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Abstract. We examine connections betweenA-hypergeometric differential equations and the theory
of integer programming. In the first part, we develop a ‘hypergeometric sensitivity analysis’ for small
variations of constraint constants with creation operators andb-functions. In the second part, we study
the indicial polynomial (b-function) along the hyperplanexi = 0 via a correspondence between the
optimal value of an integer programming problem and the roots of the indicial polynomial. Gröbner
bases are used to prove theorems and give counter examples.
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1. Introduction

In this paper we examine connections between hypergeometric differential equa-
tions and the theory of integer programming. LetA = (aij) be a non-negative
integerd�n-matrix which has no zero column. Letai be theith column vector of
A. We obtain a linear map

T : Nn ! Nd; u 7! A � u; (1.1)

whereN = f0;1;2; : : :g. The fiberT�1(�) over a point� 2 Nd is called the set of
feasible points.Integer programmingis concerned with the problem of minimizing
a linear functional! overT�1(�). On the other hand, the matrixA and a parameter
vector� define theA-hypergeometric systemof partial differential equations due
to Gel’fand, Kapranov and Zelevinsky [9]0
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A = 0 for i = 1; : : : ; d;

��
@

@x

�u
�

�
@

@x

�v�
 = 0 for all u; v 2 Nn with Tu = Tv:

(1.2)
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186 MUTSUMI SAITO ET AL.

This can be regarded as a holonomicD-module (see [1], [3]) on affinen-space
Cn. TheA-hypergeometric system (1.2) is an excellent test case for studying
general problems in algebraic analysis, and there are many important and beautiful
connections to combinatorics, algebraic geometry (see [8]) and theoretical physics
(see e.g. [10]).

Our point of departure in this work is Proposition 2.1 which states that (1.2) has
at most one linearly independent polynomial solution, namely, thehypergeometric
polynomial

�(�;x) :=
X

u2T�1(�)

xu

u !
:=

X
u2T�1(�)

xu1
1 x

u2
2 � � � xunn

u1! u2! � � � un!
: (1.3)

This polynomial encodes the fiberT�1(�). In Sections 2 and 3 we develop a
‘hypergeometric sensitivity analysis’ for small variations of the right hand side�
of our integer program. The key player is a certain differential operatorCi, called
thecreation operator, which transforms�(��ai;x) into �(�;x). The existence
ofCi is proved in Theorem 3.1. In Algorithms 3.1 and 3.1 we show how to compute
Ci using Gr̈obner bases.

Sections 4 and 5 are concerned with theindicial polynomialof theA-hypergeo-
metric system along the hypersurfacexi = 0. The notion of indicial polynomial
appears classically in the Frobenius method for solving ordinary linear differential
equations. The roots of the indicial polynomial, called exponents, indicate the
lowest order terms in a possible power series solution. For the modern approach in
terms ofD-modules, see [11], [12], or [13].

Our main results are Theorem 4.2 and Theorem 5.1 which give formulas for the
indicial polynomial, the first for arbitraryA and the second for normalA. These
formulas involve polyhedral combinatorics and the value function of an integer
program (see [2]).

One of our objectives is to supply users of Gröbner bases software with some
new algorithmic tools. The Gröbner-minded reader will notice a surprising interplay
between

– Gröbner bases for commutative polynomials (the classical version; see e.g. [4]),
– Gröbner bases for integer programming (as in [6], [22], [26]),
– Gröbner bases in the ring of differential operators (as in [16], [24]).

2. A generating function for feasible points

We fix a linear mapT : Nn ! Nd as in (1.1). For each� 2 Nd thefiberT�1(�) =
fu 2 Nn: Au = �g is a finite set. The integer programming problem is to minimize
a linear functional! over this set. We encode the fiberT�1(�) by the polynomial
�(�; x) in (1.3).

Throughout this paper we assume that rank(A) = d, and that the vector
(1;1; : : : ;1) lies in the row space ofA, or equivalently, that the column vec-

comp4210.tex; 8/06/1995; 7:13; v.7; p.2

https://doi.org/10.1023/A:1000609524994 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000609524994


HYPERGEOMETRIC POLYNOMIALS AND INTEGER PROGRAMMING 187

tors a1; : : : ; an span affinely a hyperplane not passing through the origin inRd;
see e.g. [22, Lem. 4.14]. This allows to define degree(�) := u1 + � � �+ un for any
u = (u1; : : : ; un) 2 T�1(�), and we may compute the polynomials�(�;x) by
means of the generating function

X
�2Nd

degree(�) ! � �(�;x) � t�1
1 � � � t�dd =

1
1�

Pn
i=1xi � t

a1i
1 � � � tadid

: (2.1)

We next recall the definition of theA-hypergeometric system due to Gel’fand,
Kapranov and Zelevinsky [9]. Consider theWeyl algebraover the field of rational
numbers

An := Qhx1; : : : ; xn; @1; : : : ; @ni:

The 2n variables satisfy the commutation relations

xixj = xjxi; @i@j = @j@i; @ixj = xj@i

if i 6= j; and @ixi = xi@i + 1:

In the commutative polynomial subringQ[@1; : : : ; @n] ofAn we consider thetoric
ideal

IA := (@u � @v : Au = Av):

Recall from [6], [22] and [26] that the integer programming problem can be solved
by normal form reduction modulo the Gröbner basis ofIA with respect to!.

