]) (or [Nak09, § 2.3]). 2

Let us finish this subsection with a definition.

Definition 2.11. Suppose that δ, δ′ ∈ T̂ (L).
(a) We say that δ and δ′ are homothetic if there exists integers (rτ )τ∈ΣK such that δ =

δ′
∏
τ z

rτ
τ .

(b) We say that δ and δ′ are generic up to homothety if δ′δ−1
∏
τ z

rτ
τ is generic for every tuple

(rτ )τ∈ΣK of integers.

To put the previous definition in context, if δ and δ′ are homothetic, then following
Proposition 2.10 we can find an integer r such that trRL(δ) ↪→ RL(δ′). Thus, RL(δ) and RL(δ′)

are in a sense commensurable. If δ and δ′ are generic up to homothety, then H2(η) = H0(η) = (0)

for all characters η homothetic to δ′δ−1.
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2.6 Torsion (ϕ,ΓK)-modules
Note that

RL = R⊗Qp L = R⊗F (F ⊗Qp L) =
∏

η∈Gal(F/Qp)

R⊗F L.

By [Ber02, Proposition 4.12], each term in the product is an adequate Bézout domain. In
particular, finitely generated RL modules are free if and only if they are torsion free (with
respect to the total ring of divisors) and there is a robust theory of elementary divisors over RL.
As a consequence, a generalized (ϕ,ΓK)-module over L is a (ϕ,ΓK)-module if and only if it is
torsion-free as an RL-module.

The element t ∈ RL is an example of a non-zero divisor. If S is a generalized (ϕ,ΓK)-module
we let S[t∞] denote the t-power torsion submodule. Since t ∈ R is an eigenvector for ϕ and ΓK ,
S[t∞] is a (ϕ,ΓK)-submodule.

Definition 2.12. Let A be an L-affinoid algebra. A torsion (ϕ,ΓK)-module over A is a
generalized (ϕ,ΓK)-module S over A such that S[t∞] = S. We say that S is pure if either
S = 0 or if S is free over RA/(

∏
τ t
rτ
τ ) for some collection of integers rτ > 0, not all of which are

zero.

The typical example of a pure torsion (ϕ,ΓK)-module is RL/(
∏
τ t
rτ
τ )RL(δ) for some

continuous character δ : K×→ L× and non-negative integers rτ .

Lemma 2.13. A generalized (ϕ,ΓK)-module over L is a (ϕ,ΓK)-module if and only if it is t-
torsion free. Any torsion (ϕ,ΓK)-module over L is a successive extension of pure torsion (ϕ,
ΓK)-modules.

Proof. The lemma is proven in the case K = Qp in [Liu07, Proposition 4.1]. The proof in this
case is the same, the main point being Proposition 2.9. We reproduce it for convenience.

Let D be a generalized (ϕ,ΓK)-module. If it is a bona fide (ϕ,ΓK)-module, then it obviously
cannot have t-torsion. Now suppose that D is t-torsion free, and to show that D is a bona fide
(ϕ,ΓK)-module it suffices to show that it is torsion free.

Since D is finitely generated as a RL-module, and RL is a Bézout domain, we have the
theory of elementary divisors. Thus, there exists a finite number of elements d1, . . . , dm ∈ D
which generate D over RL such that the ideals fiRL := AnnRL(di) are principal and f1RL ⊃
f2RL ⊃ · · · ⊃ fmRL. The ideals {fiRL} are then uniquely determined by this property. We claim
that each non-zero fi is a unit, which implies that D is torsion free. Without loss of generality
we can assume that fm 6= 0 and show that fm is a unit.

We will first show that each ideal fiRL is a (ϕ,ΓK)-submodule of RL. If γ ∈ ΓK then it
is easy to see that {γ(di)} also generates D as a RL-module. Furthermore, AnnRL(γ(di)) ⊂
AnnRL(γ(di−1)) for 1 < i 6 m. Thus, by the uniqueness in the theory of elementary divisors, we
have γ(AnnRL(di)) = AnnRL γ(di) = AnnRL(di) for each i. This shows that each ideal fiRL is
ΓK-stable.

On the other hand, one may also check that the elementary divisors for ϕ∗D are the ideals
AnnRL(di ⊗ 1) (the elements di ⊗ 1 written as tensors in ϕ∗D = D ⊗RL,ϕ RL). Since ϕ∗D ' D
the elementary divisors for both ϕ∗D and D are the same, hence AnnRL(di ⊗ 1) = AnnRL(di).
This required only having an abstract isomorphism between ϕ∗D and D. On the other hand,
the isomorphism ϕ∗D → D is defined explicitly by sending di ⊗ 1 to ϕ(di), which implies
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that AnnRL(ϕ(di)) = AnnRL(di ⊗ 1). Finally, we see that ϕ(AnnRL(di)) ⊂ AnnRL(ϕ(di)) =
AnnRL(di). Thus, each ideal fiRL is ϕ-stable as well.

We now finish the proof. By Proposition 2.9, if fm is not unit then there exists non-negative
integers rτ > 0, not all zero, such that (

∏
τ∈ΣK

trττ )dm = 0. Since (
∏
τ∈ΣK

trττ ) is a divisor of tr for
r large, we conclude that dm ∈ D[t∞]. Since D is t-torsion free, we conclude that dm = 0, which
contradicts the choice of the elements {di}. The calculation also clearly shows that a torsion
(ϕ,ΓK)-module is a successive extension of pure torsion (ϕ,ΓK)-modules. Indeed, if Q is torsion
then 0 = fmQ ⊂ fm−1Q ⊂ · · · ⊂ f1Q ⊂ Q is a filtration whose successive quotients fiQ/fi+1Q are
pure torsion, since they are free over fiRL/fi+1RL (compare with [Liu07, Proposition 4.1]). 2

If S is a torsion module, then the Euler–Poincaré formula [Liu07, Theorem 4.7] says

dimLH
0(S) = dimLH

1(S) and dimLH
2(S) = 0.

By Lemma 2.13, the cohomology of torsion (ϕ,ΓK)-modules reduces to the cohomology of pure
torsion (ϕ,ΓK)-modules and that is explained by the following calculation.

Proposition 2.14. Let τ ∈ ΣK . Then for each i = 0, 1 we have

dimLH
i((RL/trττ )(δ)) =

{
1 if wtτ (δ) ∈ {0, 1, . . . , rτ − 1},
0 otherwise.

Proof. The case of i = 1 and i = 0 are equivalent by the Euler–Poincaré formula for torsion
modules. The computation of the cohomology for i = 0 is given by [Nak09, Lemma 2.16]. For a
proof in the language of (ϕ,ΓK)-modules, at least when K = Qp, see [Col08, Proposition 2.18]
(warning: Colmez uses a different convention for weights). 2

3. Parabolizations and triangulations

Triangulations of (ϕ,ΓK)-modules arose following Colmez’s work on the p-adic local Langlands
for GL2(Qp) (see [Col08]). In this section we have two goals. First, we will recall parabolizations
of (ϕ,ΓK)-modules, a more general notion due to Chenevier [Che11], and the definition of critical
and non-critical triangulations. Our second goal is to extend the definition of triangulation in a
reasonable way to the category of generalized (ϕ,ΓK)-modules. We discuss the latter notion only
in the case where the coefficients are a field.

3.1 Parabolizations of (ϕ,ΓK)-modules
Let A be an affinoid L-algebra.

Definition 3.1. If D is a (ϕ,ΓK)-module over A, then a parabolization P• of D (of length s) is
a filtration

0 = P0 ( P1 ( · · · ( Ps−1 ( Ps = D

such that each:

– Pi is a (ϕ,ΓK)-module; and
– for each i = 1, . . . , s we have that Pi/Pi−1 is a (ϕ,ΓK)-module over A which is a RA-module

direct summand of Pi.
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If P• is a parabolization of the maximal length s = rankRA D, then we say that P• is a
triangulation. We say D is trianguline if, after possibly extending the coefficient field L, there
exists a triangulation of D.

If P• is a triangulation of a (ϕ,ΓK)-module D of rank d, then each quotient Pi/Pi−1 is of
the form RA(δi) for some continuous character δi : K× → A×, at least locally on X = Sp(A)
[KPX14, Theorem 6.2.14]. We call the d-tuple (δi)

d
i=1 the ordered parameter of the triangulation

P• and we say that D is trianguline with ordered parameter (δi)
d
i=1. If D is trianguline with an

ordered parameter (δi)
d
i=1, then HTτ (D) = {wtτ (δi)}di=1.

For the rest of this section we will take A to be the field L itself. Crystalline (ϕ,ΓK)-modules
overRL provide examples of triangulations. For that we have the notion of a refinement, following
[Liu15, Definition 5.29].

Definition 3.2. If D is a crystalline (ϕ,ΓK)-module of rank d over L, then a partial refinement
R• of D is the choice of a ϕ-stable L⊗Qp F -linear filtration

0 = R0 ( R1 ( · · · ( Rs = Dcris(D),

whose successive quotients are free L ⊗Qp F -modules. In the case that s = d we call R• a
refinement.

Suppose that R• is a refinement of a crystalline (ϕ,ΓK)-module. Then each of the quotients
Ri/Ri−1 is a rank-one L⊗QpF -module equipped with a linear operator ϕfK . We denote by φi ∈ L×
the eigenvalue of ϕfK appearing in Ri/Ri−1. Furthermore, Dcris(D)K is an L⊗QpK-vector space
equipped with its Hodge filtration Fil•Dcris(D)K . Each of the ϕ-stable subspaces (Ri)K has an
induced Hodge filtration. We define, for each τ ∈ ΣK and i = 1, . . . , d an integer si,τ so that
{s1,τ , . . . , si,τ} are the τ -Hodge–Tate weights appearing in (Ri)K,τ . In summary, triangulations
and refinements have the following invariants:

a triangulation P•  the ordered parameter (δ1, . . . , δn);

a refinement R•  the ordering of ϕfK -eigenvalues (φ1, . . . , φn)

and the τ -Hodge–Tate weights (s1,τ , . . . , sd,τ )τ .

Note that if P• is a triangulation of a crystalline (ϕ,ΓK)-module D, then each step Pi is a
crystalline (ϕ,ΓK)-module as well.

Proposition 3.3. Let D be a crystalline (ϕ,ΓK)-module over L all of whose ϕfK -eigenvalues
lie in L×.

(a) Then P 7→ Dcris(P ) induces bijections

{parabolizations of D}←→ {partial refinements of D},
{triangulations of D}←→ {refinements of D}.

(b) If P• is a triangulation with ordered parameter (δ1, . . . , δn), then the orderings associated
to Dcris(P•) are given by

(s1,τ , . . . , sd,τ ) = (wtτ (δ1), . . . ,wtτ (δn)),

(φ1, . . . , φn) =

(
δ1($K)

∏
τ∈ΣK

τ($K)wtτ (δ1), . . . , δd($K)
∏
τ∈ΣK

τ($K)wtτ (δd)

)
,

for some (or, any) choice of uniformizer $K ∈ K×.
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(c) If R• is a refinement with orderings (φ1, . . . , φn) and (s1,τ , . . . , sd,τ )τ∈ΣK then the
parameter (δ1, . . . , δn) of the corresponding triangulation P• is given by

δi(z) =

( ∏
τ∈ΣK

z
−si,τ
τ

)
unr$K (φi)(z)

for some (or any) choice of uniformizer $K ∈ K×.

Proof. The first part follows from Berger’s dictionary [Ber08] between potentially semistable
(ϕ,ΓK)-modules and filtered (ϕ,N,GK)-modules. The second two parts are easy inductions from
the rank-one case. In the case thatK = Qp a longer discussion can be found in [BC09, Proposition
2.4.1]. 2

3.2 Critical and non-critical triangulations
For this subsection we work with a fixed crystalline (ϕ,ΓK)-module D over the field L.

Definition 3.4. Suppose that P ⊂ D is a saturated (ϕ,ΓK)-submodule. If τ ∈ ΣK , then we say
that P is τ -non-critical if there exist an integer kτ such that

Dcris(P )K,τ ⊕ Filkτ Dcris(D)K,τ = Dcris(D)K,τ .

We say P is τ -critical otherwise. Finally, P is called non-critical if P is τ -non-critical for each
τ ∈ ΣK and P is critical if there exists a τ ∈ ΣK such that P is τ -critical.

The definition is only given for crystalline (ϕ,ΓK)-modules as it relies on the correspondence
Proposition 3.3. A more general definition will be given later which applies to certain p-adic limits
of crystalline (ϕ,ΓK)-modules (see Definition 6.7).

In the case of regular Hodge–Tate weights, we have a convenient way to check whether or not
a saturated (ϕ,ΓK)-submodule is critical.

Lemma 3.5. Let τ ∈ ΣK . Suppose that D is a crystalline (ϕ,ΓK)-module with regular τ -Hodge–
Tate weights k1,τ < · · · < kd,τ . Let P ⊂ D be a saturated (ϕ,ΓK)-submodule of rank i 6 d. The
following are equivalent:

(a) P is τ -non-critical;

(b) Dcris(P )K,τ ⊕ Filki+1,τ Dcris(D)K,τ = Dcris(D)K,τ ;

(c) HTτ (P ) = {k1,τ , . . . , ki,τ};
(d) detP ⊂ ∧iD is τ -non-critical.

