Third Meeting, January 11th, 1895.

Wm. Peddie, Esq, D.Sc., F.R.S.E., Vice-President, in the Chair.

Properties connected with the Angular Bisectors of a Triangle.

By J. S. Mackay, M.A., LL.D.

Notation.

When points and lines are not specitically designated in the course of the following pages it will be understood that the notation for them is that recommended in the Proceedings of the Edinburgh Mathematical Society, Vol. I. pp. 6-11 (1894). It may be convenient to repeat all that is necessary for the present purpose.
$A^{\prime} \quad B^{\prime} \quad C^{\prime}=$ mid points of the sides BC CA AB
D E F \quad points of contact of sides with incircle
$\mathrm{D}_{1} \quad \mathbf{E}_{1} \quad \mathrm{~F}_{1}=\quad$, " " " ", first excircle.
And so on.
$\mathrm{H}=$ orthocentre of ABC
I = incentre of ABC
$\mathrm{I}_{1} \quad \mathrm{I}_{2} \quad \mathrm{I}_{3}=1$ st 2 nd 3 3rd excentres of ABC
L. M N = feet of interior angular bisectors of ABC
$\mathbf{L}^{\prime} \mathbf{M}^{\prime} \mathbf{N}^{\prime}=$, ,, exterior
0 = circumcentre of ABC
$\mathrm{U} \quad \mathrm{U}^{\prime}=$ ends of that diameter of the circumcircle which is perpendicular to $\mathrm{BC} . \quad \mathrm{U}$ is on the opposite side of $B C$ from A.

Similarly for $\mathrm{V} \mathrm{V}^{\prime}$ and $\mathrm{W} \mathrm{W}^{\prime}$,
$X \quad \mathrm{Y} \quad Z=$ feet of the perpendiculars from A B C.

The various points

$$
\mathbf{K} \mathbf{K}^{\prime}, \quad \mathbf{P} \mathrm{P}^{\prime}, \quad \mathbf{Q} \mathbf{Q}^{\prime}, \quad \mathbf{S} \mathbf{S}^{\prime}, \quad \mathbf{T}^{\prime}
$$

are defined as they occur.

$$
\begin{aligned}
& \begin{array}{lllll}
a & \beta & \gamma & =\mathrm{AI} \quad \mathrm{BI} \quad \mathrm{CI}
\end{array} \\
& \begin{array}{llllll}
a_{1} & \beta_{1} & \gamma_{1} & =\mathrm{AT}_{1} & \mathrm{BI}_{1} & \mathrm{CI}_{1}
\end{array} \\
& \alpha_{2} \quad \beta_{2} \quad \gamma_{2} \quad=\mathrm{AI}_{2} \quad \mathrm{BI}_{2} \quad \mathrm{CI}_{2} \\
& \begin{array}{lllllll}
a_{3} & \beta_{3} & \gamma_{3} & =\mathrm{AI}_{3} & \mathrm{BI}_{3} & \mathrm{CI}_{3}
\end{array} \\
& \alpha_{1}-\alpha \quad \beta_{2}-\beta \quad \gamma_{3}-\gamma=\mathrm{I}_{1} \mathrm{I} \quad \mathrm{I}_{2} \mathrm{I} \quad \mathrm{I}_{3} \mathrm{I} \\
& \alpha_{2}+\alpha_{3} \quad \beta_{3}+\beta_{1} \quad \gamma_{1}+\gamma_{2}=\mathrm{I}_{2} \mathrm{I}_{3} \quad \mathrm{I}_{3} \mathrm{I}_{1} \quad \mathrm{I}_{1} \mathrm{I}_{2} \\
& h_{1} \quad h_{2} \quad h_{3} \quad=\text { the perpendiculars AX BY CZ } \\
& \begin{array}{lll}
l_{1} & l_{2} & l_{3}
\end{array} \quad=\text { the interior angular bisectors of } \mathbf{A} \quad \mathrm{B} C \\
& \begin{array}{llll}
\lambda_{1} & \lambda_{3} & \lambda_{3} & =, \\
\text { exterior }
\end{array}, \quad \text {, } \\
& r \quad=\text { radius of the incircle } \\
& \begin{array}{lll}
r_{1} & r_{2} & r_{3} \quad=\text { radii of the } 1 \text { st } 2 \text { nd 3rd excircles }
\end{array} \\
& \mathrm{R} \quad=\text { radius of the circumecircle } \\
& s \quad=\text { semiperimeter of } \mathrm{ABC} \\
& \begin{array}{llllll}
s_{1} & s_{2} & s_{3} & =s-a & s-b & s-c \\
u_{1} & v_{1} & w_{1} & =\mathrm{BL} & \mathrm{CM} & \mathrm{AN}
\end{array} \\
& u_{1}^{\prime} \quad v_{1}^{\prime} \quad w_{1}^{\prime} \quad=\mathrm{BL}^{\prime} \quad \mathrm{CM}^{\prime} \quad \mathrm{AN}^{\prime} \\
& \begin{array}{cccccc}
u_{2} & v_{2} & w_{2} & =\mathbf{C L} & \mathbf{A M} & \mathrm{BN} \\
u_{2}^{\prime} & v_{2}^{\prime} & u_{2}^{\prime} & =\mathrm{CL}^{\prime} & \mathrm{AM}^{\prime} & \mathrm{BN}^{\prime}
\end{array}
\end{aligned}
$$

$\$ 1$.

If from either end of the base of a triangle a perpendicular be drawn to the bisector of the interior or exterior vertical angle, the distance of the foot of this perpendicular from the mid point of the base is equal to half the difference or half the sum of the sides of the triangle.*

Figure 7.

Let $B P P^{\prime}$, the perpendiculars from B on $A L A L$, the interior and the exterior bisectors of $\angle A$, meet $A C$ in $B_{1} B_{2}$.

[^0]\[

\]

Now since $P P^{\prime}$ are the mid points of $\mathrm{BB}_{1} \mathrm{BB}_{2}$ and A^{\prime} the mid point of BC ,
therefore

$$
\begin{aligned}
\mathrm{A}^{\prime} \mathrm{P} & =\frac{1}{2} \mathrm{CB}_{1} & \mathrm{~A}^{\prime} \mathrm{P}^{\prime} & =\frac{1}{2} \mathrm{CB}_{2} \\
& =\frac{1}{2}(\mathrm{AC}-\mathrm{AB}) & & =\frac{1}{2}(\mathrm{AC}+\mathrm{AB})
\end{aligned}
$$

Similarly if $Q Q^{\prime}$ be the feet of the perpendiculars from C on AL AL',

$$
A^{\prime} Q=\frac{1}{2}(A C-A B) \quad A^{\prime} Q^{\prime}=\frac{1}{2}(A C+A B)
$$

It is not easy to assign authorities to the properties given in the following pages. Some of these properties occur incidentally in the solutions of problems on the construction of triangles, and are there spoken of, or assumed without being spoken of, as well known theorems. A large collection of them will be found in four articles entitled "Useful Propositions in Geometry" by M. A. Harrison, which appeared in Leybourn's Mathematical Rcpository, old series, I. 283-5, 367-9, II. 23-5, 234-7 (1799-1801). In these articles no mention is made of properties connected with the bisector of the exterior vertical angle.

It has been conjectured that "M. A. Harrison" is a pseudonym, adopted either by J. H. Swale or John Lowry.

$$
\begin{align*}
\therefore \mathrm{ABB}_{1}=\mathrm{AB}_{1} \mathrm{~B} & =\mathrm{BAL}^{\prime}=\mathrm{B}_{2} \mathrm{AL}^{\prime}=\mathrm{AP}^{\prime} \mathrm{A}^{\prime}=\mathrm{AQ}^{\prime} \mathrm{A}^{\prime} \tag{1}\\
& =\frac{1}{2}(\mathrm{~B}+\mathrm{C}) \\
\therefore \mathrm{CBB}_{1}=\mathrm{BL}^{\prime} \mathrm{A} & =\frac{1}{2}(\mathrm{~B}-\mathrm{C})
\end{align*}
$$

(2) $\mathrm{A}^{\prime} \mathrm{PP}^{\prime}$ is a straight line parallel to $\mathbf{A C}$. Hence $\mathbf{P} \mathbf{P}^{\prime}$ are situated on $\mathrm{C}^{\prime} \mathrm{A}^{\prime}$ one of the sides of the triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, which is complementary to ABC.

Similarly, if from B perpendiculars be drawn to the bisectors of the interior and exterior angles at C, the feet of these perpendiculars will also be situated ${ }^{*}$ on $\mathrm{C}^{\prime} \mathrm{A}^{\prime}$.
(3) If perpendiculars be drawn from each vertex of a triangle to the interior and the exterior bisectors of the angles at the other vertices, the twelve points of intersection thus obtained will range, four

[^1]and four, on three straight lines, which by their mutual intersections will form the triangle complementary to the given triangle. *

The proof of this is obvious enough from what precedes; but the following demonstration will be found interesting.

Figure 8.

Let $A B C$ be a triangle, $I I_{1} I_{2} I_{3}$ the incentre and the ex. centres.

The four lines $\mathrm{I}_{2} \mathrm{~B} \quad \mathrm{I}_{3} \mathrm{I}_{1} \quad \mathrm{I}_{3} \mathrm{C} \quad \mathrm{I}_{1} \mathrm{I}_{2}$ are the interior and the exterior bisectors of the angles B and C. Now these four lines, taken three and three, form the four triangles

$$
\mathrm{I}_{3} \mathrm{I}_{1} \mathrm{C} \quad \mathrm{I}_{2} \mathrm{IC} \quad \mathrm{I}_{2} \mathrm{I}_{2} \mathrm{~B} \quad \mathrm{I}_{3} \mathrm{IB}
$$

Hence, by a theorem due to Wallace, \dagger the circumcircles of these four triangles all pass through the same point A; and by one of Steiner's theorems ${ }_{\ddagger}$ the feet of the perpendiculars let fall from A on the four straight lines are collinear.

Let $A_{1} A_{2} A_{3} A_{4}$ be the feet of the perpendiculars.
Then $\mathrm{AA}_{1} \mathrm{BA}_{2}$ is a rectangle;
therefore $\mathbf{A}_{1} \mathbf{A}_{2}$ passes through \mathbf{C}^{\prime} the mid point of $\mathbf{A B}$. Similarly $\mathbf{A}_{3} \mathbf{A}_{4} \quad " \quad, \quad \mathbf{B}^{\prime}, \quad, \quad, \quad$, AC; therefore the straight line $A_{1} A_{2} A_{3} A_{4}$ bisects $A B$ and $A C$.

$$
\begin{array}{lll}
\mathbf{A}_{3} \mathbf{A}_{4}=b, & \mathbf{A}_{1} \mathbf{A}_{3}=c, & \mathbf{A}_{2} \mathbf{A}_{4}=s \tag{4}\\
\mathbf{A}_{1} \mathbf{A}_{3}=s_{1}, & \mathbf{A}_{2} \mathbf{A}_{3}=s_{3}, & \mathbf{A}_{1} \mathbf{A}_{4}=s_{3}
\end{array}
$$

(5) The four points $A_{1} \lambda_{2} A_{3} A_{4}$ lie, two and two, on the circumferences of the six circles which have for diameters the distances of A from $I I_{1} I_{2} I_{3} \quad B C$.
(6) If the circles be denoted by their diameters, the circles AI $A I_{1}$ touch each other at A, and have $I_{2} I_{3}$ for common tangent ; they also touch the circle I_{1} the former at I and the latter at I_{1}.

[^2]The circles $\mathrm{AI}_{2} \mathrm{AI}_{3}$ touch each other at A , and have AI_{1} for common tangent ; they also touch the circle $I_{2} I_{3}$ the former at I_{2} and the latter at J_{3}.
(7) The radical axis of the circles

AB	AI	AI_{2}	is	AA_{1}
AB	AI_{3}	AI_{1}	,	AA_{2}
AC	AI	AI_{3}	,	AA_{3}
AC	AI_{1}	AI_{2}	,	AA_{4}

(8)

$$
\begin{aligned}
& A P: A L=\frac{1}{2}(A C+A B): A C \\
& A Q: A L=\frac{1}{2}(A C+A B): A B
\end{aligned}
$$

Figure 9.
Since PA^{\prime} is parallel to AC ,
therefore triangles $\mathrm{ACL} \mathrm{PA}^{\prime} \mathrm{L}$ are similar;
therefore $\quad \mathrm{AL}: \mathrm{PL}=\mathrm{AC}: \mathrm{PA}^{\prime}$

$$
=\mathbf{A C}: \frac{1}{2}(\mathbf{A C}-\mathbf{A B})
$$

therefore

$$
A L-P L: A L=\frac{1}{2}(A C+A B): A C
$$

$$
\begin{equation*}
A P^{\prime}: A L^{\prime}=1(A C-A B): A C \tag{9}
\end{equation*}
$$

$$
A Q^{\prime}: \Lambda L^{\prime}=\frac{1}{2}(\Lambda C-A B): A B
$$

$$
\begin{align*}
& \mathrm{PQ}: A L=A C^{2}-A B^{2}: 2 \mathrm{AC} \cdot \mathrm{AB} \tag{10}\\
& \mathrm{P}^{\prime} \mathrm{Q}^{\prime}: A L^{\prime}=\mathrm{AC}^{2}-A \mathrm{~B}^{2}: 2 \mathrm{AC} \cdot \mathrm{AB}
\end{align*}
$$

Figure 9.
Since triangles ACL PA'L are similar
therefore

$$
\begin{aligned}
\mathrm{PL}: \mathbf{A L} & =\mathrm{PA}^{\prime}: \mathbf{A C} \\
& =\frac{1}{2}(\mathbf{A C}-\mathbf{A B}): \mathbf{A C}
\end{aligned}
$$

Since triangles ABL $Q^{\prime} A^{\prime}$ are similar
therefore

$$
\begin{aligned}
\mathrm{QL}: \mathrm{AL} & =\mathrm{QA}^{\prime}: \mathrm{AB} \\
& =\frac{1}{2}(\mathrm{AC}-\mathrm{AB}): \mathrm{AB}
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \frac{\mathrm{PL}+\mathrm{QL}}{\mathrm{AL}}=\frac{\mathrm{AC}-\mathrm{AB}}{2 \mathrm{AC}}+\frac{\mathrm{AC}-\mathrm{AB}}{2 \mathrm{AB}} \\
= & \frac{\mathrm{AC} \cdot \mathrm{AB}-\mathrm{AB}^{2}}{2 \mathrm{AC} \cdot \mathrm{AB}}+\frac{\mathrm{AC}^{2}-\mathrm{AC} \cdot \mathrm{AB}}{2 \mathrm{AC} \cdot \mathrm{AB}} \\
= & \frac{\mathrm{AC}^{2}-\mathrm{AB}^{2}}{2 \mathrm{AC} \cdot \mathrm{AB}}
\end{aligned}
$$

$$
\begin{align*}
\mathrm{ABC} & =\mathbf{A Q} \cdot \mathbf{B P}=\mathbf{A P} \cdot \mathbf{C Q} \tag{11}\\
& =\mathbf{A Q ^ { \prime }} \cdot \mathrm{BP}^{\prime}=\mathbf{A P ^ { \prime }} \cdot \mathrm{CQ}^{\prime}
\end{align*}
$$

For triangles $A X L, B P L$ are similar
therefore

$$
\begin{aligned}
\mathrm{AX}: \mathrm{BP} & =\mathrm{AL}: \mathrm{BL} \\
& =\mathrm{QL}: \mathrm{A}^{\prime} \mathrm{L} \\
& =\mathrm{AQ}: \mathrm{BA}^{\prime} \\
\mathrm{AQ} \cdot \mathrm{BP} & =\mathrm{AX} \cdot \mathrm{BA}^{\prime} \\
& =\mathrm{ABC}
\end{aligned}
$$

The last two expressions for ABC may be derived from the first two, since

$$
A P=B P^{\prime} \quad A Q=C Q^{\prime} \quad B P=A P^{\prime} \quad C Q=A Q^{\prime}
$$

(12) The values of the following angles may be registered for reference :

$$
\begin{aligned}
& \mathrm{ABP}=\mathrm{ACQ}=90^{\circ}-\frac{1}{2} \mathrm{~A} \\
& \mathrm{BDF}=\mathrm{BFD}=\mathrm{BD}_{2} \mathrm{~F}_{2}=\mathrm{BF}_{2} \mathrm{D}_{2}=90^{\circ}-\frac{1}{2} \mathrm{~B} \\
& \mathrm{CDE}=\mathrm{CED}=\mathrm{CD}_{3} \mathrm{E}_{3}=\mathrm{CE}_{3} \mathrm{D}_{3}=90^{\circ}-\frac{1}{2} \mathrm{C} \\
& \mathrm{ABP}^{\prime}=\mathrm{ACQ}^{\prime}=\frac{1}{2} \mathrm{~A} \\
& \mathrm{BD}_{1} \mathrm{~F}_{1}=\mathrm{BF}_{1} \mathrm{D}_{1}=\mathrm{BD}_{3} \mathrm{~F}_{3}=\mathrm{BF}_{3} \mathrm{D}_{3 ;}=\frac{1}{2} \mathrm{~B} \\
& \mathrm{CD}_{1} \mathrm{E}_{1}=\mathrm{CE}_{1} \mathrm{D}_{1}=\mathrm{CD}_{2} \mathrm{E}_{2}=\mathrm{CE}_{2} \mathrm{D}_{2}=\frac{1}{2} \mathrm{C}
\end{aligned}
$$

In triangles BDP CQD

$$
\begin{array}{rlrl}
\mathrm{PBD} & =\frac{1}{2}(\mathrm{~B}-\mathrm{C}), 131 \mathrm{P} & =90^{\circ}+\frac{1}{2} \mathrm{C}, \mathrm{DPB} & =90^{\circ}-{ }_{2}^{1} \mathrm{~B} \\
& =\mathrm{DCQ} & =\mathrm{CQD} & \\
& =\mathrm{QDC}
\end{array}
$$

* Part of (11) is given in Hind's Triyonometry, 4th ed., p. $30 \pm$ (1841).

In triangles $\mathrm{BD}_{1} \mathrm{P} \quad \mathrm{CQD} \mathrm{D}_{1}$

$$
\begin{aligned}
\mathrm{PBD}_{1} & =\frac{1}{2}(\mathrm{~B}-\mathrm{C}), \mathrm{BD}_{1} \mathrm{P} & =\frac{1}{2} \mathrm{C}, & \mathrm{D}_{1} \mathrm{~PB} \\
& =\mathrm{D}_{1} \mathrm{CQ} & & =\mathrm{CQD}_{1}
\end{aligned}
$$

In triangles $\mathrm{BD}_{2} \mathrm{P}^{\prime} \mathrm{CQ}^{\prime} \mathrm{D}_{2}$,

$$
\begin{array}{rlrlr}
\mathrm{P}^{\prime} \mathrm{BD}_{2} & =\frac{1}{2} \mathrm{~A}+\mathrm{B}, \quad \mathrm{BD}_{2} \mathrm{P}^{\prime} & =\frac{1}{2} \mathrm{C}, & \mathrm{D}_{2} \mathrm{P}^{\prime} \mathrm{B} & =90^{\circ}-\frac{1}{2} \mathrm{~B} \\
& =\mathrm{D}_{2} \mathrm{CQ}^{\prime} & & =\mathrm{CQ}^{\prime} \mathrm{D}_{2} & \\
& =\mathrm{Q}^{\prime} \mathrm{D}_{2} \mathrm{C}
\end{array}
$$

In triangles $\mathrm{BD}_{3} \mathrm{P}^{\prime} \mathrm{CQ}^{\prime} \mathrm{D}_{i}$

$$
\begin{aligned}
\mathrm{P}^{\prime} \mathrm{BD}_{3} & =\frac{1}{2} \mathrm{~A}+\mathrm{C}, \quad \mathrm{BD}_{33} \mathrm{P}^{\prime} & =90^{\circ}-\frac{1}{2} \mathrm{C}, \mathrm{D}_{3} \mathrm{P}^{\prime} \mathrm{B} & =\frac{1}{2} \mathrm{~B} \\
& =\mathrm{D}_{3} \mathrm{CQ}^{\prime} & & =\mathrm{CQ}^{\prime} \mathrm{D}_{i j}
\end{aligned}
$$

$$
A E P=A E P=A Q E_{1}=A Q F_{1}=90^{\circ}+\frac{1}{2} C
$$

$$
A P E=A P F=A E_{1} Q=A F_{1} Q=\frac{1}{2} B
$$

$$
A E_{.2} P^{\prime}=A F_{3} P^{\prime}=A Q^{\prime} E_{i j}=A Q^{\prime} F_{3}=\frac{1}{2} C
$$

$$
A P^{\prime} E_{2}=A P^{\prime} F_{2}=A E_{i} Q^{\prime}=A F_{3} Q^{\prime}=\frac{1}{2} B
$$

$$
\begin{align*}
& \mathrm{AP} \cdot \mathrm{AQ}=\mathrm{BP}^{\prime} \cdot \mathrm{CQ}^{\prime}=s s_{1} \tag{13}\\
& \mathrm{BP} \cdot \mathrm{CQ}=\mathrm{AP}^{\prime} \cdot \mathrm{AQ}^{\prime}=s_{2} s_{j}
\end{align*}
$$

The similar triangles AEP AQE, give
therefore

$$
\mathrm{AE}: A P=A Q: A E_{1}
$$

$$
\begin{aligned}
\mathrm{AP} \cdot \mathrm{AQ} & =\mathrm{AE} \cdot \mathrm{AE}_{1} \\
& =s s_{1} \quad ;
\end{aligned}
$$

and

$$
\mathrm{AP}=\mathrm{BP}^{\prime} \quad \mathrm{AQ}=\mathrm{CQ}^{\prime} .
$$

The other equalities may be derived from the similar triangles BDP CQD, and the fact that

$$
\mathbf{B P}=\mathbf{A P} \quad \mathbf{C Q}=A Q^{\prime} .
$$

$$
\begin{align*}
\mathrm{AP} \cdot \mathrm{AQ} \cdot \mathrm{BP} \cdot \mathrm{CQ} & =\mathrm{AP}^{\prime} \cdot \mathbf{A Q ^ { \prime }} \cdot \mathrm{BP}^{\prime} \cdot \mathrm{CQ}^{\prime} \tag{14}\\
& =\mathrm{A}^{2}
\end{align*}
$$

* (13) Half of this is given in Hind's Iritomometr!!, thbed., p. 304 (1841).
(15) Let D, D_{1}, D_{2}, D_{3} be the points where the incircles and the excircles touch BC.

Figure 9.
It is known that

$$
\mathrm{A}^{\prime} \mathrm{D}=\mathrm{A}^{\prime} \mathbf{D}_{1}=\frac{1}{2}(\mathbf{A C}-\mathbf{A B}), \mathrm{A}^{\prime} \mathrm{D}_{2}=\mathrm{A}^{\prime} \mathrm{D}_{3}=\frac{1}{2}(\mathbf{A C}+\mathrm{AB}) ;
$$

hence $\quad \mathbf{D} \quad \mathrm{D}_{1} \quad \mathbf{P} \quad \mathbf{Q}$ lie on a circle with centre A^{\prime}
and $\mathrm{D}_{2} \mathrm{D}_{\mathbf{z}} \mathrm{P}^{\prime} \mathbf{Q}^{\prime} \quad,,,, \quad, \quad, \quad, \quad$,
(16) The incircle and first excircle of ABC cut the circle $D P D_{1} Q$ orthogonally, and the second and third excircles cut $\mathrm{D}_{2} \mathrm{Q}^{\prime} \mathrm{P}^{\prime} \mathrm{D}_{3}$ orthogonally.
.For $D D_{1}$ is perpendicular to $I D$ and $I_{1} D_{1}$;
and $\quad \mathrm{D}_{2} \mathrm{D}_{3}, \quad, \quad, \quad, \quad \mathrm{I}_{2} \mathrm{D}_{2} \quad, \quad \mathrm{I}_{3} \mathrm{D}_{3}$.

$$
\begin{array}{ll}
\mathrm{IP} \cdot \mathrm{I} \mathrm{Q}=r^{2}, & \mathrm{I}_{1} \mathrm{P} \cdot \mathrm{I}_{1} \mathrm{Q}=r_{1}^{2} \tag{17}\\
\mathrm{I}_{2} \mathrm{P}^{\prime} \cdot \mathrm{I}_{2} \mathrm{Q}^{\prime}=r_{2}^{2}, & \mathrm{I}_{3} \mathrm{P}^{\prime} \cdot \mathrm{I}_{: 2} \mathrm{Q}^{\prime}=r_{: 3}^{\prime \prime}
\end{array}
$$

(18) If I I_{1} be considered as one pair of a system of coaxal circles, then $\mathbf{P Q}$ are the limiting points of the system; and $P^{\prime} Q^{\prime}$ are the limiting points of the coaxal system of which $I_{2} J_{2}$ form one pair.

For DD_{1} is a common tangent to the circles $\mathrm{I} \mathrm{I}_{1}$, and A^{\prime} is its mid point ; therefore the radical axis of I_{1} passes through A^{\prime}.

Now since the circle whose diameter is DD_{1} has its centre at A^{\prime} and cuts $I I_{1}$ orthogonally, therefore it passes through the limiting points of the system $I I_{1}$; and the limiting points of the system I I_{1} are situated on the line I_{1}.
(19) APBP' is a rectangle, and PP^{\prime} bisects AB. Hence if $A X$ be perpendicular to $B C$, the circle on $A B$ as diameter passes through* ${ }^{*} \mathrm{P}^{\prime} \mathrm{X}$.

Similarly the circle on AC as diameter* passes through Q $\mathbf{Q}^{\prime} \mathbf{X}$.

* W. H. Levy in the Lady's and Gcneleman's Diary for 1856, p. 49.
(20) Triangles $\mathrm{XPQ}, \mathrm{XP}^{\prime} \mathrm{Q}^{\prime}$ are inversely similar* to ABC .

Figure 9.
Since A P B X are concyclic
therefore
$\angle A P X=\angle A B X$
therefore
$-\mathrm{XPQ}=\angle \mathrm{ABC}$
Since A C Q X are concyclic
therefore $\quad \therefore \mathrm{AQX}=\angle \mathrm{ACX}$
therefore triangle XPQ is similar to ABC
In like manner $X P^{\prime} Q^{\prime}$ is similar to $A B C$
(21) The directly similar triangles $X P Q \times P^{\prime} Q^{\prime}$ have their homologous sides mutually perpendicular.
(22) The incentre and the excentres of triangles $\mathrm{XPQ} \mathrm{XP}^{\prime} \mathrm{Q}^{\prime}$ are situated on $B X$ and $A X$.

Sisce A P B X are concyclic
therefore $\quad-\mathrm{BXP}=\angle \mathrm{BAP}=\frac{1}{2} \mathrm{~A}$
Since $A C Q X$ are concyclic
therefore $\quad \therefore \mathrm{CXQ}=\angle \mathrm{CAQ}=\frac{1}{2} \mathrm{~A}$
therefore $B X$ bisects $\angle P X Q$
therefore $B X$ contains the incentre and one excentre of $X P Q$.
Now $\quad \mathbf{A X}$ is perpendicular to $\mathbf{B X}$
therefore AX contains the other excentres.
In like manner it may be proved that $A X$ contains the incentre and one excentre of triangle $X P^{\prime} Q^{\prime}$, and that $B X$ contains the other excentres.