For any� 2 Qd we introduce the linear differential operators

Zi(�i) :=
nX

j=1

aijxj@j � �i for i = 1; : : : ; d:

TheA-hypergeometric system with parameter vector� is the leftAn-module gen-
erated by the toric idealIA and the operatorsZ1(�1); : : : ; Zd(�d). A function 
on an open subset ofCn which is annihilated by this left module is calledA-
hypergeometric with parameters�. This definition agrees with the slightly more
informal description in (1.2).

PROPOSITION 2.1.TheA-hypergeometric system has a nonzero polynomial solu-
tion if and only if the parameter vector� is integral and lies in the image ofT . In
this case�(�;x) is the unique(up to scaling) A-hypergeometric polynomial with
parameters�.

Proof. Let  = �cux
u be anA-hypergeometric polynomial for some�. The

relationsZi(�i) = 0 imply T (u) = � for all u appearing in . In particular, we
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188 MUTSUMI SAITO ET AL.

find that� is integral and lies in the image ofT . For any two termscuxu andcvxv

in  we have@u � @v 2 IA. The relation@u = @v impliesu ! � cu = v ! � cv .
Therefore the space ofA-hypergeometric polynomials with parameters� is one-
dimensional. It is easily checked that�(�;x) is annihilated by all operators inIA,
and hence it spans this space.

EXAMPLE 2.1. (The twisted cubic curve). Letn = 4; d = 2 and

A =

 
3 2 1 0

0 1 2 3

!
:

HereIA is the defining ideal of the twisted cubic curve in projective 3-space. It is
generated by the 2� 2-minors of

�
@1 @2 @3

@2 @3 @4

�
. A function =  (x1; x2; x3; x4)

is hypergeometric with parameters(�1; �2) if and only if

@1@3 = @2
2 ; @1@4 = @2@3 ; @2@4 = @2

3 :

3x1@1 + 2x2@2 + x3@3 = �1 �  ;

x2@2 + 2x3@3 + 3x4@4 = �2 �  :

Here is a small example of anA-hypergeometric polynomial

�(6;6;x) = 1
4x

2
1x

2
4 + x1x2x3x4 +

1
6x1x

3
3 +

1
6x

3
2x4 +

1
4x

2
2x

2
3:

EXAMPLE 2.2. (The transportation problem, [22, Exam. 5.1]). Fix positive integers
r ands and letNr�s be the monoid of non-negative integerr � s-matrices. We
consider the linear operatorT : Nr�s ! Nr+s which maps a matrix to its vector of
row sums and column sums. Heren = r � s andd = r + s, andA is a unimodular
f0;1g-matrix of rankd � 1. The columns ofA are the vertices of the product
of regular simplices�r�1 ��s�1. The integer programming problem associated
with A is called thetransportation problem. The toric idealIA is generated by
the 2� 2-minors of anr � s-matrix of indeterminates. The variety defined by
IA is the Segre embedding of the product of projective spacesP r�1 � P s�1.
The corresponding system of hypergeometric differential equations is calledthe
hypergeometric system of type(r; r + s). It equals

@2 

@xij@xkl
=

@2 

@xil@xkj
for 1 6 i < j 6 r; 16 k < l 6 s;

rX
i=1

xij
@ 

@xij
= j �  for j = 1; : : : ; s;

sX
j=1

xij
@ 

@xij
= �i �  for i = 1; : : : ; r:

(2.2)
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The system (2.2) was associated with the Grassmannian ofr-planes inCr+s in [7].
It is holonomic of rank

�r+s�2
r�1

�
= vol(�r�1 ��s�1). See [9] for details.

Let = (1; : : : ; s) and� = (�1; : : : ; �r) be non-negative integer vectors such
that1+ � � �+s = �1+ � � �+�r. The fiberT�1(; �) is the set of all non-negative
integerr� s-matrices with row sums� and column sums. We encode this set by
the polynomial

�(; �;x) =
X

u2T�1(;�)

rY
i=1

sY
j=1

x
uij
ij

uij !
: (2.3)

This is the unique (up to scaling) polynomial solution to (2.2).
The hypergeometric polynomials in (2.3) satisfy the following relations for all

i; j; ; �

@

@xij
�(; �;x) = �( � ei; �� ej;x): (2.4)

These are the simplestcontiguity relations. They are straightforward to check.
We shall be interested in inverting the effect of the differential operator@=@xij

in (2.4). This is accomplished by the following non-trivial contiguity relations due
to Sasaki [20].

THEOREM 2.1. [20]. The operatorCij := xij +�r
p=1�

s
q=1xpjxiq(@=@xpq) satis-

fies

Cij �(; �; x ) = (i + 1) � (�j + 1) � �( + ei; �+ ej ; x ): (2.5)

The contiguity relations (2.5) can be used iteratively to compute any of the
hypergeometric polynomials�(; �;x) and hence to enumerate any set of non-
negative integer matrices with fixed row and column sums. The idea is to start
with the trivial hypergeometric polynomial�(0;0;x) = 1 and then to apply an
appropriately scaled sequence of thecreation operatorsC11; C12; : : : ; Crs. Here is
a little example forr = s = 3

�((2;2;1); (1;3;1);x)

= 1
24 � C11(C12(C22(C23(C32(1)))))

= x11x12x22x23x32+ x12x13x21x22x32

+ 1
2 � (x12x

2
22x13x31+ x2

12x22x23x31+ x11x13x
2
22x32

+ x2
12x21x23x32+ x2

12x21x22x33+ x11x12x
2
22x33) (2.6)
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190 MUTSUMI SAITO ET AL.