Proof. First, part (b) implies part (a) by definition. Second, parts (b) and (c) are easily
equivalent. Now suppose that P is non-critical and choose an integer kτ such that Dcris(P )K,τ ⊕
Filkτ Dcris(D)K,τ = Dcris(D)K,τ . Since P is crystalline, d− i = dimLτ Filkτ Dcris(D)K,τ . Since the
Hodge–Tate weights are all distinct we conclude Filkτ Dcris(D)K,τ = Filki+1,τ Dcris(D)K,τ . This
shows that part (a) implies part (b).

It remains to show that parts (c) and (d) are equivalent. Since D has distinct Hodge–Tate
weights, the unique lowest weight of ∧iD is k1,τ + · · · + ki,τ . The next highest weight is k1,τ +
· · ·+ ki−1,τ + ki+1,τ . Thus, part (c) is true if and only if

Dcris(detP )K,τ ⊕ Filk1,τ+···+ki−1,τ+ki+1,τ Dcris(∧iD)K,τ = Dcris(∧iD)K,τ ,

which is part (d). 2
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At this point, one could define what it means for a triangulation to be non-critical. More
generally, for each parabolization P• of a crystalline (ϕ,ΓK)-module we define a subparabolization
P nc
• ⊂ P• for which every step is non-critical.

Definition 3.6. Let P• be a parabolization of a crystalline (ϕ,ΓK)-module D of rank d. Let

Inc = {i : Pi is non-critical} = {0 = i0 < i1 < · · · < ir = d}.

The maximal non-critical parabolization P nc
• is the filtration

P nc
• : 0 = Pi0 ( Pi1 ( · · · ( Pir = D.

We say that P• is non-critical if P nc
• = P nc, and critical otherwise.

Note that, as suggested by our notation, Inc 6= ∅ and ir = d, since D itself is always a
non-critical (ϕ,ΓK)-submodule of itself. In the case where D has regular weights, Lemma 3.5
shows that P nc

• is the unique subparabolization of P• consisting of the steps whose Hodge–Tate
weights are as low as possible. Furthermore, it is easy to check that (P nc

• )nc = P nc
• , hence the use

of the word ‘maximal’. Let us end this subsection with a brief example.

Example 3.7. Suppose now that K = Qp and that D is a rank-two crystalline (ϕ,ΓQp)-module
over L, with Hodge–Tate weights k1 < k2 and distinct crystalline eigenvalues φ, φ′ ∈ L×. Since
φ 6= φ′ we assume without loss of generality that Dcris(D)ϕ=φ ∩ Filk2 Dcris(D) = (0). Thus,
there is always a non-critical triangulation RL(z−k1 unr(φ)) ⊂ D. The ordered parameter is
(z−k1 unr(φ), z−k2 unr(φ′)).

On the other hand, one can use Propositions 3.3 and 2.10 to show that D is split if and
only if Dcris(D)ϕ=φ′ = Filk2 Dcris(D) (if D is étale, the same statement follows from the weak
admissibility of the filtered ϕ-module Dcris(D)). Thus, the triangulation corresponding to the
ordering (φ′, φ) is given by{

RL(z−k1 unr(φ′)) ⊂ D if D is non-split,
RL(z−k2 unr(φ′)) ⊂ D if D is split.

This triangulation is critical if and only if D is split.

3.3 Generalized triangulations
Recall that a pure torsion (ϕ,ΓK)-module over L is a generalized (ϕ,ΓK)-module that is either
zero or free over RL/

∏
τ t
rτ
τ for some collection (rτ )τ of non-negative integers, not all zero.

Definition 3.8. We say a pure torsion (ϕ,ΓK)-module Q is of character type if either Q = 0 or
there exists a continuous character δ : K×→ L× and a collection of non-negative integers (rτ )τ ,
not all zero, such that Q ' coker((

∏
τ t
rτ
τ )RL(δ)→ RL(δ)).

If Q is non-zero and pure torsion of character type, then we refer to the ΣK-tuple (rτ )τ∈ΣK

as the torsion exponents of Q and (wtτ (δ))τ∈ΣK as the torsion weights of Q. The zero module (0)

has, by definition, torsion exponents (0, . . . , 0) and torsion weights (wτ )τ∈ΣK for any collection of
integers wτ . By Proposition 2.14, these invariants, taken together, completely classify Q among
pure torsion (ϕ,ΓK)-modules of character type.

148

https://doi.org/10.1112/S0010437X16007831 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007831


Paraboline variation over p-adic families of (ϕ,Γ)-modules

Definition 3.9. Let Q be a generalized (ϕ,ΓK)-module over RL. A generalized triangulation of
Q is a filtration Q•

Q• : 0 = Q0 ⊂ Q1 ⊂ Q2 ⊂ · · · ⊂ Qd−1 ⊂ Qd = Q

such that for 1 6 i 6 d, Qi/Qi−1 is either a rank-one (ϕ,ΓK)-module or a pure torsion (ϕ,ΓK)-
module of character type and in either case Qi/Qi−1 is a direct summand of Qi as a RL-module.
We say that Q is triangulated if it is equipped with a triangulation and trianguline if it may be
triangulated, after possibly extending scalars.

Note that we allow for consecutive steps Qi ⊂ Qi+1 to be equal, since (0) is a pure torsion
(ϕ,ΓK)-module of character type under our definition. This has two consequences. First, even if
Q is a bona fide (ϕ,ΓK)-module, then a generalized triangulation is not a triangulation in the
sense of § 3.1. We will deal with this ambiguity in the definition of standard triangulation below.
Second, since we can always repeat steps in a generalized triangulation, the length of a generalized
triangulation Q• depends on Q•; it is not intrinsic to Q, unlike lengths of triangulations of
bona fide (ϕ,ΓK)-modules. This remains true even if a generalized triangulation Q• is strictly
increasing: the length still cannot be read off from Q since RL/tτ tσ ' RL/tτ ⊕RL/tσ if σ 6= τ .

Note that if Q is a generalized (ϕ,ΓK)-module, then the torsion submodule Qtor = Q[t∞] ⊂ Q
is (ϕ,ΓK)-stable and an RL-module summand. The quotient Q/Qtor is a bona fide (ϕ,ΓK)-
module whose rank depends only on Q. We isolate those generalized triangulations which appear
in practice.

Definition 3.10. If Q is a generalized (ϕ,Γ)-module and Q• is a generalized triangulation of Q,
then Q• is called a standard triangulation if there exists a 0 6 i 6 d such that Qi = Qtor. The
integer i is called the torsion length of Q• and the integer d− i is called the free length of Q.

In the definition, the torsion length i depends on Q• whereas the free length d − i depends
only on Q (since it is equal to rankRL Q/Qtor). And now a standard triangulation is closer to a
triangulation in the case where Q is a bona fide (ϕ,ΓK)-module. Indeed, in that case Qtor = (0)
and so a standard triangulation is of the form

0 = 0 = · · · = 0 = Qi ( Qi+1 ( · · · ( Qd = Q

where Pj := Qi+j defines a triangulation of Q as in Definition 3.1.
A standard triangulation of a generalized (ϕ,ΓK)-module has a number of invariants which

we now detail. Suppose that Q• is a standard triangulation.
• The induced generalized triangulation on Q/Qtor is an actual triangulation with ordered

parameter (δi+1, . . . , δd) whose length is the free length of Q.
• The induced generalized triangulation on Qtor also has invariants. For one, it has its length
i. Second, if 1 6 j 6 i then Qj/Qj−1 is pure torsion of character type and thus has exponents
(rj,τ )τ and weights (wj,τ )τ .

Note that it may happen that for some τ , rj,τ = 0. For example, if there is an integer j such
that Qj = Qj−1, then the corresponding torsion exponents are rj,τ = 0 for all τ . However, ranging
over j we can a priori predict the frequency at which this happens.

Definition 3.11. If Q is a generalized (ϕ,ΓK)-module, then its τ -torsion length is defined by

`τ (Q) = rankRL/tτ Qtor/tτ .
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Fix a τ ∈ ΣK and a standard triangulation Q• of a generalized (ϕ,ΓK)-module with torsion
length i and exponents ((rj,τ )τ )16j6i. Since the successive quotients of a generalized triangulation
are direct summands as RL-modules, it is easy to see that `τ (Q) = #{j : rj,τ 6= 0} and that
`τ (Q) 6 i for all τ . To summarize the previous discussion we separate out the following definition.

Definition 3.12. If Q• is a standard triangulation of a generalized (ϕ,ΓK)-module Q, then, in
the notation above:

– the torsion length is the unique integer i > 1 such that Qtor = Qi;
– the torsion exponents are ((rj,τ )τ )16j6i;
– the torsion weights are ((wj,τ )τ )16j6i; and
– the free parameter is the ordered parameter (δj)j>i.

If we specify an element τ ∈ ΣK , then we refer to (rj,τ )16j6i and (wj,τ )16j6i as the τ -torsion
exponents and τ -torsion weights.

Finally, we finish this section with a result that explains how standard triangulations
of generalized (ϕ,ΓK)-modules are inherently more flexible than triangulations of bona fide
(ϕ,ΓK)-modules. Recall that we defined the notion of homothety among continuous characters
of K× at the end of § 2.5.

Proposition 3.13. Suppose that Q is a generalized (ϕ,ΓK)-module, Q• is a standard
triangulation of torsion length i with torsion exponents ((rj,τ )τ )16j6i, torsion weights
((wj,τ )τ )16j6i and free parameter (δj)j>i. Assume furthermore that δi+1 is not homothetic
to δj for j > i+ 1.

Then, for every ΣK-tuple (ri+1,τ )τ of non-negative integers such that

j 6 i =⇒ wj,τ − wtτ (δi+1) /∈ {−ri+1,τ , . . . , rj,τ − ri+1,τ − 1} = {−ri+1,τ +m : 0 6 m < rj,τ},

there exists a unique (up to scalar) inclusion
∏
τ t
ri+1,τ
τ RL(δi+1) ↪→Q. Its cokernel is a generalized

(ϕ,ΓK)-module which is naturally equipped with a standard triangulation having invariants:

– torsion length i+ 1;

– torsion exponents ((rj,τ )τ )j6i+1;

– torsion weights ((wj,τ )τ )j6i ∪ (wtτ (δi+1))τ ; and

– free parameter (δj)j>i+1.

Proof. Let δ = δi+1
∏
τ z

ri+1,τ
τ . For each j 6 i we choose a character δj whose τ -weight is wj,τ

and so that Qj/Qj−1 ' RL(δj)/
∏
τ t
rj,τ
τ . We quickly calculate

wtτ (δjδ
−1) = wj,τ − wtτ (δi+1) + ri+1,τ .

By our assumptions, wtτ (δjδ
−1) /∈ {0, 1, . . . , rj,τ − 1} for each τ . Using Proposition 2.14 we see

that

Hom(RL(δ), Qj/Qj−1) = H0

((
RL

/∏
τ

t
rj,τ
τ

)
(δjδ

−1)

)
= (0).

By induction on 1 6 j 6 i we see that Hom(RL(δ), Qi) = (0). Since Qi is torsion, the Euler–
Poincaré formula for torsion modules implies H1(Qi(δ

−1)) = (0) as well. We deduce from the
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long exact sequence in cohomology that the natural map Hom(RL(δ), Q)→ Hom(RL(δ), Q/Qi)
is an isomorphism.

On the other hand, Q/Qi is triangulated by a parameter (δi+1, . . . ) whose higher terms
are not homothetic to δi+1. From that we deduce that the inclusion Hom(RL(δ),RL(δi+1)) ↪→
Hom(RL(δ), Q/Qi) is an isomorphism also. Putting the two calculations together, we see that

dimL Hom(RL(δ), Q) = dimL Hom(RL(δ),RL(δi+1)) = 1.

This shows that the morphism in the lemma exists and is unique up to a scalar.
But, the calculation shows more. We have shown in fact that any non-zero morphism

e :RL(δ)→ Q factors through Qi+1 and that e remains non-zero when mapped into the quotient
RL(δi+1) of Qi+1. Since both RL(δ) and RL(δi+1) are rank one, e must be injective and it induces
an exact sequence

0→ Qi→ Qi+1/RL(δ)→ RL(δi+1)/RL(δ)→ 0. (3)

Since RL(δi+1) is a direct summand of Qi+1 as a RL-module, the sequence (3) is also split as a
sequence of RL-modules. This means that the standard triangulation Q• on Q induces a standard
triangulation Q′• on Q/RL(δ) whose successive quotients are given by

Q′j/Q
′
j−1 =

{
Qj/Qj−1 if j 6= i+ 1,

RL(δi+1)/
∏
τ t
ri+1,τ
τ if j = i+ 1.

The invariants are of the new standard triangulation are easily calculated from this. 2

Note that one can always find infinitely many such integers ri+1,τ which satisfy the hypotheses
of the proposition. Also note that if ri+1,τ = 0 for all τ ∈ ΣK , then the standard triangulation
we just produced will have two consecutive steps which are equal.

4. Galois cohomology in families

In this short section we expand on § 2.5. In particular, we recall the main results of [KPX14]
and develop a simple cohomology and base change framework for generalized (ϕ,ΓK)-modules.
The framework will be applied in §§ 5 and 6. Throughout this section we will let A be a reduced
affinoid L-algebra and X = Sp(A).

Suppose that N• = [· · · → N1 → N0] is a complex of A-modules and M is an A-module
such that TorAj (Np,M) = (0) for each j > 1 and p > 0. Then the Künneth spectral sequence, see
[Wei94, Theorem 5.6.4], is a first quadrant spectral sequence

E2
pq = TorAp (Hq(N•),M)⇒ Hp+q(N• ⊗AM).