[^3](23) To determine the incentre and the excentres of the triangles XPQ XI'Q'.

Since AX ID are parallel
therefore
$A L: I L=X L: D L$.
But in the similar triangles ABC $X P Q$
$A L$ and $X L$ are homologous lines;
therefore 1 L and DL are homologous lines,
and I D homologous points;
therefore D is the incentre of $X P Q$.
Since $\angle D_{1} D_{1}$ is right, D_{1} is the first excentre.
The other excentres are the points where DP and 1 DQ intersect AX.

In like manner it may be proved that D_{3} and D_{2} are the third and second excentres of triangle $X P^{\prime} Q^{\prime}$ and that the incentre and first excentre are the points where $D_{3} Q^{\prime}$ and $D_{3} P^{\prime}$ intersect AX.
(24) The circumcircles* of $X P Q \quad X^{\prime} Q^{\prime}$ pass through A^{\prime}.

Since

$$
\begin{aligned}
-\angle \mathrm{A}^{\prime} \mathrm{XQ} & =-\mathrm{CAQ} \\
& =-\mathrm{A}^{\prime} \mathrm{PQ}
\end{aligned}
$$

because $A^{\prime} P$ and $C A$ are parallel ;
therefore $\mathrm{A}^{\prime} \mathrm{P} \times \mathrm{Q}$ are concyclic.
In like manner $A^{\prime} Q^{\prime} P^{\prime} X$ are concyclic.
(25) The diameters* of the circles $X P Q X P^{\prime} Q^{\prime}$ are respectively equal to $A U^{\prime} A U$.

For the diameter of XPQ is the perpendicular drawn from A^{\prime} to PQ and terminated by AX ; and this perpendicular along with $A^{\prime} \mathbf{U}^{\prime}$ U'A AX produced forms a parallelogram.
(26) The diameters of the circles $X P Q \quad X P^{\prime} Q^{\prime}$ coincide with the radical axes of the circles $I I_{1}$ and $J_{2} I_{3}$.

[^4](27) The circle XPQ cuts orthogonally the system of circles I I_{1}; and the circle $X P^{\prime} Q^{\prime}$ cuts orthogonally the system $I_{2} I_{3}$.

For the circle XPQ passes through the limiting points $P \mathbf{Q}$ of the system $I I_{1}$ and has its centre on the radical axis of the same system.
(28) The centres of the circles $X P Q$ and $X P^{\prime} Q^{\prime}$ and the ninepoint centre of triangle ABC are collinear.

For they are situated on the straight line which bisects $A^{\prime} X$ perpendicularly.
(29) The sum of the areas of the circles $\mathrm{XPQ} X \mathrm{P}^{\prime} \mathrm{Q}^{\prime}$ is equal to the area of the circle ABC.

For the areas of circles are proportional to the squares of their diameters and

$$
A U^{\prime 2}+A U^{2}=U^{\prime 2}
$$

$$
\begin{equation*}
\mathrm{XPQ}+\mathrm{XP}^{\prime} \mathrm{Q}^{\prime}=\mathrm{ABC} .^{*} \tag{30}
\end{equation*}
$$

$$
\begin{align*}
& \text { ABC:XPQ}=U U^{\prime}: U^{\prime} K \tag{31}\\
& \text { ABC:XP } P^{\prime} Q^{\prime}=U U^{\prime}: U K
\end{align*}
$$

For $\quad A B C: X P Q=U U^{\prime 2}: A^{\prime}$

$$
=U^{U} U^{\prime}: \mathbf{U}^{\prime} \mathbf{K}
$$

For another proof see $\$ 4$, (11).

$$
\begin{equation*}
\mathbf{X P} \quad \mathbf{X P} \quad \mathbf{X Q} \quad \mathbf{X Q}^{\prime} \tag{32}
\end{equation*}
$$

are respectively parallel to

$$
\mathrm{CU} \mathrm{CU}^{\prime} \mathrm{BU} \mathrm{BU}^{\prime}
$$

$$
\text { For } \quad \begin{aligned}
\angle \mathrm{XPQ} & =\lrcorner \mathrm{ABC} \\
& =\angle \mathrm{AUC} .
\end{aligned}
$$

[^5](3) The triangles
$$
\mathrm{A}^{\prime} \mathrm{BP} \quad \mathrm{~A}^{\prime} \mathrm{CQ} \quad \mathrm{~A}^{\prime} \mathrm{BP}^{\prime} \quad \mathrm{A}^{\prime} \mathrm{CQ}^{\prime}
$$
are respectively similar to
QAX PAX Q'AX P'AX.

For $\mathbf{A}^{\prime} \mathbf{P}$ is parallel to $\mathbf{C A}$;
therefore $\quad \angle \mathrm{BA}^{\prime} \mathrm{P}=\mathrm{C}$

$$
=-\mathrm{AQX} ;
$$

and

$$
\begin{aligned}
\angle \mathrm{BPA}^{\prime} & =90^{\circ}+\frac{1}{2} \mathbf{A} \\
& =-\mathbf{A X Q} .
\end{aligned}
$$

Or it may be proved that

$$
\therefore \mathbf{A}^{\prime} \mathbf{B P}=-\mathrm{QAX}
$$

since the sides of the one are perpendicular to the sides of the other.
(34) The triangles

$$
\mathbf{A}^{\prime} \mathbf{U P} \quad \mathbf{A}^{\prime} \mathbf{U Q} \quad \mathbf{A}^{\prime} \mathrm{U}^{\prime} \mathbf{P}^{\prime} \quad \mathbf{A}^{\prime} \mathrm{U}^{\prime} \mathbf{Q}^{\prime}
$$

are respectively similar to
QCX PBX Q'CX P'BX.

For
$\angle \mathrm{A}^{\prime} \mathrm{UP}=\angle \mathrm{QCX}$
since the sides of the one are perpendicular to the sides of the other ;
and

$$
\begin{aligned}
\angle \mathbf{A}^{\prime} \mathrm{PU} & =\frac{1}{2} \mathbf{A} \\
& =\angle \mathbf{Q X C} .
\end{aligned}
$$

(35) The following triads of points are collinear :*

$$
\begin{array}{llllllllll}
\text { P D E } ; & \mathbf{P} & \mathbf{D}_{1} & \mathbf{E}_{1} ; & \mathbf{P}^{\prime} & \mathrm{D}_{2} & \mathrm{E}_{2} ; & \mathbf{P}^{\prime} & \mathrm{D}_{3} & \mathrm{E}_{3} \\
\text { Q D F } ; & \mathbf{Q} & \mathrm{D}_{1} & \mathrm{~F}_{1} ; & \mathbf{Q}^{\prime} & \mathrm{D}_{2} & \mathrm{~F}_{2} ; & \mathbf{Q}^{\prime} & \mathrm{D}_{3} & \mathrm{~F}_{3} .
\end{array}
$$

* W. H. Levg in the Lady's and Gentleman's Diary for 1857, p. 51.

Figure 10.

The points B D P I are concyclic ; therefore $\angle B D P$ is the supplement of $\angle B T P$. Because the isosceles triangles CDE, UBI have

$$
-\mathrm{C}=-\mathrm{U}
$$

therefore $\quad \therefore \mathrm{CDE}=\angle \mathrm{BIU}$;
therefore $\angle \mathrm{BDP}$ is the supplement of $\angle \mathrm{CDE}$;
therefore DP coincides with DE.
(36) The following quintets of points are concyclic:

the diameters of the various circles being

B I	BI_{1}	BI_{2}	BI_{3}
C I	CI_{1}	CI_{2}	CI_{3}

(37) Since C L B L' form a harmonic range, and $C Q B P A L$ are parallel, therefore Q L P A form a harmonic range.*

Figure 9.
Similarly for $Q^{\prime} A P^{\prime} L^{\prime}$.
(38) If at L a perpendicular be drawn to $A L$ meeting $\mathrm{AB} A C$ at $P \mathrm{Q}$, then AP or AQ is a harmonic mean \dagger between AB AC.

[^6]
Figure 11.

```
If \(B_{1}\) be the image of \(B\) in \(A L\), then AL bisects \(\angle \mathrm{BLB}_{1}\); therefore LQ bisects \(\leq \mathrm{CLB}_{1}\); therefore \(L\left(B A B_{1} Q\right)\) is a harmonic pencil. Now this pencil is cut by the transversal \(A C\); therefore \(A B_{1} Q \quad C\) form a harmonic range and \(A Q\) is the harmonic mean between \(A B_{1} A C\).
```

Similarly for L^{\prime}.

$$
\begin{equation*}
A U: I U=A B+A C: B C \tag{39}
\end{equation*}
$$

Figure le.

Draw IP IQ parallel to AB AC.
The quadrilaterals ABUC IPUQ are similiar:
therefore $\quad A U: I U=A B+A C: I P+I Q$.

| Now | $\angle \mathrm{UBL}=\angle \mathrm{UAC}=\angle \mathrm{UAB}=-\mathrm{UIP} ;$ |
| :--- | ---: | :--- |
| and | $\mathrm{UB}=\mathrm{UI} ;$ |
| therefore triangles UBL UIP | are congruent, |
| and | $\mathrm{BL}=\mathrm{IP}$. |
| Similarly | $\mathrm{CL}=\mathrm{IQ} ;$ |
| therefore | $\mathrm{AU}: \mathrm{IU}=\mathrm{AB}+\mathrm{AC}: \mathrm{BL}+\mathrm{CL}$. |

(40) If on $A^{\prime} \mathrm{K}$ as diameter a circle is described, and from 0 the circumcentre of ABC a perpendicular is drawn to $\mathrm{A}^{\prime} \mathrm{K}$ meeting this circle at P , then*

$$
\mathrm{AB}^{2}+\mathrm{AC}^{2}=4 \mathrm{PU}^{2}
$$

[^7]Figure 13.

The triangle PUU' is isosceles;
therefore

$$
\begin{aligned}
\mathrm{PA}^{\prime 2} & =\mathrm{PU}{ }^{2}-\mathrm{UA}^{\prime} \cdot \mathbf{A}^{\prime} \mathbf{U}^{\prime} \\
& =\mathrm{PU}^{*}-\mathrm{A}^{\prime} \mathbf{I}^{\prime \prime} ;
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{PK}^{2} & =\mathrm{PU}^{2}-\mathrm{UK} \cdot \mathrm{~K} \mathrm{U}^{\prime} \\
& =\mathrm{PU}^{*}-\mathrm{AK} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{AC}^{2} & =2 \mathrm{~A}^{\prime} \mathrm{B}^{2}+2 \mathrm{~A}^{\prime} \mathrm{A}^{2} \\
& =2 \mathrm{~A}^{\prime} \mathrm{B}^{2}+2 \mathrm{AK}^{2}+2 \mathrm{~A}^{\prime} \mathrm{K}^{2} \\
& =2 \mathrm{~A}^{\prime} \mathrm{B}^{2}+2 \mathrm{AK}^{2}+2 \mathrm{PA}^{\prime 2}+2 \mathrm{PK}^{2} \\
& =4 \mathrm{PU}^{2}
\end{aligned}
$$

$$
\leqslant 2
$$

If from the mid point of the base of a triangle a perpendicular be drawn to the bisector of the interior or exterior vertical angle, this perpendicular will cut off from the sides segments equal to half the sum* or half the difference of the sides.

Figure 14.

Let the perpendiculars from A to $A U A U^{\prime}$ meet $A C$ at $S S^{\prime}$, and $A B$ at $T T^{\prime}$.

Draw $\mathrm{BB}_{1} \mathrm{BB}_{2}$ parallel to the perpendiculars.

[^8]Similarly

$$
\begin{aligned}
& \mathrm{BT}=\mathrm{AT}^{\prime}=\mathrm{AS}^{\prime}=\frac{1}{2}(\mathrm{AC}-\mathrm{AB}) \\
& \mathrm{AT}^{\prime}=\mathrm{BT}^{\prime}=\mathrm{CS}^{\prime}=\frac{1}{2}(\mathrm{AC}+\mathrm{AB})
\end{aligned}
$$

$$
\begin{align*}
& -\mathrm{ATS}^{\prime}=-\mathrm{AST}=-\mathrm{ABB}_{1}=\frac{1}{2}(\mathrm{~B}+\mathrm{C}) \tag{1}\\
& -\mathrm{BA}^{\prime} \mathrm{T}=-\mathrm{CA}^{\prime} \mathrm{A}=-\mathrm{CBB}_{1}=\frac{1}{2}(\mathrm{~B}-\mathrm{C})
\end{align*}
$$

$$
\begin{align*}
\mathrm{AS}^{2}+\mathrm{CS}^{2} & =\mathrm{AT}^{2}+\mathrm{BT}^{2}=\frac{1}{2}\left(l^{2}+r^{\prime}\right) \tag{2}\\
\mathrm{AS}^{2}-\mathrm{CS}^{2} & =\mathrm{AT}^{2}-\mathrm{BT}^{2}=b c \tag{3}\\
\mathrm{AS} \cdot \mathrm{CS} & =\mathrm{AT} \cdot \mathbf{B T}=\frac{1}{4}\left(\mathrm{AC}^{2}-\mathrm{AB}^{2}\right) \tag{4}\\
& =\frac{1}{4}\left(\mathrm{CX}^{2}-\mathrm{BX}^{2}\right)=\mathrm{A}^{\prime} \mathrm{B} \cdot \mathrm{~A}^{\prime} \mathrm{X}
\end{align*}
$$

$$
\begin{equation*}
A S: \mathrm{CS}=\mathrm{AT}: \mathrm{BT}=b+c: b-c \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{SS}^{\prime}=\mathrm{AB}=c, \quad \mathrm{TT}^{\prime}=\mathbf{A C}=b \tag{6}
\end{equation*}
$$

Instead of drawing perpendiculars to the two bisectors of the vertical angle either from the ends of the two sides or from the mid point of the base, if perpendiculars be drawn to the sides from certain points in the two bisectors of the vertical angle, values will be obtained for half the sum and half the difference of the sides.

Figure 9.

From $U U^{\prime}$ let the perpendiculars US $U^{\prime} S^{\prime}$ be drawn to $A C$, and UT U'T' to AB.
$(7)^{*} \quad \mathrm{AS}=\mathrm{AT}=\mathrm{CS}^{\prime}=\mathrm{BT}^{\prime}=\frac{1}{2}(\mathrm{AC}+\mathrm{AB})$
For the right-angled triangles UAS UAT are congruent;
therefore

$$
\mathbf{A S}=\mathbf{A T} \quad \mathrm{US}=\mathrm{UT}
$$

Hence the right-angled triangles UCS UBT are congruent, and $\quad \mathrm{CS}=\mathrm{BT}$.

- Parts of (7) and (8) are found in Leybourn's Aftthemutical Repository, old series, I. 283-4 (1799).

Similarly

$$
\mathrm{AS}^{\prime}=\mathrm{AT}^{\prime} \quad \mathrm{CS}^{\prime}=\mathbf{B T}^{\prime}
$$

Now

$$
\begin{aligned}
\frac{1}{2}(\mathbf{A C}+\mathbf{A B}) & =\frac{1}{2}\{(\mathbf{A S}+\mathbf{C S})+(\mathbf{A T}-\mathbf{B T})\} \\
& =\frac{1}{2}(\mathbf{A S}+\mathbf{A T})=\mathbf{A S}=\mathbf{A T} ; \\
& =\frac{1}{2}\left\{\left(\mathbf{C S}^{\prime}+\mathbf{A S}\right)+\left(\mathbf{B T}^{\prime}-\mathbf{A T}^{\prime}\right)\right\} \\
& =\frac{1}{2}\left(\mathbf{C S}^{\prime}+\mathbf{B T}^{\prime}\right)=\mathbf{C S}^{\prime}=\mathbf{B T}^{\prime}
\end{aligned}
$$

and also

$$
\begin{equation*}
\mathrm{CS}=\mathrm{B}^{\prime} \mathrm{T}=\mathrm{AS}^{\prime}=\mathrm{AT}=\underset{2}{1}(\mathrm{AC}-\mathrm{AB}) \tag{8}
\end{equation*}
$$

For

$$
\begin{aligned}
\frac{1}{2}(\mathrm{AC}-\mathrm{AB}) & =\frac{1}{2}\{(\mathrm{AS}+\mathrm{CS})-(\mathrm{AT}-\mathrm{BT})\} \\
& =\frac{1}{2}(\mathrm{CS}+\mathrm{BT})=\mathrm{CS}=\mathrm{BT} ; \\
& =\frac{1}{2}\left\{\left(\mathrm{CS}^{\prime}+\mathrm{AS}^{\prime}\right)-\left(\mathrm{BT}^{\prime}-\mathrm{A}^{\prime} \mathbf{T}^{\prime}\right)\right\} \\
& =\frac{1}{2}\left(\mathrm{AS}^{\prime}+A \mathrm{~A}^{\prime}\right)=A S^{\prime}=A T^{\prime}
\end{aligned}
$$

and also

$$
\begin{align*}
-\mathrm{U}^{\prime} \mathbf{B C} & =\mathrm{U}^{\prime} \mathbf{C} \mathbf{B}=\mathrm{U}^{\prime} \mathbf{C} \mathbf{B}=\mathrm{U}^{\prime} \mathbf{U} \mathbf{C} \tag{9}\\
=\mathrm{U}^{\prime} \mathbf{A} \mathbf{S}^{\prime} & =\mathrm{U}^{\prime} \mathbf{A} \mathbf{T}^{\prime}=\mathbf{A} \mathbf{U S}=\mathbf{A} \mathbf{U} \mathbf{T} \\
& =\frac{1}{2}(\mathbf{B}+\mathbf{C})
\end{align*}
$$

$$
\begin{gather*}
\angle \mathrm{U}^{\prime} \mathbf{B A}=\mathrm{U}^{\prime} \mathbf{C} \mathbf{A}=\mathrm{U}^{\prime} \mathbf{U} \mathbf{A}=\mathbf{B} \mathbf{U T}=\mathbf{C} \mathbf{U S} \tag{10}\\
=\frac{1}{2}(\mathbf{B}-\mathbf{C})
\end{gather*}
$$

For half the sum of two magnitudes increased by half their difference gives the greater.
(11) If BP CQ be drawn perpendicular to AU ,

$$
-\mathrm{ABP}=90^{\circ}-\frac{1}{2} \mathrm{~A}=\frac{1}{2}(\mathrm{~B}+\mathrm{C}) .
$$

But

$$
\therefore \mathrm{AUS} \quad=\frac{1}{2}(\mathrm{~B}+\mathrm{C}) ;
$$

therefore BP US intersect* on the circle ABC.
Similarly CQ UT
A like statement holds good for BP' U'S', and for $\mathrm{CQ}^{\prime} \mathrm{U}^{\prime} \mathrm{T}^{\prime}$.

[^9]\[

$$
\begin{aligned}
& \left.(12)^{*} \text { If } \begin{array}{cc}
\mathrm{BP} & \mathrm{US} \\
\mathrm{CQ} & \mathrm{U} T \\
\mathrm{BP}^{\prime} & \mathrm{U}^{\prime} \mathrm{S}^{\prime} \\
\mathrm{CQ}^{\prime} & \mathrm{U}^{\prime} \mathrm{T}^{\prime}
\end{array}\right\} \text { meet on the circumcircle at }\left\{\begin{array}{l}
\mathrm{B}_{2} \\
\mathrm{C}_{2} \\
\mathrm{~B}_{2}, \\
\mathrm{C}_{2},
\end{array}\right. \\
& \begin{aligned}
4 \mathrm{US} \cdot \mathrm{SB}_{2} & =4 \mathrm{UT} \cdot \mathrm{~T} \mathrm{C}_{2} \\
=4 \mathrm{U}^{\prime} \mathrm{S}^{\prime} \cdot \mathrm{S}^{\prime} \mathrm{B}_{2}^{\prime} & =4 \mathrm{U}^{\prime} \mathrm{T}^{\prime} \cdot \mathrm{T}^{\prime} \mathrm{C}_{2}^{\prime}=\mathrm{AC}^{2}-\mathrm{AB}^{2} \\
\text { For } \quad \mathrm{US} \cdot \mathrm{SB}_{2} & =\mathrm{AS} \cdot \mathrm{SC} \\
& =\frac{1}{2}(\mathrm{AC}+\mathrm{AB}) \cdot \frac{1}{2}(\mathrm{AC}-\mathrm{AB})
\end{aligned}
\end{aligned}
$$
\]

(13) The incentre I of $A B C$ is situated on $A U$.

If with centre U and radius UI a circle be described, it will pass through B and C and will cut $A C A B$ again at $B_{1} C_{1}$ such that

$$
\mathrm{B}_{1} \mathrm{~S}=\mathrm{CS} \quad \mathrm{C}_{3} \mathrm{~T}=\mathrm{BT} .
$$

Hence

$$
\mathrm{B}_{1} \mathrm{C}=\mathrm{BC}_{1}=\mathrm{AC}-\mathrm{AB} ;
$$

and $\quad \mathrm{BP} \mathrm{B}_{1}$ are collinear, and so are $\mathrm{CQ} \mathrm{C}_{1}$.

$$
\begin{align*}
& \mathrm{U}^{\prime} \mathrm{B}_{2}=\mathrm{UB}_{2}^{\prime}=\mathrm{AB}_{1}=\mathrm{AB} \tag{14}\\
& \mathrm{U}^{\prime} \mathrm{C}_{2}=\mathrm{UC}_{2}^{\prime}=\mathrm{AC}_{1}=\mathrm{AC}
\end{align*}
$$

(15) $\quad B_{2} B_{2}{ }^{\prime}$ are symmetrically situated with respect to O , and so are $C_{2} C_{2}^{\prime}$
(16) By reference to $\$ 1,(12)$ it will be seen that

$$
-\mathrm{AEP}=\mathrm{AQE}_{1} ;
$$

hencè
E $E_{1} P Q$ are concyclic.
Similarly
F F_{1} P Q , "
The diameters of these two circles are $\mathrm{EE}_{1} \mathrm{FF}_{1}$, and their centres are S T.
(17) In like manner $E_{2} E_{3} P^{\prime} Q^{\prime}$ are concyclic,
and also $\mathbf{F}_{2} \mathrm{~F}_{3} \mathbf{P}^{\prime} \mathbf{Q}^{\prime} \quad, \quad "$
The diameters of these two circles are $\mathrm{E}_{2} \mathrm{E}_{3} \mathrm{~F}_{2} \mathrm{~F}_{3}$, and their centres are $S^{\prime} T^{\prime}$.

[^10](18) All the four circles are equal to each other, and their diameters are equal to BC .

The first two cut the circles I $_{1} I_{1}$ orthogonally, and the second $I_{2} I_{:}$

Compare $\$ 1,(16)$.

$$
\text { § } 3 .
$$

To find values for the rectangles contained by various segments of the base BC .

Figure 9.

The values of the segments here given wili be found useful in the verification of properties (1)-(12).

$$
\begin{aligned}
& \mathbf{B X}=\frac{a^{2}-b^{2}+c^{2}}{2 a} \quad \mathbf{C X}=\frac{a^{2}+b^{2}-c^{2}}{2 a} \quad \mathbf{A}^{\prime} \mathrm{X}=\frac{b^{2}-c^{2}}{2 a} \\
& \mathrm{~A}^{\prime} \mathrm{D}=\mathrm{A}^{\prime} \mathrm{D}_{1}=\frac{b-c}{2} \\
& \mathrm{~A}^{\prime} \mathrm{D}_{2}=\mathrm{A}^{\prime} \mathrm{D}_{3}=\frac{b+c}{2} \\
& \mathrm{BL}=\frac{c a}{b+c} \quad \mathrm{~B} \mathrm{~L}^{\prime}=\frac{c a}{b-c} \\
& \mathrm{CL}=\frac{a b}{b+c} \quad \mathrm{C} \mathrm{~L}^{\prime}=\frac{a b}{b-c} \\
& \mathrm{~A}^{\prime} \mathrm{L}=\frac{a(b-c)}{2(b+c)} \quad \mathrm{A}^{\prime} \mathrm{L}^{\prime}=\frac{a(b+c)}{2(b-c)} \\
& \mathrm{L} \mathrm{D}=\frac{s_{1}(b-c)}{b+c} \quad \mathrm{~L}, \mathrm{D}_{1}=\frac{*(b-c)}{b+c} \\
& \mathrm{~L}^{\prime} \mathrm{D}_{2}=\frac{s_{i}(b+c)}{b-c} \quad \mathrm{~L}^{\prime} \mathrm{D}_{2 ;}=\frac{v_{2}(b+c)}{b-c} \\
& \mathrm{DX}=\frac{\mathrm{s}_{1}(b-c)}{a} \quad \mathrm{D}_{1} \mathrm{X}=\frac{s(b-c)}{a} \\
& \mathrm{D}_{2} \mathrm{X}=\frac{s_{3}(b+c)}{a} \quad \mathrm{D}_{3} \mathrm{X}=\frac{\varepsilon_{2}(b+c)}{a} \\
& \mathrm{~L} \mathrm{X}=\frac{2 s j_{1}(b-c)}{a(b+c)} \quad \mathrm{L}^{\prime} \mathrm{X}=\frac{2 s_{2 s_{j}}(b+c)}{n(b-c)}
\end{aligned}
$$

$$
\begin{equation*}
A^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathbf{L}=\mathbf{A}^{\prime} \mathrm{D}^{2}=\mathrm{A}^{\prime} \mathrm{D}_{1}{ }^{2}=\frac{1}{4}(b-c)^{2} \tag{1}
\end{equation*}
$$

Because ACQX are concyclic
therefore

$$
\therefore \mathrm{A}^{\prime} \mathrm{XQ}=\frac{1}{2} \mathrm{~A}=\angle \mathrm{A}^{\prime} \mathrm{QL} ;
$$

therefore triangles $A^{\prime} X Q A^{\prime} Q L$ are similar ;
therefore

$$
A^{\prime} \mathbf{X}: A^{\prime} \mathbf{Q}=A^{\prime} \mathbf{Q}: A^{\prime} L ;
$$

therefore

$$
\begin{aligned}
\mathbf{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathrm{L} & =\mathbf{A}^{\prime} \mathbf{Q}^{2} \\
& =\mathrm{A}^{\prime} \mathbf{D}^{2}
\end{aligned}
$$

$$
\begin{equation*}
\mathbf{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathbf{L}^{\prime}=\mathbf{A}^{\prime} \mathbf{D}_{2}{ }^{2}=\mathbf{A}^{\prime} \mathbf{D}_{3}{ }^{2}=\frac{1}{4}(b+c)^{2} \tag{2}
\end{equation*}
$$

This follows, in a manner analogous to the preceding, from the similarity of triangles $\mathrm{A}^{\prime} \mathrm{XQ}^{\prime} \mathrm{A}^{\prime} \mathbf{Q}^{\prime} \mathrm{L}^{\prime}$.