3. Computing creation operators

An important issue in integer programming is to understand how the fiberT�1(�)
behaves under a small change in the right-hand side�. Equivalently, how does the
hypergeometric polynomial�(�;x) change under a small variation of�? It is easy
to see that subtracting a column vectorai from the right-hand side� corresponds
to taking a partial derivative

@i�(�;x) = �(�� ai;x): (3.1)

This is the simplestcontiguity relation. We call@i theith annihilation operator.
In this section we address the problem of inverting the annihilation operator

@i. The goal is to compute a differential operator whose action on hypergeometric
polynomials corresponds to adding a column vectorai to the right-hand side�.
For the transportation problem (Example 2.2) such operatorsCij were given in
Theorem 2.1. In what follows we explain how to preprocess an arbitrary matrixA
for subsequent derivations like (2.6).

We call the matrixA normal if the monoid spanned by its columns is normal,
i.e.,

nX
i=1

Nai =
nX
i=1

Z ai \
nX
i=1

R+ai: (3.2)

Let s1; : : : ; sd be indeterminates and form the Weyl algebra over these parameters

An[s1; : : : ; sd] = Q[s1; : : : ; sd]hx1; : : : ; xn; @1; : : : ; @ni:

Let BA;i(s) be the left ideal inAn[s1; : : : ; sd] generated by the toric idealIA, the
annihilation operator@i and the parametric linear operatorsZ1(s1); : : : ; Zd(sd).
We are interested in its intersection with the commutative polynomial subring
Q[s1; : : : ; sd].

THEOREM 3.1.

(a) The elimination idealBA;i(s) \Q[s1; : : : ; sd] is nonzero.
(b) If A is normal thenBA;i(s) \Q[s1; : : : ; sd] is a principal ideal.
(c) If � is not a zero of the above elimination ideal, then the annihilation oper-

ator @i possesses an inverseri modulo theA-hypergeometric module with
parameters�.

Proof. Part (a) is proved in [19, page 560]. Part (b) is proved in [18]. For part
(c) choose an elementb = b(s) in the elimination ideal such thatb(�) 6= 0. There
exists a relation

b(s) = ri(x; @; s) � @i moduloAn[s] � IA +
dX

j=1

An[s] � Zj(sj): (3.3)
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HYPERGEOMETRIC POLYNOMIALS AND INTEGER PROGRAMMING 191

Using the relationsZj(sj) we may eliminate the occurrence ofs = (s1; : : : ; sd)
in the operatorri(x; @; s) and write ri(x; @) instead. The resulting operator
(1=b(�)) � ri(x; @) is an inverse to@i modulo theA-hypergeometric system.

We callb(s) a b-polynomialfor @i. It is essentially unique ifA is normal. The
operator

Ci(x; @; �) :=
1

b(�)
� ri(x; @) (3.4)

is called anith creation operator. From (3.1) we conclude the desired relation

Ci(x; @; �)�(� � ai;x) = �(�;x): (3.5)

for all � 2 Nd with b(�) 6= 0.
We shall present two algorithms for computing creation operators. The first

algorithm is a straightforward application of Gröbner bases in the Weyl algebra.
See e.g. [4] for Gr̈obner basics. Algorithm 3.1 can be run in the computer algebra
systemkan=sm1 [24]. Its correctness follows immediately from the basic facts in
[16], [23] or [24].

ALGORITHM 3.1. (Computing anith creation operator from scratch).

(1) Compute a setF of generating binomials@u � @v for the toric idealIA
(e.g. using one of the two algorithms presented in [22, Sect. 12.A]).

(2) Let� be any term order on the Weyl algebraAn[s1; : : : ; sd] which refines the
weights

s1 : : : sd x1 : : : xn @1 : : : @n

0 : : : 0 1 : : : 1 1 : : : 1

(3) Compute the reduced Gröbner basisG in the Weyl algebraAn[s1; : : : ; sd] for
the input setF [ f@ig [ fZ1(s1); : : : ; Zd(sd)g with respect to the term order
�.

(4) Choose an elementb(s) of minimal degree inG \Q[s1; : : : ; sd].
(5) Derive an identity (3.3) by tracing back the Gröbner basis computation in

step (3).
(6) Output the resulting creation operator (3.4).

EXAMPLE 3.1. (continuation of Example 2.1). IfA is the matrix of the twisted
cubic curve then the ideals ofb-polynomials are principal

BA;1(s) \Q[s1; s2] = (s1(s1 � 1)(s1 � 2))

BA;2(s) \Q[s1; s2] = (s1(s1 � 1)s2)

BA;3(s) \Q[s1; s2] = (s1s2(s2 � 1))

BA;4(s) \Q[s1; s2] = ( s2(s2 � 1)(s2 � 2)):

(3.6)
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We computed the following four explicit creation operators for the twisted cubic.
The operatorr1 = 27x3