Definition 4.1. An A-module Q is called nearly flat if TorAj (Q,L(x)) = (0) for all j > 1 and
x ∈ Sp(A).

Recall that if x ∈ X(Qp) and Q is an A-module, then Qx denotes the fiber Q⊗A L(x).

Proposition 4.2. If Q is a nearly flat generalized (ϕ,ΓK)-module over A, then there is a first
quadrant spectral sequence

TorAp (H2−q(Q), L(x))⇒ H2−(p+q)(Qx)

which degenerates on the E3-page.
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Proof. We apply the Künneth spectral sequence to M = L(x) and the three-term Herr complex
C•ϕ,γK (Q), after making the obvious shift between homology and cohomology. The hypothesis
in the Künneth spectral sequence is valid since Q is nearly flat and each term of C•ϕ,γK (Q) is
a direct sum of finitely many copies of Q, if p is odd. If p = 2, then each term of C•ϕ,γK (Q)

is actually a direct sum of finitely many copies of Q∆K , itself a direct summand of Q (we thank
the anonymous referee for this precision).

As an aid to the reader, let us explicitly write out the E2-page of the spectral sequence.

...
...

...

0 0 0 · · ·

H0(Q)⊗A L(x) TorA1 (H0(Q), L(x)) TorA2 (H0(Q), L(x)) · · ·

H1(Q)⊗A L(x) TorA1 (H1(Q), L(x)) TorA2 (H1(Q), L(x))

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
· · ·

H2(Q)⊗A L(x) TorA1 (H2(Q), L(x)) TorA2 (H2(Q), L(x))

llYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
· · ·

(4)

The arrows drawn are the differentials. Now it is clear that the spectral sequence stabilizes on
the E3-page since the differentials there and afterwards are all zero. 2

Proposition 4.3. Suppose f ∈ RL is not a zero divisor. If Q is a nearly flat generalized (ϕ,
ΓK)-module over A, then for each x ∈ X:

(a) there is a four term exact sequence

0→ TorA2 (Q/f, L(x))→ Q[f ]⊗A L(x)→ Qx[f ]→ TorA1 (Q/f, L(x))→ 0;

(b) if i > 1, then TorAi+2(Q/f, L(x)) ' TorAi (Q[f ], L(x)).

Proof. Consider the complex N• of RA-modules given by N• = [Q
f−→ Q] and its base change

N•,x = [Qx
f−→ Qx] to x ∈ X. Apply the Künneth spectral sequence again with M = L(x). The

homology groups are H0(N•) = Q/fQ and H1(N•) = Q[f ] and vanish in degree i > 2 (the same
for N•,x). From the spectral sequence we get for all i > 2 a short exact sequence

0→ coker(TorAi+1(Q/f, L(x))→ TorAi−1(Q[f ], L(x)))→ Hi(N•,x)

→ ker(TorAi (Q/f, L(x))→ TorAi−2(Q[f ], L(x)))→ 0.

The middle term vanishes since i > 2 and thus by induction we see part (b) is true and that
TorA2 (Q/f, L(x)) ↪→ Q[f ]⊗AL(x), making the sequence in part (a) exact on the left. The spectral
sequence taken when p+ q = 1 gives a short exact sequence

0→ coker(TorA2 (Q/f, L(x))→ Q[f ]⊗A L(x))→ Qx[f ]→ TorA1 (Q/f, L(x))→ 0,

which shows the rest of part (a). 2
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Following these two general base change theorems we can begin to set up a cohomology and
base change framework. Recall from the end of § 2.1 that if Q is a generalized (ϕ,ΓK)-module
over X and U = Sp(B) ⊂ X is an admissible open affinoid subdomain, then Q|U := Q⊗RX RU .

Definition 4.4. If Q is a generalized (ϕ,ΓK)-module over A, then we say Q has finite
cohomology if for every affinoid subdomain U = Sp(B) ⊂ X, H i(Q|U ) is a finite B-module
for i = 0, 1, 2.

Remark. If Q is a generalized (ϕ,ΓK)-module over A with finite cohomology, then Q|U
is a generalized (ϕ,ΓK)-module over B with finite cohomology for all affinoid subdomains
U = Sp(B) ⊂ X.

Theorem 4.5 (Kedlaya–Pottharst–Xiao). If Q is a generalized (ϕ,ΓK)-module over A, then Q
has finite cohomology in the following situations:

(a) Q is a (ϕ,ΓK)-module;

(b) Q is of the form coker(Q1
e
↪→ Q2) where both Q1 and Q2 have finite cohomology and e is

(ϕ,ΓK)-equivariant.

Proof. If Q is a bona fide (ϕ,ΓK)-module over X, then it is also a bona fide (ϕ,ΓK)-module
over U and thus each cohomology group H i(Q|U ) is a finite B-module by the main theorem of
[KPX14].

Now suppose that Q1 and Q2 have finite cohomology and that e : Q1 → Q2 is an injective
(ϕ,ΓK)-equivariant map. Since U ⊂ X is an affinoid subdomain, Proposition 2.7 implies that we
have a short exact sequence of generalized (ϕ,ΓK)-module over U

0→ Q1|U → Q2|U → Q|U → 0. (5)

The finiteness of each H i(Q|U ) as a B-module now follows from the finiteness each H i(Qj |U )
(i = 0, 1, 2 and j = 1, 2) and the long exact sequence in cohomology associated to the
sequence (5). 2

If Q is a generalized (ϕ,ΓK)-module over A, then we define functions on X by the formula

diQ(x) := dimL(x)H
i(Qx).

Note that the fiber is taken prior to taking cohomology.
If Q has finite cohomology, then Nakayama’s lemma, together with the fact that affinoid

algebras are Jacobson [BGR84, Proposition 6.1.1/3], implies that x 7→ dimL(x)H
i(Q)⊗A L(x) is

upper semi-continuous on X and, since X is reduced, locally constant if and only if H i(Q) is flat.
For i fixed, we will say that H i(Q) satisfies base change if the natural map H i(Q) ⊗A L(x)→
H i(Qx) is an isomorphism for all x ∈ X.

Proposition 4.6. If Q is a nearly flat generalized (ϕ,ΓK)-module with finite cohomology and
x 7→ diQ(x) is locally constant for i > k, then H i(Q) is flat over X for i > k and satisfies base
change for i > k − 1.

Proof. One argues by descending induction on k. Since the cohomology vanishes in degrees k > 3,
the proposition is vacuous for k > 4. When k = 3, H2(Q) is a cokernel, by definition, and thus
always satisfies base change.
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Fix k 6 2 and assume the result is true for k + 1. Since the hypotheses for k imply those of
k + 1, the induction hypothesis implies that Hk(Q) satisfies base change. By assumption, dkQ(x)

is locally constant. Since X is reduced, Nakayama’s lemma implies that Hk(Q) is flat over X.
The fact that Hk−1(Q) satisfies base change now follows from Proposition 4.2. 2

Recall that if X is a reduced rigid space and x0 ∈ X(Qp) then a subset Z ⊂ X(Qp) is said
to accumulate at x0 if there exists a neighborhood basis of affinoid neighborhoods U of x0 such
that Z ∩ U is Zariski-dense in U for all U .

Corollary 4.7. Let Q be a nearly flat generalized (ϕ,ΓK)-module with finite cohomology. If
x ∈ X and there exists a Zariski-dense subset Z ⊂ X(Qp) accumulating at x such that, for each
0 6 i 6 2, diQ(x) = diQ(u) for all u ∈ Z, then H i(Q|U ) is flat and satisfies base change for 0 6 i 6 2
for all sufficiently small affinoid subdomains x ∈ U ⊂ X.

Proof. We have that H2(Q) always satisfies base change, whence u 7→ d2
Q(u) is upper semi-

continuous on X. Since Z is Zariski-dense, and d2
Q(x) = d2

Q(u) for u ∈ Z, we may shrink X

and assume that d2
Q(−) is constant on X. It follows from Proposition 4.6 that H2(Q) is flat

and H1(Q) satisfies base change. By assumption on Z accumulating at X, the hypotheses of the
proposition remain true after we have shrunk X. Thus, we may re-do the same proof to show
the result for i = 1 and then i = 0. 2

5. Triangulated families

Here we introduce triangulated families: families of generalized (ϕ,ΓK)-modules which point-by-
point have a triangulation. They are not the most natural families to consider, as the data are
given pointwise, but they will be a useful intermediary for Theorem 6.8. Throughout this section
we write X = Sp(A) for a reduced rigid analytic affinoid space over L.

5.1 Triangulated families
Definition 5.1. A pointwise triangulated family of generalized (ϕ,ΓK)-modules with torsion
centered at x0 ∈ X is:

– a generalized (ϕ,ΓK)-module Q over X;
– an ordered tuple ((sj,τ )τ )16j6d of integers (called the torsion weights);
– an ordered tuple (δj)16j6d of continuous characters δj : K× → Γ(X,O)× (called the

parameter);
– a Zariski-dense set of points Xnc ⊂ X(Qp) (called the non-critical points);
– a point x0 ∈ X(Qp) (called the center);

subject to the following.

(TF1) If y ∈ Xnc ∪ {x0}, then wtτ (δ1,y) < · · · < wtτ (δd,y) are distinct integers and {sj,τ}j =
{wtτ (δj,x0)}j (as sets) for all τ ∈ ΣK .

(TF2) If i < j and x ∈ X(Qp), then δ
−1
i,x δj,x is generic up to homothety.

(TF3) For each x ∈ X(Qp), there exists on Qx a standard triangulation of torsion length i(x0)
and free length d− i(x0), with 0 6 i(x0) 6 d, independent of x, whose free parameter is
term-by-term homothetic to (δj,x)i(x0)<j6d.
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(TF4) The standard triangulation Qx0,• has invariants:

– torsion exponents ((sj,τ − wtτ (δ1,x0))τ )16j6i(x0);
– torsion weights ((sj,τ )τ )16j6i(x0);

– free parameter (δj,x0
∏
τ z

wtτ (δj,x0 )−sj,τ
τ )i(x0)<j6d.

(TF5) If y ∈ Xnc, then the triangulation Qy,• has invariants:

– torsion exponents ((wtτ (δj,x0)− wtτ (δ1,x0))τ )16j6i(x0);
– torsion weights ((wtτ (δj,y))τ )16j6i(x0);
– free parameter (δj,y)i(x0)<j6d.

(TF6) For each C > 0 the set of points

Xnc
C = {y ∈ Xnc : wtτ (δj,y)− wtτ (δj−1,y) > C for all 2 6 j 6 d}

accumulates at x0.

Remark. The axiom (TF5) does not have a typo. The torsion exponents are given in terms of
weights of characters at the point x0 and are independent of y ∈ Xnc. This is why x0 is called
the ‘center’ of the torsion.

Remark. We stress that if Q is a pointwise triangulated family of generalized (ϕ,ΓK)-modules
over X, then there is no reason to believe that x 7→ Qx,j defines a generalized (ϕ,ΓK)-module
Qj over X; the datum of the standard triangulations is really given only point-by-point.

We will dwell further beyond these remarks. First, i(x0) is the torsion length of the standard
triangulation Qx0,• but beware that Qx0 may actually be torsion free, even if i(x0) > 0. Indeed,
our definitions allow for successive quotients in Qx0,• to be zero. In particular, if i(x0) = 1
and s1,τ = wtτ (δ1,x0) for all τ ∈ ΣK , then Qx0 is torsion free. This situation does not arise
in our applications, but we mention it because the remark applies equally well to y ∈ Xnc.
Indeed, if y ∈ Xnc, then axiom (TF4) says that the torsion exponents of Qy,1 are given by
wtτ (δ1,x0)− wtτ (δ1,x0) = 0 for all τ ∈ ΣK and thus Q1,y = (0).

More generally, when i(x0) > 0 and y ∈Xnc there will be i(x0)−1 distinct torsion steps in the
standard triangulation Qy,•. On the other hand, in practice, Qx0,• will have i(x0) torsion steps.
However, consider the situation where for all τ ∈ ΣK there exists a j such that j 6 i(x0) and
sj,τ = wtτ (δ1,x0). Then, for each τ ∈ ΣK we have an equality of τ -torsion lengths `τ (Qy) = `τ (Qx0)
at x0 versus y ∈ Xnc. Thus, the discrepancy in the number of torsion steps is really an artifact
of how we are doing the bookkeeping. We will see in the course of proving Theorem 6.8 that it
can even happen that the tτ -torsion submodule of Qx0 is isomorphic, as an RL-module, to the
tτ -torsion submodule of Qy for one (and thus all) y ∈ Xnc.

Example 5.2. Theorem 5.3 below will explain how to build new pointwise triangulated families
out of old ones. But let us motivate the definition of pointwise triangulated families, and the need
for Theorem 5.3, with an example previewing the applications in § 6.

Consider a bona fide (ϕ,ΓK)-module D of rank d over X and assume that it is actually a
pointwise triangulated family D centered at x0 ∈ X with i(x0) = 0. For example, you could start
with a densely pointwise strictly trianguline (ϕ,ΓK)-module in the sense of [KPX14, § 6.3] (D is
triangulated at every point following [KPX14, Theorem 6.3.13]).
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Starting from D (with the given parameter (δ1, . . . , δd)) one can construct locally on X, near
x0, a (ϕ,ΓK)-equivariant morphism RX(δ1)

e
↪→ D using [KPX14, Theorem 6.3.9]. Moreover, we

can assume that the base change ex to any point x is still injective. If we set Q = coker(e) then
Q provides an example of a pointwise triangulated family of generalized (ϕ,ΓK)-modules which
is not necessarily a (ϕ,ΓK)-module. It is even nearly flat.