The following method may be used for proving (1) and (2).
Since the points A I L I_{1} form a harmonic range,
therefore their projections on BC will form a harmonic range;
that is, $\quad \mathrm{X} \mathrm{L}_{1}$ is a harmonic range.
Hence, since DD_{1} is bisected at A^{\prime},

$$
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~A}^{\prime} \mathrm{L}=\mathrm{A}^{\prime} \mathrm{D}^{2}=\mathrm{A}^{\prime} \mathrm{D}_{1}{ }^{\prime}
$$

Similarly, since $I_{2} A I_{3} L^{\prime}$ form a harmonic range, so also will $D_{2} X \quad D_{3} L^{\prime}$.
Hence, since $D_{2} D_{3}$ is bisected at A^{\prime},

$$
\mathbf{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathbf{L}^{\prime}=\mathbf{A}^{\prime} \mathrm{D}_{2}{ }^{2}=\mathbf{A}^{\prime} \mathbf{D}_{i ;}{ }^{2}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~L} \mathrm{X}=\mathrm{DX} \cdot \mathrm{D}_{1} \mathrm{X}=\frac{\mathrm{ss} \mathrm{~s}_{1}(b-c)^{2}}{a^{2}} \tag{3}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~L} \mathrm{X} & =\mathrm{A}^{\prime} \mathrm{X}^{2}-\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~A}^{\prime} \mathrm{L} \\
& =\mathrm{A}^{\prime} \mathrm{X}^{2}-\mathrm{A}^{\prime} \mathrm{D}^{2} \\
& =\mathrm{DX} \cdot \mathrm{D}_{\mathbf{1}} \mathbf{X}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~L}^{\prime} \mathrm{X}=\mathrm{D}_{2} \mathrm{X} \cdot \mathrm{D}_{3} \mathrm{X}=\frac{s_{2} \delta_{3}(b+c)^{2}}{a^{2}} \tag{4}
\end{equation*}
$$

For

$$
\begin{aligned}
A^{\prime} X \cdot L^{\prime} X & =A^{\prime} X \cdot A^{\prime} L^{\prime}-A^{\prime} X^{2} \\
& =A^{\prime} D_{3}^{2}-A^{\prime} X^{2} \\
& =D_{2} X \cdot D_{3} X
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{LD}=\mathrm{A}^{\prime} \mathrm{D} \cdot \mathrm{D} \mathrm{X}=\frac{s_{1}(b-c)^{2}}{2 a} \tag{5}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathbf{A}^{\prime} \mathbf{X} \cdot L D & =A^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathbf{D}-\mathrm{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathrm{L} \\
& =\mathrm{A}^{\prime} \mathbf{X} \cdot \mathrm{A}^{\prime} \mathrm{D}-\mathrm{A}^{\prime} \mathrm{D}^{2} \\
& =\mathrm{A}^{\prime} \mathrm{D} \cdot \mathrm{DX}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{LD}_{1}=\mathrm{A}^{\prime} \mathrm{D}_{1} \cdot \mathrm{D}_{1} \mathrm{X}=\frac{s(b-c)^{2}}{2 a} \tag{6}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{A}^{\prime} \mathbf{X} \cdot \mathrm{LD}_{1} & =\mathrm{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathrm{D}_{1}+\mathrm{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathrm{L} \\
& =\mathrm{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathrm{D}_{1}+\mathrm{A}^{\prime} \mathrm{D}_{1}^{2} \\
& =\mathrm{A}^{\prime} \mathrm{D}_{1} \cdot D_{1} \mathbf{X}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~L}^{\prime} \mathrm{D}_{i=}=\mathrm{A}^{\prime} \mathrm{D}_{2} \cdot \mathrm{D}_{22} \mathrm{X}=\frac{s_{3}(b+c)^{2}}{2 a} \tag{7}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~L}^{\prime} \mathrm{D}_{2} & =\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~A}^{\prime} \mathrm{L}^{\prime}+\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~A}^{\prime} \mathrm{D}_{2} \\
& =\mathrm{A}^{\prime} \mathrm{D}_{2}{ }^{2}+\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~A}^{\prime} \mathrm{D}_{2} \\
& =\mathrm{A}^{\prime} \mathrm{D}_{2} \cdot \mathrm{D}_{2} \mathrm{X}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{~L}^{\prime} \mathrm{D}_{3}=\mathrm{A}^{\prime} \mathrm{D}_{3} \cdot \mathrm{D}_{3} \mathrm{X}=\frac{s_{2}(b+c)^{2}}{2 a} \tag{8}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{AX} \cdot \mathrm{~L}^{\prime} \mathrm{D}_{i j} & =\mathrm{A}^{\prime} \mathbf{X} \cdot \mathrm{A}^{\prime} \mathrm{L}^{\prime}-\mathrm{A}^{\prime} \mathbf{X} \cdot \mathrm{A}^{\prime} \mathrm{D}_{z} \\
& =\mathrm{A}^{\prime} \mathrm{D}_{;}{ }^{2}=\mathrm{A}^{\prime} \mathbf{X} \cdot \mathrm{A}^{\prime} \mathrm{D}_{3} \\
& =\mathrm{A}^{\prime} \mathrm{D}_{3} \cdot \mathrm{D}_{i j} \mathbf{X}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{L} \quad \mathrm{LX}=\mathrm{DL} \cdot \mathrm{LD}_{1}=\frac{s s_{1}(b-c)^{2}}{(b+c)^{2}} \tag{9}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathbf{A}^{\prime} \mathbf{L} \mathbf{L X} & =\mathrm{A}^{\prime} \mathrm{L}^{\prime} \cdot \mathbf{A}^{\prime} \mathbf{X}-\mathbf{A}^{\prime} \mathbf{L}^{2} \\
& =\mathbf{A}^{\prime} \mathrm{D}^{2}-\mathbf{A}^{\prime} \mathbf{L}^{\prime} \\
& =\mathbf{D L} \cdot \mathbf{L D} \mathbf{D}_{1}
\end{aligned}
$$

$$
\begin{equation*}
\mathbf{A}^{\prime} \mathbf{L}^{\prime} \cdot \mathbf{L}^{\prime} \mathbf{X}=\mathbf{D}_{2} \mathbf{L}^{\prime} \cdot \mathbf{L}^{\prime} \mathbf{D}_{3}=\frac{s_{2} s_{3}(b+c)^{2}}{(b-c)^{2}} \tag{10}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathbf{A}^{\prime} L^{\prime} \cdot L^{\prime} \mathbf{X} & =A^{\prime} L^{\prime 2}-A^{\prime} L^{\prime} \cdot A^{\prime} \mathbf{X} \\
& =A^{\prime} L^{\prime 2}-A^{\prime} D_{3}^{3} \\
& =D_{2} L^{\prime} \cdot L^{\prime} D_{;}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{DX} \cdot \mathrm{D}_{\mathbf{1}} \mathrm{X}=\mathrm{BD} \cdot \mathrm{DC}-\mathrm{BX} \cdot \mathrm{XC} \tag{11}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{BD} \cdot \mathrm{DC}-\mathrm{BX} \cdot \mathrm{XC} & =\left(\mathrm{A}^{\prime} \mathrm{B}^{2}-\mathrm{A}^{\prime} \mathrm{D}^{2}\right)-\left(\mathrm{A}^{\prime} \mathrm{B}^{2}-\mathrm{A}^{\prime} \mathrm{X}^{y}\right) \\
& =\mathrm{A}^{\prime} \mathrm{X}^{2}-\mathrm{A}^{\prime} \mathrm{D}^{2} \\
& =\mathrm{DX} \cdot \mathrm{D}_{1} \mathrm{X}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{D}_{2} \mathrm{X} \cdot \mathrm{D}_{3} \mathrm{X}=\mathrm{BD}_{2} \cdot \mathrm{D}_{2} \mathrm{C}+\mathrm{BX} \cdot \mathrm{XC} \tag{12}
\end{equation*}
$$

$$
\text { For } \quad \begin{aligned}
\mathrm{BD}_{2} \cdot \mathrm{D}_{2} \mathrm{C}-\mathrm{BX} \cdot \mathrm{XC} & =\left(\mathrm{A}^{\prime} \mathrm{D}_{2}{ }^{2}-\mathrm{A}^{\prime} \mathrm{C}^{2}\right)+\left(\mathrm{A}^{\prime} \mathrm{C}^{2}-\mathrm{A}^{\prime} \mathrm{X}^{n}\right) \\
& =\mathrm{A}^{\prime} \mathrm{D}_{2}{ }^{2}-\mathrm{A}^{\prime} \mathrm{X}^{2} \\
& =\mathrm{D}_{2} \mathrm{X} \cdot \mathrm{D}_{3} \mathrm{X}
\end{aligned}
$$

In Mathematical Qucstions from the Educational Times, XIII. 34 (1870), T. T. Wilkinson says regarding (1):
"This is one of the properties of Halley's diagram, which was partially discussed in the four numbers of the Student, published at Liverpool from 1797 to 1800. It there forms Prop. 8, and is due to Non Sibi, a name assumed by the first editor, Mr John Knowles. In the diagram as there considered, the properties of one side only are given; but when all the sides are considered, there seems to be no limit to the relations between the different parts of the figure. Some time ago I considered the 'angular properties' only; and after writing down about 130 of them, they seemed to arise more abundantly than ever."

Halley's diagram somewhat resemble; Figure 15, and it obtained that name, amonge the nun-academic geometers of England, from the statement of W. Jones in his Synopsis Palmariorum Mathescos, p. 245 (1706), that he received it "from the learned Mr Halley." Jones says that an endless variety of useful theoremmay be deduced from it, and that by inspection only.

The property (1), however, is older than the Student; for it is spoken of as a well-known theorem in the Ladies' Diary for 1785.
(3) and (7) occur in M'Dowell's Exercises on Euclid, § 154 (1863) ; (9) and (11) are found in Leybourn's Mathemutical Repository, old series, I. 369 (1799).

To find values for the rectangles contained by various segments of the diameter UU^{\prime}.

Figure 15.

$$
\begin{equation*}
\mathbf{A}^{\prime} \mathbf{U} \cdot \mathbf{U K}^{\prime}=\mathbf{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathbf{L}=\frac{1}{4}(b-c) \tag{1}
\end{equation*}
$$

From the similar triangles $\mathrm{UA}^{\prime} \mathrm{L} A K \mathrm{U}^{\prime}$

$$
\mathbf{A}^{\prime} \mathbf{L}: \mathbf{A}^{\prime} \mathbf{U}=\mathbf{K} \mathbf{U}^{\prime}: \mathbf{K} \mathbf{A}
$$

that is,

$$
A^{\prime} L: A^{\prime} U=U K^{\prime}: A^{\prime} X
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{U}^{\prime} \cdot \mathrm{U}^{\prime} \mathrm{K}^{\prime}=\mathrm{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathrm{L}^{\prime}=\frac{1}{4}(b+c)^{\prime 2} \tag{2}
\end{equation*}
$$

From the similar triangles UA'I' AKU $\mathbf{A}^{\prime} \mathbf{L}^{\prime}: \mathbf{A}^{\prime} \mathrm{U}^{\prime}=\mathrm{K} \mathbf{U}: \mathbf{K A}$
that is,

$$
\mathbf{A}^{\prime} \mathbf{L}^{\prime}: \mathbf{A}^{\prime} \mathbf{U}^{\prime}=\mathrm{U}^{\prime} \mathbf{K}^{\prime}: \mathrm{A}^{\prime} \mathrm{X}
$$

$$
\begin{equation*}
A^{\prime} K \cdot K U^{\prime}=A^{\prime} X \cdot \mathbf{L X} \tag{3}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{LX} & =\mathrm{DX} \cdot \mathrm{D}_{1} \mathrm{X} \\
& =\mathrm{A}^{\prime} \mathrm{X}^{2}-\mathbf{A}^{\prime} \mathrm{D}^{2} \\
& =\mathrm{K} \mathrm{~A}^{2}-\mathbf{A}^{\prime} \mathrm{D}^{2} \\
& =\mathrm{UK} \cdot \mathrm{KU}^{\prime}-\mathrm{A}^{\prime} \mathrm{U} \cdot \mathbf{K} \mathbf{U}^{\prime} \\
& =\mathrm{A}^{\prime} \mathbf{K} \cdot \mathbf{K} \mathrm{U}^{\prime}
\end{aligned}
$$

$$
\begin{equation*}
\mathbf{A}^{\prime} \mathbf{K} \cdot \mathbf{K} \mathbf{U}=\mathbf{A}^{\prime} \mathbf{X} \cdot \mathbf{L}^{\prime} \mathbf{X} \tag{4}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathbf{A}^{\prime} \mathbf{X} \cdot \mathbf{L}^{\prime} \mathbf{X} & =\mathrm{D}_{2} \mathbf{X} \cdot \mathrm{D}_{3} \mathbf{X} \\
& =\mathbf{A}^{\prime} \mathbf{D}_{2}{ }^{2}-\mathbf{A}^{\prime} \mathbf{X}^{2} \\
& =\mathbf{A}^{\prime} \mathbf{D}_{2}{ }^{2}-\mathbf{K A}^{2} \\
& =\mathbf{A}^{\prime} \mathbf{U}^{\prime} \cdot \mathbf{U}^{\prime} \mathbf{K}^{\prime}-\mathbf{U K} \cdot \mathbf{K} U^{\prime} \\
& =\mathbf{A}^{\prime} \mathbf{K} \cdot \mathbf{K C}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{K} \cdot \mathrm{~A}^{\prime} \mathrm{U}=\mathrm{BD} \cdot \mathrm{DC} \tag{̄}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{BD} \cdot \mathrm{DC} & =\mathrm{A}^{\prime} \mathrm{C}^{2}-\mathrm{A}^{\prime} \mathrm{D}^{2} \\
& =\mathrm{A}^{\prime} \mathrm{U} \cdot \mathrm{~A}^{\prime} \mathrm{U}^{\prime}-\mathrm{A}^{\prime} \mathrm{U} \cdot \mathrm{UK}^{\prime} \\
& =\mathrm{A}^{\prime} \mathrm{K} \cdot \mathrm{~A}^{\prime} \mathrm{U}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{K} \cdot \mathrm{~A}^{\prime} \mathrm{U}^{\prime}=\mathrm{BD}_{2} \cdot \mathrm{D}_{2} \mathrm{C} \tag{6}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{BD}_{2} \cdot \mathrm{D}_{2} \mathrm{C} & =\mathrm{A}^{\prime} \mathrm{D}_{2}{ }^{2}-\mathrm{A}^{\prime} \mathbf{C}^{2} \\
& =\mathrm{A}^{\prime} \mathrm{U}^{\prime} \cdot \mathrm{U}^{\prime} \mathrm{K}^{\prime}-\mathrm{A}^{\prime} \mathrm{U} \cdot \mathbf{A}^{\prime} \mathrm{U}^{\prime} \\
& =\mathbf{A}^{\prime} \mathrm{K} \cdot \mathbf{A}^{\prime} \mathrm{U}^{\prime}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{A}^{\prime} \mathrm{K} \cdot \mathrm{~A}^{\prime} \mathrm{K}^{\prime}=\mathrm{BX} \cdot \mathrm{XC} \tag{7}
\end{equation*}
$$

For

$$
\begin{aligned}
\mathrm{BX} \cdot \mathrm{XC} & =\mathrm{AX} \cdot \mathrm{XR} \\
& =\mathrm{A}^{\prime} \mathrm{K} \cdot \mathrm{~A}^{\prime} \mathrm{K}^{\prime}
\end{aligned}
$$

(8)*

$$
\mathrm{A}^{\prime} \mathbf{U} \cdot \mathbf{U K}=\mathrm{US}^{w}
$$

$$
\begin{aligned}
\mathrm{US}^{2} & =\mathrm{CU}^{2}-\mathrm{CS}^{2} \\
& =\mathrm{A}^{\prime} \mathrm{U} \cdot \mathrm{UU}^{\prime}-\mathrm{A}^{\prime} \mathrm{U} \cdot \mathrm{UK}^{\prime} \\
& =\mathrm{A}^{\prime} \mathrm{U} \cdot \mathrm{U}^{\prime} \mathrm{K}^{\prime} \\
& =\mathrm{A}^{\prime} \mathrm{U} \cdot \mathrm{UK}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{U}^{\prime} \mathrm{K} \cdot \mathrm{ID}=\mathrm{A}^{\prime} \mathrm{D} \cdot \mathrm{DX} \tag{9}
\end{equation*}
$$

Since ID IL are respectively perpendicular to $A K$ AU', therefore the right-angled triangles AKU' IDL are similar ; therefore

$$
\begin{aligned}
\mathrm{U}^{\prime} \mathrm{K}: \mathrm{AK} & =\mathrm{LD}: \mathrm{ID} \\
\mathrm{U}^{\prime} \mathrm{K} \cdot \mathrm{ID} & =\mathrm{AK} \cdot \mathrm{LD} \\
& =\mathrm{A}^{\prime} \mathrm{X} \cdot \mathrm{LD} \\
& =\mathrm{A}^{\prime} \mathrm{D} \cdot \mathrm{DX}
\end{aligned}
$$

therefore
(10) \dagger
$\mathbf{U}^{\prime} \mathrm{K} \cdot \mathrm{I}_{1} \mathrm{D}_{1}=\mathbf{A}^{\prime} \mathrm{D}_{1} \cdot \mathrm{D}_{1} \mathbf{X}$
The proof of this is similar to the preceding.

[^11]and
\[

$$
\begin{equation*}
\mathrm{ABC}: X P Q=U \mathrm{U}^{\prime}: \mathrm{U}^{\prime} \mathrm{K} \tag{11}
\end{equation*}
$$

\] $A B C: X P^{\prime} Q^{\prime}=U U^{\prime}: U K$

Figure 9.

Draw $A^{\prime} X^{\prime}$ perpendicular to $P Q$;
then X^{\prime} is the mid point of $P Q$.
Because $\quad \angle \mathrm{UCA}^{\prime}=\frac{1}{2} \mathrm{~A}=\angle \mathrm{A}^{\prime} \mathrm{PX}^{\prime}$,
therefore the right-angled triangles $\mathrm{UA}^{\prime} \mathrm{C} \mathrm{A}^{\prime} \mathrm{X}^{\prime} \mathrm{P}$ are similar;
therefore $\quad A^{\prime} \mathbf{C}^{2}: \mathrm{X}^{\prime} \mathrm{P}^{2}=\mathrm{UC}^{2}: \mathrm{A}^{\prime} \mathrm{P}^{2}$.
But

$$
\begin{aligned}
\mathrm{ABC}: \mathrm{XPQ} & =\mathrm{BC}^{2}: \mathrm{PQ}^{2} \\
& =\mathrm{A}^{\prime} \mathrm{C}^{2}: \mathrm{X}^{\prime} \mathrm{P}^{2}:
\end{aligned}
$$

therefore

$$
\begin{aligned}
\mathbf{A B C}: \mathbf{X P Q} & =\mathbf{U C}^{2}: \mathbf{A}^{\prime} \mathbf{P}^{2} \\
& =\mathbf{A}^{\prime} \mathbf{U} \cdot \mathbf{U U}^{\prime}: \mathbf{A}^{\prime} \mathbf{U} \cdot \mathbf{U K}^{\prime} \\
& =\mathbf{U U} U^{\prime}: \\
& =\mathbf{U K} \\
& =\mathbf{U U} \quad: \quad \mathbf{U}^{\prime} \mathbf{K}
\end{aligned}
$$

For another proof see $\$ 1,(28)$.
In a similar manner it may be shown that

$$
\mathrm{ABC}: \mathrm{XP}^{\prime} \mathrm{Q}^{\prime}=\mathrm{U}^{\prime}: \mathrm{UK} .
$$

(12) Because

$$
\mathrm{U}^{\prime} \mathrm{K}+\mathrm{UK}=\mathrm{U}^{\prime}
$$

another proof is obtained of the theorem that

$$
\mathbf{A B C}=\mathbf{X P Q}+X P^{\prime} \mathbf{Q}^{\prime}
$$

(13) If the base $B C$ and the vertical angle A be given, and if in AU AU' the bisectors of the interior and exterior angles at A, there be taken $A P$ equal to half the sum, and $A Q$ equal to half the difference of the sides, the loci of P and Q are two circles. If their radii be denoted by $r^{\prime} r^{\prime \prime}$ and the radius of the circle inscribed in CUU' by $r^{\prime \prime \prime}$, then

$$
\mathrm{R}=r^{\prime}+r^{\prime \prime}+r^{\prime \prime \prime}
$$

Mr G. Robinson, jun., Hexham, in the Lady's and Gentleman's Diary for 1862, p. 74. Two solutions will be found in the Diary for 1863, pp. 49-50.

If through A^{\prime} a perpendicular is drawn to $B C$, then AD $A D_{1} A D, A D$, will intersect this perpendicular at
R, II $R_{: ~: ~}^{\text {e }}$, such that*
$\mathbf{A}^{\prime} \mathrm{R}=r \quad \mathbf{A}^{\prime} \mathrm{R}_{1}=r_{1} \quad \mathbf{A}^{\prime} \mathrm{R}_{2}=r_{2} \quad \mathbf{A}^{\prime} \mathrm{R}_{3}=r_{3}$

Figure 16.

Let $D T$ produced meet AD_{1} at D^{\prime}.
Since the line joining the extremities of two parallel and similarly directed radii of two circles passes through their external homothetic centre; and since A is the external homothetic centre of the circles I_{1} and I, and $1_{1} \mathrm{D}_{1}$ (1)' are parallel ; therefore ID^{\prime} is a madius of the incirele I , and $\mathrm{DD}=\underline{2} r$.

Now since $A^{\prime} D=A^{\prime} D_{1}$, and $A^{\prime} \mathrm{l}$ is parallel to $D^{\prime} D^{\prime}$, therefore $\quad A^{\prime} R=!D^{\prime}=r$.

Similarly for the other equalities
(1) Through B^{\prime}, the mid point of CA, a perpendicular to CA is drawn, and this perpendicular is intersected by

-	$B E$	BE_{1}	BE_{2}	$\mathrm{BE}_{: 3}$
in the points	S_{2}	$\mathrm{~S}_{3}$	S	$\mathrm{~S}_{1} ;$

through C^{\prime}, the mid point of $A B$, a perpendicular to $A B$ is drawn, and this perpendicular is intersected by
$\begin{array}{llll}\mathrm{CF} & \mathrm{CF}_{1} & \mathrm{CF}_{2} & \mathrm{CF} \\ :\end{array}$
in the points $\quad \mathrm{T}_{;} \quad \mathrm{T}_{2} \quad \Gamma_{1} \quad \mathrm{~T}$ respectively; then

$$
\begin{array}{llll}
\mathrm{B}^{\prime} \mathrm{S}=r & \mathrm{~B}^{\prime} \mathrm{S}_{1}=r_{1} & \mathrm{~B}^{\prime} \mathrm{S}_{2}=r_{2} & \mathrm{~B}^{\prime} \mathrm{S}_{3}=r_{3} \\
\mathrm{C}^{\prime \mathrm{T}}=r & \mathrm{C}^{\prime} \mathrm{T}_{1}=r_{1} & \mathrm{C}^{\prime} \mathrm{T}_{2}=r_{2} & \mathrm{C}^{\prime} \mathrm{T}_{3}=r_{3} .
\end{array}
$$

[^12](2) The four triangles RST $\mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{~T}_{1} \mathrm{R}_{2} \mathrm{~S}_{2} \mathrm{~T}_{2} \mathrm{R}_{: 2} \mathrm{~S}_{7}^{\prime} \mathrm{T}_{:}$are inversely similar to $A B C$; they have O, the circumcentre of ABC , for their common centre of homology, and $\mathrm{OI}_{\mathrm{O}} \mathrm{OI}_{1} \mathrm{OI}_{2} \mathrm{OI}_{3}$ for the diameters of their circumeircles.

Figure 17.
Since

$$
\mathrm{A}^{\prime} \mathrm{R}_{1}=r_{1}=\mathrm{I}_{1} \mathrm{D}_{1}
$$

therefore $\quad-I_{1} R_{1} A^{\prime}$ is right.
Similarly $\angle I_{1} S_{1} B^{\prime}$ and $\angle I_{1} T_{1} C^{\prime}$ are right;
therefore the circle whose diameter is $O I_{1}$
passes through $\mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{~T}_{1}$.
Since $R_{1} S_{1} O_{1} T_{1}$ are concyclic,
therefore

$$
\begin{aligned}
-\mathrm{S}_{1} \mathrm{R}_{1} \mathrm{~T}_{1} & =180^{\circ}--\mathrm{S}_{1} \mathrm{OT}_{1} \\
& =180--\mathrm{B}^{\prime} \mathrm{OC}^{\prime} \\
& =\mathrm{A}:
\end{aligned}
$$

and

$$
-\mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{~T}_{1}=-\mathrm{R}_{1} \mathrm{OT}_{1}=\mathrm{B}
$$

since $T_{1} O \mathrm{R}_{1} \mathrm{O}$ are respectively perpendicular to AB BC ; therefore triangle $R_{1} S_{1} T_{1}$ is similar to $A B C$.
(3) Let the mid points of $\mathrm{OI} \mathrm{OI}_{1} \mathrm{OI}_{2} \mathrm{OI}_{3}$, be denoted by

$$
\begin{array}{lllll}
I^{\prime} & I_{1}^{\prime} & I_{2}^{\prime} & I_{3}^{\prime}
\end{array}
$$

then $\mathrm{I}_{1}{ }^{\prime} \mathrm{I}_{2}^{\prime} \mathrm{I}_{3}^{\prime} \mathrm{I}^{\prime}$ is an orthic tetrastigm, similar and similarly situated to the tetrastigm $\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3} \mathrm{I}$, and the radius of the circumcircle of any of its four triangles is R.

For the radius of the circumcircle of any of the four triangles of the orthic tetrastigm $\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{;} \mathrm{I}$ is $2 R$.
(4) Let AI BI CI meet the circumcircle of ABC in $\mathrm{U} V \mathrm{~W}$, and let the points diametrically opposite to $\mathrm{U} V \mathrm{~W}$ be $U^{\prime} V^{\prime} W^{\prime}$.

Then I is the orthocentre of the triangle UVW. Now since 0 is the circumcentre of UVW, therefore I^{\prime} is the nine-point centre of the four triangles of the orthic tetrastigm UVWI.

In like manner since I_{1} is the orthocentre, and O the circumcentre of the triangle $U V^{\prime} W^{\prime}, \quad I_{1}^{\prime}$ is the nine-point centre of the four triangles of the orthic tetrastigm $U V^{\prime} W^{\prime} I_{1}$; and similarly for $I_{2}^{\prime} I_{3}^{\prime}$.

See Proceedings of the Edinhurgh Mathematical Society, Vol. I., pp. 54-5 (1894).
(5) The sum of the circumcircles of the four RST triangles is three times the circumcircle of ABC .

Since circles are proportional to the squares of their diameters, the circumcircle of ABC is to the sum of the four RST circles as $4 \mathrm{R}^{2}$ is to $\mathrm{OI}^{3}+\mathrm{OI}_{1}{ }^{2}+\mathrm{OI}_{2}{ }^{3}+\mathrm{OI}_{3}{ }^{2}$.

Now

$$
\begin{aligned}
\Sigma\left(O T^{2}\right) & =4 \mathrm{R}^{2}+2 \mathrm{R}\left(r_{1}+r_{2}+r_{3}-r\right) \\
& =4 \mathrm{R}^{2}+2 \mathrm{R} \cdot 4 \mathrm{R} \\
& =12 \mathrm{R}^{2} .
\end{aligned}
$$

$\$ 6$.

Figure 18.
-
Through I draw a parallel to $B C$ meeting $U U^{\prime}$ in K_{0} and $A X$ in X_{0}; join UD DX 0_{0}.

Because

$$
\mathbf{A}^{\prime} \mathbf{D}^{2}=\mathbf{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathbf{L}
$$

therefore
$\mathbf{A}^{\prime} \mathbf{D}: \mathbf{A}^{\prime} \mathbf{X}=\mathbf{A}^{\prime} \mathbf{L}: \mathbf{A}^{\prime} \mathbf{D}$
that is

$$
A^{\prime} D: K_{0} X_{0}=A^{\prime} L: K_{0} I
$$

$$
=\mathrm{UA}^{\prime}: \mathrm{UK}_{0}
$$

therefore the points U D X ${ }_{0}$ are collinear.