1@
2
1 + 54x2

1x2@1@2 + 27x2
1x3@1@3 + 36x1x

2
2@1@3 +

36x1x2x3@1@4 + 9x1x
2
3@2@4 + 8x3

2@1@4 + 12x2
2x3@2@4 + 6x2x

2
3@3@4 + x3

3@
2
4 +

54x2
1@1 + 54x1x2@2 + 18x1x3@3 + 12x2

2@3 + 6x2x3@4 + 6x1

satisfiesr1�(�1; �2;x1; x2; x3; x4) = (�1 + 3)(�1 + 2)(�1 + 1)�(�1 + 3; �2;
x1; x2; x3; x4),

the operatorr2 = 9x2
1x2@

2
1+18x2

1x3@1@2+27x2
1x4@

2
2+12x1x

2
2@1@2+30x1x2x3@

2
2+

36x1x2x4@2@3 + 12x1x
2
3@2@3 + 18x1x3x4@2@4 + 4x3

2@
2
2 + 12x2

2x3@2@3+
12x2

2x4@2@4 + 9x2x
2
3@2@4 + 12x2x3x4@3@4 + 2x3

3@3@4 + 3x2
3x4@

2
4 + 18x1x2@1+

24x1x3@2 + 18x1x4@3 + 10x2
2@2 + 16x2x3@3 + 6x2x4@4 + 4x2

3@4 + 2x2

satisfiesr2�(�1; �2;x1; x2; x3; x4) = (�1+2)(�1+1)(�2+1)�(�1+2; �2+1;
x1; x2; x3; x4),

the operatorr3 = 3x1x
2
2@

2
1 + 12x1x2x3@1@2 + 18x1x2x4@1@3 + 12x1x

2
3@1@3 +

36x1x3x4@2@3+27x1x
2
4@

2
3+2x3

2@1@2+9x2
2x3@1@3+12x2

2x4@2@3+12x2x
2
3@2@3+

30x2x3x4@
2
3 + 18x2x

2
4@3@4 + 4x3

3@
2
3 + 12x2

3x4@3@4 + 9x3x
2
4@

2
4 + 6x1x3@1+

18x1x4@2 + 4x2
2@1 + 16x2x3@2 + 24x2x4@3 + 10x2

3@3 + 18x3x4@4 + 2x3

satisfiesr3�(�1; �2;x1; x2; x3; x4) = (�1+1)(�2+2)(�2+1)�(�1+1; �2+2;
x1; x2; x3; x4), and

the operatorr4 = x3
2@

2
1+6x2

2x3@1@2+9x2
2x4@1@3+12x2x

2
3@1@3+36x2x3x4@1@4+

27x2x
2
4@2@4 + 8x3

3@1@4 + 36x2
3x4@2@4 + 54x3x

2
4@3@4 + 27x3

4@
2
4 + 6x2x3@1 +

18x2x4@2 + 12x2
3@2 + 54x3x4@3 + 54x2

4@4 + 6x4

satisfiesr4�(�1; �2;x1; x2; x3; x4) = (�2 + 3)(�2 + 2)(�2 + 1)�(�1; �2 + 3;
x1; x2; x3; x4).

We next present a polyhedral formula for theb-polynomial which generalizes
the specific expressions for the twisted cubic in (3.6). This additional information
will then be used to give an alternative algorithm for computing creation operators.
Choose any elementh in the monoid�n

i=1Nai which satisfies the property

h+

 
nX
i=1

Zai \
nX
i=1

R+ai

!
�

nX
i=1

Nai: (3.7)

The existence of such elementsh is proved in [19, Appendix, Lem. 1]. We can
chooseh = 0 if and only ifA is normal. In general,h is a ‘common denominator’
for all Hilbert basis elements of the normalization, and it can be found using
Algorithm 13.2 in [22].

We identify the matrixA with the setfa1; : : : ; ang. Its convex hull conv(A) is
a (d � 1)-dimensional polytope. Every facet� of conv(A) has a unique primitive
integral support function

F�: Zd ! Z:
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This function is linear, vanishes on the facet�, takes positive values onAn� and is
surjective. The extension ofF� to Cd is also denoted byF�. Ourb-polynomial for
@i is expressed in terms of the primitive support functions of those facets� which
are visible fromh+ ai.

THEOREM 3.2. [19, p. 560], [18, Thm. 6.4].For any elementh as in (3:7), the
polynomial

bh(s1; : : : ; sd) :=
Y

�:F�(h+ai)>0

F�(h+ai)�1Y
m=0

(F�(s1; : : : ; sd)�m) (3.8)

lies in the idealBA;i(s) \ Q[s1; : : : ; sd]. Moreover,bh generates this ideal ifA is
normal.

Note the following obvious congruence in the Weyl algebra

bh(�1; : : : ; �d)� bh

0
@ nX
j=1

a1jxj@j ; : : : ;
nX

j=1

adjxj@j

1
A 2

dX
l=1

AnZl(�l):

It gives rise to the following algorithm for computing anith creation operator. One
advantage of Algorithm 3:2 over Algorithm 3:1 is that it can be run in any computer
algebra system(e.g.maple) since it does not require non-commutative Gröbner
bases.

ALGORITHM 3.2. (Computing anith creation operator from a givenb-polynomial).

(1) Compute a Gr̈obner basisG for the toric idealIA in Q[@1; : : : ; @n]with respect
to anyreverselexicographic term order which has lowest variable@i.

(2) Expand the following expression in the Weyl algebraAn

bh
�Pn

j=1 a1jxj@j ; : : : ;
Pn

j=1adjxj@j
�
;

into aQ-linear combination of monomialsxi11 � � � x
in
n @

j1
1 � � � @jnn .

(3) Reduce thatQ-linear combination modulo the Gröbner basisG; either inAn

or in the commutative polynomial ring

Q[x1; : : : ; xn; @1; : : : ; @n]:

(4) The normal form computed in Step 3 has@i as a right factor. Divide by@i and
output the result. It is a creation operator for@i.