At the points y ∈ Xnc, the fiber Qy will be a bona fide (ϕ,ΓK)-module of rank d− 1. At x0,
however, this may not be the case. The (ϕ,ΓK)-module Dx0 is triangulated by a triangulation
whose first step is t−sRL(x0)(δ1,x0) for some integer s > 0. When s > 0, which is the case when the
triangulation ofDx0 is critical, we see that the fiberQx0 has a non-trivial torsion submodule which
is killed by ts. Nevertheless, the generalized (ϕ,ΓK)-module Q is still a pointwise triangulated
family of (ϕ,ΓK)-modules over X with torsion centered at x0, and i(x0) = 1. One can then hope
to iterate this process, in the style of [KPX14], using these more general families.

Let us continue now with constructing new pointwise triangulated families out of old ones in
general.

Theorem 5.3. If Q is a nearly flat pointwise triangulated family with torsion centered at x0 ∈
X(Qp), free length d−i(x0) > 0 and finite cohomology, then there exists an affinoid neighborhood
x0 ∈ U ⊂ X and a short exact sequence

0→
∏
τ

t
wtτ (δi(x0)+1,x0

)−wtτ (δ1,x0 )
τ RU (δi(x0)+1)→ Q|U → Q′→ 0

of generalized (ϕ,ΓK)-modules over U . Moreover, Q′ is a nearly flat pointwise triangulated family
with torsion centered at x0, free length d− i(x0)− 1 and finite cohomology whose given data is
the same as Q. Thus Q′ as in Theorem 5.3 satisfies axioms (TF1)–(TF6) with i(x0) replaced by
i(x0) + 1.

Proof. This is an application of our cohomology and base change framework. To shorten notation,
let kj,τ = wtτ (δj,x0) and δ = δi(x0)+1

∏
τ z

ki(x0)+1,τ−k1,τ
τ . Note that wtτ (δ) = k1,τ for each τ ∈ ΣK .

We are going to compute the cohomology H•(Q(δ−1)).
We begin by computing the cohomology at x0. First,H2(Qx0(δ−1

x0 )) = (0) by axiom (TF2) and
the vanishing of cohomology in degree two for torsion (ϕ,ΓK)-modules. By the Euler–Poincaré
formula it remains to compute the cohomology in degree zero. Let δ̃ be the character

δ̃ = δi(x0)+1

∏
τ

z
ki(x0)+1,τ−si(x0)+1,τ
τ .

By axiom (TF4), δ̃ is the first character in the free parameter of the standard triangulation
Qx0,• and we see easily that δ = (

∏
τ z

si(x0)+1,τ−k1,τ
τ )δ̃. For each j 6 i(x0) + 1 set rj,τ = sj,τ −

k1,τ . According to axiom (TF4), for j 6 i(x0), these are the torsion exponents of the standard
triangulation Qx0,•. Moreover, if j 6 i(x0), then

sj,τ − wtτ (δ̃) = −ri(x0)+1,τ + rj,τ .

Thus Proposition 3.13, whose non-homothetic hypothesis is valid by axiom (TF2), implies that
there exists a unique, up to scalar, (ϕ,ΓK)-equivariant inclusion

RL(x0)(δx0) =
∏
τ

t
ri+1,τ
τ RL(x0)(δ̃) ↪→ Qx0 ,

so dimL(x0)H
0(Qx0(δ−1

x0 )) = 1. Moreover, Proposition 3.13 also explicitly describes the induced
standard triangulation on the quotient Qx0/RL(x0)(δx0).
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We now compute the cohomology at (some) points y ∈ Xnc. As above, H2(Qy(δ
−1
y )) = (0) by

axiom (TF2) and the vanishing of cohomology in degree two for torsion (ϕ,ΓK)-modules. Reset
the definitions from the previous paragraph and make rj,τ := kj,τ − k1,τ for all j 6 i(x0) + 1.
Once again, if j 6 i(x0), then (rj,τ )τ gives the torsion exponents of the standard triangulation
Qy,•. For all j 6 i(x0), we easily compute

wtτ (δj,y)− wtτ (δy) = wtτ (δj,y)− wtτ (δi(x0)+1,y) + ri(x0)+1,τ .

Choose a C so large that if y ∈ Xnc
C , then for all τ and 1 6 j 6 i(x0), the negative integer

wtτ (δj,y) − wtτ (δi(x0)+1,y) is not among the finitely many values {−ri+1,τ , . . . , rj,τ − ri+1,τ −
1}. Then by axiom (TF2), we can apply Proposition 3.13 and conclude that if y ∈ Xnc

C , then
H0(Qy(δ

−1
y )) is one-dimensional over L(y). Again, Proposition 3.13 also explains how a non-

zero morphism RL(y)(δy) ↪→ Qy will induce a standard triangulation on Qy by replacing the
subquotient RL(y)(δi(x0)+1,y) of Qy by

RL(y)(δi(x0)+1,y)/RL(y)(δ) = RL(y)(δi(x0)+1,y)

/ (∏
τ

t
ki(x0)+1,τ−k1,τ
τ

)
.

By axiom (TF6) we can replaceXnc byXnc
C and assume thatH0(Qy(δ

−1
y )) has constant dimension

over all of Xnc.
We now go back to the entire family. By the Euler–Poincaré formula the function y 7→

dimL(y)H
1(Qy(δ

−1
y )) is constant on Xnc and agrees with dimL(x0)H

1(Qx0(δ−1
x0 )). Since Q is

nearly flat and has finite cohomology, Corollary 4.7 implies we can choose an open neighborhood
x0 ∈ U ⊂ X so that each H i(Q(δ−1)|U ) is free over U and satisfies base change for each i. We
now replace X by such a U .

Choose a basis vector e ∈H0(Q(δ−1)). SinceH0(Q(δ−1)) satisfies base change, if we specialize
e to either x = x0 or x = y ∈ Xnc, we get an injective morphism ex : RL(x)(δx) ↪→ Qx by
the previous two paragraphs. By Lemma 5.4(a) below we conclude that e is also injective. Let
Q′ = coker(e) so that there is a short exact sequence

0→ RX(δ)
e−→ Q→ Q′→ 0. (6)

Since Q has finite cohomology, by assumption, and RX(δ) has finite cohomology by
Theorem 4.5(a), Q′ has finite cohomology by Theorem 4.5(b).

We also have to show that Q′ is nearly flat (after possibly shrinking X more). Since Q is
nearly flat over X and RX is flat over X, it suffices to show that we can shrink X around x0

so that ex is injective for all x. Since ex0 is injective it suffices by Lemma 5.4(b) to show that
x 7→ rankRx[1/t]Qx[1/t] is constant on X. But this follows from axiom (TF3), which implies
that Qx[1/t] is finite free over RL(x)[1/t] of rank d− (i(x0) + 1) independent of x.

Finally, we need to check that Q′ is a triangulated family with the same data as Q, except
i(x0) replaced by i(x0) + 1. The three axioms (TF1), (TF2) and (TF6) do not depend on Q, so
those are still true. Axiom (TF3) is true because of (6) and the fact that Q′ is nearly flat, so that
all the base changes ex are injective. Checking either axiom (TF4) or (TF5) follows from our use
of Proposition 3.13 at the points x = x0 and x = y. 2

There were two points unresolved in the previous theorem, both of which we resolve with
the following lemma. For the second part, and more in the following results, we will make use of
the appendix on Nakayama’s lemma.

Lemma 5.4. Let X be a reduced affinoid space, Q a generalized (ϕ,ΓK)-module over X and
f : RX → Q a (ϕ,ΓK)-equivariant map.
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(a) If X ′ ⊂ X(Qp) is Zariski-dense in X and the specialization fu : RL(u)→ Qu is injective for

all u ∈ X ′, then f is injective.

(b) If x 7→ rankRx[1/t]Qx[1/t] is constant on X, x0 ∈ X and fx0 is injective, then there exists

an affinoid neighborhood x0 ∈ U ⊂ X such that fu is injective for all u ∈ U .

Remark. In part (b), Qx[1/t] is automatically free over Rx[1/t] for each x by Lemma 2.13.

Proof. We need to make use of the recollection given in § 2.1. Choose an r0 so that Q arises via
base change from Xr0 and f arises from a (ϕ,ΓK)-equivariant map f r0 : Rr0X → Qr0 as well.

We first prove part (a). It suffices to show that f r0 is injective. If 0 < s < r0, then let f [s,r0]

denote the induced map

R[s,r0]
X

f [s,r0]−→ Q[s,r0] := Qr0 ⊗Rr0X R
[s,r0]
X .

By [KPX14, Lemma 2.1.4(2)] it suffices to show that f [s,r0] is injective.
We have now reduced to working over a closed relative annulus X [s,r0] whose rigid functions

R[s,r0]
X are, in particular, noetherian. Write I for the image of f [s,r0] in Q[s,r0]. If u ∈ X ′, then
R[s,r]
L(u) → I ⊗A L(u) is injective, as it factors fu and we have assumed that fu is injective. It is

also surjective since tensor product is right exact. Thus, it is an isomorphism.
We deduce from Nakayama’s lemma, applied to the finite module I over the noetherian ring

R[s,r0]
X that dimL(v) Iv > 1 for all v ∈X [s,r0] (note that v is in the relative annulus, not just X, and

Iv := I⊗R[s,r0]
X

L(v)). But dimL(v) Iv 6 1 for all v ∈ X [s,r0] since Iv is a quotient of something free

of rank one over X [s,r0]. Since X is reduced, so is X [s,r0] and we just showed that v 7→ dimL(v) Iv
is constant on the relative annulus X [s,r0]. Thus, I must be flat over X [s,r0] by Nakayama’s lemma
again. In particular, R[s,r0]

X → I is an isomorphism, as was to be shown.
Let us now prove part (b). We note that the proof of part (a) did not use that f was

(ϕ,ΓK)-equivariant. Consider Cr0 = coker(Rr0X
fr0−→ Qr0). By Corollary 2.4, Cr0 is a generalized

(ϕ,ΓK)-module. If u ∈ X then Cr0u [1/t] is free over Rr0L(u)[1/t] by Lemma 2.13, so it makes sense
to consider the function rank(u) := rankRr0

L(u)
[1/t](C

r0
u [1/t]). Moreover, if we choose any 0 < s < r0

then we also have5

rank(u) = rankR[s,r0]

L(u)
[1/t]

C [s,r0]
u [1/t]. (7)

Consider such a choice of s made now.
Since rankRr0

L(u)
[1/t]Q

r0
u [1/t] =: q is constant on X, we know that rank(u) is either q or q− 1.

Since f r0x0 is injective, so is f r0x0 [1/t] and thus rank(x0) = q − 1 is the minimal possible value.
Since R[s,r0]

X is affinoid, the expression (7) and Proposition A.4(a) together imply that we may
replace X by an affinoid subdomain containing x0 so that rank(u) = q−1 for all u ∈ X. But that
clearly is equivalent to ker f r0u [1/t] = (0) for all u ∈ X. Since f r0u : Rr0L(u)→ Qr0u has source RL(u),
Proposition 2.9 and the fact that f r0u [1/t] is injective for all u ∈ X implies that ker f r0u = (0) for
all u ∈ X (and thus fu is injective also). 2

5 It is important here that Cr0 is finitely presented, so that C
[s,r0]
u = Cr0u ⊗Rr0

L(u)
R[s,r0]

L(u) uses the usual tensor

product.
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5.2 Killing torsion
Note that Theorem 5.3 possibly introduces torsion (ϕ,ΓK)-modules into the picture. Thus, its
utility rests on being able to kill torsion in certain pointwise triangulated families. This is achieved
in Corollary 5.8. First we need preparation. The following is an application of Nakayama’s lemma
in the appendix.

Lemma 5.5. Let τ ∈ ΣK . Suppose that Q is a generalized (ϕ,ΓK)-module such that for each
x ∈ X, Qx/tτ is finite free over RL(x)/tτ . Suppose that x0 ∈ X(Qp) and Z ⊂ X(Qp) is a set of
points accumulating at x0 and rankRx0/tτ Qx0/tτ = rankRz/tτ Qz/tτ for each z ∈ Z. Then there
exists an affinoid subdomain x0 ∈ U ⊂ X such that u 7→ rankRL(u)/tτ Qu/tτ is constant on U .

Proof. First, if necessary, replace X by an affinoid subdomain x0 ∈ U ⊂ X so that Z is Zariski-
dense in U . Then, we find an r0 so that Q arises from a (ϕ,ΓK)-module Qr0 over Xr0 . Since
Qu/tτ is finite free over RL(u)/tτ for each u ∈ X, the same is true for Qr0u /tτ over Rr0L(u)/tτ .

(Since the Frobenius Rr0L(u) → R
r0/p
L(u) is faithfully flat and Qr0 is a generalized (ϕ,ΓK)-module,

it is enough to check Qru/tτ is finite free over RrL(u)/tτ for some 0 < r 6 r0 (possibly depending
on u); this follows from knowing Qu/tτ is finite free over RL(u)/tτ and Qru/t is finitely presented
over RrL(u)/t for each r; compare with [KPX14, Lemma 2.1.16].)