[^13]> If UD UD ${ }_{1} U^{\prime} D_{2} U^{\prime} D_{3}$ intersect $A X$ at $X_{0} X_{1} X_{2} X_{3}$; then ${ }^{*} \quad \mathrm{XX}_{0}=r \quad \mathrm{XX}_{1}=r_{1} \quad \mathrm{XX}_{2}=r_{2} \quad \mathrm{XX}_{3}=r_{3}$

Similarly, if through \mathbf{I}_{1} a parallel be drawn to $B C$ meeting AX in X_{1}, it may be proved that $\mathrm{U} \mathrm{D}_{1} \mathrm{X}_{1}$ are collinear.

Through I_{3} draw a parallel to $B C$ meeting $U U^{\prime}$ in K_{3} and $A X$ in $X_{3} ;$ join $U^{\prime} D_{3} D_{3} X_{3}$.

Because	$\mathbf{A}^{\prime} \mathbf{D}_{3}{ }^{2}=\mathbf{A}^{\prime} \mathbf{X} \cdot \mathbf{A}^{\prime} \mathbf{L}^{\prime}$
therefore	$\mathbf{A}^{\prime} \mathbf{D}_{3}: \mathbf{A}^{\prime} \mathbf{X}=\mathbf{A}^{\prime} \mathbf{L}^{\prime}: \mathbf{A}^{\prime} \mathbf{D}_{3}$
that is	$A^{\prime} D_{3}: K_{3} \mathrm{X}_{3}=A^{\prime} L^{\prime}: \mathrm{K}_{3} \mathrm{I}_{3}$
	$=\mathrm{U}^{\prime} \mathbf{A}^{\prime}: \mathrm{U}^{\prime} \mathrm{K}_{3}$

therefore the points $\mathrm{U}^{\prime} \mathrm{D}_{3} \mathrm{X}_{3}$ are collinear.

Similarly for the points $\mathrm{U}^{\prime} \mathrm{D}_{2} \mathrm{X}_{2}$

$$
\begin{align*}
& \text { VE V' } \mathrm{E}_{1} \quad \mathrm{VE}_{2} \quad \mathrm{~V}^{\prime} \mathrm{E}_{3} \text { intersect } \mathrm{BY} \text { at } \tag{1}\\
& \begin{array}{lllll}
\mathrm{Y}_{0} & \mathrm{Y}_{1} & \mathrm{Y}_{2} & \mathrm{Y}_{3} ; \text {; and }
\end{array} \\
& \text { WF W' } \mathrm{F}_{1} \quad \mathrm{~W}^{\prime} \mathrm{E}_{2} \quad \mathrm{WF}_{3} \text { intersect } \mathrm{CZ} \text { at } \\
& \begin{array}{lllll}
Z_{0} & Z_{1} & Z_{2} & Z_{3} & \text { such that }
\end{array} \\
& \mathrm{Y}_{0}=r \quad \mathrm{Y}_{1}=r_{1} \quad \mathrm{YY}_{2}=r_{2} \quad \mathrm{YY}_{3}=r_{3} \\
& Z Z_{0}=r \quad Z Z_{1}=r_{1} \quad \mathrm{Z} \mathrm{Z}_{2}=r_{2} \quad \mathrm{Z} \mathrm{Z}_{3}=r_{3} .
\end{align*}
$$

(2) The four triangles $X_{0} X_{0} Z_{0} \quad X_{1} Y_{1} Z_{1} \quad X_{2} Y_{2} Z_{2} X_{3} Y_{3} Z_{3}$ are inversely similar to $A B C$; they have H, the orthocentre of ABC , for their common centre of homology, and $\mathrm{HI} \mathrm{HI}_{1} \mathrm{HI}_{2} \mathrm{HI}_{\text {: }}$ for the diameters of their circumcircles.

Figure 19.

Since

$$
\mathrm{XX}_{1}=r_{1}=\mathrm{I}_{1} \mathrm{D}_{1}
$$

therefore $-\mathrm{I}_{1} \mathrm{X}_{1} \mathrm{X}$ is right.
Similarly $-I_{1} Y_{1} Y$ and $-1_{1} Z_{1} Z$ are right ; therefore the circle whose diameter is HI
passes through $\quad X_{1} \mathbf{Y}_{1} Z_{1}$.

Since $X_{1} Y_{1} H Z_{1}$ are concyclic
therefore

$$
\begin{aligned}
\angle \mathbf{Y}_{1} \mathbf{X}_{1} \mathbf{Z}_{1} & =180^{\circ}-\angle \mathbf{Y}_{1} \mathbf{H} Z_{1} \\
& =A ; \\
\angle X_{1} Y_{1} Z_{1} & =\angle \mathbf{X}_{1} H Z_{1}=B,
\end{aligned}
$$

and
since $Z_{1} H X_{1} H$ are respectively perpendicular to $A B B C$;
therefore triangle $X_{1} Y_{1} Z_{1}$ is similar to $A B C$.
(3) The mid points of $\mathrm{HI} \mathrm{HI} \mathrm{HI}_{2} \mathrm{HI}_{3}$ form an orthic tetrastigm similar and similarly situated to the tetrastigm $I_{1} I_{2} I_{3} I$, and the radius of the circumcircle of any of its four triangles is R.
(4) The sum of the circumcircles of the four triangles $X_{0} Y_{0} Z_{0} \ldots$ is four times the sum of the circumcircles of the three triangles

AYZ XBZ XYC.

It will be seen from a subsequent Section that the values* of $\mathrm{HI}^{2} \ldots$ may be written

$$
\begin{gathered}
\mathrm{HI}^{2}=4\left(\mathrm{R}^{2}-2 \mathrm{R} r\right)+b c+c a+a b-\left(a^{2}+b^{2}+c^{2}\right) \\
\mathrm{HI}_{1}{ }^{2}=4\left(\mathrm{R}^{2}+2 \mathrm{R} r_{1}\right)+b c-c a-a b-\left(a^{2}+b^{2}+c^{2}\right) \\
\mathrm{HI}_{2}{ }^{2}=4\left(\mathrm{R}^{2}+2 \mathrm{R} r_{2}\right)-b c+c a-a b-\left(a^{2}+b^{2}+c^{2}\right) \\
\mathrm{HI}_{3}{ }^{2}=4\left(\mathrm{R}^{2}+2 \mathrm{R} r_{3}\right)-b c-c a+a b-\left(a^{2}+b^{2}+c^{2}\right) \\
\Sigma\left(\mathrm{HI}^{2}\right)=4\left(12 \mathrm{R}^{2}-a^{2}-b^{2}-c^{2}\right) \\
=4\left(\mathrm{HA}^{2}+\mathrm{HB}^{2}+\mathrm{HC}^{2}\right)
\end{gathered}
$$

Hence

See Proceedings of the Edinburgh Mathematical Society, Vol. I., p. 63 (1894).

The statement that

$$
\mathrm{HA}^{2}+\mathrm{HB}^{2}+\mathrm{HC}^{2}=12 \mathrm{R}^{2}-a^{2}-b^{2}-c^{2}
$$

may be proved as follows.
Figure 20.

[^14]

by a theorom of Brahmegupta.

Similarly $\quad \mathrm{CA}^{2}+\mathrm{HB}^{2}=\mathrm{AB}^{2}+\mathrm{HC}^{2}=4 \mathrm{R}^{2}$
For another proof see Feuerbach, Eiyenschaften...dcs...Dreiccks, Section VI., Theorem 2.

$$
\$ 7 .
$$

If $A^{\prime} \mathrm{I} \quad A^{\prime} I_{1} A^{\prime} I_{2} \quad A^{\prime} I_{3}$ intersect $A X$ at $\mathrm{X}_{0} \quad \mathrm{X}_{1} \quad \mathrm{X}_{2} \quad \mathrm{X}_{3} \quad$ then*

$$
\mathrm{AX}_{0}=r \quad \mathrm{AX}_{1}=r_{1} \quad \mathrm{AX}_{2}=r_{2} \quad \mathrm{AX}_{3}=r_{3}
$$

Figure 21.

Join CU, and draw the radius of the incircle IE.
Then $\quad \angle \mathrm{UCA}^{\prime}=\angle \mathrm{IAE}$;
therefore triangles $C U A^{\prime}$ AIE are similar ;
therefore $\quad \mathrm{CU}: \mathrm{UA}^{\prime}=\mathrm{AI}: \mathrm{IE}$
Now $\quad C U: U^{\prime} \Lambda^{\prime}=T U: U A^{\prime}$

$$
=\mathrm{AI}: A \mathrm{X}_{0}
$$

therefore
$\mathrm{AX}_{0}=\mathrm{IE}=r$
Similarly $\quad \mathrm{AX}_{1}=r_{1}$.

[^15]If CU^{\prime} be joined, and $\mathrm{I}_{3} \mathrm{E}_{3}$ the radius of the third excircle be drawn, then triangles $\mathrm{CU}^{\prime} \mathrm{A}^{\prime} \mathrm{AI}_{3} \mathrm{E}_{3}$ will be similar, and since

$$
\mathrm{CU}^{\prime}=\mathrm{I}_{3} \mathrm{U}^{\prime}
$$

it may be shown that $\mathrm{AX}_{3}=\mathrm{I}_{3} \mathrm{E}_{3}=r_{3}$.
Corresponding to the four X points situated on $A X$, there will be four \mathbf{Y} points, $\mathbf{Y}_{0} \mathbf{Y}_{1} \mathbf{Y}_{2} \mathbf{Y}_{3}$, situated on $B Y$, and four Z points, $Z_{0} Z_{1} Z_{2} Z_{3}$ situated on CZ.

Some of the properties of this collection of points will be found in the Proceedings of the Edinburgh Mathematical Society, Vol. I., pp. 89-96 (1894).

$$
\S 8
$$

Figure 23.

If the needians $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{CC}^{\prime}$ be intersected by the radii at the points

D I	E I	FI	L_{4}	M_{3}	$\mathrm{~N}_{0}$
$\mathrm{D}_{1} \mathrm{I}_{1}$	$\mathrm{E}_{1} \mathrm{I}_{1}$	$\mathrm{~F}_{1} \mathrm{I}_{1}$	$\mathrm{~L}_{1}$	M_{1}	$\mathrm{~N}_{1}$
$\mathrm{D}_{2} \mathrm{I}_{2}$	$\mathrm{E}_{2} \mathrm{I}_{2}$	$\mathrm{~F}_{2} \mathrm{I}_{2}$	$\mathrm{~L}_{2}$	M_{2}	$\mathrm{~N}_{2}$
$\mathrm{D}_{3} \mathrm{I}_{3}$	$\mathrm{E}_{3} \mathrm{I}_{3}$	$\mathrm{~F}_{3} \mathrm{I}_{3}$	$\mathrm{~L}_{3}$	M_{3}	$\mathrm{~N}_{3}$

then*

$$
\begin{array}{lll}
\mathrm{D} \mathrm{~L}_{0}=\frac{2 \Delta}{b+c} & \mathrm{E} \mathrm{M}_{0}=\frac{2 \Delta}{c+a} & \mathrm{~F} \mathrm{~N}_{1}=\frac{2 \Delta}{a+b} \\
\mathrm{D}_{1} \mathrm{~L}_{1}=-\frac{2 \Delta}{b+c} & \mathrm{E}_{1} \mathrm{M}_{1}=-\frac{2 \Delta}{a-c} & \mathrm{~F}_{1} \mathrm{~N}_{1}=-\frac{2 \Delta}{a-b} \\
\mathrm{D}_{2} \mathrm{~L}_{2}=-\frac{2 \Delta}{b-c} & \mathrm{E}_{2} \mathrm{M}_{2}=-\frac{2 \Delta}{c+a} & \mathrm{~F}_{2} \mathrm{~N}_{2}=\frac{2 \Delta}{a-b} \\
\mathrm{D}_{3} \mathrm{~L}_{3}=\frac{2 \Delta}{b-c} & \mathrm{E}_{3} \mathrm{M}_{3}=\frac{2 \triangle}{a-c} & \mathrm{~F}_{3} \mathrm{~N}_{\mathrm{j}}=-\frac{2 \Delta}{a+b}
\end{array}
$$

the distances of the L points from $B C$ being considered positive when $[$, is on the same side of $B C$ as A, and negative when

[^16]it is on the opposite side from A. A similar convention holds for the M and the N points.

Figure 22.
Let AI meet BC at L; draw LS ITT perpendicular to AC AB , and AX perpendicular to BC .

Then

$$
\begin{aligned}
\mathbf{A}^{\prime} \mathrm{L}: \mathbf{A}^{\prime} \mathrm{J} & =\mathrm{A}^{\prime} \mathrm{D}: \mathbf{A}^{\prime} \mathbf{X} \\
& =\mathrm{L}_{0} \mathrm{D}: \mathbf{A} \mathbf{X} .
\end{aligned}
$$

Now

$$
\begin{array}{rlrl}
\mathbf{A}^{\prime} \mathrm{L}: \mathrm{A}^{\prime} \mathrm{D} & =\mathbf{A}^{\prime} \mathrm{D}-\mathrm{A}^{\prime} \mathrm{L}: \mathrm{A}^{\prime} \mathbf{X}-\mathrm{A}^{\prime} \mathrm{D} \\
& =\mathrm{LD} & & : \mathbf{D X} \\
& =\mathrm{LI} & & : \mathrm{IA} \\
& =\mathrm{LB} & & : \mathbf{B A} \\
& =\mathrm{LT} & & : \mathbf{A X} ;
\end{array}
$$

therefore $\quad \mathrm{L}_{0} \mathrm{D}=\mathrm{LT}=\mathrm{LS}$
Again $L S \cdot A C+L T \cdot A B=2 A B C$
therefore $\quad \mathrm{L}_{0} \mathrm{D}(b+c)=2 \triangle$
Similarly for the other equalities
(1) $L_{0} M_{0} N_{0}$ lie on EF FD DE ; and similarly for $\mathrm{L}_{1} \mathrm{M}_{1} \mathrm{~N}_{1} \ldots \ldots$

A proof of this will be found in the Proceedings of the Edinburgh Mathematical Society, Vol. I., pp. 57-8 (1894).
(2)

$$
\begin{aligned}
& \frac{1}{D \mathrm{~L}_{0}}+\frac{1}{\mathrm{D}_{1} \mathrm{~L}_{1}}+\frac{1}{\mathrm{D}_{2} \mathrm{~L}_{2}}+\frac{1}{\mathrm{D}_{3} \mathrm{~L}_{3}} \\
= & \frac{1}{\mathrm{EM} M_{0}}+\frac{1}{\mathrm{E}_{1} \mathrm{M}_{1}}+\frac{1}{\mathrm{E}_{2} \mathrm{M}_{2}}+\frac{1}{\mathrm{E}_{3} \mathrm{M}_{3}} \\
= & \frac{1}{\mathrm{~F} \mathrm{~N}_{0}}+\frac{1}{\mathrm{~F}_{1} \mathrm{~N}_{1}}+\frac{1}{\mathrm{~F}_{2} \mathrm{~N}_{2}}+\frac{1}{\mathrm{~F}_{3} \mathrm{~N}_{3}}=0
\end{aligned}
$$

(3)*

$$
\begin{aligned}
& \frac{1}{\mathrm{DI}_{0}}+\frac{1}{\mathrm{EM}_{0}}+\frac{1}{\mathrm{~F} \mathrm{~N}_{0}}=\frac{2}{r} \\
& \frac{1}{\mathrm{D}_{1} \mathrm{~L}_{1}}+\frac{1}{\mathrm{E}_{1} \mathrm{M}_{1}}+\frac{1}{\mathrm{~F}_{1} \mathrm{~N}_{1}}=-\frac{2}{h_{1}} \\
& \frac{1}{\mathrm{D}_{2} \mathrm{~L}_{2}}+\frac{1}{\mathrm{E}_{2} \mathrm{M}_{2}}+\frac{1}{\mathrm{~F}_{2} \mathrm{~N}_{2}}=-\frac{2}{h_{2}} \\
& \frac{1}{\mathrm{D}_{3} \mathrm{~L}_{3}}+\frac{1}{\mathrm{E}_{3} \mathrm{M}_{3}}+\frac{1}{\mathrm{~F}_{3} \mathrm{~N}_{3}}=-\frac{2}{h_{3}}
\end{aligned}
$$

(4) The diagonals of the following pairs of parallelograms

$$
\begin{array}{ccccc}
\mathrm{DL}_{0} \mathrm{D}_{1} \mathrm{I}_{1} & \mathrm{D}_{2} \mathrm{~L}_{2} \mathrm{D}_{3} \mathrm{~L}_{3} & \text { intersect at } & \mathrm{A}^{\prime} \\
\mathrm{EM}_{0} \mathrm{E}_{2} \mathrm{M}_{2} & \mathrm{E}_{3} \mathrm{M}_{3} \mathrm{E}_{1} \mathrm{M}_{1} & " & " & \mathrm{~B}^{\prime} \\
\mathrm{FN}_{0} \mathrm{~F}_{3} \mathrm{~N}_{3} & \mathrm{~F}_{1} \mathrm{~N}_{1} \mathrm{E}_{2} \mathrm{~N}_{2} & " & " & \mathrm{C}^{\prime}
\end{array}
$$

(5) The four LMN triangles are homologous, and their centre of homology is G the centroid of $A B C$.
(6) $\dagger \quad \mathbf{A}^{\prime} \mathbf{U}: \mathbf{A}^{\prime} \mathrm{U}-\mathrm{I}_{\mathrm{L}_{0}}=\mathrm{A}^{\prime} \mathrm{U}: \mathrm{I}_{1} \mathrm{~L}_{1}-\mathbf{A}^{\prime} \mathrm{U}=b+c: a$
$\mathbf{A}^{\prime} \mathrm{U}^{\prime}: \mathrm{I}_{2} \mathrm{~L}_{2}+\mathrm{A}^{\prime} \mathrm{U}^{\prime}=\mathrm{A}^{\prime} \mathrm{U}^{\prime}: \mathrm{I}_{3} \mathrm{~L}_{3}-\mathrm{A}^{\prime} \mathrm{U}^{\prime}=b-c: a$
Figure 23.
From I U draw IE US perpendicular to AC.
Then

$$
\mathrm{AS}=\frac{1}{2}(b+c) \quad \mathrm{AE}=\frac{1}{2}(b+c-a) .
$$

Now

$$
\begin{aligned}
\mathrm{A}^{\prime} \mathrm{U}: \mathrm{IL}_{0} & =\mathrm{UA}: \mathrm{IA} \\
& =\mathrm{AS}: \mathrm{AE} \\
& =b+c: b+c-a ; \\
\mathrm{A}^{\prime} \mathrm{U}: \mathrm{A}^{\prime} \mathrm{U}-\mathrm{IL}_{0} & =b+c: \boldsymbol{a}
\end{aligned}
$$

therefore

$$
\begin{align*}
& 2 A^{\prime} U=I L_{0}+I_{1} L_{1} \tag{7}\\
& 2 A^{\prime} U^{\prime}=I_{2} L_{2}-I_{3} L_{3}
\end{align*}
$$

therefore

$$
4 \mathrm{R}=\mathrm{I}_{0}+\mathrm{I}_{1} \mathrm{~L}_{1}+\mathrm{I}_{2} \mathrm{~L}_{2}-\mathrm{I}_{3} \mathrm{~L}_{3}
$$

[^17](8) If through $I \quad I_{1} \quad I_{2} \quad I_{: 3}$ parallels be drawn to $B C$, meeting UU^{\prime} in $\mathrm{K} \mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$, then*
\[

$$
\begin{aligned}
& \mathrm{UK}=\mathrm{UK}_{1}=\mathrm{US} \\
& \mathrm{U}^{\prime} \mathrm{K}_{2}=\mathrm{U}^{\prime} \mathrm{K}_{3}=\mathrm{U}^{\prime} \mathrm{S}^{\prime}
\end{aligned}
$$
\]

where US U'S' are perpendicular to AC.
For the right-angled triangles CUS TUK are congruent, since

$$
\mathrm{UC}=\mathrm{UT},
$$

and

$$
\angle \mathrm{CUS}=\frac{1}{2}(\mathrm{~B}-\mathrm{C})=\angle \mathrm{IUK} .
$$

Formulae connected with the Angular Bisectors of a Triangle limited at their points of intersection with each other.

The notation

$$
\mathrm{AI}=a \quad \mathrm{AI}=\beta \quad \mathrm{CI}=\gamma, \quad \text { etc }
$$

was suggested by T. S. Davies in the Lady's and Gentleman's Diary for 1842, p. 77, and adopted by Thomas Weddle in his admirable papers entitled "Symmetrical Properties of Plane Triangles," which appeared in the same publication (1843, 1845, 1848).

Neither Davies nor Weddle makes use of the equivalents for II_{1}, etc., namely $a_{1}-a$, etc. Although the employment of these equivalents somewhat lengthens the formulae, it seems to me that it renders their symmetry a little more apparent.

In connection with the ascription, in the historical notes, of the great majority of the following formulae to Weddle, it is right to call attention to a letter of T. S. Davies in the Lady's and Gentleman's Diary for 1849, pp. 90-1, in which he states that when he undertook to arrange and systematise those properties of the triangle communicated to him, several sets of papers came into his hands, the most ample and elegant of which were those of Messrs Weddle and J. W. Elliott. The letter continues:
"I feel it to be due to him [Mr Elliott] to say that the names both of Mr Weddle and Mr Elliott might fairly have been prefixed to the far greater number of the properties, whilst each gentleman would have had a few properties designated as peculiar to himself."

I might have considerably shortened the lists of the formulae by giving only the leading identities, and referring the reader to Mr Lemoine's scheme of continuous transformation. I have done so here and there, but in general I bave

[^18]either left or made the list complete in order that the reader who consults it may find ready to his hand the particular scrap of information of which he is in search. A table of logarithms which gave the logarithms of the prime numbers only would certainly be of some use, but merely to a select few.

Mr R. F. Muirhead suggests to me $t_{1} t_{2} t_{3}$ as a convenient mathematical translation of Mr Lemoine's transformation continue en A, en B, en C. Here is the t_{1} applicable to the formulae which follow.
$\left.\begin{array}{ccccccccccccccc}a & b & r & s & r_{1} & s_{2} & s_{3} & r & r_{1} & r_{2} & r_{3} & h_{1} & h_{2} & h_{3} \\ \text { change into }\end{array}\right]$
$\begin{array}{llllllllllll}\mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{R} & \triangle & l_{1} & l_{2} & l_{3} & \lambda_{1} & \lambda_{2} & \lambda_{3}\end{array}$ change into

- $\mathrm{A} 180^{\circ}-\mathrm{B} 180^{\circ}-\mathrm{C}-\mathrm{R}-\triangle-l_{1}-\lambda_{2}-\lambda_{1} \lambda_{1}-l_{2}-l_{3}$

$$
\left.\begin{array}{cccccccccccc}
\alpha & a_{1} & a_{2} & \alpha_{3} & \beta & \beta & \beta_{1} & \beta_{2} & \beta_{3} & \gamma & \gamma_{1} & \gamma_{2}
\end{array} \gamma_{3} \begin{array}{c}
\text { change into }
\end{array}\right]
$$

$$
\begin{align*}
a^{2}=\left(r_{2}-r\right)\left(r_{3}-r\right) & a_{1}^{2}=\left(r_{3}+r_{1}\right)\left(r_{1}+r_{2}\right) \\
\beta^{2}=\left(r_{3}-r\right)\left(r_{1}-r\right) & \beta_{1}^{2}=\left(r_{1}+r_{2}\right)\left(r_{1}-r\right) \\
\gamma^{2}=\left(r_{1}-r\right)\left(r_{2}-r\right) & \gamma_{1}^{2}=\left(r_{1}-r\right)\left(r_{3}+r_{1}\right) \\
a_{2}{ }^{2}=\left(r_{2}-r\right)\left(r_{1}+r_{2}\right) & a_{3}^{2}=\left(r_{3}+r_{1}\right)\left(r_{3}-r\right) \tag{1}\\
\beta_{2}{ }^{2}=\left(r_{1}+r_{2}\right)\left(r_{2}+r_{3}\right) & \beta_{3}{ }^{2}=\left(r_{3}-r\right)\left(r_{2}+r_{3}\right) \\
\gamma_{2}^{2}=\left(r_{3}+r_{3}\right)\left(r_{2}-r\right) & \gamma_{3}=\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)
\end{align*}
$$

Weddle remarks that these twelve equations along with the three in (55) of the r formulae* give the values of all the products of every two of the six quantities

$$
r_{1}-r \quad r_{2}-r \quad r_{3}-r \quad r_{2}+r_{3} \quad r_{3}+r_{1} \quad r_{1}+r_{2}
$$

[^19]\[

$$
\begin{equation*}
a a_{1} a_{2} a_{3}=b^{2} c^{2} \quad \beta \beta_{1} \beta_{2} \beta_{3}=c^{2} a^{2} \quad \gamma \gamma_{1} \gamma_{2} \gamma_{3}=a^{2} b^{2} \tag{5}
\end{equation*}
$$