Proof of Correctness. The toric idealIA is homogeneous by our assumption that
a1; : : : ; an lie on an affine hyperplane. The expression computed in step (2) looks
like

p =
X

Ci1���inj1���jn � x
i1
1 � � � x

in
n � @j1

1 � � � @jnn :
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Note thatp is the unique polynomial in the Weyl algebraAn which is congruent to
bh(s) modulo the leftAn[s]-ideal generated by theZj(sj). By Theorem 3.2,bh(s)
lies inBA;i(s). This implies thatp lies in the leftAn-ideal generated byIA and@i.
Therefore there exists another polynomial

q =
X

Dk1���knl1���ln � x
k1
1 � � � xknn � @l11 � � � @lnn ;

which has@i as a right factor and is congruent top modulo the leftAn-ideal
generated byIA.

Now apply the reduction moduloG in (3) top. In each reduction step we replace
a right monomial factor@u1

1 � � � @unn of a term ofp by another such monomial. The
result is the same, regardless of whether it was done over the Weyl algebraAn

or overQ[x1; : : : ; xn; @1; : : : ; @n]. Moreover, we get the same normal form if we
reduceq moduloG, sincep andq are congruent moduloIA. Sinceq has@i as a
(right) factor, the normal form has@i as a (right) factor, by the property of the
reverse lexicographic order.

EXAMPLE 3.2. (A non-normal matrix). The ideal ofb-polynomials is generally
not principal. Letn = 4; d = 2 and

A =

 
4 3 1 0

0 1 3 4

!
:

The Gr̈obner basis ofIA for the reverse lexicographic order@1 > @2 > @3 > @4

equals

G = f@3
3 � @2@

2
4; @2@3 � @1@4; @

3
2 � @2

1@3; @1@
2
3 � @2

2@4g:

The underlined monomials are the initial terms. Note that neitherIA nor its initial
ideal are Cohen–Macaulay. Suppose we wish to compute a creation operator for
i = 4. In step (3) of Algorithm 3.1 we would find that the elimination ideal is not
principal

BA;4(s) \Q[s1; s2]

= (s2) \ (s2 � 1) \ (s2 � 2) \ (s2 � 3) \ (s1 � 2; s2 � 6):

Applying steps (2)–(4) of Algorithm 3.2 to any element of this ideal will result in
a creation operator. For example, we can substitutes1 = 4x1@1 + 3x2@2 + x3@3

and s2 = x2@2 + 3x3@3 + 4x4@4 into s2(s2 � 1)(s2 � 2)(s2 � 3)(s1 � 2) and
reduce its expansion moduloG. Removing a factor@4 from each term in the output
gives a creation operator.

This example also shows that the polyhedralb-polynomials predicted by The-
orem 3.2 are generally not best possible with respect to minimizing degree. For
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instance, we have the following

h = (4;0); bh = s2(s2 � 1)(s2 � 2)(s2 � 3)(s2 � 4)(s2 � 5)(s2 � 6)(s2 � 7);

h = (3;1); bh = s2(s2 � 1)(s2 � 2)(s2 � 3)(s2 � 4)(s2 � 5)(s2 � 6)s1;

h = (1;3); bh = s1(s2 � 1)(s2 � 2)(s2 � 3)(s2 � 4)s1(s1 � 1)(s1 � 2);

h = (0;4); bh = s2(s2 � 1)(s2 � 2)(s2 � 3)s1(s1 � 1)(s1 � 2)(s1 � 3):

4. Optimal value and indicial polynomial

Every integer programming problem can be transformed into a standard form in
which the linear objective function is simply the last coordinate

Minimize un subject to A � u = � and u 2 Nn: (4.1)

For instance, if we are given the integer program

Minimize w � u subject to A0 � u = �0 and u 2 Nn�1;

then we transform it into (4.1) by adding a row and a column to get

A =

 
�1 w

0 A0

!
:

In this section we study the optimal value of the integer program (4.1) as
a function of� = (�1; : : : ; �d). We shall express the optimal value as root of
the indicial polynomial along the singularityfxn = 0g of theA-hypergeometric
system.

The notion of anindicial polynomialappears classically in the Frobenius method
for solving ordinary linear differential equation. The roots of the indicial polynomial
are calledexponents; they indicate the lowest order terms in a possible power series
solution.

The following modern approach to indicial polynomials is used for holonomic
systems andD-modules ([11, Thm. 2.7], [12, Thm. 1], and [13, Thm. 4.1.1], see
also [15] and [17]). LetP be an element of the Weyl algebraAn = Qhx1; : : : ; xn;
@1; : : : ; @ni. We abbreviate�n := xn@n and x0 = (x1; : : : ; xn�1) and @0 =
(@1; : : : ; @n�1). We define a filtrationfFmgm2Z of An as follows: for each integer
m, put

Fm =

8<
:
X

s�q6m

ap;q;r;sx
0pxqn@

0r@n
s 2 An; ap;q;r;s 2 Q

9=
; :

comp4210.tex; 8/06/1995; 7:13; v.7; p.11

https://doi.org/10.1023/A:1000609524994 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000609524994


196 MUTSUMI SAITO ET AL.

It can be easily shown thatFpFq � Fp+q. For nonzeroP 2 An, the minimum
integerm satisfyingP 2 Fm is called theF -order ofP . When theF -order of an
operatorP 2 An ism, we definê�(P ) as the top degree component ofP

�̂(P ) =
X

s�q=m

ap;q;r;sx
0pxqn@

0r@n
s:

Noting that

xkn@
k
n = �n(�n � 1) � � � (�n � k + 1)

and

@knx
k
n = (�n + 1)(�n + 2) � � � (�n + k);

we can see that

xmn �̂(P ) =
X

ap;q;r;sx
0p@0

r
�n(�n � 1) � � � (�n � s+ 1) =: p(x0; @0; �n)

for m > 0, and

@�mn �̂(P ) =
X

ap;q;r;sx
0p@0

r
(�n + 1)(�n + 2) � � � (�n �m)

��n(�n � 1) � � � (�n � s+ 1)

=: p(x0; @0; �n) for m < 0:

In either case we replace the operator�n by a new scalar variablet and we define

 (P ) := p(x0; @0; t) 2 An�1[t]:

WhenP is an ordinary differential operator then (P ) is the classical indicial
polynomial.