Fix any 0 < s < r0. Then

rankRr0
L(u)

/tτ
Qr0u /tτ = rankR[s,r0]

L(u)
/tτ

Q[s,r0]
u /tτ (8)

for each u ∈ X. The ring R[s,r0]/t is reduced since t is well known to be a uniformizer at the
at the points of the form ζ − 1 ∈ A1[s, r0] where ζ is a p-power root of unity. Thus, so is the
factor ring R[s,r0]/tτ . In particular, R[s,r0]

X /tτ = R[s,r0]/tτ ⊗̂Qp A is the completed tensor product
of reduced affinoid Qp-algebras. It follows from Proposition A.4(b) that the right-hand side of (8)
has a minimum achieved on the Zariski-dense subset Z ⊂X. Since that minimum is achieved also
at x0, by assumption, Proposition A.4(a) allows us to find an affinoid subdomain x0 ∈ U ⊂ X on
which u 7→ rankRr0

L(u)
/tτ

Qr0u /tτ is constant. 2

Lemma 5.6. Let τ ∈ ΣK . Suppose thatQ is a nearly flat generalized (ϕ,ΓK)-module, x0 ∈X(Qp)

and Z ⊂ X(Qp) is a set of points accumulating at x0 such that:

(a) there exists non-negative integers s, r such that for all u ∈ X(Qp), Qu is triangulated by a
standard triangulation with non-zero τ -torsion exponents (mi,τ (u))16i6s and free parameter
of length r;

(b) z 7→ minsi=1mi,τ (z) is a constant m on Z; and

(c) m 6 minsi=1mi,τ (x0) as well.

Then there exists an open affinoid x0 ∈ U ⊂ X such that (Q/tmτ )|U is flat over RU/tmτ .

Proof. Let us begin by elucidating the first assumption. Since tτ and tσ are maximally coprime
if τ 6= σ, the first assumption implies that

Qu '
( s⊕
i=1

RL(u)/t
mi,τ (u)
τ

)
⊕R⊕rL(u) ⊕ Su

as an RL(u)-module, where Su[tτ ] = Su/tτ = (0) and each mi,τ (u) is non-zero.
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Claim. For each 1 6 j 6 m we may replace X by an affinoid neighborhood x0 ∈ U ⊂ X such
that Qu/t

j
τ is free of rank r + s over RL(u)/t

j
τ .

The proof will be given by induction in the next paragraph. Assuming the claim for the
moment, let us finish the lemma. Fix 1 6 j 6 m. By the claim we may assume that Qu/t

j
τ is

free over RL(u)/t
j
τ with rank independent of u. We want to show that this implies Q/tjτ is flat

over RX/tjτ . This will follow from Lemma 2.2 and [KPX14, Lemma 2.1.8(2)]. Indeed, we may
first spread out Q to a finitely presented module Qr0 on a half-open annulus Xr0 . Having done
that, Lemma 2.2 shows that it suffices to check that Q[s,r0]/tjτ is finite flat over R[s,r0]

X /tjτ for each
0 < s < r0. To check that, we observe thatR[s,r0]

X /tjτ is the completed tensor product of an affinoid
algebra R[s,r0]/tjτ with a reduced affinoid algebra A (where X = Sp(A)). In particular, [KPX14,
Lemma 2.1.8(2)] (which only requires one of the tensor-ands to be reduced) and the constancy
u 7→ rankR[s,r0]

L(u)
/tjτ

Q
[s,r0]
u /tjτ (our assumption in the claim) implies that Q[s,r0]/tjτ is finite flat over

R[s,r0]
X /tjτ .

Proof of claim. We now prove the claim by induction on 1 6 j 6 m starting with j = 1. Since
mi,τ (u) > 1 for all i and u, we see visibly that Qu/tτ is free over RL(u)/tτ of rank r + s for each
u ∈ X. Let 1 6 j < m and assume Qu/t

j
τ is free over RL(u)/t

j
τ for all u ∈ X. If we show that we

may shrink X so that j < mi,τ (u) for each i and u ∈ X, then the same freeness will be true for
j + 1 and we will be done.

First, Q/tjτ is flat over RX/tjτ by induction and the proof in the paragraph following the
claim. Since RX/tjτ is flat over X, see [KPX14, Corollary 2.1.5], we get that Q/tjτ is flat over X.
Second, Q is nearly flat over X and thus Proposition 4.3 implies that the tjτ -torsion satisfies base
change: for each u ∈ X(Qp),

Q[tjτ ]u = Qu[tjτ ] '
s⊕
i=1

t
max(0,mi,τ (u)−j)
τ RL(u)/t

mi,τ (u).

If we define Q′ := Q/Q[tjτ ], then Q′ is a generalized (ϕ,ΓK)-module over X and we see

Q′u '
( s⊕
i=1

RL(u)/t
max(0,mi(u)−j)
τ

)
⊕R⊕rL(u) ⊕ Su (9)

as a RL(u)-module. Note immediately that Q′u/tτ is free over RL(u)/tτ for any u. Now specialize
to u = x0 or u ∈ Z. From the assumptions (b) and (c) we have that Q′u/tτ has rank r + s at
u = x0 and at u ∈ Z. By Lemma 5.5, we may replace X by an affinoid subdomain so that Q′u/tτ
has precisely rank r + s everywhere on X. The formula (9) for the fiber Q′u easily implies that
mi(u)− j > 0, which is what we wanted to show. 2

With the inductive step complete, the proof is finished. 2

Recall we defined the τ -torsion length `τ (Q) of generalized (ϕ,ΓK)-modules in § 3.3. If we
know that Q has a standard triangulation Q•, then its τ -torsion length is the number terms in
the associated graded with non-zero τ -torsion exponent.

Proposition 5.7. Suppose that Q is a nearly flat pointwise triangulated family with torsion
centered at x0 ∈ X(Qp) and non-critical points Xnc. If τ ∈ ΣK such that `τ (Qx0) = `τ (Qy) at
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one (and, hence, all) y ∈ Xnc, then there exists an affinoid neighborhood x0 ∈ U ⊂ X such that

Q[t
wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ]x ' Qx[t

wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ] for all x ∈ U(Qp) and Q|U [t

wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ]

is a nearly flat generalized (ϕ,ΓK)-module over U .

Proof. We are going to apply Lemma 5.6. Note that Qx/tτ is free over RL(x)/tτ for all x ∈
X(Qp). Moreover, the rank at x = x0 agrees with the rank over the Zariski-dense set Xnc.
By axiom (TF3), the free parameters of the family Q have constant length d − i(x0) on all of
X. Since rankRL(x)/tτ Qx/tτ = `τ (Qx) + d − i(x0), Lemma 5.5 implies that we may shrink X
and assume that the τ -torsion lengths are also constant on the entire family. In particular, the
first hypothesis of Lemma 5.6 is verified. By axiom (TF5), the minimal torsion exponent at
y ∈ Xnc is given by wtτ (δ2,x0) − wtτ (δ1,x0), independent of y. Thus the second hypothesis of
Lemma 5.6 is verified. On the other hand, by axiom (TF1), wtτ (δ2,x0) − wtτ (δ1,x0) is also the
smallest possible value for elements in the set {sj,τ−wtτ (δ1,x0) : 2 6 j 6 d}, which are the possible
non-zero τ -torsion exponents of the standard triangulation on Qx0 . Thus, the third hypothesis
of Lemma 5.6 is satisfied. We conclude by Lemma 5.6 that Q|U/twtτ (δ2,x0 )−wtτ (δ1,x0 )

τ is flat over
RU/twtτ (δ2,x0 )−wtτ (δ1,x0 )

τ for some affinoid neighborhood U of x0. Replacing X by U we are done
by Proposition 4.3. 2

Corollary 5.8. Suppose Q is a nearly flat pointwise triangulated family with torsion centered
at x0 ∈ X(Qp), non-critical points Xnc and for each τ ∈ ΣK , we have `τ (Qx0) = `τ (Qy) for one
(and hence all) points y ∈ Xnc. Then we have the following.

(a) For each τ there exists a unique 1 6 jτ 6 i(x0) such that sjτ ,τ = k1,τ .

(b) There exists an affinoid neighborhood x0 ∈ U ⊂ X such that the quotient

Q′ := Q|U/Q|U
[∏
τ

t
wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ

]
is a nearly flat pointwise and triangulated family of (ϕ,ΓK)-modules over U with torsion centered
at x0 and modified data:

– torsion weights (sj,τ )j 6=jτ ;

– parameter (δ2, . . . , δd);

– Xnc replaced by U ∩Xnc.

In particular, the free length of Q′ is the same as the free length of Q.

Proof. The fact that the jτ exists is clear since the τ -torsion lengths are constant on Xnc and
concur with the lengths at x0. Choose, by Proposition 5.7, an affinoid neighborhood x0 ∈ U ⊂
X over which each torsion Q|U [t

wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ] satisfies base change and is a nearly flat

generalized (ϕ,ΓK)-module over U . Since the tτ are maximally coprime within R, the torsion
Q|U [

∏
τ t

wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ ] is also a nearly flat generalized (ϕ,ΓK)-module and satisfies base

change over U . Let Q′ be as in the statement of part (b). Then we see that Q′ is nearly flat over
U , proving the first half of part (b). If x ∈ U , then the fiber of Q′ at x is computed as

Q′x = coker

(
Qx

[∏
τ

t
wtτ (δ2,x0 )−wtτ (δ1,x0 )
τ

]
↪→ Qx

)
.

The image, by definition, lands in the torsion part of Qx and, hence, can only effect the torsion
exponents of the standard triangulation on Q′x. Thus the rest of part (b) follows easily follows
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from the observation that

coker(ts−k2,τRL/ts−k1,τRL→ RL/ts−k1,τ )

has torsion exponent s− k2,τ for any s > k2,τ > k1,τ . 2

6. p-adic variation in refined families

We are now ready to state and prove the main theorem of this article. The notion of refined
families given below is inspired by [BC09, ch. 4] (see also [Liu15, § 5]). They arise naturally as
arithmetic families of (ϕ,ΓK)-modules over rigid spaces, for example eigenvarieties.

6.1 Refined families
Let X = Sp(A) be a reduced L-affinoid space.

Definition 6.1. A refined family of (ϕ,ΓK)-modules of rank d is:

– a (ϕ,ΓK)-module D of rank d over X;
– an ordered tuple (δ1, . . . , δd) : K×→ A× of continuous characters; and
– a Zariski-dense subset Xcl ⊂ X(Qp);

such that the following axioms hold.
(RF1) For each x ∈ X(Qp) and τ ∈ ΣK ,

HTτ (Dx) = {wtτ (δ1,x), . . . ,wtτ (δd,x)}.

We now label the Hodge–Tate–Sen weights by κi,τ (x) := wtτ (δi,x).
(RF2) For each x ∈ Xcl and i = 1, . . . , d, the character δi,x is crystalline.
(RF3) If x ∈ Xcl, then Dx is crystalline, the Hodge–Tate weights satisfy

κ1,τ (x) < · · · < κd,τ (x),

for each τ ∈ ΣK , and the ϕfK eigenvalues {φ1(x), . . . , φd(x)} all live in L(x)×, are distinct, and
given by

φi(x) = δi,x($K)
∏
τ∈ΣK

τ($K)κi,τ (x)

for some (any) uniformizer $K ∈ K×.
(RF4) By axiom (RF3) and Proposition 3.3, every point x ∈ Xcl has a unique triangulation Px,•
corresponding to the ordering (φ1(x), . . . , φn(x)) of (distinct) crystalline eigenvalues. Let

Xnc
cl := {x ∈ Xcl : Px,• is a non-critical triangulation}.

Then, for all C > 0, the set

Xnc
cl,C :=

{
x ∈ Xnc

cl : C <
∑
τ∈ΣK

κi+1,τ (x)− κi,τ (x) for i = 1, . . . , n− 1

}
is Zariski-dense in X and accumulates at every point in Xcl.
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We will often abuse language and call D the refined family, with the ordered parameter
(δi)i=1,...,d and the subset Xcl understood. The subscript ‘cl’ is meant to mean classical, but note
that there are slight restrictions. Indeed, a refined family for us has a distinctness hypothesis on
not only the Hodge–Tate weights over Xcl but also the crystalline eigenvalues. In applications we
will work with a slightly stronger condition.

Definition 6.2. Suppose that D is a refined family of (ϕ,ΓK)-modules over X. We say that
x ∈ Xcl is very ϕ-regular if:

(a) φi(x) 6= pfKφj(x) for each 1 6 i < j 6 d; and
(b) φ1(x) · · ·φi(x) is a simple eigenvalue of ϕfK acting on Dcris(∧iDx) for each 1 6 i 6 d.

The set of all very ϕ-regular points is denoted by Xϕreg

cl .

Just as axiom (RF4) says that classical points are well-approximated by points whose Hodge–
Tate weights are extremely regular (i.e. far apart), the following proposition shows that we can,
moreover, make such approximations by very ϕ-regular points as well. We let Xnc,ϕreg

cl,C = Xnc
cl,C ∩

X
ϕreg

cl .

Proposition 6.3. If C > 0, then X
nc,ϕreg

cl,C accumulates each every point in Xcl.

Proof. Let x ∈ Xcl. Since each character δi : K× → A× is continuous we may choose a
neighborhood U of x so that the slopes vp(δi,u($K)) =: νi are constant on U for some (and,
hence, any) uniformizer $K . Let

C ′ = max{C, 1 + eK(νi − νj) : 1 6 i, j 6 d}.

Since C 6 C ′, Xnc,ϕreg

cl,C ⊃ X
nc,ϕreg

cl,C′ . Thus, it suffices to show, by axiom (RF4), that Xnc
cl,C′ ∩ U ⊂

X
nc,ϕreg

cl,C′ . Let u ∈ Xnc
cl,C′ ∩ U and we will show u is very ϕ-regular.