\]

$$
\begin{gather*}
a \beta \gamma_{1} \beta_{1} \gamma_{1} \alpha_{2} \beta_{2} \gamma_{2} \alpha_{3} \beta_{3} \gamma_{3}=(a b c)^{4} \tag{6}\\
a \beta_{1} \gamma_{3}=a \beta_{2} \gamma_{1}=\alpha_{1} \beta \gamma_{2}=a_{1} \beta_{3} \gamma \\
=\alpha_{2} \beta \gamma_{3}=a_{2} \beta_{: 3} \gamma_{1}=\alpha_{3} \beta_{1} \gamma_{2}=a_{3} \beta_{2} \gamma=a b c \tag{7}
\end{gather*}
$$

$$
\begin{align*}
& a \beta \gamma: a b c=a b c: a_{1} \beta_{2} \gamma_{:} \\
& a_{1} \beta_{1} \gamma_{1}: a b c=a b c: a \beta_{3} \gamma_{2} \\
& \alpha_{2} \beta_{2} \gamma_{2}: a b c=a b c: a_{3} \beta \gamma_{1} \tag{8}\\
& \alpha_{3} \beta_{3} \gamma_{3}: a b c=a b c: a_{2} \beta_{1} \gamma
\end{align*}
$$

$$
\begin{align*}
& a=\frac{\sqrt{b c r_{1}}}{r_{1}} \quad \beta=\frac{\sqrt{c a r r_{2}}}{r_{2}} \quad \gamma=\frac{\sqrt{\text { larr } r_{3}}}{r_{3}} \\
& \alpha_{1}=\frac{\sqrt{\overline{b c r r_{1}}}}{r} \quad \beta_{2}=\frac{\sqrt{c a r r_{2}}}{r} \quad \gamma_{3}=\frac{\sqrt{a b r r_{3}}}{r} \\
& \alpha_{2}=\frac{\sqrt{b c r_{2} r_{i}}}{r_{3}} \quad \beta_{3}=\frac{\sqrt{c a r_{i} r_{1}}}{r_{1}} \quad \gamma_{1}=\frac{\sqrt{a b r_{1} r_{2}}}{r_{2}^{*}} \tag{2}\\
& a_{3}=\frac{\sqrt{b c r_{2} r_{2}}}{r_{2}} \quad \beta_{1}=\frac{\sqrt{c a r_{3} r_{1}}}{r_{3}} \quad \gamma_{2}=\frac{\sqrt{a b r_{1} r_{2}}}{r_{1}} \\
& \frac{\alpha}{r}=\frac{\alpha_{1}}{r_{1}}=\frac{\alpha_{2}}{s_{i j}}=\frac{u_{i}}{s_{2}} \quad \frac{\alpha}{s_{1}}=\frac{a_{1}}{s}=\frac{a_{2}}{r_{2}}=\frac{a_{3}}{r_{: 3}} \\
& \frac{\beta}{r}=\frac{\beta_{1}}{s_{3}}=\frac{\beta_{2}}{r_{2}}=\frac{\beta_{3}}{s_{1}} \quad \frac{\beta}{s_{2}}=\frac{\beta_{1}}{r_{1}}=\frac{\beta_{2}}{s}=\frac{\beta_{3}}{r_{3}} \\
& \frac{\gamma}{r}=\frac{\gamma_{1}}{s_{2}}=\frac{\gamma_{2}}{s_{1}}=\frac{\gamma_{i}}{r_{3}} \quad \frac{\gamma}{s_{3}}=\frac{\gamma_{1}}{r_{1}}=\frac{\gamma_{2}}{r_{2}}=\frac{\gamma_{:}}{s} \\
& \alpha \alpha_{1}=\alpha_{2} \alpha_{3}=b c \quad \beta \beta_{2}=\beta_{2} \beta_{1}=c a \quad \gamma \gamma_{3}=\gamma_{1} \gamma_{2}=a b
\end{align*}
$$

$$
\begin{align*}
& \frac{\beta \gamma_{2}}{a}=\frac{\beta_{3} \gamma}{\alpha}=\frac{\beta_{1} \gamma_{3}}{a_{1}}=\frac{\beta_{2} \gamma_{1}}{a_{1}} \\
& =\frac{\beta_{1} \gamma_{2}}{a_{2}}=\frac{\beta_{2} \gamma}{\alpha_{2}}=\frac{\beta \gamma_{3}}{\alpha_{3}}=\frac{\beta_{3} \gamma_{1}}{a_{3}}=a \\
& \frac{a \gamma_{1}}{\beta}=\frac{a_{2} \gamma}{\beta}=\frac{a_{1} \gamma}{\beta_{1}}=\frac{a_{2} \gamma_{1}}{\beta_{1}} \tag{9}\\
& =\frac{a_{1} \gamma_{2}}{\beta_{2}}=\frac{a_{2} \gamma_{3}}{\beta_{2}}=\frac{a \gamma_{3}}{\beta_{3}}=\frac{a_{3} \gamma_{2}}{\beta_{3}}=b \\
& \frac{a \beta_{1}}{\gamma}=\frac{a_{2} \beta}{\gamma}=\frac{a_{1} \beta}{\gamma_{1}}=\frac{a_{3} \beta_{1}}{\gamma_{1}} \\
& =\frac{a \beta_{2}}{\gamma_{2}}=\frac{a_{2} \beta_{3}}{\gamma_{2}}=\frac{a_{1} \beta_{3}}{\gamma_{3}}=\frac{a_{3} \beta_{2}}{\gamma_{3}}=c
\end{align*}
$$

$: \beta=\gamma: r_{1}-r$	$a_{1}: \beta_{1}=\gamma_{1}: r_{1}-r$
$\beta: \alpha=\gamma: r_{2}-r$	$\beta_{1}: a_{1}=\gamma_{2}: r_{3}+r_{1}$
$\gamma: a=\beta: r_{3}-r$	$\gamma_{1}: a_{1}=\beta_{1}: r_{1}+r_{2}$
$a_{2}: \beta_{2}=\gamma_{2}: r_{2}+r_{3}$	$a_{3}: \beta_{3}=\gamma_{3}: r_{2}+r_{3}$
$\beta_{2}: \alpha_{2}=\gamma_{2}: r_{2}-r$	$\beta_{3}: \alpha_{3}=\gamma_{3}: r_{3}+r_{1}$
$\gamma_{2}: \alpha_{2}=\beta_{2}: r_{1}+r_{2}$	$\gamma_{3}: a_{3}=\beta_{3}: r_{3}-r$
$a_{1}: \beta_{2}=\gamma_{3}: r_{2}+r_{3}$	$a: \beta_{3}=\gamma_{2}: r_{2}+r_{3}$
$\beta_{2}: \alpha_{1}=\gamma_{3}: r_{3}+r_{1}$	$\beta_{3}: a=\gamma_{2}: r_{2}-r$
$\gamma_{3}: \alpha_{1}=\beta_{2}: r_{1}+r_{2}$	$\gamma_{2}: a=\beta_{3}: r_{3}-r$
$a_{3}: \beta=\gamma_{1}: r_{1}-r$	$a_{2}: \beta_{1}=\gamma: r_{1}-r$
$\beta: a_{3}=\gamma_{1}: r_{3}+r_{1}$	$\beta_{1}: a_{2}=\gamma: r_{2}-r$
$\gamma_{2}: \alpha_{3}=\beta: r_{3}-r$	$\gamma: a_{2}=\beta_{1}: r_{1}+r_{2}$
$a^{2}: b c=s_{1}: s$	$a_{1}{ }^{2}: b c=s: s_{1}$
$\beta^{2}: c a=s_{2}: s$	$\beta_{1}^{\mathbf{o r}_{2}^{2}}: c a=s_{3}: s_{1}$
$\gamma^{2}: a b=s_{3}: s$	$\gamma_{1}^{2}: a b=s_{2}: s_{1}$
$a_{2}{ }^{2}: b c=s_{3}: s_{2}$	$a_{3}^{2}: b c=s_{2}: s_{3}$
$\beta_{2}{ }^{2}: c a=8: s_{2}$	$\beta_{3}{ }^{\text { }}: c a=8_{1}: 8_{3}$
$\gamma_{2}^{2}: a b=s_{1}: s_{2}$	$\gamma_{3}{ }^{2}: a b=s: s_{3}$

75

$$
\begin{align*}
& \frac{a^{2}}{b c}+\frac{\beta^{2}}{c a}+\frac{\gamma^{2}}{a b}=1 \\
& \frac{a_{1}^{2}}{b c}-\frac{\beta_{1}^{2}}{c a}-\frac{\gamma_{1}^{2}}{a b}=1 \\
& -\frac{\alpha_{3}^{2}}{b c^{2}}+\frac{\beta_{2}^{2}}{c a}-\frac{\gamma_{2}^{2}}{a b}=1 \tag{13}\\
& -\frac{a_{3}^{2}}{b c}-\frac{\beta_{3}^{2}}{c a}+\frac{\gamma_{3}^{2}}{a b}=1
\end{align*}
$$

$$
\frac{b c}{a_{1}{ }^{2}}+\frac{c a}{\beta_{2}{ }^{2}}+\frac{a b}{\gamma_{::^{2}}}=1
$$

$$
\begin{align*}
& a^{2}\left(\frac{1}{c}-\frac{1}{b}\right)+\beta^{2}\left(\frac{1}{a}-\frac{1}{c}\right)+\gamma^{2}\left(\frac{1}{b}-\frac{1}{a}\right)=0 \\
& a_{1}^{2}\left(\frac{1}{b}-\frac{1}{c}\right)+\beta_{1}^{2}\left(\frac{1}{a}+\frac{1}{c}\right)-\gamma_{1}^{2}\left(\frac{1}{a}+\frac{1}{b}\right)=0
\end{align*}
$$

$$
\begin{align*}
& \frac{b-c}{a \alpha_{1}{ }^{2}}+\frac{c-a}{b{\beta_{2}{ }^{2}}^{2}}+\frac{a-b}{c \gamma_{3}^{2}}=0 \tag{17}\\
& \frac{c-b}{a a^{2}}+\frac{c+a}{b \beta_{3}^{2}}-\frac{a+b}{c \gamma_{2}^{2}}=0
\end{align*}
$$

$$
\begin{equation*}
\frac{b c}{a^{2}}-\frac{c a}{\beta_{3}{ }^{2}}-\frac{a b}{\gamma_{2^{2}}{ }^{2}}=1 \tag{14}
\end{equation*}
$$

$$
-\frac{b c}{a_{: i}^{2}}+\frac{c a}{\beta^{2}}-\frac{a b}{\gamma_{1}{ }^{2}}=1
$$

$$
-\frac{b c}{\alpha_{2}^{2}}-\frac{c a}{\beta_{1}{ }^{2}}+\frac{a b}{\gamma^{2}}=1
$$

$$
\begin{align*}
& a a^{2}(b-c)+b \beta^{2}(c-a)+c \gamma^{2}(a-b)=0 \tag{16}\\
& a a_{1}^{2}(c-b)+b \beta_{1}^{2}(c+a)+c \gamma_{1}^{2}(a+b)=0
\end{align*}
$$

$$
\begin{align*}
& x^{2}+\beta^{2}+\gamma^{2}=\frac{b c s_{1}+c a s_{2}+a b s_{s}}{s}=\quad b c+c a+a b-\frac{3 a b c}{s} \\
& a_{1}{ }^{2}+\beta_{1}{ }^{2}+\gamma_{1}{ }^{2}=\frac{b c s+c a s_{3}+a b s_{2}}{s_{1}}=b c-c a-a b+\frac{3 a b c}{s_{1}} \\
& \alpha_{2}^{2}+\beta_{2}^{2}+\gamma_{2}^{2}=\frac{b c s_{3}+c a s+a b s_{1}}{s_{3}}=-b c+c a-a b+\frac{3 a b c}{s_{2}} \tag{18}\\
& u_{3}^{2}+\beta_{3}{ }^{2}+\gamma_{3}^{2}=\frac{b c s_{2}+c a s_{1}+c b s}{s_{3}}=-b c-c a+a b+\frac{3 a b c}{s_{3}}, \\
& \alpha_{1}{ }^{2}+\beta_{2}{ }^{2}+\gamma_{i 3}{ }^{2}=\left(r_{1}+r_{2}+r_{i n}\right)^{2}+s^{2} \\
& \boldsymbol{a}^{2}+\beta_{3}{ }^{2}+\gamma_{2}{ }^{2}=\left(r-r_{3}-r_{2}\right)^{2}+s_{1}{ }^{2} \\
& \alpha_{3}{ }^{2}+\beta^{2}+\gamma_{1}{ }^{2}=\left(r-r_{1}-r_{i}\right)^{2}+s_{2}{ }^{2} \tag{19}\\
& \alpha_{2}{ }^{2}+\beta_{1}{ }^{2}+\gamma^{2}=\left(r-r_{2}-r_{1}\right)^{2}+s_{i:}{ }^{2}
\end{align*}
$$

Compare (15) of the r formulae*

$$
\begin{align*}
& a \beta \gamma: a b c=r: s \\
& a_{1} \beta_{1} \gamma_{1}: a b c=r_{1}: s_{1} \\
& \alpha_{2} \beta_{2} \gamma_{2}: a b c=r_{2}: s_{2} \tag{20}\\
& \alpha_{3} \beta_{: 3} \gamma_{3}: a b c=r_{::}: s_{3}
\end{align*}
$$

Other proportions may be obtained by substituting for abc its equivalents in (7). Matthes (p. 49) gives

$$
a_{n} \beta_{1} \gamma_{2}: a \beta \gamma=\triangle: r^{2}
$$

which may be reduced to

$$
\begin{gather*}
a b c: a \beta \gamma=s: r \\
a_{1} \beta_{2} \gamma_{3}: a b c=s: r \\
a \beta_{3} \gamma_{2}: a b c=s_{1}: r_{1} \\
\alpha_{3} \beta \gamma_{1}: a b c=s_{2}: r_{2} \tag{21}\\
\alpha_{2} \beta_{1} \gamma: a b c=s_{3}: r_{3}
\end{gather*}
$$

and so on.

$$
\left.\begin{array}{ll}
h_{1} h_{2} h_{3} \alpha \beta \gamma=8 \Delta^{2} r^{2} & h_{1} h_{2} h_{3} a_{1} \beta_{2} \gamma_{3}=8 \Delta^{2} s^{2} \tag{22}\\
h_{1} h_{2} h_{3} \alpha_{1} \beta_{1} \gamma_{1}=8 \Delta^{2} r_{1}^{2} & h_{1} h_{\mathrm{P}} h_{3} a \beta_{3} \gamma_{2}=8 \Delta^{2} s_{1}^{2}
\end{array}\right\}
$$

* Proceedings of the Edinburgh Mathematical Society, Vol. XII., p. 91 (1894).

77

$$
\begin{gather*}
a a^{2}+b \beta^{2}+c \gamma^{2}= \\
a a_{1}{ }^{2}-b \beta_{1}{ }^{2}-c \gamma_{1}{ }^{2}= \tag{23}\\
-a a_{2}{ }^{2}+b \beta_{2}{ }^{2}-c \gamma_{2}{ }^{2}= \\
-a a_{3}{ }^{2}-b \beta_{3}{ }^{2}+c \gamma_{3}{ }^{2}=a b c
\end{gather*}
$$

$$
\begin{align*}
& \alpha \beta \gamma=\left(r_{1}-r\right)\left(r_{2}-r\right)\left(r_{3}-r\right) \\
& \alpha_{1} \beta_{1} \gamma_{1}=\left(r_{1}-r\right)\left(r_{3}+r_{1}\right)\left(r_{1}+r_{2}\right) \\
& \alpha_{2} \beta_{2} \gamma_{2}=\left(r_{2}+r_{3}\right)\left(r_{2}-r\right)\left(r_{1}+r_{2}\right) \\
& \alpha_{3} \beta_{3} \gamma_{3}=\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)\left(r_{3}-r\right) \\
& \alpha_{1} \beta_{2} \gamma_{3}=\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)\left(r_{1}+r_{2}\right) \tag{24}\\
& a \beta_{3} \gamma_{2}=\left(r_{2}+r_{3}\right)\left(r_{2}-r\right)\left(r_{3}-r\right) \\
& \alpha_{3} \beta \gamma_{2}=\left(r_{1}-r\right)\left(r_{3}+r_{1}\right)\left(r_{3}-r\right) \\
& u_{3} \beta_{1} \gamma=\left(r_{1}-r\right)\left(r_{2}-r\right)\left(r_{1}+r_{2}\right)
\end{align*}
$$

$$
a \beta \beta_{3}=\left(r_{2}+r_{3}\right)\left(\dot{r}_{\mathrm{r}}-r\right)\left(r_{1}-r\right)
$$

$$
a \gamma \gamma_{2}=\left(r_{2}+r_{3}\right)\left(r_{1}-r\right)\left(r_{2}-r\right)
$$

$$
l \gamma \gamma_{1}=\left(r_{3}+r_{1}\right)\left(r_{2}-r\right)\left(r_{2}-r\right)
$$

$$
b a a_{3}=\left(r_{3}+r_{1}\right)\left(r_{2}-r\right)\left(r_{3}-r\right)
$$

$$
c \alpha u_{2}=\left(r_{1}+r_{2}\right)\left(r_{2}-r\right)\left(r_{3}-r\right)
$$

$$
c \beta \beta_{1}=\left(r_{1}+r_{2}\right)\left(r_{3}-r\right)\left(r_{1}-r\right)
$$

$$
\begin{equation*}
a \beta_{1} \beta_{2}=\left(r_{1}-r\right)\left(r_{1}+r_{2}\right)\left(r_{2}+r_{3}\right) \tag{25}
\end{equation*}
$$

$$
a \gamma_{:} \gamma_{1}=\left(r_{1}-r^{r}\right)\left(r_{2}+r_{i j}\right)\left(r_{3}+r_{1}\right)
$$

$$
b \gamma_{2} \gamma_{3}=\left(r_{2}-r\right)\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)
$$

$$
b a_{1} a_{2}=\left(r_{2}-r^{r}\right)\left(r_{3}+r_{1}\right)\left(r_{1}+r_{: 2}\right)
$$

$$
c a_{3} a_{1}=\left(r_{3}-r\right)\left(r_{3}+r_{1}\right)\left(r_{1}+r_{2}\right)
$$

$$
c \beta_{2} \beta_{3}=\left(r_{3}-r\right)\left(r_{1}+r_{2}\right)\left(r_{2}+r_{3}\right)
$$

Weddle remarks that (24) and (25) exhibit the twenty products of every three of the six quantities

$$
r_{1}-r, \quad r_{2}-r, \quad r_{i j}-r, \quad r_{3}+r_{3}, \quad r_{3}+r_{1}, \quad r_{1}+r_{2}
$$

$$
\begin{align*}
& \left(a_{1}-\alpha\right) s_{2}=a_{3}\left(r_{1}-r\right)=\beta \gamma_{1} \\
& \left(a_{1}-\alpha\right) s_{3}=u_{2}\left(r_{1}-r\right)=\beta_{1} \gamma \\
& \left(\beta_{2}-\beta\right) s_{3}=\beta_{1}\left(r_{2}-r\right)=\gamma a_{2} \\
& \left(\beta_{2}-\beta\right) s_{1}=\beta_{3}\left(r_{2}-r\right)=\gamma_{2} \alpha \\
& \left(\gamma_{3}-\gamma\right) s_{1}=\gamma_{2}\left(r_{3}-r\right)=\alpha \beta_{3} \\
& \left(\gamma_{3}-\gamma\right) s_{2}=\gamma_{1}\left(r_{3}-r\right)=a_{3} \beta \\
& \left(\alpha_{2}+\alpha_{3}\right) s=\alpha_{1}\left(r_{2}+r_{3}\right)=\beta_{2} \gamma_{3} \tag{29}\\
& \left(a_{2}+a_{3}\right) s_{1}=\alpha\left(r_{2}+r_{3}\right)=\beta_{3} \gamma_{2} \\
& \left(\beta_{3}+\beta_{1}\right) s=\beta_{2}\left(r_{3}+r_{1}\right)=\gamma_{3} a_{1} \\
& \left(\beta_{3}+\beta_{1}\right) s_{2}=\beta\left(r_{3}+r_{1}\right)=\gamma_{1} u_{3} \\
& \left(\gamma_{1}+\gamma_{2}\right) s=\gamma_{3}\left(r_{1}+r_{2}\right)=a_{2} \beta_{2} \\
& \left(\gamma_{1}+\gamma_{2}\right) s_{3}=\gamma\left(r_{1}+r_{2}\right)=u_{2} \beta_{1}
\end{align*}
$$

$$
\begin{align*}
& \left(a_{1}-u\right) h_{1}=2 u r_{1}=2 u_{1} r=2 \alpha_{2} s_{2}=2 u_{3} s_{3} \\
& \left(\beta_{2}-\beta\right) h_{2}=2 \beta r_{2}=2 \beta_{2} r=2 \beta_{1} s_{1}=2 \beta_{3} s_{3} \\
& \left(\gamma_{3}-\gamma\right) h_{3}=2 \gamma r_{3}=2 \gamma_{3} r=2 \gamma_{1} s_{1}=2 \gamma_{2} s_{2} \tag{30}\\
& \left(u_{2}+u_{i j}\right) h_{1}=2 \alpha s=2 u_{1} s_{1}=2 u_{2} r_{3}=2 u_{3} r_{2} \\
& \left(\beta_{3}+\beta_{1}\right) h_{2}=2 \beta s=2 \beta_{2} s_{2}=2 \beta_{1} r_{3}=2 \beta_{2} r_{1} \\
& \left(\gamma_{1}+\gamma_{2}\right) h_{3}=2 \gamma s=2 \gamma_{3} s_{3 j}=2 \gamma_{1} r_{2}=2 \gamma_{2} r_{1}
\end{align*}
$$

$$
\begin{align*}
& \left(\mu_{1}-u\right) a=\left(u_{2}+\omega_{3}\right)\left(r_{1}-r\right) \\
& \left(\beta_{2}-\beta\right) b=\left(\beta_{3}+\beta_{1}\right)\left(r_{2}-r\right) \\
& \left(\gamma_{3}-\gamma\right) c=\left(\gamma_{1}-\gamma_{2}\right)\left(r_{3}-r\right) \tag{31}\\
& \left(u_{2}+a_{3}\right) a=\left(\mu_{1}-\alpha\right)\left(r_{2}+r_{3}\right) \\
& \left(\beta_{3}+\beta_{1}\right) b=\left(\beta_{2}-\beta\right)\left(r_{3}+r_{1}\right) \\
& \left(\gamma_{1}+\gamma_{2}\right) c=\left(\gamma_{3}-\gamma\right)\left(r_{1}+r_{2}\right)
\end{align*}
$$

$$
\begin{align*}
& \left(a_{1}-a\right) b=\left(\beta_{2}-\beta\right) \gamma_{1}=\left(\beta_{3}+\beta_{1}\right) \gamma \\
& \left(a_{1}-\alpha\right) c=\left(\gamma_{3}-\gamma\right) \beta_{1}=\left(\gamma_{1}+\gamma_{2}\right) / \beta \\
& \left(\beta_{2}-\beta\right) c=\left(\gamma_{3}-\gamma\right) a_{2}=\left(\gamma_{1}+\gamma_{2}\right) a \\
& \left(\beta_{2}-\beta\right) a=\left(a_{1}-a\right) \gamma_{2}=\left(a_{2}+a_{3}\right) \gamma \\
& \left(\gamma_{3}-\gamma\right) a=\left(a_{1}-a\right) \beta_{3}=\left(a_{2}+a_{3}\right) \beta \\
& \left(\gamma_{3}-\gamma\right) b=\left(\beta_{2}-\beta\right) a_{3}=\left(\beta_{3}+\beta_{1}\right) a \\
& \left(\alpha_{2}+a_{3}\right) b=\left(\beta_{3}+\beta_{1}\right) \gamma_{2}=\left(\beta_{2}-\beta\right) \gamma_{3} \tag{32}\\
& \left(a_{2}+a_{3}\right) c=\left(\gamma_{1}+\gamma_{2}\right) \beta_{3}=\left(\gamma_{3}-\gamma\right) \beta_{2} \\
& \left(\beta_{3}+\beta_{1}\right) c=\left(\gamma_{1}+\gamma_{2}\right) a_{3}=\left(\gamma_{3}-\gamma\right) a_{2} \\
& \left(\beta_{3}+\beta_{1}\right) a=\left(a_{2}+a_{3}\right) \gamma_{1}=\left(a_{1}-a\right) \gamma_{3} \\
& \left(\gamma_{1}+\gamma_{2}\right) a=\left(a_{2}+a_{3}\right) \beta_{1}=\left(\alpha_{1}-\alpha\right) \beta_{2} \\
& \left(\gamma_{1}+\gamma_{2}\right) b=\left(\beta_{3}+\beta_{1}\right) a_{2}=\left(\beta_{2}-\beta\right) a_{1}
\end{align*}
$$

$$
\begin{align*}
& \left(\alpha_{1}-\alpha\right) \beta=\left(\gamma_{3}-\gamma\right)\left(r_{1}-r\right) \\
& \left(a_{1}-a\right) \gamma=\left(\beta_{2}-\beta\right)\left(r_{1}-r\right) \\
& \left(\alpha_{1}-\alpha\right) \beta_{1}=\left(\gamma_{1}+\gamma_{2}\right)\left(r_{1}-r\right) \\
& \left(\alpha_{1}-a\right) \gamma_{1}=\left(\beta_{3}+\beta_{1}\right)\left(r_{1}-r\right) \\
& \left(\beta_{2}-\beta\right) \gamma=\left(\alpha_{1}-\alpha\right)\left(r_{2}-r\right) \\
& \left(\beta_{2}-\beta\right) a=\left(\gamma_{3}-\gamma\right)\left(r_{2}-r\right) \\
& \left(\beta_{2}-\beta\right) \gamma_{2}=\left(\alpha_{2}+a_{3}\right)\left(r_{2}-r\right) \tag{33}\\
& \left(\beta_{2}-\beta\right) \alpha_{2}=\left(\gamma_{1}+\gamma_{2}\right)\left(r_{2}-r\right) \\
& \left(\gamma_{3}-\gamma\right) a=\left(\beta_{2}-\beta\right)\left(r_{3}-r\right) \\
& \left(\gamma_{3}-\gamma\right) \beta=\left(\alpha_{1}-\alpha\right)\left(r_{3}-r\right) \\
& \left(\gamma_{3}-\gamma\right) \alpha_{3}=\left(\beta_{3}+\beta_{1}\right)\left(r_{3}-r\right) \\
& \left(\gamma_{3}-\gamma\right) \beta_{3}=\left(\alpha_{2}+a_{3}\right)\left(r_{3}-r\right)
\end{align*}
$$

$$
\begin{align*}
& \left(u_{2}+u_{3}\right) \beta_{2}=\left(\gamma_{1}+\gamma_{2}\right)\left(r_{2}+r_{3}\right) \\
& \left(u_{2}+\alpha_{3}\right) \gamma_{2}=\left(\beta_{2}-\beta\right)\left(r_{3}+r_{3}\right) \\
& \left(u_{2}+u_{3}\right) \beta_{3}=\left(\gamma_{3}-\gamma\right)\left(r_{2}+r_{3}\right) \\
& \left(u_{2}+u_{3}\right) \gamma_{3}=\left(\beta_{3}+\beta_{1}\right)\left(r_{2}+r_{3}\right) \\
& \left(\beta_{3}+\beta_{1}\right) \gamma_{1}=\left(u_{1}-u\right)\left(r_{3}+r_{2}\right) \\
& \left(\beta_{3}+\beta_{2}\right) u_{1}=\left(\gamma_{1}+\gamma_{2}\right)\left(r_{3}+r_{1}\right) \\
& \left(\beta_{3}+\beta_{1}\right) \gamma_{3}=\left(u_{2}+u_{3}\right)\left(r_{3}+r_{1}\right) \\
& \left(\beta_{3}+\beta_{1}\right) u_{3}=\left(\gamma_{3}-\gamma_{1}\right)\left(r_{3}+r_{1}\right) \\
& \left(\gamma_{1}+\gamma_{2}\right) u_{1}=\left(\beta_{3}+\beta_{1}\right)\left(r_{1}+r_{3}\right) \\
& \left(\gamma_{1}+\gamma_{2}\right) \beta_{1}=\left(u_{1}-u\right)\left(r_{1}+r_{2}\right) \\
& \left(\gamma_{1}+\gamma_{2}\right) u_{2}=\left(\beta_{2}-\beta\right)\left(r_{1}+r_{2}\right) \\
& \left(\gamma_{1}+\gamma_{2}\right) \beta_{2}=\left(u_{2}+u_{3}\right)\left(r_{1}+r_{2}\right)
\end{align*}
$$

$$
\begin{aligned}
& \left(u_{1}-\alpha\right) r_{2}=\left(\alpha_{2}+\alpha_{3}\right) s_{3}=a u_{2}=\beta_{1} \gamma_{2}=\beta_{2} \gamma \\
& \left(\mu_{1}-\alpha\right) r_{3}=\left(\alpha_{2}+\alpha_{3}\right) s_{2}=a u_{3}=\beta \gamma_{3}=\beta_{: 3} \gamma_{1} \\
& \left(\beta_{: 1}-\beta\right) r_{;}=\left(\beta_{3}+\beta_{1}\right) s_{1}=b \beta_{3}=\gamma_{3}{ }^{\mu}=\gamma_{2} \mu_{;} ; \\
& \left(\beta \beta_{2}-\beta\right) r_{1}=\left(\beta_{3}+\beta_{1}\right) s_{3}=b \beta_{1}=\gamma_{1} a_{1}=\gamma_{1} u_{2} \\
& \left(\gamma_{:}-\gamma\right) r_{1}=\left(\gamma_{1}+\gamma_{2}\right) s_{2}=c \gamma_{1}=\mu_{1} \beta=\alpha_{3} \beta \beta_{1} \\
& \left(\gamma_{3}-\gamma\right) r_{2}=\left(\gamma_{1}+\gamma_{2}\right) s_{1}=c \gamma_{2}=u \beta_{2}=u_{2} \beta_{3} \\
& \left(u_{2}+\mu_{j}\right) r=\left(\mu_{1}-\alpha\right) s_{1}=u \mu=\beta \gamma_{2}=\beta_{j} \gamma \\
& \left(\alpha_{2}+\alpha_{3}\right) \gamma_{1}=\left(\mu_{1}-a\right) s=c\left(\mu_{1}=\beta_{1} \gamma_{j}=\beta_{2} \gamma_{1}\right. \\
& \left(\beta_{3}+\beta_{1}\right) r=\left(\beta_{2}-\beta\right) s_{2}=l \beta=\gamma_{1}{ }^{\alpha}=\gamma \omega_{3} \\
& \left(\beta_{3}+\beta_{1}\right) r_{2}=\left(\beta_{2}-\beta\right) s=b \beta_{2}=\gamma_{2} \alpha_{1}=\gamma_{3} \alpha_{2} \\
& \left(\gamma_{1}+\gamma_{2}\right) r=\left(\gamma_{j}-\gamma\right) s_{3}=c \gamma=\alpha \beta_{1}=\alpha_{2} \beta \\
& \left(\gamma_{1}+\gamma_{i}\right) r_{: 3}=\left(\gamma_{i!}-\gamma\right) s=c \gamma_{3}=a_{1} \beta_{3}=\alpha_{3} \beta \beta_{3}
\end{aligned}
$$

$$
\begin{align*}
& \left(u_{1}-a\right)^{2}=a^{2}+\left(r_{1}-r\right)^{2}=\frac{a^{2} b c r r_{1}}{\triangle^{2}}=\frac{a^{2} b c}{s s_{1}} \\
& =\left(r_{1}-r\right) \frac{\left(r_{2}+r_{3}\right)\left(r_{3}+r_{1}\right)}{r_{2} r_{3}+r_{3} r_{1}+\frac{\left.r_{1}+r_{2}\right)}{r_{2}} r_{2}} \\
& \left(\beta_{2}-\beta\right)^{2}=b^{2}+\left(r_{2}-r\right)^{2}=\frac{a b^{2} c r r_{2}}{\triangle^{2}}=\frac{a b^{2} c}{s s_{2}} \\
& =\left(r_{2}-r\right)[] \\
& \left(\gamma_{3}-\gamma\right)^{2}=c^{2}+\left(r_{3}-r\right)^{2}=\frac{a b c^{2} r r_{3}}{\Delta^{2}}=\frac{a b c^{2}}{s s_{3}} \\
& =\left(r_{3}-r\right)[] \tag{36}\\
& \left(u_{2}+u_{3}\right)^{\prime \prime}=a^{2}+\left(r_{2}+r_{3}\right)^{2}=\frac{a^{2} b c r_{2} r_{3}}{\triangle^{2}}=\frac{a^{2} b c}{s_{4} x_{;}} \\
& =\left(r_{2}+r_{3}\right)[] \\
& \left(\beta_{i}+\beta_{1}\right)^{2}=b^{2}+\left(r_{i j}+r_{1}\right)^{2}=\frac{a b^{2} c r_{3} r_{1}}{\triangle^{2}}=\frac{a b^{2} c}{s_{i j} s_{1}} \\
& =\left(r_{3}+r_{1}\right)[\quad] \\
& \left(\gamma_{1}+\gamma_{2}\right)^{2}=c^{2}+\left(r_{1}+r_{2}\right)^{2}=\frac{a b c^{2} r_{1} r_{2}}{\Delta^{2}}=\frac{a b c^{2}}{y_{1} s_{2}} \\
& =\left(r_{1}+r_{2}\right)[\\
& \text {] }
\end{align*}
$$