Consider any left idealI of An. Let (I) be the left ideal inAn�1[t] generated
by the operators (P ) for all P 2 I. We are interested in the elimination ideal
 (I) \ Q[t]. This ideal is principal. If it is nonzero then its unique (up to scaling)
generator of (I) \ Q[t] is called the (global) indicial polynomialalongxn = 0
of the leftAn-moduleAn=I.

It was shown by Oaku (see [15], [17]) that theindicial ideal  (I) \ Q[t] is
gotten from any generating set ofI by Gröbner basis computation with respect to
the variable weights

@1 � � � @n�1 @n x1 � � � xn�1 xn

0 � � � 0 1 0 � � � 0 �1:
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In this computation special care must be taken because of the negative weight�1.
The ordinary Buchberger algorithm may not terminate when negative weights are
present. This difficulty can be dealt with by an extra homogenizing variable, or by
adapting the standard basis algorithm in local rings [5, Sect. 4.4]. The following
version of Oaku’s algorithm has been implemented inkan=sm1 andrisa=asir [14]
to compute examples for this paper.

Define aQ-linear maph fromAn toAn[s; s
�1] by theQ-linear extension of the

map

x�@� 7! s�n��nx�@�

defined on monomials inAn. For` 2 An, we callh(`) theF -homogenizationof `.

ALGORITHM 4.1. (Computing the global indicial polynomial).

(1) Given generators̀1; : : : ; `m of the left idealI, compute theirF -homogeniza-
tionsh(`k) and find a monomialsp so thatsph(`k) is a polynomial ins for
all k.

(2) Let� be any term order on the Weyl algebraAn[s] which refines the weights

v =
s x1 � � � xn @1 � � � @n

1 0 � � � 0 0 � � � 0:

(3) Compute a Gr̈obner basisG in the Weyl algebraAn[s] for the input set

f sph(`1); s
ph(`2) ; : : : ; s

ph(`m) g:

(4) Eliminatex1; : : : ; xn�1; @1; : : : ; @n�1 from the leading terms

finv(gi) j gi 2 Gg

with respect to the variables and choose an elementc(s; xn; @n) of minimal
degree in@n.

(5) The polynomial (c(1; xn; @n)) is the global indicial polynomial ofI along
xn = 0.

We now fix an integer vector� 2 Nd and consider theA-hypergeometric ideal

IA;� := An � IA +
dX

j=1

An � Zj(�j):

THEOREM 4.1.Let (u1; : : : ; un) be an optimal solution to the integer program
(4:1). Then the optimal valuet = un is a zero of the indicial ideal (IA;�)\Q[t].

Proof. Let c(t) 2  (IA;�) \Q[t]. There exists an operatorr such that

c
�
xn@n

�
+ xn � r(x

0; @0; xn; �n) 2 IA;�: (4.2)
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The hypergeometric polynomial for the right-hand side� can be written as follows

�(�;x) = xunn � P (x0) + xun+1
n �Q(x0; xn): (4.3)

Note thatP (x0) contains the termxu1
1 � � � x

un�1
n�1 =(u1! � � � un�1!un!) and possibly

others. When we apply the operator (4.2) to (4.3) then we get zero. In particular,
the lowest term of (4.2) with respect toxn must be annihilated by the lowest term
of (4.3)

c
�
xn@n

�
(xunn � P (x0)) = c

�
un
�
� xunn � P (x0) = 0:

This implies c
�
un) = 0, as desired.

We next present a general construction and lemma which will be used in the
proof of Theorem 4.2 below. A subsetU of Nd is called anorder idealif u 2 U and
v 6 u (componentwise) impliesv 2 U . The complement of an order idealU can be
identified with the monomial idealMU = (xw: w 62 U) in Q[x] = Q[x1; : : : ; xn].
Let IU be the radical ideal consisting of all polynomials inQ[x] which vanish at
the points inU .

LEMMA 4.1. Let U be an order ideal inNn and IU its vanishing ideal. Then
the reduced Gr̈obner basis ofIU with respect to any term order consists of the
polynomials

fw :=
nY
i=1

wi�1Y
j=0

(xi � j);

wherexw = xw1
1 � � � xwn

n runs over all minimal generators ofMU .
Proof. Fix an arbitrary term order� on Q[x]. We first assume thatU is finite.

Then bothQ[x]=IU andQ[x]=MU are artinian rings ofQ-dimension #(U). Let
F be the ideal generated by the polynomialsfw above. Sincefw vanishes on
U , we haveF � IU . This inclusion lifts to initial monomial ideals and we get
in�(F ) � in�(IU ). The observationin�(fw) = xw implies MU � in�(F ).
Consider now the following chain of inequalities

#(U) = dimQ[x]=IU = dimQ[x]=in�(IU ) 6

6 dimQ[x]=in�(F ) 6 dimQ[x]=MU = #(U):

All inequalities are equalities, and hencein�(IU ) = in�(F ) = MU . This shows
that the setffwg is a Gr̈obner basis forIU with respect to�.