• Suppose i < j and φi(u) = pfKφj(u). Since φi(u) = δi,u($K)
∏
τ τ($K)κi,τ (u) we can take

p-adic valuations and get, since u ∈ U , that∑
τ

κj,τ (u)− κi,τ (u) = eK(νi − νj − fK) < C ′.

Thus, u /∈ Xnc
cl,C′ , a contradiction.

• If φ1(u) · · ·φi(u) is not a simple eigenvalue on Dcris(∧iDu), then one may construct a list of
pairs of integers i1 < j1, . . . , is < js such that φi1(u) · · ·φis(u) = φj1(u) · · ·φjs(u) for some
s > 1. Once again, taking slopes we get

sC ′ <

s∑
b=1

∑
τ∈ΣK

κjb,τ (u)− κib,τ (u) =

s∑
b=1

(eK(νib − νjb)) 6 sC ′,

a contradiction.
This concludes the proof. 2

In the remainder of this subsection we show that point-by-point, a refined family of (ϕ,ΓK)-
modules may be triangulated (in an essentially unique way depending on the ordered parameter
(δ1, . . . , δn)). In particular, we show that a refined family is naturally a pointwise triangulated
family (with no torsion). We begin by dealing with the axiom (TF2).

163

https://doi.org/10.1112/S0010437X16007831 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007831


J. Bergdall

Lemma 6.4. If x ∈ Xϕreg

cl , then there exists an open affinoid neighborhood x ∈ U ⊂ X such that
δ−1
i,u δj,u is generic up to homothety for all u ∈ U(Qp) and i < j.

Proof. Let (rτ )τ be any tuple of integers and set η = δ−1
i δj

∏
τ z
−rτ
τ . We have to show ηu is generic

for u near x. Choose a uniformizer $K of K×. Then by axiom (RF3),

ηx = unr$K (φj(x)φi(x)−1)
∏
τ∈ΣK

z
κi,τ (x)−κj,τ (x)−rτ
τ .

If ηx is not generic, then a comparison of weights shows that

unr$K (φj(x)φi(x)−1) ∈ {1, |NK/Qp
($K)|}.

However, since x is very ϕ-regular and i < j this is explicitly ruled out. Thus, ηx is generic.
To conclude over an affinoid neighborhood we make use of cohomology and base change

arguments. Consider the functions diη(u) := dimL(u)H
i(ηu). Since H2(η) satisfies base change,

u 7→ d2
η(u) is upper semi-continuous on X. Since d2

η(u) vanishes at u = x, as we showed in the
previous paragraph, we may shrink X and assume that H2(η) = (0). By Proposition 4.6, H1(η)
satisfies base change and u 7→ d1

η(u) is upper semi-continuous. But d0
η(u) has a local minimum

at u = x and thus so does d1
η(u) = 1 + d0

η(u). Thus, after shrinking X further (so that d1
η(u) ≡ 1)

we may assume that H1(η) is flat, and H0(η) satisfies base change. Finally, this implies that
H0(η) = (0). 2

As noted in axiom (RF4), axiom (RF3) and Proposition 3.3 imply that for each x0 ∈Xcl there
exists a triangulation Px0,• of Dx0 whose parameter (δ̃1,x0 , . . . , δ̃d,x0) is homothetic to (δ1,x0 , . . . ,
δd,x0). Moreover, if x0 ∈Xϕreg

cl , then Lemma 6.4 implies that Px0,• is the unique such triangulation
of Dx0 . Thus, we may unambiguously refer to the parameter (δ̃1,x0 , . . . , δ̃d,x0) for x0 ∈ Xϕreg

cl .

Proposition 6.5. If x0 ∈ Xϕreg

cl , then there exists an open affinoid neighborhood x0 ∈ U ⊂ X
such that D|U is a pointwise triangulated family with torsion center x0 (but without actual
torsion) and given data:

– torsion weights (wtτ (δ̃1,x0), . . . ,wtτ (δ̃d,x0))τ ;

– parameter (δ1, . . . , δd);

– non-critical points X
nc,ϕreg

cl ; and

– center x0.

Proof. We have been given the data in the statement of the proposition and so our task is to verify
axioms (TF1)–(TF6). Axiom (TF1) is clear by axiom (RF3) and the definition of the parameter
(δ̃1,x0 , . . . , δ̃d,x0). Next, we may shrink X so that if i < j then δ−1

i δj is everywhere generic up to
homothety by Lemma 6.4, giving axiom (TF2).

Axioms (TF4)–(TF6) are easily verified by the remarks preceding the theorem, and axiom
(RF4). Thus, it remains to check axiom (TF3), i.e. that each point x is triangulated by a
triangulation whose parameter is homothetic to (δ1,x, . . . , δd,x). But if u ∈ Xnc

cl then this is true
at u and, moreover, by the definition of non-critical we have that Du has ordered parameter
(δ1,u, . . . , δd,u) on the nose. As we have already verified, there is a unique triangulation of Du

whose parameter is homothetic to (δ1,u, . . . , δd,u) up to homothety. Thus, the (ϕ,ΓK)-module D
over X is densely pointwise strictly trianguline with ordered parameter (δ1, . . . , δd) in the sense
of [KPX14, Definition 6.3.2]. The existence of the triangulation demanded by axiom (TF3) is
deduced from [KPX14, Theorem 6.3.13]. 2
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Continue to let D be a refined family of (ϕ,ΓK)-modules and let x ∈ X
ϕreg

cl . Using
Proposition 6.5 we assume, by shrinking X, that for all u ∈ X, the (ϕ,ΓK)-module Du has
a unique triangulation whose parameter (δ̃1,u, . . . , δ̃d,u) is homothetic to (δ1,u, . . . , δd,u).

Definition 6.6. Let u ∈ X(Qp). The canonical (with respect to the refined family D)
triangulation is the unique triangulation of Du whose parameter is homothetic to (δ1,u, . . . , δd,u).

Note that u 7→ δ̃i,u does not, in the cases of interest, glue to define a continuous character
δ̃i : K×→ A×. In fact, that will essentially only happen at points u where δ̃i,u = δi,u. The best one
can hope for is that a certain subparabolization of the canonical triangulation does analytically
vary over X.

Definition 6.7. Let x ∈ X(Qp) and Px,• = (Px,i) be the canonical triangulation. We say that
Px,i is non-critical if δ1,x · · · δi,x = δ̃1,x · · · δ̃i,x. If

Inc
x := {i : Px,i is non-critical} = {0 = i0 < i1 < i2 < · · · < is = d}

is the set of non-critical indices, then we define the maximal non-critical parabolization P nc
x,• of

Dx by

P nc
x,j : 0 ( Px,i0 ( Px,i1 ( · · · ( Px,is = Dx.

If x ∈ Xcl, then a comparison of Hodge–Tate weights implies that the previous definition
agrees with those given in § 3.2.

Suppose that x ∈ Xcl. If x is non-critical, then one knows that the τ -Hodge–Tate weights of
Px,i are {κ1,τ (x), . . . , κi,τ (x)} by Lemma 3.5 and the definition of non-critical. Thus, for general
x ∈ Xcl, Sen’s theory of Hodge–Tate weights in families [Sen88] implies that one can only hope
for Px,i to extend to an affinoid neighborhood provided HTτ (Px,i) = {κ1,τ (x), . . . , κi,τ (x)} for
each τ . That is, if we hope to spread Px,i out over a neighborhood, then we need to know a priori
that i ∈ Inc

x . Our main theorem is that the converse is true.

Theorem 6.8. If D is a refined family of (ϕ,ΓK)-modules over X and x0 ∈ Xϕreg

cl , then there
exists an affinoid neighborhood x0 ∈ U ⊂ X and a parabolization P nc of D|U such that for
each u ∈ U = Sp(B), the parabolization P nc

• ⊗B L(u) of Du is a subparabolization of P nc
u,•, with

equality if u = x0.

See the introduction for a history of this result.

Proof of Theorem 6.8. First, assume that X is sufficiently small so that the conclusion of
Proposition 6.5 holds. In particular, there is a canonical triangulation Px,• at each point x ∈ X.

The proof will happen in three steps. By Proposition 6.5, D is a pointwise triangulated
family with center x0 but without torsion. Fix the unique 1 6 n 6 d such that P nc

x0,1
= Px0,n.

We assume that n < d, or else the theorem is proven already. It suffices to construct P nc
1 over

an affinoid subdomain U as in the statement of the theorem. Indeed, granting its existence, P nc
1

is a (ϕ,ΓK)-module of rank n (since it has rank n at x0) and thus after replacing X by U we
have P nc

1 ⊗A L(x) = Px,n for all x ∈ X. But then the quotient D/P nc
1 is a refined family of

(ϕ,ΓK)-modules over X whose global parameter is (δn+1, . . . , δd). And so inductively we can
apply the construction of P nc

1 we are about to give, if necessary.
Now we focus on constructing P nc

1 . For each τ , fix the unique integer nτ such that nτ such
that κ1,τ (x0) = wtτ (δ̃nτ ,τ ). Note nτ 6 n because P nc

x0,1
= Px0,n is non-critical. Let Q0 = D and

X0 = X.
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Claim (Step 1). There exists a sequence of affinoid subdomains X = X0 ⊃ X1 ⊃ · · · ⊃ Xn and
nearly flat pointwise triangulated families Qi over Xi with finite cohomology and torsion center
x0 such that there is an exact sequence

0→
∏
τ

t
κi+1,τ (x0)−κ1,τ (x0)
τ RXi+1(δi+1)→ Qi|Xi+1 → Qi+1→ 0,

of generalized (ϕ,ΓK)-modules over Xi+1 and the invariants of Qi are given by:

– torsion weights ((wtτ (δ̃j,x0))τ )16j6d;

– parameter (δ1, . . . , δd); and

– non-critical points Xnc
i = Xi ∩Xnc

cl .

Moreover, Qi,x has free length d− i > d− n > 0.

Proof of Step 1. To prove the claim, one easily argues by induction on i using Theorem 5.3. 2

Since nτ 6 n for each τ we see from the choice of torsion weights and the definition of nτ that
Qx0,n has τ -torsion length `τ (Qx0,n) = n−1. On the other hand, if u ∈ Xnc

n then `τ (Qu,n) = n−1
as well. Thus, the τ -torsion lengths at x0 agree with the τ -torsion lengths on a set of accumulating
at x0. We will now kill the torsion. Let Q′0 = Qn and X ′0 = Xn as in step 1.

Claim (Step 2). There exists a nested sequence of affinoid subdomains Xn = X ′1 ⊃ · · · ⊃ X ′n
and nearly flat pointwise triangulated families Q′i over X ′i with torsion center x0 such that, for
2 6 i < n, there is a short exact sequence

0→ Q′i|X′i+1

[∏
τ

t
κi+1,τ (x0)−κi,τ (x0)
τ

]
→ Q′i|X′i+1

→ Q′i+1→ 0

of generalized (ϕ,ΓK)-modules over X ′i+1 and we have the following.

– The invariants of Q′i are:

∗ torsion weights ((wtτ (δ̃j,x0))τ )
16j6d : wtτ (δ̃j,x0 )>κi,τ (x0)

;

∗ parameter (δi, . . . , δd); and

∗ non-critical points (X ′i)
nc = Xnc

n ∩X ′i.
– We have that Q′i has free length d− n, independent of i; and

– For each τ and u ∈ (X ′i)
nc,ϕreg

cl , the τ -torsion lengths `τ (x0) and `τ (u) are equal (both) to
n− i.

Proof of Step 2. The claimed properties for Q′1 = Qn follow from the conclusion of step 1. If
1 < i 6 n, then the existence of Q′i over X

′
i, with the given invariants, is proved by Corollary 5.8.

The τ -torsion lengths at u ∈ (X ′i)
nc,ϕreg

cl are easily seen to be n − i, so to finish this step we
just need to compute the τ -torsion length at x0. To do that we look at the non-zero τ -torsion
exponents in the standard triangulation of Q′i. The torsion exponents, are by definition, given by

{wtτ (δ̃j,x0)− wtτ (δi,x0) : 1 6 j 6 n and wtτ (δ̃j,x0) > wtτ (δi,x0)}. (10)

Since Px0,n is a non-critical step in the canonical triangulation at x0, we see that the set of weights
{wtτ (δ̃1,x0), . . . ,wtτ (δ̃n,x0)} are the lowest n weights and so we see immediately that there are
`τ (x0) = n− i non-zero elements in the set (10). 2
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Claim (Step 3). Finally we set Cn = Q′n and U = X ′n = Sp(B) as in step 2. We claim that
we can shrink U so that P nc

1 := ker(D � Cn) is a (ϕ,ΓK)-module over U and for all u ∈ U ,
P nc

1 ⊗B L(u) = Pu,n.