In Grunert's Archiv, XXIX., 436 (1857), Franz Unferdinger gives for $\left(u_{1}-u\right)^{\prime}$, etc., the values

$$
\begin{equation*}
r_{2}^{2}\left(r_{2}+r_{3}\right) \frac{\left(r_{2}+r_{i}\right)\left(r_{3}+r_{j}\right)\left(r_{1}+r_{i}\right)}{\left(r_{2} r_{3}+r_{j} r_{1}+r_{1} r_{2}\right)^{2}} \text { etc. } \tag{37}
\end{equation*}
$$

See (56) of the r formulae.*

$$
\left.\begin{array}{c}
\left(u_{1}-u\right)^{2}+\left(\beta_{2}-\beta\right)^{2}+\left(\gamma_{3}-\gamma\right)^{2} \tag{38}\\
+\left(a_{2}+a_{3}\right)^{2}+\left(\beta_{3}+\beta_{1}\right)^{2}+\left(\gamma_{1}+\gamma_{2}\right)^{2} \\
=3\left(-r+r_{1}+r_{2}+r_{3}\right)^{2}
\end{array}\right\}
$$

* Proceedings of the Edinburyh Mathcmatical Society, Vol. XII., p. 98 (1894).

$$
\begin{align*}
\left(u_{1}-\alpha\right)^{2} & =\left(\beta_{3}+\beta_{1}\right) \beta_{1}-\left(\beta_{2}-\beta\right) \beta \\
& =\left(\gamma_{1}+\gamma_{2}\right) \gamma_{2}-\left(\gamma_{3}-\gamma\right) \gamma \\
\left(\beta_{2}-\beta\right)^{2} & =\left(\gamma_{1}+\gamma_{2}\right) \gamma_{2}-\left(\gamma_{3}-\gamma\right) \gamma \\
& =\left(\alpha_{2}+\alpha_{3}\right) \alpha_{2}-\left(\alpha_{1}-\alpha\right) \alpha \\
\left(\gamma_{3}-\gamma\right)^{2} & =\left(\alpha_{2}+\alpha_{3}\right) \alpha_{3}-\left(\alpha_{1}-\alpha\right) \alpha \\
& =\left(\beta_{3}+\beta_{1}\right) \beta_{3}-\left(\beta_{2}-\beta\right) \beta_{1} \\
\left(u_{2}+u_{3}\right)^{2} & =\left(\beta_{3}+\beta_{1}\right) \beta_{3}+\left(\beta_{2}-\beta\right) \beta_{2} \tag{39}\\
& =\left(\gamma_{1}+\gamma_{2}\right) \gamma_{2}+\left(\gamma_{3}-\gamma\right) \gamma_{3} \\
\left(\beta_{3}+\beta_{1}\right)^{2} & =\left(\gamma_{1}+\gamma_{2}\right) \gamma_{1}+\left(\gamma_{3}-\gamma\right) \gamma_{3} \\
& =\left(u_{2}+u_{3}\right) u_{3}+\left(u_{1}-\alpha\right) u_{1} \\
\left(\gamma_{1}+\gamma_{2}\right)^{2} & =\left(u_{2}+u_{3}\right) u_{2}+\left(u_{1}-\alpha\right) u_{1} \\
& =\left(\beta_{3}+\beta_{1}\right) \beta_{1}+\left(\beta_{2}-\beta\right) \beta_{2}
\end{align*}
$$

$$
\left(\alpha_{1}-\alpha\right)\left(\alpha_{2}+\alpha_{3}\right)=\left(\beta_{3}+\beta_{1}\right) \beta_{2}-\left(\beta_{2}-\beta\right) \beta_{: 3}
$$

$$
=\left(\gamma_{1}+\gamma_{2}\right) \gamma_{3}-\left(\gamma_{3}-\gamma_{1}\right) \gamma_{2}
$$

$$
=\left(\beta_{3}+\beta_{1}\right) \beta+\left(\beta_{2}-\beta\right) \beta_{1}
$$

$$
=\left(\gamma_{1}+\gamma_{2}\right) \gamma+\left(\gamma_{: 3}-\gamma_{1}\right) \gamma_{2}
$$

$$
\left(\beta_{2}-\beta\right)\left(\beta_{3}+\beta_{1}\right)=\left(\gamma_{1}+\gamma_{2}\right) \gamma_{3}-\left(\gamma_{3}-\gamma\right) \gamma_{1}
$$

$$
\begin{equation*}
=\left(u_{2}+u_{3}\right) u_{1}-\left(u_{1}-u\right) u_{i} \tag{40}
\end{equation*}
$$

$$
=\left(\gamma_{1}+\gamma_{2}\right) \gamma+\left(\gamma_{3}-\gamma\right) \gamma_{2}
$$

$$
=\left(u_{2}+u_{3}\right) u+\left(\alpha_{1}-u\right) u_{2}
$$

$$
\left(\gamma_{3}-\gamma\right)\left(\gamma_{1}+\gamma_{2}\right)=\left(u_{2}+u_{3}\right) u_{1}-\left(u_{1}-a\right) u_{2}
$$

$$
=\left(\beta_{3}+\beta_{1}\right) \beta_{2}-\left(\beta_{2}-\beta\right) \beta_{1}
$$

$$
=\left(\alpha_{2}+u_{3}\right) \alpha+\left(u_{1}-a\right) \alpha_{3}
$$

$$
\begin{align*}
& \left(a_{1}-a\right)\left(\beta_{2}-\beta\right)\left(\gamma_{3}-\gamma\right):\left(a_{2}+a_{3}\right)\left(\beta_{3}+\beta_{1}\right)\left(\gamma_{1}+\gamma_{2}\right)=r: s \\
& \left(a_{1}-a\right)\left(\beta_{3}+\beta_{1}\right)\left(\gamma_{1}+\gamma_{2}\right):\left(a_{2}+a_{3}\right)\left(\beta_{2}-\beta\right)\left(\gamma_{3}-\gamma\right)=r_{1}: s_{1} \tag{11}\\
& \left(a_{2}+a_{3}\right)\left(\beta_{2}-\beta\right)\left(\gamma_{1}+\gamma_{2}\right):\left(a_{1}-a\right)\left(\beta_{3}+\beta_{1}\right)\left(\gamma_{3}-\gamma\right)=r_{2}: s_{2} \\
& \left(a_{2}+a_{3}\right)\left(\beta_{3}+\beta_{1}\right)\left(\gamma_{i 3}-\gamma\right):\left(\alpha_{1}-a\right)\left(\beta_{2}-\beta\right)\left(\gamma_{1}+\gamma_{2}\right)=r_{i 3}: s_{3}
\end{align*}
$$

$$
=\left(\beta_{3}+\beta_{1}\right) \beta+\left(\beta_{2}-\beta\right) \beta_{3}
$$

By combining (41) with (8) and (20) other proportions may be obtained which it is needless to write down. T. S. Davies (in the Ladies' Diary for 1835, p. 53) gives one of them:

$$
\begin{align*}
& \left(u_{1}-\alpha\right)\left(\beta_{2}-\beta\right)\left(\gamma_{3}-\gamma\right):\left(\alpha_{2}+u_{3}\right)\left(\beta_{3}+\beta_{1}\right)\left(\gamma_{1}+\gamma_{2}\right)=\alpha \beta \gamma: a b c \tag{42}\\
& \left.\begin{array}{c}
\left(u_{2}+\alpha_{3}\right)\left(\beta_{3}+\beta_{1}\right)\left(\gamma_{1}+\gamma_{2}\right) \\
=\left(u_{2}+u_{3}\right)\left(\beta_{2}-\beta\right)\left(\gamma_{3}-\gamma\right)+\left(u_{1}-u\right)\left(\beta_{3}+\beta_{1}\right)\left(\gamma_{3}-\gamma\right) \\
+\left(\mu_{1}-\alpha\right)\left(\beta_{2}-\beta\right)\left(\gamma_{1}+\gamma_{2}\right)
\end{array}\right\} \tag{43}\\
& \left(\mu_{1}-\alpha\right) \alpha s=\left(\beta_{2}-\beta\right) \beta s=\left(\gamma_{i}-\gamma\right) \gamma s \\
& =\left(\alpha_{2}+\alpha_{3}\right) \mu r_{1}=\left(\beta_{3}+\beta_{3}\right) \beta r_{2}=\left(\gamma_{1}+\gamma_{2}\right) \gamma r_{3} \\
& =\left(\alpha_{1}-\alpha\right) a_{1} s_{1}=\left(\beta_{2}-\beta\right) \beta_{1} r_{3}=\left(\gamma_{3}-\gamma\right) \gamma_{1} r_{2} \\
& =\left(\mu_{2}+\alpha_{3}\right) \mu_{2} r=\left(\beta_{: 3}+\beta_{1}\right) \beta_{1} s_{1}=\left(\gamma_{1}+\gamma_{2}\right) \gamma_{1} s_{1} \\
& =\left(a_{1}-a\right) a_{2} r_{3}=\left(\beta_{2}-\beta\right) \beta_{2} s_{2}=\left(\gamma_{3}-\gamma\right) \gamma_{2} r_{1} \tag{44}\\
& =\left(\alpha_{2}+\alpha_{3}\right) \alpha_{2} s_{2}=\left(\beta_{: 1}+\beta_{1}\right) \beta_{2} r=\left(\gamma_{1}+\gamma_{2}\right) \gamma_{2} s_{2} \\
& =\left(\alpha_{1}-\alpha\right) \alpha_{3} r_{2}=\left(\beta_{2}-\beta\right) \beta_{3} r_{3}=\left(\gamma_{3}-\gamma\right) \gamma_{i j} s_{i} \\
& =\left(a_{2}+a_{3}\right) u_{3} s_{3}=\left(\beta_{3}+\beta_{1}\right) \beta_{3_{j}} s_{3}=\left(\gamma_{1}+\gamma_{3}\right) \gamma_{: i \prime:} ; \\
& =a b c \\
& \frac{1}{\left(u_{1}-u\right)^{2}}+\frac{1}{\left(u_{2}+u_{i}\right)^{2}}=\frac{1}{a^{2}} \\
& \frac{1}{\left(\beta_{2}-\beta\right)^{2}}+\frac{1}{\left(\beta_{j}+\beta_{1}\right)^{2}}=\frac{1}{b^{2}} \tag{45}\\
& \frac{1}{\left(\gamma_{;}-\gamma\right)^{2}}+\frac{1}{\left(\gamma_{1}+\gamma_{2}\right)^{2}}=\frac{1}{c^{2}} \\
& \frac{a}{\alpha_{1}}+\frac{\beta}{\beta_{2}}+\frac{\gamma}{\gamma_{3}}=1 \quad \frac{\alpha_{1}}{\alpha}-\frac{\beta_{1}}{\beta_{3}}-\frac{\gamma_{1}}{\gamma_{2}}=1 \quad j \\
& \left.-\frac{a_{2}}{\alpha_{3}}+\frac{\beta_{2}}{\beta}-\frac{\gamma_{2}}{\gamma_{1}}=1 \quad-\frac{\alpha_{3}}{\alpha_{2}}-\frac{\beta_{3}}{\beta_{1}}+\frac{\gamma_{3}}{\gamma}=1 \quad \right\rvert\, \tag{46}
\end{align*}
$$

These equalities are merely particular cases of more general ones stated by Gergonne in his dunales, IX., 116. 284 (1818-9).

$$
\begin{align*}
& \frac{a_{1}-\alpha}{a_{1}}+\frac{\beta_{2}-\beta}{\beta_{2}}+\frac{\gamma_{3}-\gamma}{\gamma_{3}}=2 \\
& -\frac{a_{1}-a}{\alpha}+\frac{\beta_{3}+\beta_{1}}{\beta_{3}}+\frac{\gamma_{1}+\gamma_{2}}{\gamma_{2}}=2 \\
& \frac{a_{2}+a_{3}}{a_{3}}-\frac{\beta_{2}-\beta}{\beta_{3}}+\frac{\gamma_{1}+\gamma_{2}}{\gamma_{2}}=2 \tag{47}\\
& \frac{a_{3}+\alpha_{3}}{\alpha_{2}}+\frac{\beta_{3}+\beta_{1}}{\beta_{1}}-\frac{\gamma_{3}-\gamma}{\gamma}=2
\end{align*}
$$

The first of these equations is a particular case of a theorem given by Vecten in Gergonne's Annales, IX., 277-9 (1819).

$$
\begin{gather*}
\frac{1}{a^{2}}+\frac{1}{a_{1}^{2}}+\frac{1}{\alpha_{2}^{2}}+\frac{1}{\left.a_{3}^{2}\right)^{2}}=\frac{4}{h_{1}^{2}} \\
\frac{1}{\beta^{2}}+\frac{1}{\beta_{1}^{2}}+\frac{1}{\beta_{2^{2}}}+\frac{1}{\beta_{3}^{2}}=\frac{4}{h_{2^{2}}} \tag{48}\\
\frac{1}{\gamma^{2}}+-\frac{1}{\gamma_{1}^{2}}+\frac{1}{\gamma_{2}^{2}}+\frac{1}{\gamma_{3}^{2}}=\frac{4}{h_{3}^{2}} \\
\Sigma\left(\frac{1}{a^{2}}\right)+\Sigma\left(\frac{1}{\beta^{2}}\right)+\Sigma\left(\frac{1}{\gamma^{2}}\right)=\frac{1}{r^{2}}+\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}} \tag{49}
\end{gather*}
$$

See (35) of the r formulae.*

$$
\left.\begin{array}{rl}
4 \Delta_{11} & =2\left(a_{3}+a_{3}\right) a_{1}=2\left(\beta_{3}+\beta_{3}\right) \beta_{2}=2\left(\gamma_{1}+\gamma_{2}\right) \gamma_{3} \\
& =\left(a_{1}-a\right)\left(a_{2}+a_{3}\right)+\left(\beta_{2}-\beta\right)\left(\beta_{3}+\beta_{1}\right)+\left(\gamma_{3}-\gamma\right)\left(\gamma_{1}+\gamma_{2}\right) \\
4 \triangle_{1} & =2\left(a_{2}+a_{3}\right) a \quad=2\left(\beta_{2}-\beta\right) \beta_{3}=2\left(\gamma_{3}-\gamma\right) \gamma_{2} \\
& =-\left(a_{1}-a\right)\left(a_{2}+a_{3}\right)+\left(\beta_{2}-\beta\right)\left(\beta_{3}+\beta_{1}\right)+\left(\gamma_{3}-\gamma\right)\left(\gamma_{1}+\gamma_{2}\right) \\
4 \triangle_{2} & =2\left(a_{1}-a\right) a_{3}=2\left(\beta_{3}+\beta_{1}\right) \beta=2\left(\gamma_{3}-\gamma\right) \gamma_{1} \tag{50}\\
& =\left(a_{1}-a\right)\left(a_{2}+a_{2}\right)-\left(\beta_{2}-\beta\right)\left(\beta_{3}+\beta_{1}\right)+\left(\gamma_{3}-\gamma\right)\left(\gamma_{1}+\gamma_{2}\right) \\
4 \triangle_{3} & =2\left(a_{1}-a\right) a_{2}=2\left(\beta_{2}-\beta\right) \beta_{1}=2\left(\gamma_{1}+\gamma_{2}\right) \gamma \\
& =\left(a_{1}-a\right)\left(a_{2}+a_{3}\right)+\left(\beta_{2}-\beta\right)\left(\beta_{3}+\beta_{1}\right)-\left(\gamma_{3}-\gamma\right)\left(\gamma_{1}+\gamma_{2}\right)
\end{array}\right\}
$$

where $\triangle_{4} \quad \Delta_{1} \quad \Delta_{2} \quad \Delta_{3} \quad$ denote triangles $\mathrm{I}_{1} \mathrm{I}_{2} \mathrm{I}_{3} \quad \mathrm{II}_{3} \mathrm{I}_{2} \quad \mathrm{I}_{3} \mathrm{II}_{1} \quad \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}$.

[^20]
Historical Notes.

In 1841 the Labics' Diary, which first :uppeared in 1704, and the Gentleman's Diary, which first appeared in 1741, were united and published under the title of the Lrady's and Gentlenton's Diary, which cames to an end in 1871. This title will in the notes be shortened to Diary.
(1) The values of $\alpha_{1} \beta_{2} \gamma_{:}$are given by J. Lowry in the Ladies' Diary for for 1S36, p. 52 ; T. S. Davies adds six more in the Diary for 1842, 1. 79 ; and Weddle completes the dozen by giving the values of a $\beta \gamma$ in the Diar!! for 1843, p. 80.
(2) C. J. Matthes in his Commentatio de Proprietatibus Quinque Circulorum, pp. 46, 49 (1831).
(3) Weddle in the Diary for 1843, p. 81.
(4) Lhuilier in his Élémens d'Analyse, p. 21 (1809). The values of a $\alpha a_{1} \beta \beta_{2} \gamma \gamma_{: ;}$ were however given by J. Lowry in Leybourn's Mathematiral Rcpository, old series, I. 394 (1799).
(5) T. T. Wilkinson in Mathematical Questions from the Elucational Times, XIX. 107 (1873).
(6) C. Adams in Dic merkwürdigsten Eigenseheften des geradlinigen Dreieeks, p. 36 (1846).
(7)--(12) Weddle in the Diary for $1843, \mathrm{pp}, 81,82,88$. The first three proportions of (12) are however implicitly given by Matthes in his Commentatio, p. 46 (1831).
(13) The first property was proposed for proof at the Concours Académique de Clermont, 1875 ; the others were given by Mr H. Van Aubel in Nourelle Correspondance Mathénatique, IV. 304 (1878).
(14), (17) First property given in Todhunter's Plane Trigonometry, Chap. XVI., Ex. 37 (1859).
(15), (18) First property given in Hind's Trigonometry, 4th ed., pp. 304, 309 (1841).
(19) First property given in a slightly different form by Adams in his Eigenschaften des...Dreiccks, p. 40 (1846).
(20) First property given by C. F. A. Jacobi in his De Triangulorum Rectilineorum Proprietatibus, p. 10 (1825).
(21) First proportion given by J. Lowry in the Ladics' Diary for 1836, p. 52.
(22) First property on the left side given by Adams in his Eigenschaften des ...Dreicchs, p. 62 (1846).
(23) The first property was proposed for proof at the Concours Académique de Clermmt, 1875. A geometrical solution of it occurs in Bourget's Journal de Mathémutiques Élémentaires, II. 54-5 (1878).
(24)-(26) Weddle in the Diary for 1845, 1. 69.
(27)-(29) , , , , , , , p. 7 .
(30) " , , , ", ., 1. it.
(31)-(35) ", ," ," ", \quad. 1.
(36) The first values of $\left(a_{1}-\alpha\right)^{2}$, etc., occur in the Diary for 1847, pp. 49-50, in answer to a question proposed the previous year by the editor, W. S. B. Woolhouse. The second values are given by Matthes in his Commputatio, pp. 53-4 (1831); the third values by Weddle in the Ditry for 1845, p. 74. The last values of $\left(\alpha_{2}+\alpha_{3}\right)^{2}$, etc., are given by Franz Unferdinger in Grunert's Archic, XXIX., 436 (1857).
(38) Weddle in the Diary for 1843, p. 83.
(39), (40) " , ", ,, 1845, p. 73.
(41) The first proportion is given by Adams in his Eicenschaften des...Dreieck:, p. 34 (1846). All four follow at once from eight expressions given by Weddle in the Diary for 1843, p. 82.
(43) Weddle in the Diary for 1843. p. 82.
(4.5)

$$
\text { p. } 83 .
$$

(46) , , ,, ,, , 1845, p. 76.
(47) J. W. Elliott in the Diary for 1847, p. 73.
(48) Weddle ., ,, ," ,, 1845, p. 75.
(49) ", ., ., ., .. 1845, p. 76.
(50) , , , , .. , , . Ip. $72,75$.
$\$ 10$.

Formulae connected with the Angular Bisectors of a Triangle

 LIMITED AT THEIR POINTS OF IN'FFRSECTION WITH THE SIDES.The uniliteral notation for these bisectors

$$
\begin{array}{llllll}
l_{1} & l_{2} & l_{3} & \lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}
$$

was suggested by T. S. Davies in the Lady's and Gentleman's Diary for 1842, p. 77. In the expressions for them it has been assumed that the sides $B C C A A B$ are in decreasing order of magnitude. Hence it will follow that

BL is less than CL, and BL' is less than CL'
CM is greater than AM, and CM' is greater than $\mathbf{A M}^{\prime}$
$A N$ is less than $13 N$, and $A N^{\prime}$ is less than $B N^{\prime}$.

The assumption "causes the sign of λ_{2} (corresponding to the mean side b) to be contrary to those of λ_{1} and λ_{3}. This must be borne in mind, otherwise the symmetry of the expressions in which these functions $\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)$ are involved will not be seen." (Weddle in the Diary for 1848, p. 76.)