Next consider the case whereU is infinite. Suppose, by contradiction, that
ffwg is not a Gr̈obner basis forIU with respect to�. Then there exists a non-zero
polynomialf 2 IU such that no term off lies inMU . LetU 0 be the smallest order
ideal in Nn which contains all the terms off . ThenU 0 is finite andU 0 � U . We
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havef 2 IU 0 and no term off lies inMU 0 . This is a contradiction to Lemma 4.1
for finite order ideals.

Thereforeffwg is a Gr̈obner basis forIU in both cases. Sincexw is the only
term offw which lies inMU , we conclude thatffwg must be the reduced Gröbner
basis forIU .

We are now prepared to prove the existence of a nonzero indicial polynomial.
First consider the case of generic parameters. Lets = (s1; : : : ; sd) be indetermi-
nates and consider

IA;s := An[s] � IA +
dX

j=1

An[s] � Zj(sj):

This is a left ideal inAn[s] = An[s1; : : : ; sd], and (IA;s) is a left ideal in
An�1[t; s1; : : : ; sd].

THEOREM 4.2.The ideal (IA;s) \ Q[t; s1; : : : ; sd] is the vanishing ideal of
all points (�; �) where� is the optimal value of the integer program(4:1) with
right-hand side� = (�1; : : : ; �d). This radical ideal has height1 and contains a
polynomial monic int.

Proof. LetJ denote the vanishing ideal of all points(�; �)where� is the optimal
value of the integer program with right hand side�. It follows from Theorem 4.1
that  (IA;s) \ Q[t; s1; : : : ; sd] � J . We must prove the reverse inclusion. Let
f = f(t; s1; : : : ; sd) 2 J . We replacesi by �n�1

j=1aij�j + aint for i = 1; : : : ; d to

get a polynomial~f = ~f(�1; : : : ; �n�1; t) which is congruent tof modulo (IA;s).
We identifyt = �n.

By hypothesis,~f = ~f(�1; : : : ; �n) vanishes at all non-negative integer points
v = (v1; : : : ; vn) which are optimal in their fiber. These points form an order ideal
in Nn ([26, Lem. 2.1.4]). Lemma 4.1 implies that~f can be written as a linear
combination of the polynomials

nY
j=1

uj�1Y
k=0

(�j � k); where u = (u1; : : : ; un) is not optimal in its fiber. (4.4)

If u is not optimal then there exists another pointv in the same fiber which satisfies
vn < un. We have@u � @v 2 IA. This implies that

 
�
xu � (@u � @v)

�
=

nY
j=1

uj�1Y
k=0

(�j � k) lies in  (An � IA):

We conclude~f 2  (An � IA) and, hence,f 2  (IA;s), as desired.
For the second assertion we recall the following familiar result from inte-

ger programming (cf. [2, Thm. 4.6]): There exist finitely many linear function-
alsL1; L2; : : : ; Lr on Qd such that for every feasible� 2 Nd there existsj 2
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f1;2; : : : ; rg such that the optimal value of (4.1) for the right-hand side� is equal
to Lj(�). (In particular,Lj(�) is an integer, for such�). This shows that the monic
(in t) polynomial

Qr
j=1
�
t� Lj(s1; : : : ; sd)

�
lies in the radical idealJ . HenceJ is

a proper ideal. It follows from [2, Thm. 4.6] that at least one indexj 2 f1; : : : ; rg
is attained on the intersection of ad-dimensional cone with an affine sublattice of
finite index inZd. Such a set is Zariski dense inQd, and thereforeJ has height
one.

Remark4.1. One may be tempted to conjecture from the previous argument
that (IA;s) \ Q[t; s1; : : : ; sd] equals the principal ideal generated by

Qr
j=1
�
t �

Lj(s1; : : : ; sd)
�
. This is generally not true, as the following example shows. How-

ever, it is true under a suitable normality hypothesis. This will be shown in the next
section.

EXAMPLE 4.1. (The ideal of optimal values need not be principal). Letn = 5;
d = 3 and

A =

0
BB@

1 1 1 1 1

0 2 3 4 3

0 1 1 0 2

1
CCA :

Here

 (IA;s) \Q[t; s1; s2; s3]

= (t) \ (ts2 � 2s3) \ (t+ s1 � s3)

\ (t+ 4s1 � s2 � s3) \ (s3 � 2; t� 1):

The last prime component shows that this ideal is not principal.
The monic polynomial in Theorem 4.2 guarantees the existence of a nonzero

indicial polynomial for every right-hand side vector�.

COROLLARY 4.1.For every� 2 Qn, the ideal (IA;�) \ Q[t] is nonzero. The
unique (up to scaling) minimal generator is called the indicial polynomial of the
integer program(4.1).

EXAMPLE 4.2. (continuation of Example 4.1). For generic right-hand sides� the
indicial polynomial equals

t(t+ �2 � 2�3)(t+ �1 � �3)(t+ 4�1 � �2 � �3): (4.5)

For � = (0;0;2) the indicial polynomial equalst(t � 4)(t � 2)2(t � 1). For
� = (0;0;0) it equalst3. Thus the degree may be higher or lower than in the
degree in the generic case.
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5. The indicial polynomial in the normal case

In this section a geometric construction of the indicial polynomial will be presented.
We retain the notation from Section 4, and we make the following assumptions
throughout:

(a) The vectorsa1; : : : ; an�1; an lie on an affine hyperplane inRd.
(b) The vectorsa1; : : : ; an�1 spanZd.
(c) The matrixA0 := (a1; : : : ; an�1) is normal.