Proof of Step 3. Consider the pointwise triangulated family Cn = Q′n over U = X ′n. By step 2,
Cn is torsion free at x = x0 or x = u ∈ Unc. Thus, after shrinking U , applying Lemma 5.5, we can
assume that each fiber Cn,u is finite free over RL(u) of rank d− n, independent of u. Thus, Cn is
a (ϕ,ΓK)-module over U (spread Cn out to an open annulus and use [KPX14, Corollary 2.1.7]).
Defining P nc

1 as the kernel of the natural surjection D � Cn (note that all of the constructions
in steps 1 and 2 were quotients), we get a (ϕ,ΓK)-module and thus our candidate P nc

1 .
It remains to compute P nc

1 ⊗B L(u) as a (ϕ,ΓK)-submodule of Du for each u. But we have
assumed throughout that X was sufficiently small so that for all x ∈ X there was a unique
triangulation with parameter (δ1,x, . . . , δd,x) up to homothety. So, in order to check P nc

1 ⊗BL(u) =
Pu,n it is enough to show that Cn,u can be triangulated by a parameter homothetic to (δn+1,u,
. . . , δd,u) for all u ∈ U . But that latter claim follows from applying the information from Step 2
to Cn = Q′n and using axiom (TF2). 2

This completes the proof. 2

7. Ramification of weights

Let D be a refined family of (ϕ,ΓK)-modules over a reduced L-affinoid space X = Sp(A) with
parameter (δ1, . . . , δd) and classical points Xcl. For each i = 1, . . . , d and τ ∈ ΣK , we consider
the analytic functions κi,τ (x) := wtτ (δi,x) ∈ Γ(X,O). The goal of this section is to study the
infinitesimal differences κi,τ − κj,τ at classical points.

Suppose that x0 ∈ Xcl, write Px0,• for its triangulation defined by axiom (RF3) and (δ̃1,x0 ,

. . . , δ̃d,x0) for the corresponding parameter. For each τ , the set {wtτ (δ̃1,x0), . . . ,wtτ (δ̃d,x0)} must
be the same as the set of integers {κ1,τ (x0), . . . , κd,τ (x0)}. In particular, for each τ there is a
permutation πx0,τ on d letters such that wtτ (δ̃πx0,τ (i),x0) = κi,τ (x0). To connect this with the
non-critical jumps, the τ -non-critical indices of Px0,• are exactly the integers i such that πx0,τ
restricts to a permutation on the set {1, . . . , i}. In particular, πx0,τ induces a permutation on
the set of weights appearing in each non-critical step P nc

x0,j
and thus permutes the set of weights

appearing in each quotient P nc
x0,j

/P nc
x0,j−1 as well.

If B is a ring, let B[ε] = B[T ]/(T 2) be the ring of dual numbers. If x0 ∈X then Orig
X,x0

denotes
its local ring (in the rigid topology). Since Orig

X,x0
is Henselian, it contains a section of its residue

field. We write Tx0X = HomL(x0)(Orig
X,x0

, L(x0)[ε]) for the Zariski tangent space at x0. If f ∈ A
is a function on X and v ∈ Tx0X is a tangent vector we write ∇v(f) ∈ L(x0) for the directional
derivative of f with respect to v. Explicitly it is given by v(f) = f(x0) +∇v(f)ε.

Theorem 7.1. If x0 ∈ Xϕreg

cl and v ∈ Tx0X, then ∇v(κπx0,τ (i),τ − κi,τ ) = 0 for each 1 6 i 6 d
and τ ∈ ΣK .

As mentioned in the introduction, the theorem was discovered independently by the author
and Breuil. A proof, similar to the one we are about to give, is given in [Bre15, Lemme 9.6 and
Théorème 9.7]. We’ve taken an extra effort to state a more precise result, dealing with all of the
weights and over a finite extension K/Qp.

167

https://doi.org/10.1112/S0010437X16007831 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007831


J. Bergdall

Proof of Theorem 7.1. Choose a uniformizer $K ∈ K× and write, for i = 1, . . . , d, the character
δi = δwt

i δnr
i as in § 2.3. Furthermore, write ηi = δwt

1 · · · δwt
i and Di := (∧iD)(η−1

i ). Then Di

is a (ϕ,ΓK)-module over X and it has distinct lowest Hodge–Tate weight 0 over Xcl. Let
Φ = δnr

1 ($K) · · · δnr
i ($K) ∈ Γ(X,OX)×. Then by [Liu15, Theorem 4.13] the (OX ⊗Qp F )-module

Dcris(Di)
ϕfK=Φ is locally free of rank one and satisfies base change.

Now let v ∈ Tx0X. Write D̃i,v := ∇v(Di) for the deformation Di ⊗OX,x0 ,v L(x0)[ε] of Di,x0

in the tangent direction of v. By the result just mentioned, Dcris(D̃i,v)
ϕfK=Φ is free of rank one

over (L(x0) ⊗Qp F )[ε]. Let E = ker(D̃i,v → Di,x0 → Di,x0/η
−1
i,x0

detPx0,i). By the lemma below
we have that E is a crystalline (ϕ,ΓK)-module. In particular, it is Hodge–Tate.

But what are the Hodge–Tate weights of E? The τ -Hodge–Tate weights of Di,x0 are given by

HTτ (Di,x0) =

{∑
j∈J

κj,τ (x0)−
i∑

j=1

κj,τ (x0) : J ⊂ {1, . . . , d} and #J = i

}
.

And, the τ -Hodge–Tate–Sen weights of D̃i,v = ∧i(D̃1,v) (which are elements of L(x)[ε]) are then
given by{(∑

j∈J
κj,τ (x0) +∇v(κj,τ )ε

)
−
( i∑
j=1

κj,τ (x0) +∇v(κj,τ )ε

)
: J ⊂ {1, . . . , d} and #J = i

}
.

We can reinterpret this by viewing D̃i,v as a (ϕ,ΓK)-module over RL(x0) of twice the rank. We
see that the Sen operator ΘSen acting on DSen(D̃i,v) has a matrix built out of the blocks of the
form

MJ :=


∑
j∈J

κj,τ (x0)−
i∑

j=1

κj,τ (x0)
∑
j∈J
∇v(κj,τ )−

i∑
j=1

∇v(κj,τ )

0
∑
j∈J

κj,τ (x0)−
i∑

j=1

κj,τ (x0)

 ∈ Mat2×2(L(x0)).

Note that detPx0,i has Hodge–Tate weight κπx0,τ (1)(x0) + · · ·+ κπx0,τ (i)(x0) and so η−1
i,x0

detPx0,i

has Hodge–Tate weight
∑i

j=1 κπx0,τ (j),τ (x0)− κj,τ (x0). By the short exact sequence

0→ E → D̃i,v → Di,v/η
−1
i,x0

detPx0,i→ 0

of (ϕ,ΓK)-modules over RL(x0), the only 2× 2 block of ΘSen|DSen(D̃i,v)
appearing in ΘSen|DSen(E)

is the block 
i∑

j=1

κπx0,τ (j),τ (x0)− κj,τ (x0)
i∑

j=1

∇v(κπx0,τ (j),τ − κj,τ )

0
i∑

j=1

κπx0,τ (j),τ (x0)− κj,τ (x0)

 ,

corresponding to J = {πx0,τ (1), . . . , πx0,τ (i)}. Finally since E is crystalline, it is Hodge–Tate and
thus ΘSen acts semi-simply. In particular, we conclude that

i∑
j=1

∇v(κπx0,τ (j),τ − κj,τ ) = 0.

Since this is for any i, we conclude the theorem by induction on i. 2

It remains to give the computation left unresolved in the previous proof.
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Lemma 7.2. Suppose that D is a crystalline (ϕ,ΓK)-module over RL, φ ∈ L× and P1 ⊂ D

is a rank-one saturated submodule such that Dcris(D)ϕ
fK=φ = Dcris(P1)ϕ

fK=φ is free of rank

one over L ⊗Qp F . If D̃ ∈ Ext1(D,D) is an extension such that Dcris(D̃)ϕ
fK=φ̃ is free of

rank one over (L⊗Qp F )[ε] for some φ̃ ≡ φ mod ε, then the image of D̃ under the natural map

Ext1(D,D)→ Ext1(P1, D) is a crystalline (ϕ,ΓK)-module over RL.

Note that the image of D̃ is given by the (ϕ,ΓK)-module E = ker(D̃ → D/P1). Thus, the
lemma actually fills the gap left in the previous proof.

Proof. If T is a B-linear operator on a B-module M and b ∈ B, then we let M (T=b) denote the
submodule of elementsm ∈M such that (T−b)nm = 0 for some n > 0. The functorM 7→M (T=b)

is exact.
Since ϕfK is linear, φ is a simple eigenvalue for ϕfK and Dcris(−) is left exact, we see that

Dcris(E)(ϕfK=φ) = Dcris(D̃)(ϕfK=φ). In particular, since Dcris(D̃)ϕ
fK=φ̃ = Dcris(D̃)(ϕfK=φ) we see

that dimLDcris(E)(ϕfK=φ) > 2 dimQp F . Now consider the exact sequence

0→ Dcris(D)(ϕfK=φ)
→ Dcris(E)(ϕfK=φ)

→ Dcris(P1)(ϕfK=φ).

By counting dimensions we see the final map is surjective. Since P1 is rank one,Dcris(P1)(ϕfK=φ) =

Dcris(P1). In particular, Dcris(E)→ Dcris(P1)→ 0 is exact as well, meaning that E is crystalline
(again by dimension counts). 2

Remark. One can interpret Theorem 7.1, and Lemma 7.2, as making a statement about a certain
deformation ring of (ϕ,ΓK)-modules. Indeed, let XDx0 denote the functor of formal deformations
of Dx0 . Let Rx0,• = (φ1, . . . , φd) be the refinement corresponding to the triangulation Px0,•
by Proposition 3.3. One may define a relatively representable subfunctor XDx0 ⊃ XhDx0 ,Rx0,•
consisting of deformations D̃ whose successive exterior powers ∧iD̃ contain a free rank-one
submodule on which ϕfK acts by φ1 . . . φi. Neither functor X? is in general representable but both
satisfy the natural Mayer–Vietoris condition on L(x0)[ε]-points in order to have reasonable Zariski
tangent spaces X?(L(x0)[ε]) (see [Kis03, Tan11]). In that case XDx0 (L(x0)[ε]) ' Ext1(Dx0 , Dx0).
What we just showed is that the obvious differences of Hodge–Tate weights are constant over the
tangent space to XhDx0 ,Rx0,•

.

Remark. One might also ask whether Theorem 7.1 provides a tight bound for the rank of the
weight map in a refined family. The answer is no. For example, let K = Qp and consider any
refined family D of rank two with global parameter (δ1, δ2). Then one can take its symmetric
square Sym2D equipped with the structure of a refined family of rank three, naturally having
global parameter (δ2

1 , δ1δ2, δ
2
2). If x0 defines a critically triangulated classical point for D, then its

critical type is the permutation (12), and x0 is also critically triangulated in the family Sym2D

with critical type (13). Theorem 7.1 only implies that the difference of the first weight (i.e. 2κ1)
and the third weight (i.e. 2κ2) ramifies. However, the middle weight is κ1+κ2 and so the difference
between the first two weights is 2κ1 − (κ1 + κ2) = κ1 − κ2. This also ramifies in the family by
Theorem 7.1 applied to D itself, but is not detected by Theorem 7.1 applied to just Sym2D.
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Appendix. Nakayama’s lemma

This brief appendix is to create a reference for a relative form of Nakayama’s lemma we used in
the main text. Throughout we let K be a non-Archimedean field of characteristic zero which is
complete with respect to a non-trivial absolute value. If X and Y are K-rigid spaces we denote
by prX : X ×K Y → X the projection map, which we note is obtained by base-changing the
structure morphism Y → Sp(K). We begin with two lemmas on products of K-affinoid spaces.

Lemma A.1. Suppose that X and Y are K-affinoid spaces.

(a) If U ⊂ X ×K Y is an affinoid open subdomain, then the image prX(U) ⊂ X is a finite
union of affinoid subdomains of X.

(b) If U ⊂ X ×K Y is an admissible open, then the image prX(U) ⊂ X is a union of affinoid
open subdomains of X.

Proof. We begin with part (a). The structure morphism Y → Sp(K) is flat and thus prX is
also flat. Let U ⊂ X ×K Y be an affinoid open subdomain. The inclusion U ⊂ X ×K Y is also
flat and thus the composition U → X ×K Y → X is a flat map between K-affinoid spaces.
Part (a) then follows from [BL93, Corollary 5.11] because K-affinoids are quasi-compact and
quasi-separated rigid spaces. To prove part (b) we write U =

⋃
Ui where each Ui is an affinoid

open subdomain. By part (a) the image prX(Ui) is covered by affinoid subdomains and thus so
is prX(U) =

⋃
prX(Ui). 2

Remark. We are unable to determine whether prX should be open in the sense that prX(U) is
admissible open for each admissible open U ⊂ X ×K Y . This contrasts with the algebraic analog
of Lemma A.1, where part (b) really becomes that f is ‘open’ because ‘covered by opens’ is
synonymous with ‘open’ in the Zariski topology (see [SPA15, Tag 037G]).

If X = Sp(A) is a K-affinoid space and x ∈ X we write mx for the corresponding maximal
ideal of A. We write κ(x) for the residue field A/mx. If F ∈ A and x ∈ X, then we use the
standard notation F (x) to denote the image of F in κ(x). If A and B are two K-affinoid algebras,
F ∈ A ⊗̂K B and y ∈ Sp(B), then we use Fy to denote the element Fy ∈ A⊗K κ(y) which is the
image of F under the canonical map A ⊗̂K B→ (A ⊗̂K B)/my(A ⊗̂K B) = A⊗K κ(y).

Lemma A.2. Suppose that A and B are reduced affinoid K-algebras. Then:

(a) the completed tensor product A ⊗̂K B is reduced;

(b) if F ∈ A ⊗̂K B, then F = 0 if and only if Fy = 0 for all y ∈ Sp(B).