Two fundamental theorems* regarding two sides of a triangle and the bisectors of the angles between them give the following proportions:

$$
\begin{gathered}
b: c=u_{2}: u_{1}=u_{2}^{\prime}: u_{2}^{\prime} \\
b c=u_{1} u_{2}+l_{2}^{2}=u_{1}^{\prime} u_{2}^{\prime}-\lambda_{1}^{2}
\end{gathered}
$$

Hence are derived

$$
\left.\begin{array}{l}
b^{2}=u_{2}^{2}+l_{1}^{2} \cdot \frac{u_{2}}{u_{1}}=u_{2}^{\prime 2}-\lambda_{1}^{2} \cdot \frac{u_{2}^{\prime}}{u_{1}^{\prime}} \tag{1}\\
c^{2}=u_{1}^{2}+l_{1}^{2} \cdot \frac{u_{1}}{u_{2}}=u_{1}^{\prime 2}-\lambda_{1}^{2} \cdot \frac{u_{1}^{\prime}}{u_{2}^{\prime}}
\end{array}\right\}
$$

Segments of the sides in terms of the sides

$$
\begin{align*}
& \left.\begin{array}{lll}
u_{1}=\frac{c a}{b+c} & v_{1}=\frac{a b}{c+a} & w_{1}=\frac{b c}{a+b} \\
u_{1}^{\prime}=\frac{c a}{b-c} & v_{1}^{\prime}=\frac{a b}{a-c} & u_{1}^{\prime}=\frac{b c}{a-b} \\
u_{2}=\frac{a b}{b+c} & v_{2}=\frac{b c}{c+a} & w_{2}=\frac{c a}{a+b} \\
u_{2}^{\prime}=\frac{a b}{b-c} & v_{2}^{\prime}=\frac{b c}{a-c} & w_{2}^{\prime}=\frac{c a}{a-b}
\end{array}\right\} \tag{2}\\
& \left.\begin{array}{l}
u_{1}^{\prime}+u_{1}=u_{2}^{\prime}-u_{2}=\mathbf{L} \mathrm{L}^{\prime}=\frac{2 a b c}{b^{2}-c^{2}} \\
v_{2}^{\prime}+v_{0}=v_{1}^{\prime}-v_{1}=\mathrm{MM}^{\prime}=\frac{2 a b c}{a^{2}-c^{2}} \\
w_{1}^{\prime}+w_{1}=u_{2}^{\prime}-u_{2}=\mathbf{N ~ N}^{\prime}=\frac{2 a b c}{a^{2}-b^{2}}
\end{array}\right\} \tag{3}
\end{align*}
$$

[^21]89

$$
\begin{equation*}
\frac{1}{\mathrm{LL}^{\prime}}-\frac{1}{\mathrm{MM}^{\prime}}+\frac{1}{\mathrm{NN}^{\prime}}=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a^{2}}{\mathrm{LL}^{\prime}}-\frac{b^{2}}{\mathrm{MM}^{\prime}}+\frac{c^{2}}{\mathrm{NN}^{\prime}}=0 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a}{\mathrm{LL}^{\prime}}-\frac{b}{\mathrm{MM}^{\prime}}+\frac{c}{\mathrm{NN}^{\prime}}=\frac{(b-c)(c-a)(a-b)}{2 a b c} \tag{6}
\end{equation*}
$$

The segments of the sides in terms of each other.
$\begin{array}{lll} & u_{1}=u_{1}^{\prime} \frac{u_{2}^{\prime}-u_{1}^{\prime}}{u_{2}^{\prime}+u_{1}^{\prime}} & u_{2}=u_{2}^{\prime} \frac{u_{2}^{\prime}-u_{1}^{\prime}}{u_{2}^{\prime}+u_{1}^{\prime}} \\ \text { and so on. } & \\ & u_{1}^{\prime}=u_{1} \frac{u_{2}+u_{1}}{u_{2}-u_{1}} & u_{2}^{\prime}=u_{2} \frac{u_{2}+u_{1}}{u_{2}-u_{1}} \\ \text { and so on. } & \end{array}$

$$
u_{1}^{\prime}+u_{1}=u_{2}^{\prime}-u_{2}=\mathrm{I}_{1} \mathrm{I}_{1}^{\prime}=\frac{9 u_{1} u_{2}}{u_{2}-u_{1}}
$$

and so on.

$$
\left.\begin{array}{c}
\mathrm{LL}^{\prime 2}=l_{1}^{2}+\lambda_{1}^{2} \quad \mathrm{MM}^{\prime 2}=l_{2}^{2}+\lambda_{2}^{2} \quad \mathrm{NN}^{\prime 2}=l_{3}^{2}+\lambda_{3}{ }^{2} \\
l_{1}=\frac{2 \sqrt{b c s s_{1}}}{(b+c)}=\frac{2 \Delta \sqrt{b c r r_{1}}}{(b+c) r r_{1}} \\
l_{2}=\frac{2 \sqrt{c a s s_{2}}}{(c+a)}=\frac{2 \Delta \sqrt{c a r r_{2}}}{(c+a) r r_{2}} \tag{10}\\
l_{3}=\frac{2 \sqrt{a b s s_{3}}}{(a+b)}=\frac{2 \triangle \sqrt{a b r r_{3}}}{(a+b) r r_{3}}
\end{array}\right)
$$

$$
\left.\begin{array}{c}
\lambda_{\mathrm{I}}=\frac{2 \sqrt{b c_{2} s_{3}}}{(b-c)}=\frac{2 \Delta \sqrt{b c r_{2} r_{3}}}{(b-c) r_{2} r_{3}} \\
\lambda_{2}=\frac{2 \sqrt{\left(a \left(a s_{3} x_{1}\right.\right.}}{(a-c)}=\frac{2 \Delta \sqrt{c a r_{3} r_{1}}}{(a-c) r_{: 3} r_{1}} \tag{13}\\
\lambda_{3}=\frac{2 \sqrt{\left(b b_{1} s_{1} s_{2}\right.}}{(a-b)}=\frac{2 \Delta \sqrt{a b r_{1} r_{2}}}{(a-b) r_{1} r_{2}}
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\lambda_{1}^{2}(b+c)^{2}+\lambda_{1}^{2}(b-c)^{2}=4 b^{2} c^{2} \tag{14}\\
\lambda_{2}^{2}(c+a)^{2}+\lambda_{2}^{2}(a-c)^{2}=4 c^{2} a^{2} \\
\lambda_{3}^{2}(a+b)^{2}+\lambda_{3}^{2}(a-b)^{2}=4 a^{2} b^{2}
\end{array}\right\}
$$

$$
\left.\begin{array}{l}
\frac{l_{1}^{2}}{b c}(b+c)^{2}+\frac{l_{2}^{2}}{c a}(c+a)^{2}+\frac{l_{s}^{2}}{a b}(a+b)^{2}=4 s^{2} \\
\frac{l_{1}^{2}}{b c^{2}}(b+c)^{2}-\frac{\lambda_{2}^{2}}{c a}(a-c)^{2}-\frac{\lambda_{3}^{2}{ }^{2}}{c b b^{2}}(a-b)^{2}=4 s_{1}^{2}
\end{array}\right\}
$$

$$
\begin{equation*}
-\frac{\lambda_{1}^{2}}{b c}(b-c)^{2}+\frac{1_{2}^{2}}{c a}(c+a)^{2}-\frac{\lambda_{9}^{2}}{a b}(a-b)^{2}=4 s_{2}^{2} \tag{15}
\end{equation*}
$$

$$
-\frac{\lambda_{1}^{2}}{b c}(b-c)^{2}-\frac{\lambda_{2}^{2}}{c a}(a-c)^{2}+\frac{l_{: 3}^{2}}{a b}(a+b)^{2}=4 s_{:}^{2} \quad \quad
$$

$$
\begin{equation*}
l_{1}^{2} b c\left(\frac{1}{b}+\frac{1}{c}\right)^{2}+l_{2}^{2} c a\left(\frac{1}{c}+\frac{1}{a}\right)^{2}+1_{3}^{2} a b\left(\frac{1}{a}+\frac{1}{b}\right)^{2}=4 s^{2} \tag{16}
\end{equation*}
$$

and so on.

$$
\left.\begin{array}{l}
\frac{l_{1}^{2}}{a^{2}} \cdot \frac{1}{b c}\left(\frac{1}{b}+\frac{1}{c^{2}}\right)^{2}+\frac{l_{2}^{2}}{b^{2}} \cdot \frac{1}{c a}\left(\frac{1}{c}+\frac{1}{a}\right)^{2}+\frac{l_{3}^{2}}{c^{2}} \cdot \frac{1}{a b}\left(\frac{1}{a}+\frac{1}{b}\right)^{2} \tag{17}\\
=\left(\frac{1}{b c}+\frac{1}{c a}+\frac{1}{a b}\right)^{2} \\
\text { nd so on. }
\end{array}\right\}
$$

$$
\begin{align*}
& \left(\frac{1}{b}+\frac{1}{r}\right) \frac{b^{2}-r^{2}}{l_{2}^{2} 7_{n}^{2}}+\left(\frac{1}{r}+\frac{1}{a}\right) \frac{c^{2}-a^{2}}{l_{3} I_{1}^{2}}+\left(\frac{1}{a}+\frac{1}{b}\right) \frac{a^{2}-b^{2}}{l_{1}^{2} l_{2}^{2}}=0 \tag{18}
\end{align*}
$$

$$
\begin{align*}
& \left.\begin{array}{l}
u_{1} u_{2}+v_{1} v_{2}+w_{1} w_{2}=a b c\left\{\frac{a}{(b+c)^{2}}+\frac{b}{(c+a)^{2}}+\frac{c}{(a+b)^{2}}\right\} \\
u_{1}^{\prime} u_{2}^{\prime}+v_{1}^{\prime} v_{2}^{\prime}+u_{1}^{\prime} w_{2}^{\prime}=a b c\left\{\frac{a}{(b-c)^{2}}+\frac{b}{(a-c)^{2}}+\frac{c}{(a-b)^{2}}\right\}
\end{array}\right\} \tag{20}\\
& \begin{array}{l}
u_{1} u_{2}+v_{1} v_{2}+u_{1} u_{2}+\left(l_{1}^{2}+l_{2}^{2}+l_{3}^{2}\right)=b c+c a+a b \\
u_{1}^{\prime} u_{2}^{\prime}+v_{1}^{\prime} v_{2}^{\prime}+u_{1}^{\prime} u_{2}^{\prime}-\left(\lambda_{1}^{2}+\lambda_{2}^{\prime 2}+\lambda_{3}^{2}\right)=b c+c a+a l_{1}
\end{array} \tag{21}\\
& l_{1^{\prime \prime}}+l_{2} \beta+l_{: \gamma} \gamma=a v_{1}+l w_{1}+m u_{1} \tag{22}\\
& l_{1}\left(l_{1}-\alpha\right)+l_{1}\left(l_{2}-\beta\right)+l_{3}\left(l_{3}-\gamma\right) \\
& =\left(a-r_{1}\right) v_{2}+\left(b-u_{1}\right) u_{2}+\left(c-u_{1}\right) u_{2} \quad j \tag{23}\\
& \left.\begin{array}{l}
u^{2}+\beta^{2}+\gamma^{2}-\left\{\left(l_{1}-a\right)^{2}+\left(l_{2}-\beta\right)^{2}+\left(l_{5}-\gamma\right)^{2}\right\} \\
=\left(u_{1}+v_{1}+w_{1}\right)\left(u_{2}+v_{2}+u_{2}\right)-2\left(u_{1} v_{2}+v_{1} u_{2}+v_{1} u_{2}\right)
\end{array}\right\} \tag{24}\\
& \frac{1}{u_{1} v_{1} w_{1}}=\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)\left(\frac{1}{a}+\frac{1}{b}\right) \\
& \frac{1}{u_{1} v_{1}^{\prime} w_{1}^{\prime}}=\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{b}-\frac{1}{a}\right) \tag{25}\\
& \frac{1}{u_{1}^{\prime} v_{1} w_{1}^{\prime}}=\left(\frac{1}{c}-\frac{1}{b}\right)\left(\frac{1}{c}+\frac{1}{a}\right)\left(\frac{1}{b}-\frac{1}{a}\right) \\
& \frac{1}{u_{1}^{\prime} v_{1}^{\prime} w_{1}}=\left(\frac{1}{c}-\frac{1}{b}\right)\left(\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{a}+\frac{1}{b}\right)
\end{align*}
$$

These may be put into the forms

$$
u_{1} v_{1} w_{1}: a b c=a b c:(b+c)(c+a)(a+b)
$$

and so on ; or

$$
\mathrm{BL} \cdot \mathrm{CM} \cdot \mathrm{AN}: a b c=a b c: \mathrm{D}_{2} \mathrm{D}_{3} \cdot \mathrm{E}_{3} \mathrm{E}_{3} \cdot \mathrm{~F}_{1} \mathrm{~F}_{2}
$$

and so on.

$$
\begin{align*}
& u_{1} v_{1} u_{1}=u_{2} v_{2} w_{2}=\frac{4 \Delta \mathrm{R},}{h_{1}+h_{2}+h_{3}-r} \\
& u_{1} v_{1}^{\prime} w_{1}^{\prime}=u_{2} v_{2}^{\prime} w_{2}^{\prime}=\frac{4 \triangle \mathrm{R} r_{1}}{h_{1}-h_{2}-h_{3}+r_{1}} \tag{26}\\
& u_{1}^{\prime} v_{1} w_{1}^{\prime}=u_{2}^{\prime} v_{2} w_{2}^{\prime}=\frac{4 \Delta \mathrm{R} r_{2}}{h_{1}-h_{2}+h_{3}-r_{2}} \\
& u_{1}^{\prime} v_{1}^{\prime} w_{1}=u_{2}^{\prime} v_{2}^{\prime} w_{2}=\frac{4 \Delta \mathrm{R} r_{3}}{-h_{1}-h_{2}+h_{3}+r_{3}} \\
& u_{1}^{\prime} v_{1}^{\prime} w_{1}^{\prime}=u_{2}^{\prime} v_{2}^{\prime} w_{2}^{\prime}=\frac{a^{2} b^{2} c^{\prime}}{(b-c)(a-c)(a-b)} \\
& u_{1}^{\prime} v_{1} w_{1}=u_{2}^{\prime} v_{2} u_{2}=\frac{a^{2} l^{2} r^{2}}{(b-c)(c+a)(a+b)} \tag{27}\\
& u_{1} v_{1}^{\prime} w_{1}=u_{2} v_{2}^{\prime} w_{2}=\frac{a^{3} b^{2} c^{2}}{(b+c)(a-c)(a+b)} \\
& u_{1} v_{1} w_{1}^{\prime}=u_{2} v_{2} v_{2}^{\prime}=\frac{a^{2} b^{2} c_{2}^{2}}{(b+c)(c+a)(a-b)}
\end{align*}
$$

These may be put into the forms

$$
\mathrm{BL}^{\prime} \cdot \mathrm{CM}^{\prime} \cdot \mathrm{AN}^{\prime}: a b c=a b c: \mathrm{JD}_{1} \cdot \mathrm{EE}_{2} \cdot \mathrm{FF}_{3}
$$

and so on.

$$
\begin{align*}
& \left.l_{1} l_{2} l_{3}=\frac{8 a b c s \triangle}{(b+c)(c+a)(a+b)} \quad \lambda_{1} \lambda_{2} \lambda_{2}=\frac{8 a b c r \triangle}{(b-c)(a-c)(a-b)}\right) \\
& I_{1} \lambda_{2} \lambda_{3}=\frac{8 a b c s_{1} \Delta}{(b+c)(a-c)(a-b)} \quad \lambda_{1} l_{2} l_{: 3}=\frac{8 a b c r_{1} \Delta}{(b-c)(c+a)(a+b)} \tag{28}\\
& \lambda_{1} l_{2} \lambda_{2}=\frac{8 a b c s_{3} \triangle}{(b-c)(c+a)(a-b)} \quad l_{1} \lambda_{2} l_{:}=\frac{8 a b c r_{2} \triangle}{(b+c)(a-c)(a+b)} \\
& \lambda_{1} \lambda_{2} l_{3}=\frac{8 a b s_{3} \Delta}{(b-c)(a-c)(a+b)} \quad l_{1} l_{2} \lambda_{7}=\frac{8 a b c r_{3} \triangle}{(b+c)(c+a)(a-b)} \\
& l_{1} l_{2} l_{3}=\frac{32 \mathrm{R} \Delta^{3}}{r(b+c)(c+a)(a+b)}=\frac{8 \Delta^{2}}{h_{1}+h_{2}+h_{2}-r} \tag{29}\\
& \text { and so on. }
\end{align*}
$$

$$
\lambda_{1} \lambda_{2} \lambda_{3}=\frac{32 \mathrm{R} \triangle}{s(b-c)(a-c)(a-b)}
$$

and so on.

$$
\left.\begin{array}{c}
\mathrm{BL} \cdot \mathrm{CM} \cdot \mathrm{AN}: l_{1} l_{2} l_{2}=\mathrm{R}: 2 s \\
\mathrm{BL} \cdot \mathrm{CM}^{\prime} \cdot \mathrm{AN}^{\prime}: \lambda_{1} \lambda_{2} \lambda_{3}=\mathrm{R}: 2 r \\
l_{1} l_{2} l_{3}(b+c)(c+a)(a+b) \tag{33}\\
=8 a \beta \gamma s^{3}=8 a_{1} \beta_{1} \gamma_{1} s s_{1}^{2}=8 a_{2} \beta_{2} \gamma_{2} s s_{2}^{2}=8 a_{3} \beta_{j} \gamma_{j} s \delta_{3}^{2} \\
=8 a_{1} \beta \beta_{2} \gamma_{3} 8 r^{2}=8 a \beta_{3} \gamma_{2} s r_{1}^{2}=8 a_{3} \beta \gamma_{1} s r_{2}^{2}=8 a_{2} \beta_{1} \gamma \Delta r_{3}^{2}
\end{array}\right\}
$$

$$
\left.\begin{array}{c}
\lambda_{1} \lambda_{2} \lambda_{3}(b-c)(a-c)(a-b) \tag{34}\\
=8 u_{1} \beta_{2} \gamma_{3} r^{3}=8 u \beta_{3} \gamma_{2} r r_{1}^{2}=8 a_{3} \beta \gamma_{1} r r_{2}^{2}=8 a_{2} \beta_{1} \gamma r r_{3}^{\prime 2} \\
=8 a \beta \gamma r s^{2}=8 a_{1} \beta_{1} \gamma_{1} r s_{1}{ }^{2}=8 a_{2} \beta_{2} \gamma_{2} r s_{2}{ }^{2}=8 a_{3} \beta_{3} \gamma_{3} \cdot r_{3}{ }^{2}
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
l_{1} l_{2} l_{3} \lambda_{1} \lambda_{2} \lambda_{3} & =\frac{64 a^{2} b^{2} c^{2} \Delta^{3}}{\left(b^{2}-c^{2}\right)\left(a^{2}-c^{2}\right)\left(a^{2}-b^{2}\right)} \tag{35}\\
& =\frac{1024 \mathrm{R}^{2} \triangle^{5}}{\left(b^{2}-c^{2}\right)\left(a^{2}-c^{2}\right)\left(a^{2}-b^{2}\right)}
\end{array}\right\}
$$

$$
\begin{equation*}
\frac{2 a}{l_{1} \lambda_{1}}=\frac{h_{3}^{\prime \prime}-h_{2}^{2}}{h_{1} h_{2} h_{1}^{2}} \quad \frac{2 b}{l_{2} \lambda_{2}}=\frac{h_{3}^{\prime \prime}-h_{1}^{\prime 2}}{h_{1} h_{2} h_{;}} \quad \frac{2 c}{l_{i} \lambda_{3}}=\frac{h_{2}^{2}-h_{1}^{2}}{h_{1} h_{2} h_{3}} \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2 h_{1}}{l_{1} \lambda_{1}}=\frac{b^{2}-c^{2}}{a b c} \quad \frac{2 h_{2}}{l_{2} \lambda_{2}}=\frac{a^{2}-t^{2}}{a b c} \quad \frac{2 h_{: 3}}{l_{3} \lambda_{3}}=\frac{a^{2}-b^{2}}{a b c} \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
l_{1} \lambda_{1}=\frac{4 b c \triangle}{b^{2}-c^{2}} \quad l_{2} \lambda_{2}=\frac{4 c a \triangle}{a^{2}-c^{2}} \quad l_{3} \lambda_{3}=\frac{4 a b \triangle}{a^{2}-b^{2}} \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a}{l_{1} \lambda_{1}}-\frac{b}{l_{2} \lambda_{2}}+\frac{c}{l_{3} \lambda_{3}}=0 \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\frac{h_{1}}{l_{1} \lambda_{1}}-\frac{h_{2}}{l_{2} \lambda_{2}}+\frac{l_{3}}{l_{3} \lambda_{3}}=0 \tag{40}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{a l_{1} \lambda_{1}}-\frac{1}{b l_{2} \lambda_{2}}+\frac{1}{c l_{3} \lambda_{3}}=0 \tag{41}\\
& \frac{1}{h_{3} l_{1} \lambda_{1}}-\frac{1}{h_{2} l_{2} \lambda_{2}}+\frac{1}{h_{3} l_{3} \lambda_{3}}=0 \tag{42}\\
& a: l_{1}=r(b+c): 2 \triangle=b+c: 2 s \\
& \beta: l_{2}=r(c+a): 2 \triangle=c+a: 2 s \\
& \gamma: l_{3}=r(a+b): 2 \triangle=a+b: 2 s \\
& u_{1}: l_{1}=r_{1}(b+c): 2 \triangle=b+c: 2 s_{1} \\
& \beta_{2}: l_{2}=r_{2}(c+a): 2 \triangle=c+a: 2 s_{2} \\
& \gamma_{3}: l_{3}=r_{3}(a+b): 2 \triangle=a+b: 2 s_{3} \\
& \alpha_{2}: \lambda_{1}=r_{2}(b-c): 2 \triangle=b-c: 2 s_{3} \tag{43}\\
& u_{3}: \lambda_{1}=r_{3}(l-c): 2 \triangle=b-c: 2 s_{3} \\
& \beta_{3}: \lambda_{2}=r_{3}(a-c): 2 \triangle=a-c: 2 s_{3} \\
& \beta_{1}: \lambda_{2}=r_{1}(a-c): 2 \triangle=a-c: 2 s_{1} \\
& \gamma_{1}: \lambda_{3}=r_{1}(a-b): 2 \triangle=a-b: 2 s_{1} \\
& \gamma_{2}: \lambda_{3}=r_{: 3}(a-b): 2 \triangle=a-b: 2 s_{2}
\end{align*}
$$

$\alpha: \mathrm{IL}=b+c: a$		$l_{1}: \mathrm{IL}=2 s: a$
$\beta: \mathrm{I} \mathbf{M}=c+a: b$		$l_{2}: \mathrm{I} M=2 s: b$
$\gamma: \mathrm{IN}=a+b: c$		$l_{:}: \mathbf{I N}=\mathbf{2} s: c$
$\dot{a}_{1}: \mathrm{I}_{1} \mathrm{~L}=b+c: a$		$l_{1}: \mathrm{I}_{1} \mathrm{~L}=2 s_{1}: a$
$\beta_{2}: \mathrm{I}_{2} \mathrm{M}=c+a: b$		$I_{4}: I_{2} \mathbf{M}=2_{s_{2}}: b$
$\gamma_{; ;}: \mathrm{I}_{3} \mathrm{~N}=a+b: c$		$l_{3}: \mathrm{I}_{3} \mathrm{~N}=2 s_{3}: c$
$u_{2}: \mathrm{I}_{2} \mathrm{~L}^{\prime}=b-c: a$	(44)	$\lambda_{1}: I_{2} L^{\prime}=2 s_{2}: a$
$\alpha_{3}: \mathrm{I}_{3} \mathrm{~L}^{\prime}=b-c: a$		$\lambda_{1}: I_{3} L^{\prime}=2 s_{3}: a$
$\beta_{3}: \mathrm{I}_{3} \mathrm{M}^{\prime}=a-c: b$		$\lambda_{2}: I_{3} \mathbf{M}^{\prime}=2 s_{3}: b$
$\beta_{1}: \mathrm{I}_{1} \mathrm{M}^{\prime}=a-c: b$		$\lambda_{2}: \mathrm{I}_{1} \mathrm{M}^{\prime}=2 s_{1}: b$
$\gamma_{1}: \mathrm{I}_{1} \mathrm{~N}^{\prime}=a-b: c$		$\lambda_{3}: \mathrm{I}_{1} \mathrm{~N}^{\prime}=2 s_{1}: c$
$\gamma_{2}: \mathrm{I} \mathrm{N}^{\prime}=a-b: c$		$\lambda_{3}: I_{2} \mathrm{~N}^{\prime}=2 s_{2}: c$

Values such as

$$
\begin{align*}
& l_{1}=\frac{2 \triangle}{r} \cdot \frac{\alpha}{\mathrm{D}_{2} \mathrm{D}_{3}}=\frac{2 \triangle}{r_{1}} \cdot \frac{\alpha_{1}}{\mathrm{D}_{2} \mathrm{D}_{3}} \\
& \lambda_{1}=\frac{2 \Delta}{r_{2}} \cdot \frac{\alpha_{2}}{\mathrm{DD}_{1}}=\frac{2 \Delta}{r_{3}} \cdot \frac{a_{3}}{\mathrm{DD}_{1}} \tag{46}\\
& \mathrm{IL}=\frac{a \sqrt{b c r r_{1}}}{(b+c) r_{1}} \quad \mathrm{I}_{1} \mathrm{~L}=\frac{a \sqrt{b c r r_{1}}}{(b+c) r} \\
& \mathrm{I}_{2} \mathrm{~L}^{\prime}=\frac{a \sqrt{b c r_{2} r_{3}}}{(b-c) r_{3}} \quad \mathrm{I}_{3} \mathrm{~L}^{\prime}=\frac{a \sqrt{b c r_{2} r_{3}}}{(b-c) r_{2}}
\end{align*}
$$

need not be written out at length.

$$
\begin{align*}
& \mathrm{I} \mathrm{~L} \cdot \mathrm{I} \mathrm{M} \cdot \mathrm{I} \mathrm{~N}=\frac{16 \Delta \mathrm{R}^{2} r^{2}}{(b+c)(c+a)(a+b)} \\
& \mathrm{I}_{1} \mathrm{~L} \cdot \mathrm{I}_{2} \mathrm{M} \cdot \mathrm{I}_{3} \mathrm{~N}=\frac{16 \Delta \mathrm{R}^{2} v^{2}}{(b+c)(c+a)(a+b)} \\
& \mathrm{I}_{1} \mathrm{~L} \cdot \mathrm{I}_{1} \mathrm{M}^{\prime} \cdot \mathrm{I}_{1} \mathrm{~N}^{\prime}=\frac{16 \Delta \mathrm{R}^{2} r_{1}{ }^{2}}{(b+c)(a-c)(a-b)} \\
& \mathrm{I} \mathrm{~L} \cdot \mathrm{I}_{3} \mathrm{M}^{\prime} \cdot \mathrm{I}_{2} \mathrm{~N}^{\prime}=\frac{16 \Delta \mathrm{R}^{2} s_{1}{ }^{2}}{(b+c)(a-c)(a-b)} \\
& \mathrm{I}_{2} \mathrm{~L} \cdot \mathrm{I}_{2} \mathrm{M} \cdot \mathrm{I}_{2} \mathrm{~N}^{\prime}=\frac{16 \Delta \mathrm{R}^{2} r_{2}{ }^{2}}{(b-c)(c+a)(a-b)} \tag{48}\\
& \mathrm{I}_{3} \mathrm{~L}^{\prime} \cdot \mathrm{I} \mathrm{M} \cdot \mathrm{I}_{1} \mathrm{~N}^{\prime}=\frac{16 \Delta \mathrm{R}^{2} s_{2}{ }^{2}}{(b-c)(c+a)(a-b)} \\
& \mathrm{I}_{3} \mathrm{~L}^{\prime} \cdot \mathrm{I}_{3} \mathrm{M}^{\prime} \cdot \mathrm{I}_{3} \mathrm{~N}=\frac{16 \Delta \mathrm{R}^{2} r_{3}{ }^{2}}{(b-c)(a-c)(a+b)} \\
& \mathrm{I}_{2} \mathrm{~L}^{\prime} \cdot \mathrm{I}_{1} \mathrm{M}^{\prime} \cdot \mathrm{I} \mathrm{~N}=\frac{16 \Delta \mathrm{R}^{2} s_{3}{ }^{2}}{(b-c)(a-c)(a+b)}
\end{align*}
$$

$$
\left.\begin{array}{l}
\mathrm{I} \mathrm{~L} \cdot \mathrm{I} \mathrm{M} \cdot \mathrm{I} \mathrm{~N}=\frac{4 \mathrm{R} r^{3}}{h_{1}+h_{2}+h_{3}-r} \tag{49}\\
\mathrm{I}_{1} \mathrm{~L} \cdot \mathrm{I}_{2} \mathrm{M} \cdot \mathrm{I}_{3} \mathrm{~N}=\frac{4 \mathrm{R} r s^{2}}{h_{1}+h_{2}+h_{3}-r}
\end{array}\right\}
$$

$$
\begin{align*}
a \beta \gamma: \mathrm{IL} \cdot \mathrm{IM} \cdot \mathrm{IN} & =(b+c)(c+a)(a+b): a b c \\
& =a b c: \mathrm{BL} \cdot \mathrm{CM} \cdot \mathrm{AN} \\
& =h_{1}+h_{2}+h_{3}-r: r \tag{50}\\
& =u_{1} \beta_{2} \gamma_{3} \cdot \mathrm{I}_{1} \mathrm{~L}: \mathrm{I}_{2} \mathrm{M} \cdot \mathrm{I}_{3} \mathrm{~N}
\end{align*}
$$