Here the hypothesis (c) is the most restrictive one. As we shall see in Lemma 5.1,
this hypothesis implies that the integer programming problem (4.1) can be solved
by rounding up the objective function value of the associatedlinear programming
problem

Minimize un subject to u 2 Rn; A � u = � and u > 0: (5.1)

To solve (5.1) geometrically, we consider the convex hull

conv(A0) = convfa1; : : : ; an�1g:

This is a(d � 1)-polytope. The cone over conv(A0) is the d-dimensional cone
pos(A0). For any facet� of conv(A0) let L� denote its primitive integral support
function. This is the unique epimorphismZd ! Z which is non-negative on
conv(A0) and vanishes on�. We say that a facet� is visible froman if L�(an) < 0.
Let F denote the set of all facets� of conv(A0) which are visible froman. Note
thatan 2 conv(A0) if and only if F = ;. The linear program (5.1) is feasible if
and only if the right-hand side� lies in pos(A) = pos(A0 [ fang) if and only if
� 2 pos(A0) or� 2 pos(� [ fang) for some� 2 F .

PROPOSITION 5.1.Let un be the optimum value of a feasible linear program
(5:1). Then

un =

(
0 if � 2 pos(A0);

L�(�)=L�(an) if � 2 pos(� [ fang) for � 2 F :

Proof. The first case� 2 pos(A0) is obvious. Suppose we are in the second
case. The optimal value is the smallest real numberun such that� � unan lies
in pos(A0). SinceL� is non-negative on pos(A0), we find thatL�(� � unan) =
L�(�)� unL�(an) > 0. The assumption� 2 pos(� [ fang) implies that the last
inequality is attained.

THEOREM 5.1. Under the hypotheses(a)–(c) above, the ideal (IA;s) \
Q[t; s1; : : : ; sd] is principal. Its generator equals the following product of linear
polynomials
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t �
Y
�2F

�L�(an)�1Y
k=0

�
L�(s1; : : : ; sd)� t � L�(an)� k

�
: (5.2)

Theorem 5:1 is our main result in this section. For the proof we need one
lemma.

LEMMA 5.1. If the integer progam(4:1) is feasible andun is the optimum value of
the linear program(5:1), then the least integerdune that is greater than or equal
to un is the optimum value of(4:1).

Proof. First suppose� 2 pos(A0). Thenun = 0 by Proposition 5.1. By the
normality hypothesis (c), the right-hand side� is a non-negative integer linear
combination ofa1; : : : ; an�1. Henceun = dune = 0 is also the optimal value of
the integer program (4.1).

Next suppose� 2 pos(� [ fang) for � 2 F . The optimal value of the integer
program (4.1) is the smallest integerUn such that��Un � an 2 NA0. The optimal
valueun for the linear program (5.1) satisfiesun 6 Un and��un �an 2 pos(�) �
pos(A0).

If un = Un we are done, hence assumeun < Un. The identity

�� dunean =
dune � un
Un � un

�
�
�� Unan

�
+
Un � dune

Un � un
�
�
�� unan

�

shows that��dunean lies in pos(A0). By normality we conclude��dune � an 2
NA0. This impliesUn = dune, as desired.

Proof of Theorem5.1. Lemma 5.1 and Proposition 5.1 imply that (5.2) lies in
the ideal (IA;s) \ Q[t; s1; : : : ; sd]. Conversely, letf = f(t; s1; : : : ; sd) be any
element of that ideal. Consider the set of all feasible� 2 Qd such that the optimal
value of (4.1) equals

�
L(�) � k

�
=L(an), for some fixedk. This set equals the

intersection of thed-dimensional cone pos(� [ fang) with an affine sublattice of
finite index inZd. Hence this set is Zariski dense inQd. We conclude that the
polynomialf vanishes on the hyperplane inQd+1 defined by any of the linear
factors in (5.2). Thereforef is a multiple of (5.2).

COROLLARY 5.1.For every� 2 Qd, the indicial polynomial is a factor of

t �
Y
�2F

�L�( an )�1Y
k=0

�
L�(�)� t � L�(an)� k

�
: (5.3)

For generic values of�, this expression is square-free and it equals the indicial
polynomial.

EXAMPLE 5.1. (Transportation problem and hypergeometric system of type(r; r+
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s).) We retain the notations of Example 2.2. The indicial polynomial alongxij = 0
is equal to

t �

0
@t� j +

X
k 6=i

�k

1
A ;

for generic values of parameters. Computer experiments indicate that the indicial
polynomial is equal to this quadratic polynomial for all values of parameters.

EXAMPLE 5.2. Letn = 8; d = 3 and consider the matrix

A =

0
BB@

1 1 1 1 1 1 1 1

0 1 2 3 4 2 3 3

0 0 0 0 0 1 1 2

1
CCA :

This is the normalization of the matrix in Example 4.1. Herean = (1;3;2), the
polygon conv(A0) is a quadrangle, the setF of visible facets has three elements,
and we haveL�(an) = �1 for all � 2 F . The product (5.3) equals the expression
(4.5), but, in contrast to Example 4.1, the generic indicial ideal is now principal

 (IA;s) \Q[t; s1; s2; s3]

=
�
t � (t+ s2 � 2s3) � (t+ s1 � s3) � (t+ 4s1 � s2 � s3)

�
:

For special values of� the indicial polynomial may be a proper factor of (5.3). For
� = (0;0;0)we get here the same answer as in Example 4.2: (IA;�)\Q[t] = (t3).
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