Proof. A noetherian ring R is reduced if and only if satisfies the two properties (R0) and (S1) (see
[SPA15, Tag 031R]), and being geometrically reduced is equivalent to being reduced for affinoid
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algebras over perfect fields [Con99, Lemma 3.3.1]. In particular, since K has characteristic zero
we deduce part (a) from [Duc09, Théorème 8.1].6

To prove part (b) we let y ∈ Sp(B) and note that if w ∈ X×K Y lies above y, then we have a
natural map A⊗K κ(y)→ (A ⊗̂K B)/mw. Ranging over all y we get the following commutative
diagram.

A ⊗̂K B //

��

∏
y∈Y A⊗K κ(y)

uujjjj
jjjj

jjjj
jjj

∏
w∈X×KY (A ⊗̂K B)/mw

(A.1)

By part (a) the vertical arrow of (A.1) is injective. Thus we deduce the horizontal arrow of (A.1)
is injective as well, proving part (b). 2

Lemma A.3. If X = Sp(A) and Y = Sp(B) are reduced affinoid K-spaces and Z ⊂ X is a
Zariski-dense subset of points, then pr−1

X (Z) ⊂ X ×K Y is also Zariski-dense.

Proof. Suppose that Z ⊂ X is Zariski-dense. Let F ∈ A ⊗̂K B. We need to show that if F (z′) = 0
for all z′ ∈ pr−1

X (Z) then F = 0. It suffices by Lemma A.2(b) to show that Fy = 0 for each y ∈ Y .
Let y ∈ Y . The field κ(y) is a finite extension of K. In particular, if we fix a basis of κ(y)

over K, then for any K-vector space C we get an identification of C ⊗K κ(y) with C⊕n (where
n = dimK κ(y)) which is functorial in C (but depending on the choice of basis). Applying this to
C = A and C = κ(z) with z ∈ Z we get the following commuting diagram whose vertical arrows
are isomorphisms.

A⊗K κ(y)

∼=
��

//
∏
z∈Z κ(z)⊗K κ(y)

∼=
��

A⊕n //
∏
z∈Z κ(z)⊕n

Since Z is Zariski-dense in X, the bottom arrow is injective. Thus, to show Fy = 0 it suffices
to check that its image in κ(z) ⊗K κ(y) is zero for each z ∈ Z. But that follows easily from the
assumption that F (z′) = 0 for all z′ ∈ pr−1

X (Z). Since y was arbitrary, we are done. 2

If B is a ring and f ∈ B is non-nilpotent, then we write B[1/f ] for the localization of B
at f . If M is a B-module we write M [1/f ] = B[1/f ] ⊗B M for the localization of M . If A is
a K-affinoid algebra, M is a module over A and x ∈ X corresponds to the maximal ideal mx,
then we write Mx for M ⊗A A/mx. Note that these two operations commute in the sense that
Mx[1/f ] 'M [1/f ]x.

Now suppose that A and B are affinoid K-algebras and R = A ⊗̂K B. If M is a module over
R, then Mx[1/f ] is a module over κ(x) ⊗K B[1/f ] for each x ∈ X and f ∈ B. Indeed, one just
has to check that

Rx[1/f ] ' ((B ⊗̂K A)⊗A A/mx)⊗B B[1/f ]

' (B ⊗K κ(x))⊗B B[1/f ]

' κ(x)⊗K B[1/f ]. (A.2)

We now arrive at the subject of this appendix.

6 The reference [Duc09] is written for Berkovich spaces, but the reducedness of A ⊗̂K B can be checked with either
the rigid analytic space or its associated Berkovich space. Indeed, the completions of the analytic local rings are
the completions of the algebraic local rings in either case, and reducedness can be checked after completion by the
excellence of K-affinoid algebras (see [Ber94, § 2.2] for example).
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Proposition A.4 (Nakayama’s lemma). Suppose that X = Sp(A) and Y = Sp(B) are reduced
affinoid K-spaces and that M is a finite module over A ⊗̂K B. Let f ∈ B be non-zero and assume
that for each x ∈ X the κ(x)⊗K B[1/f ]-module Mx[1/f ] is (finite) free. Then:

(a) for each m > 0 the subset

Xm = {x ∈ X : rankκ(x)⊗KB[1/f ]Mx[1/f ] 6 m} ⊂ X

is a union of affinoid subdomains of X;

(b) if Z ⊂ X is Zariski-dense, then Xm 6= ∅ =⇒ Z ∩Xm 6= ∅; in particular, the minimum rank
of Mx[1/f ] is achieved on Z.

Proof. Let R = A ⊗̂K B and consider the (non-empty, because f is not nilpotent) affine scheme
Spec(R[1/f ]) ⊂ Spec(R). If q ∈ Spec(R) write κ(q) for its residue field (generalizing our previous
notation). Since M is finite over R, M [1/f ] is finite over R[1/f ] and so by the usual Nakayama’s
lemma (see [Mat89, Theorem 4.10]) the set

Vm = {q ∈ Spec(R[1/f ]) : dimκ(q)M [1/f ]⊗R[1/f ] κ(q) 6 m}

is Zariski-open in Spec(R[1/f ]) for each m > 0. In particular, Um := Vm ∩ Sp(R) is Zariski-open
in Sp(R) = X ×K Y . Since Zariski opens are admissible opens, Um is admissible open in Sp(R).
By Lemma A.1(b), prX(Um) is a union of affinoid subdomains and thus it suffices to show that
prX(Um) = Xm.

Write Sp(R)f for Sp(R) ∩ Spec(R[1/f ]). Since f ∈ B, the projection map Sp(R)f → X is
still surjective. Thus, if x ∈ X we may choose u ∈ Sp(R)f lying above x. Then (A.2) shows that
Rx[1/f ] ⊗κ(x)⊗KB[1/f ] κ(u) = κ(u). We are assuming Mx[1/f ] ' (Rx[1/f ])⊕nx for an integer nx
depending on x. Reducing the residue field at u, we see that

Mx[1/f ]⊗κ(x)⊗KB[1/f ] κ(u) ' κ(u)⊕nx .

On the other hand, since

Mx[1/f ]⊗κ(x)⊗KB[1/f ] κ(u) 'M [1/f ]⊗R[1/f ] κ(u)

this shows that

dimκ(u)M [1/f ]⊗R[1/f ] κ(u) = rankκ(x)⊗KB[1/f ]Mx[1/f ]

depends only on x. Now it is clear that pr(Um) ⊂ Xm. The reverse inclusion follows from the
surjectivity of Sp(R)f → X. This shows prX(Um) = Xm and we have finished the proof of
part (a).

The proof of part (b) is nearly complete as well. The only point is that if Z is Zariski-dense
then Lemma A.3 guarantees that the pre-image pr−1

X (Z) ⊂ Sp(R) is Zariski-dense as well. In
particular, since Um is Zariski-open in Sp(R), Um is non-empty if and only if pr−1

X (Z) ∩ Um is
non-empty. Part (b) follows immediately now. 2

References

Bel12 J. Bellaïche, Critical p-adic L-functions, Invent. Math. 189 (2012), 1–60.
BC09 J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque,

vol. 324 (Société Mathématique de France, 2009).

172

https://doi.org/10.1112/S0010437X16007831 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007831


Paraboline variation over p-adic families of (ϕ,Γ)-modules

Bel15 R. Bellovin, p-adic Hodge theory in rigid analytic families, Algebra Number Theory 9 (2015),
371–433.

Ber14 J. Bergdall, Ordinary modular forms and companion points on the eigencurve, J. Number Theory
134 (2014), 226–239.

Ber02 L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002),
219–284.

Ber08 L. Berger, Équations différentielles p-adiques et (φ,N)-modules filtrés, in Représentations p-
adiques de groupes p-adiques I: représentations galoisiennes et (φ,Γ)-modules, Astérisque,
vol. 319 (Société Mathématique de France, 2008), 13–38.

Ber94 V. G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Publ. Math. Inst.
Hautes Études Sci. 78 (1994), 5–161; 1993.

BGR84 S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean analysis: a systematic approach to rigid
analytic geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 261 (Springer, Berlin, 1984).

BL93 S. Bosch and W. Lütkebohmert, Formal and rigid geometry. II. Flattening techniques, Math.
Ann. 296 (1993), 403–429.

Bre15 C. Breuil, Vers le socle localement analytique pour GLn II, Math. Ann. 361 (2015), 741–785.
Che11 G. Chenevier, On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm.

Supér. (4) 44 (2011), 963–1019.
CC98 F. Cherbonnier and P. Colmez, Représentations p-adiques surconvergentes, Invent. Math. 133

(1998), 581–611.
CM98 R. F. Coleman and B. Mazur, The eigencurve, in Galois representations in arithmetic

algebraic geometry (Durham, 1996), London Mathematical Society Lecture Note Series, vol. 254
(Cambridge University Press, Cambridge, 1998), 1–113.

Col08 P. Colmez, Représentations triangulines de dimension 2, in Représentations p-adiques de
groupes p-adiques I: représentations galoisiennes et (φ,Γ)-modules, Astérisque, vol. 319 (Société
Mathématique de France, 2008), 213–258.

Con99 B. Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble) 49 (1999),
473–541.

Duc09 A. Ducros, Les espaces de Berkovich sont excellents, Ann. Inst. Fourier (Grenoble) 59 (2009),
1443–1552.

Eme M. Emerton, Local-global compatibility in the p-adic Langlands programme for GL2/Q, Preprint,
www.math.uchicago.edu/∼emerton/pdffiles/lg.pdf.

Fon90 J.-M. Fontaine, Représentations p-adiques des corps locaux. I, in The Grothendieck Festschrift,
Vol. II, Progress in Mathematics, vol. 87 (Birkhäuser, Boston, MA, 1990), 249–309.

FM95 J.-M. Fontaine and B. Mazur, Geometric Galois representations, in Elliptic curves, modular
forms, & Fermat’s last theorem (Hong Kong, 1993), Series on Number Theory, I (International
Press, Cambridge, MA, 1995), 41–78.

Han14 D. Hansen, Universal eigenvarieties, trianguline Galois representations, and p-adic Langlands
functoriality, J. Reine Angew. Math., to appear, doi:10.1515/crelle-2014-0130.

Her98 L. Herr, Sur la cohomologie galoisienne des corps p-adiques, Bull. Soc. Math. France 126 (1998),
563–600.

Ked04 K. S. Kedlaya, A p-adic local monodromy theorem, Ann. of Math. (2) 160 (2004), 93–184.
KL10 K. S. Kedlaya and R. Liu, On families of ϕ, Γ-modules, Algebra Number Theory 4 (2010),

943–967.
KPX14 K. S. Kedlaya, J. Pottharst and L. Xiao, Cohomology of arithmetic families of (ϕ,Γ)-modules,

J. Amer. Math. Soc. 27 (2014), 1043–1115.
Kis03 M. Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math. 153

(2003), 373–454.

173

https://doi.org/10.1112/S0010437X16007831 Published online by Cambridge University Press

http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1515/crelle-2014-0130
https://doi.org/10.1112/S0010437X16007831


Paraboline variation over p-adic families of (ϕ,Γ)-modules

Liu07 R. Liu, Cohomology and duality for (φ,Γ)-modules over the Robba ring, Int. Math. Res. Not.
IMRN 2007 (2007), doi:10.1093/imrn/rnm150.

Liu15 R. Liu, Triangulation of refined families, Comment. Math. Helv. 90 (2015), 831–904.
Mat89 H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8,

second edition (Cambridge University Press, Cambridge, 1989); translated from the Japanese
by M. Reid.

MW86 B. Mazur and A. Wiles, On p-adic analytic families of Galois representations, Compositio Math.
59 (1986), 231–264.

Nak09 K. Nakamura, Classification of two-dimensional split trianguline representations of p-adic fields,
Compositio Math. 145 (2009), 865–914.

ST03 P. Schneider and J. Teitelbaum, Algebras of p-adic distributions and admissible representations,
Invent. Math. 153 (2003), 145–196.

Sen88 S. Sen, The analytic variation of p-adic Hodge structure, Ann. of Math. (2) 127 (1988), 647–661.
Tan11 F. Tan, Families of p-adic Galois Representations. ProQuest LLC, Ann Arbor, MI, 2011, PhD

Thesis, Massachusetts Institute of Technology.
SPA15 The Stacks Project Authors. Stacks project. http://stacks.math.columbia.edu, 2015.
Wei94 C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced

Mathematics, vol. 38 (Cambridge University Press, Cambridge, 1994).

John Bergdall bergdall@math.bu.edu

Department of Mathematics and Statistics,
Boston University, 111 Cummington Mall,
Boston, MA 02215, USA

174

https://doi.org/10.1112/S0010437X16007831 Published online by Cambridge University Press

https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
https://doi.org/10.1093/imrn/rnm150
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu
https://doi.org/10.1112/S0010437X16007831

	1 Introduction
	1.1 Trianguline (,Γ)-modules
	1.2 Critical triangulations
	1.3 Refined families and p-adic variation
	1.4 Ramification of weights
	1.5 Organization
	1.6 Notation and conventions

	2 Review of (,ΓK)-modules
	2.1 The Robba ring
	2.2 Galois representations
	2.3 Rank-one (,ΓK)-modules
	2.4 p-adic Hodge theory
	2.5 Galois cohomology
	2.6 Torsion (,ΓK)-modules

	3 Parabolizations and triangulations
	3.1 Parabolizations of (,ΓK)-modules
	3.2 Critical and non-critical triangulations
	3.3 Generalized triangulations

	4 Galois cohomology in families
	5 Triangulated families
	5.1 Triangulated families
	5.2 Killing torsion

	6 p-adic variation in refined families
	6.1 Refined families

	7 Ramification of weights
	Acknowledgements
	Appendix  Nakayama's lemma
	References