$\left.\begin{array}{l}\mathrm{IL} \cdot \mathrm{I} \mathrm{M} \cdot \mathrm{I} \mathrm{N}: l_{1} l_{2} l_{3}=\mathrm{R} r: 28^{2} \\ \mathrm{I}_{1} \mathrm{~L} \cdot \mathrm{I}_{2} \mathrm{M} \cdot \mathrm{I}_{3} \mathrm{~N}: l_{1} l_{2} l_{3}=\mathrm{R}: 2 r\end{array}\right\}$

$$
\begin{align*}
& \frac{l_{1}}{\mathrm{LL}^{\prime}} \cdot \frac{l_{3}}{\mathbf{M M}^{\prime}} \cdot \frac{l_{3}}{\mathrm{NN}^{\prime}}=\frac{(b-c)(a-c)(a-b)}{16 \mathbf{R}^{2} r}=\frac{l_{1} h_{2} h_{3}}{\lambda_{1} \lambda_{2} \lambda_{3}} \\
& \frac{\lambda_{1}}{\mathrm{LL}^{\prime}} \cdot \frac{\lambda_{2}}{\mathbf{M M}^{\prime}} \cdot \frac{\lambda_{3}}{\mathrm{NN}^{\prime}}=\frac{(b+c)(c+a)(a+b)}{16 \mathrm{R}^{2} s}=\frac{h_{1} h_{2} h_{3}}{l_{1} l_{2} l_{3}} \tag{52}
\end{align*}
$$

$$
\begin{array}{ll}
l_{1}^{2}=\frac{4 r r_{1}\left(r r_{1}+r_{2} r_{i j}\right)}{\left(r_{1}+r\right)^{2}} & \lambda_{1}^{2}==\frac{4 r_{2} r_{3}\left(r r_{1}+r_{2} r_{3}\right)}{\left(r_{2}-r_{3}\right)^{2}} \\
l_{2}^{2}=\frac{4 r_{2}\left(r r_{3}+r_{3} r_{1}\right)}{\left(r_{2}+r\right)^{2}} & \lambda_{2}^{2}=\frac{4 r_{3} r_{1}\left(r r_{2}+r_{3} r_{1}\right)}{\left(r_{1}-r_{3}\right)^{2}} \\
l_{3}^{2}=\frac{4 r_{i}\left(r r_{3}+r_{1} r_{2}\right)}{\left(r_{3}+r\right)^{2}} & \lambda_{3}^{2}=\frac{4 r_{1} r_{3}\left(r r_{3}+r_{1} r_{2}\right)}{\left(r_{1}-r_{2}\right)}
\end{array}
$$

$$
\frac{1}{l_{1}^{2}}+\frac{1}{\lambda_{1}^{2}}=\frac{1}{h_{1}^{2}}
$$

$$
\begin{equation*}
\frac{1}{l_{2}^{2}}+\frac{1}{\lambda_{2}^{2}}=\frac{1}{h_{2}^{2}} \tag{54}
\end{equation*}
$$

$$
\frac{1}{I_{:}^{2}}+\frac{1}{\lambda_{:}^{2}}=\frac{1}{h_{:}^{2}}
$$

97

$$
\begin{align*}
& \frac{l_{1}}{l_{2} l_{3}}+\frac{l_{1}}{\lambda_{2} \lambda_{3}}=\frac{\lambda_{1}}{\lambda_{2} l_{3}}-\frac{\lambda_{1}}{l_{2} \lambda_{3}}=\frac{h_{1}}{h_{2} h_{3}}=\frac{2 \mathrm{R}}{a^{2}} \\
& \frac{l_{3}}{l_{3} l_{1}}-\frac{l_{2}}{\lambda_{3} \lambda_{1}}=\frac{\lambda_{2}}{l_{3} \lambda_{1}}+\frac{\lambda_{2}}{\lambda_{3} l_{1}}=\frac{h_{2}}{h_{3} h_{1}}=\frac{2 \mathrm{R}}{b^{2}} \tag{55}\\
& \frac{l_{3}}{l_{1} l_{2}}+\frac{l_{3}}{\lambda_{1} \lambda_{2}}=\frac{\lambda_{3}}{l_{1} \lambda_{2}}-\frac{\lambda_{3}}{\lambda_{2} l_{2}}=\frac{h_{3}}{h_{1} h_{2}}=\frac{2 \mathrm{R}}{c^{2}}
\end{align*}
$$

$$
\begin{align*}
& \frac{l_{1}}{\lambda_{1}}=\frac{l_{2} \lambda_{3}-\lambda_{2} l_{3}}{l_{2} l_{3}+\lambda_{2} \lambda_{3}} \\
& \frac{l_{2}}{\lambda_{2}}=\frac{l_{3} \lambda_{1}+\lambda_{3} l_{1}}{\lambda_{3} \lambda_{1}-l_{3} l_{1}} \tag{56}\\
& \frac{l_{3}}{\lambda_{3}}=\frac{\lambda_{1} l_{2}-l_{2} \lambda_{2}}{l_{1} l_{2}+\lambda_{1} \lambda_{2}}
\end{align*}
$$

Weddle remarks that the three preceding relations between $\begin{array}{lllllllllll}l_{1} & l_{2} & l_{3} & \lambda_{1} & \lambda_{2} & \lambda_{3} & \text { all reduce to }\end{array}$

$$
\begin{equation*}
l_{1} l_{2} l_{3}=\lambda_{1} l_{2} \lambda_{3}-\lambda_{1} \lambda_{2} l_{3}-l_{1} \lambda_{2} \lambda_{3} \tag{57}
\end{equation*}
$$

$$
\left.\begin{array}{lll}
l_{1}=\frac{2 \alpha a_{1}}{\alpha+a_{1}} & l_{2}=\frac{2 \beta \beta_{2}}{\beta+\beta_{2}} & l_{3}=\frac{2 \gamma \gamma_{3}}{\gamma+\gamma_{3}} \\
\frac{2}{l_{1}}=\frac{1}{\alpha}+\frac{1}{a_{1}} & \frac{2}{l_{2}}=\frac{1}{\beta}+\frac{1}{\beta_{2}} & \frac{2}{l_{3}}=\frac{1}{\gamma}+\frac{1}{\gamma_{3}} \tag{58}\\
\lambda_{1}=\frac{2 a_{2} \alpha_{3}}{a_{2}-a_{3}} & \lambda_{2}=\frac{2 \beta_{1} \beta_{3}}{\beta_{1}-\beta_{3}} & \lambda_{3}=\frac{2 \gamma_{1} \gamma_{2}}{\gamma_{1}-\gamma_{2}} \\
\frac{2}{\lambda_{1}}=\frac{1}{a_{3}}-\frac{1}{a_{2}} & \frac{2}{\lambda_{2}}=\frac{1}{\beta_{3}}-\frac{1}{\beta_{1}} & \frac{2}{\lambda_{3}}=\frac{1}{\gamma_{2}}-\frac{1}{\gamma_{1}}
\end{array}\right\}
$$

$$
\left.\begin{array}{lll}
2 \mathrm{AU}=a_{1}+a & 2 \mathrm{BV}=\beta_{2}+\beta & 2 \mathrm{CW}=\gamma_{3}+\gamma \tag{59}\\
2 \mathrm{AU}^{\prime}=a_{2}-a_{3} & 2 \mathrm{BV}^{\prime}=\beta_{1}-\beta_{3} & 2 \mathrm{CW}^{\prime}=\gamma_{1}-\gamma_{2}
\end{array}\right\}
$$

$$
\begin{align*}
& \mathrm{AU}\left(a_{2}+a_{3}\right)=2 \mathrm{R}(b+c) \\
& \mathrm{BV}\left(\beta_{3}+\beta_{1}\right)=2 \mathrm{R}(c+a) \\
& \mathrm{CW}\left(\gamma_{1}+\gamma_{2}\right)=2 \mathrm{R}(a+b) \\
& \mathrm{AU}^{\prime}\left(a_{1}-\alpha\right)=2 \mathrm{R}(b-c) \tag{60}\\
& \mathrm{BV}^{\prime}\left(\beta_{2}-\beta\right)=2 \mathrm{R}(a-c) \\
& \mathrm{CW}^{\prime}\left(\gamma_{3}-\gamma\right)=2 \mathrm{R}(a-b)
\end{align*}
$$

$$
\begin{align*}
& \mathrm{AU} \cdot l_{1}=\mathrm{AU}^{\prime} \cdot \lambda_{1}=b c \\
& \mathrm{BV} \cdot l_{2}=\mathrm{BV}^{\prime} \cdot \lambda_{2}=c a \tag{61}\\
& \mathrm{CW} \cdot l_{3}=\mathrm{CW}^{\prime} \cdot \lambda_{3}=a b
\end{align*}
$$

$$
\left.\begin{array}{ll}
\mathrm{AU}^{2}=\frac{b c(b+c)^{2}}{4 s s_{1}} & \mathrm{AU}^{\prime 2}=\frac{b c(b-c)^{2}}{4 s_{2} s_{3}} \\
\mathrm{BV}^{2}=\frac{c a(c+a)^{2}}{4 s s_{2}} & \mathrm{BV}^{\prime 2}=\frac{a c(a-c)^{2}}{4 s_{3} s_{1}} \tag{62}\\
\mathrm{CW}^{2}=\frac{a b(a+b)^{2}}{4 s s_{3}} & \mathrm{CW}^{\prime 2}=\frac{a b(a-b)^{2}}{4 s_{1} s_{2}}
\end{array}\right\}
$$

$$
\begin{aligned}
& \mathrm{UA}^{\prime}=\frac{r^{2}}{h_{1}-2 r}=\frac{r_{1}}{h_{1}+2 r_{1}} \\
& \mathrm{VB}^{\prime}=\frac{r^{2}}{h_{2}-2 r}=\frac{r_{2}^{2}}{h_{2}+2 r_{2}} \\
& \mathrm{WC}^{\prime}=\frac{r^{2}}{h_{3}-2 r}=\frac{r_{3}^{2}}{h_{3}+2 r_{33}}
\end{aligned}
$$

$$
\begin{equation*}
\frac{b c\left(b^{2}-c^{2}\right)}{4 \mathrm{AU} \cdot \mathrm{~A} \bar{U}^{\prime}}=\frac{a c\left(a^{2}-c^{2}\right)}{4 \mathrm{BV} \cdot \mathrm{BV}^{\prime}}=\frac{a b\left(a^{2}-\dot{b}^{2}\right)}{4 \mathrm{CW} \cdot \mathrm{CW}^{\prime}}=\triangle \tag{64}
\end{equation*}
$$

$$
\left.\begin{array}{ll}
l_{1}(b+c)=h_{1}\left(a_{2}+a_{3}\right) & \lambda_{1}(b-c)=h_{1}\left(a_{1}-a\right) \tag{65}\\
l_{2}(c+a)=h_{2}\left(\beta_{3}+\beta_{1}\right) & \lambda_{2}(a-c)=h_{2}\left(\beta_{2}-\beta\right) \\
l_{3}(a+b)=h_{3}\left(\gamma_{1}+\gamma_{2}\right) & \lambda_{3}(a-b)=h_{3}\left(\gamma_{3}-\gamma\right)
\end{array}\right\}
$$

$$
\left.\left.\begin{array}{c}
\frac{4}{l_{1}^{2}}+\frac{4}{\lambda_{1}{ }^{2}}=\frac{1}{a^{2}}+\frac{1}{a_{1}{ }^{2}}+\frac{1}{a_{2}{ }^{2}}+\frac{1}{\alpha_{3}{ }^{2}} \\
\frac{4}{l_{2}{ }^{2}}+\frac{4}{\lambda_{2}{ }^{2}}=\frac{1}{\beta^{2}}+\frac{1}{\beta_{1}{ }^{2}}+\frac{1}{\beta_{2}{ }^{2}}+\frac{1}{\beta_{3}{ }^{2}} \\
\frac{4}{l_{3}{ }^{2}}+\frac{4}{\lambda_{3}{ }^{2}}=\frac{1}{\gamma^{2}}+\frac{1}{\gamma_{1}{ }^{2}}+\frac{1}{\gamma_{2}{ }^{2}}+\frac{1}{\gamma_{3}{ }^{2}} \\
\frac{a}{l_{1}}+\frac{\beta}{l_{2}}+\frac{\gamma}{l_{3}}=2 \\
\frac{\alpha_{1}}{l_{1}}-\frac{\beta_{1}}{\lambda_{2}}+\frac{\gamma_{1}}{\lambda_{3}}=2 \\
\frac{\beta_{2}}{l_{2}}+\frac{\gamma_{2}}{\lambda_{3}}-\frac{a_{2}}{\lambda_{1}}=2 \\
\frac{\gamma_{3}}{l_{3}}+\frac{\alpha_{3}}{\lambda_{1}}+\frac{\beta_{3}}{\lambda_{2}}=2
\end{array}\right\} \begin{array}{l}
\frac{\beta_{2}}{\lambda_{2}}+\frac{\gamma_{3}}{\lambda_{3}}=0 \\
\frac{\alpha}{\lambda_{1}}+\frac{\beta_{3}}{l_{2}}-\frac{\gamma_{2}}{l_{3}}=0 \tag{68}\\
\frac{\alpha_{3}}{l_{1}}+\frac{\beta}{\lambda_{2}}-\frac{\gamma_{1}}{l_{3}}=0 \\
\frac{\alpha_{2}}{l_{1}}-\frac{\beta_{1}}{l_{2}}+\frac{\gamma}{\lambda_{3}}=0
\end{array}\right\}
$$

Let AI BI CI meet MN NL LM respectively at
$\begin{array}{lll}\mathrm{L}_{1} & \mathrm{M}_{1} & \mathrm{~N}_{1}\end{array}$

$$
\left.\begin{array}{l}
\mathrm{AL}_{1}: \mathrm{IL}_{1}=\mathrm{AL}: \mathrm{IL}=h_{1}: r \tag{69}\\
\mathrm{BM}_{1}: \mathrm{IM}_{1}=\mathrm{BM}: \mathrm{IM}=h_{2}: r \\
\mathrm{CN}_{1}: \mathrm{IN}_{1}=\mathrm{CN}: \mathrm{IN}=h_{3}: r
\end{array}\right\}
$$

$$
\left.\begin{array}{lll}
\mathrm{AL}_{1}=\frac{h_{1} \alpha}{h_{1}+r} & \mathrm{BM}_{1}=\frac{h_{2} \beta}{h_{2}+r} & \mathrm{CN}_{1}=\frac{h_{\mathrm{z}} \gamma}{h_{3}+r} \tag{70}\\
\mathrm{IL}_{1}=\frac{r u}{h_{1}+r} & \mathrm{IM}_{1}=\frac{r \beta}{h_{2}+r} & \mathrm{IN}_{1}=\frac{r \gamma}{h_{3}+r}
\end{array}\right\}
$$

Matthes (p. 47) gives the values

$$
\begin{align*}
\mathrm{AL}_{1} & =\frac{h_{1} \sqrt{b c r r_{1}}}{\left(h_{1}+r\right) r_{1}}, \text { etc. } \\
\mathrm{IL}_{1} & =\frac{r \sqrt{b c r r_{1}}}{\left(h_{1}+r\right) r_{1}}, \text { etc. } \tag{71}
\end{align*}
$$

Expressions for the sides of $\triangle \mathrm{LMN}$.

$$
\left.\begin{array}{l}
\mathbf{M N}^{2}=\frac{a b c}{(c+a)^{2}(a+b)^{2}} \times \tag{72}\\
\left(b^{2} c+b c^{2}-c^{2} a+c a^{2}+a^{2} b-a b^{2}+a^{3}-b^{2}-c^{3}+3 a b c\right)
\end{array}\right\}
$$

NL^{2} and LM^{2} can be obtained by cyclical permutations of the letters $a b c$.

These expressions can be put into shorter forms, by help of Landen's theorem that

$$
\mathbf{I}_{1} \mathbf{O}^{2}=\mathrm{R}^{2}+2 \mathrm{R} r_{1}
$$

For

$$
\begin{gathered}
4 \Delta\left(\mathrm{R}+2 r_{1}\right)=4 \Delta \mathrm{R}+\frac{16 \triangle^{2}}{2 s_{1}} \\
=a b c+(a+b+c)(a-b+c)(a+b-c) \\
=b^{2} c+b c^{2}-c^{2} a+c a^{2}+a^{2} b-a b^{2}+a^{3}-b^{3}-c^{3}+3 a b c
\end{gathered}
$$

Hence

$$
\begin{equation*}
\mathrm{MN}=\frac{4 \triangle \cdot \mathrm{I}_{1} \mathrm{O}}{(c+a)(a+b)} \quad \mathrm{NL}=\frac{4 \Delta \cdot \mathrm{I}_{2} \mathrm{O}}{(a+b)(b+c)} \quad \mathrm{LM}=\frac{4 \Delta \cdot \mathrm{I}_{3} \mathrm{O}}{(b+c)(c+a)} \tag{73}
\end{equation*}
$$

Matthes (p. 4 5) in transforming the ten-term factor which occurs in the expression for MN^{2} does not appear to have observed the simplification that would result from introducing $\mathrm{R}+2 r_{1}$. He introduces $\mathrm{R}+2 \mathrm{r}$, and obtains for MN the following value:

$$
\frac{4 \Delta}{(c+a)(a+b) r_{2} r_{3}} \sqrt{\left\{\left(\mathrm{R}^{2}+2 \mathrm{R} r\right) r_{2} r_{3}+2 a \triangle \mathrm{R}\right\} r_{2} r_{3}}
$$

The points $L^{\prime} \mathbf{M}^{\prime} \mathbf{N}^{\prime}$ do not form the vertices of a triangle, but are collinear.

Expressions for the distances $M^{\prime} \mathbf{N}^{\prime} \mathbf{N}^{\prime} L^{\prime} L^{\prime} M^{\prime}$.

$$
\left.\begin{array}{l}
\mathbf{M}^{\prime} \mathbf{N}^{\prime 2}=\frac{a b c}{(a-c)^{2}(a-b)^{2}} \times \tag{74}\\
\left(-b^{2} c-b c^{2}-c^{2} a-c a^{2}-a^{2} b-a b^{2}+a^{3}+b^{3}+c^{3}+3 a b c\right)
\end{array}\right\}
$$

$N^{\prime} L^{\prime 2}$ and $L^{\prime} \mathrm{M}^{\prime 2}$ can be obtained by cyclical permutations of the letters $a b c$.

These expressions can be put into shorter forms, by help of Chapple's theorem that

$$
\mathrm{IO}^{2}=\mathrm{R}^{2}-2 \mathrm{R} r
$$

For

$$
\begin{gathered}
4 \triangle(\mathrm{R}-2 r)=4 \triangle \mathrm{R}-\frac{16 \triangle^{2}}{2 s} \\
=a b c+(-a+b+c)(a-b+c)(a+b-c) \\
=-b^{2} c-b c^{2}-c^{2} a-c a^{2}-a^{2} b-a b^{2}+a^{3}+b^{3}+c^{3}+3 a b c
\end{gathered}
$$

Hence

$$
\begin{equation*}
\mathbf{M}^{\prime} \mathrm{N}^{\prime}=\frac{4 \triangle \cdot \mathrm{IO}}{(a-c)(a-b)} \quad \mathrm{N}^{\prime} \mathrm{L}^{\prime}=\frac{4 \triangle \cdot \mathrm{IO}}{(a-b)(b-c)} \quad \mathrm{L}^{\prime} \mathrm{M}^{\prime}=\frac{4 \triangle \cdot \mathrm{IO}}{(b-c)(a-c)} \tag{75}
\end{equation*}
$$

In deducing the expressions for $\mathrm{M}^{\prime} \mathrm{N}^{\prime} \mathrm{N}^{\prime} \mathrm{L}^{\prime} \mathrm{L}^{\prime} \mathrm{M}^{\prime}$ it has been assumed that $a b c$ are in descending order of magnitude. If the figure do not correspond to this supposition, care must be taken in verifying the equation

$$
\mathrm{L}^{\prime} \mathbf{M}^{\prime}=\mathrm{M}^{\prime} \mathrm{N}^{\prime}+\mathrm{N}^{\prime} \mathrm{L}^{\prime}
$$

to affix the proper sigus to the values of these magnitudes.

Historical Notrs.

(3) Crelle's Eigenschaften des...Dreiecks, p. 39 (1816). The property is probably much older.
(4) Weddle in the Diary for 1843, p. 75.
(10) The first values of $l_{1} l_{2} l_{3}$ are given by Vecten in Gergonne's Annales, IX., 304 (1818-9); the second values by Matthes in his Commentatio, p. 42 (1831).
(11) The first values are given by Weddle in the Diary for 1848, p. 78 ; the second values by Matthes in his Commentatio, p. 58 (1831).
(12) Mr Robert E. Anderson.
(14) The first equality is given by Mr Launoy in Bourget's Journal de Mathematiques Elémentaires, III. 160 (1879).
(15) The first equality is given in J. A. Grunert's article "Dreieck" in Supplemente zu Klügel's Wörterbuche der reinen Mathematik, I. 709 (1833). In this article Grunert gives also (20).

102

(16)-(19) Mr Rubert E. Anderson.
(21) First part in Jacobi's De Triangulorum...Proprietatibus, p. 8 (1825). Both parts certainly much older.
(22)-(24) Jacobi, p. 13 (182\%).
(25) Jacobi, p. 12 (1825), gives the first equality in the first alternative form.
(26) First equality given by Matthes in his Commentatio, p. 42 (1831).
(27) First equality given by Marsano in his Considerazioni sul Triangolo Rettilineo, p. 29 (1863).
(28) The value of $l_{1} l_{2} l_{3}$ is given by Vecten in Gergonne's Annales, IX. 304 (1819); that of $\lambda_{1} \lambda_{2} \lambda_{3}$ by Weddle in the Diary for 1848, p. 78.
(29) The first value is given by Vecten in Gergonne's Annales, IX. 305 (1819). (31), (32) J. W. Elliott in the Diary for 1851, p. 58.
(33) The first of these eight values is given by Jacobi, p. 10 (1825).
(35) Weddle in the Diary for 1848, p. 78.
(36) , , , ," ,, , p. \$1.
(37) ", ", ", ", p. 80.
(38) Nouvelles Annales, 2nd series, IX. 548 (1870).
(39)-(42) Weddle in the Diary for 1848, pp. 81-2.
(43)-(45) Matthes, pp. 46, 48, 50 (1831), gives several of these proportions, but they must all have been known long previously.
(46) Matthes, p. 58 (1831), gives the values of $\lambda_{1} \lambda_{2} \lambda_{3}$, but he does not seem to have observed the corresponding ones for $l_{1} l_{2} l_{3}$.
(47) Matthes, pp. 48, 51, gives the first half of these values, the first two of (48), and the first of (49).
(50) The first two proportions are given by Jacobi, pp. 11, 19 (1825) ; the last two by Matthes, pp. 48, 51 (1831).
(51) The last proportion is given by Matthes, p. 51.
(52) J. W. Elliott in the Diary for 1851, p. 58. The equality of the last two expressions is given by Vecten in Gergonne's Annales, IX. 305 (1819).
(53)-(58) Weddle in the Diary for 1848, pp. 76-78, 82 . The values in (58) are probably much older than this.
(61) Weddle in the Diary for 1848, p. 82.
(62) Value of AU^{2} is given by William Mawson in the Diary for 1845, p. 67.
(63) Adams's Eigenschaften des...Dreiecks, p. 75 (1846).
(65)-(68) Weddle in the Diary for 1848, p. 83. The first equality in (67) is given by Adams in his Eigenschaften des...Dreiecks, p. 61 (1846).
(69), (71), (72), (74), (75) Matthes, pp. 47, 44, 59 (1831).

[^0]: * Compare Leybourn's RActhematical Repusitury, old series, I. 284 (1799), II. 24 (1801).

[^1]: * Arthur Lascases in the Nouvelles Anneles, XVIII. 171 (1859).

[^2]: * T. T. Wilkinson in the Lady's and Gentleman's Ditry for 1862, p. 74. The deinonstration given is also due to him, as well as part of (4). See the Diary for 1863, pp. 54-5.
 \dagger Leybourn's Mathenatical Repository, new series, Vol. I., p. 22 of the Questions (1804).
 \ddagger Gergonne's Auncles XVIII. $302(1828)$ or Steiner's Gcsemmelte Werkc, I. 223

[^3]: *W. H. Levy in the Lady's and Gentleman's Dury for 1856, p. 49. The first part of the theorem, however, is given in Leybourn's Mathematical Repository, old series, II. 25 (1801).

[^4]: * The first parts of (24) and (25) are found in Leybourn's Mathematical Repository, old series, II. 24, 235 (1801).

[^5]: * W. H. Levy in the Lady's and Gentleman's Diary for 1855, p. 71.
 + Parts of (28), (29), (30), (31), are found in Leybourn's Mathematical Repository, old series, IL. 236, 25 (1801).

[^6]: * Fuhrmann's Synthctische Bewcise planimetrischer Sätze, pp. 58-9 (1890).
 \dagger Rev. R. Townsend in Mathcmatical Qucstions from the Educational Timcs, XIV. 76 (1870).

[^7]: * John Whitley in the Gentleman's Mathematical Companion for 1803, p. 38.

[^8]: * Part of this is found in Leybourn's Mathenatical Rcpository, old series, I. 284 (1799).

[^9]: * Leybourn's Mathcinutical Repository, old series, 1. 285 (1709).

[^10]: * Leybourn's Mathcmultical Rcpositury, old series, I. 36'̈ (1799).

[^11]: * For (1), (2), (3), (5), (8) see Leybourn's Mathematical Repository, old series, I. 285, 368, 367, 369, 368 (1799).
 $\dagger(9)$ and (10) are given by T. T. Wilkinson in Mathenatical Qucstions from the Éducational T'incs, XXIV. 28 (1875).

[^12]: *W. H. Levy in the Lady's and Gentleman's Diary for 1863, p. 77, and for 1864, pp. 54-\%.

[^13]: * The first of these properties is given by W. Dixon Rangeley in the Gentleman's Diary for 1822, p. 47; the first and second (without any hint as to the third and fourth) by W. H. Levs in the Lady's and Gentleman's Diary for 1849, p. 75.

[^14]: * The value of HI^{2} is given by William Mawson in the Lady's and Gentleman's Diary for 1843, p. 75 ; the other values are given by William Rutherford and Samuel Bills in the Diary for 1844, p. 52.

[^15]: * The first of these properties occurs incidentally in William Walker's proof of a theorem in the Gentleman's Mathernatical Companion for 1803, p. 50.

[^16]: * The first three values are given by W. H. Levy in the Lady's arul Gontlem"n's Diar! for 1859, p. $\quad 1$.

[^17]: * The first result in (3) is given by W. H. Levy in the Lady's and Gentleman's Diary for 1858, p. 71.
 \dagger Of the four proportions in (6) the first is given by John Ryley, Leeds, in the Gentleman's Mathematical Companion, for 1802, p. 59. The solution in the text is that of J. H. Swale, Liverpool.

[^18]: * The property that UK=US is referred to as well known in the Gentleman's Mathematical Companion for 1803, p. 50.

[^19]: * Procedinnys of the Edinburgh Mathematical Society, Vol. XII., p. 98 (1894).

[^20]: * Proceedings of the Edinburgh Mathematical Society, Vol. XII., p. 94 (1894).

[^21]: * The first is Euclid VI. 3 and its extension, which also was known to the Greeks, as is evident from Pappus's Mathematical Collection, VII. 39, second proof. The first part of the second fundamental theorem is given in Schooten's Exercitationes Mathemuticue, p. 65 (1657).

