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RAMANUJAN CONGRUENCES FOR P-k(n) 
MODULO POWERS OF 17 

KIM HUGHES 

1. Introduction. For each integer r we define the sequence pr(ri) by 

oo oo 

YJpAn)*r= n(i-*"yfori*i < i. 
n=0 m=l 

We note that p-\{n) = p(n), the ordinary partition function. On account of this some 

authors set r — — k to make positive values of k correspond to positive powers of the 

generating function for p(n): 
oo 

P(x) = Y;p(n)Sl. 

We follow this convention here. In [3], Atkin proved the following theorem. 

THEOREM 1. Let k be a positive integer and q = 2 ,3 ,5 ,7 or 13. If 24n = k 

(mod qr), then p-k(n) = 0 (mod qar/2+£)f where e = e(q,k) — 0(\ogk) and a = 

a(q, k) depends on q and the residue ofk (mod 24) according to Table 1. Where there 

are blank entries, nothing is asserted. 

1 2 3 4 5 6 7 8 9 10 11 12 
q= 2 3 
q= 3 3 2 3 2 
q= 5 2 1 1 1 2 2 1 1 1 1 1 0 
q= 1 1 1 1 2 1 1 1 0 0 0 1 0 
4=13 0 0 0 0 0 0 0 1 0 0 0 0 

13 14 15 16 17 18 19 20 21 22 23 24 
q= 2 3 0 
q= 3 1 2 1 0 
q= 5 0 0 1 1 0 0 0 1 1 0 0 0 
q= 1 0 1 0 0 0 1 0 0 1 0 0 0 
4=13 0 0 0 0 0 0 0 0 0 0 0 0 

TABLE 1 
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In [5], Gordon extended Theorem 1 to the case where k < 0. In this case, the conclu
sion of Theorem 1 holds with e = 0(log | k\ ), the last column of the above table changed 
to 6,4, 2, 2,0, and the rest of the table unchanged. He also obtained results analogous to 
Theorem 1 for q = 11 and k ^ 0. These results are given next. 

THEOREM 2. Let k be a nonzero integer. IflAn = k (mod ll r), thenp-k{ri) = 0 
(mod llaf r/2+e), where e = e(k) — 6>(log | A:| ) and a = a(k) depends on the residue of 
k (mod 120). The dependence of a onk is given in Table 2 for k > 0. Here the entry in 
the row labelled 24/ and the column labelled] is a (24/ +/). For k < 0, the dependence 
of a onk is the same except that the last column of the table is changed to 2, 2, 2, 0, 2. 

1 2 3 4 5 6 7 8 9 10 11 12 
0 2 1 2 1 1 1 2 2 1 1 2 2 
24 1 1 1 1 2 2 1 1 2 2 1 0 
48 1 1 2 2 1 1 1 0 1 0 1 0 
72 2 1 1 1 2 1 2 1 2 1 2 2 
96 0 0 1 0 1 0 1 0 1 1 0 0 

13 14 15 16 17 18 19 20 21 22 23 24 
0 1 2 1 0 0 1 1 0 0 1 1 0 
24 0 0 0 1 1 0 0 1 1 1 0 0 
48 0 1 1 0 0 1 0 1 0 1 0 0 
72 1 1 1 2 1 2 1 2 1 1 1 0 
96 0 1 0 1 0 1 0 1 1 0 0 0 

TABLE 2 

Here we apply the method used by Gordon in his proof of Theorem 2 to obtain an 
analogous result for q — 17. We prove the following result. 

THEOREM 3. Let k be a nonzero integer. IflAn = k (mod 17r), then p~k(n) = 0 
(mod llar/2+£), where e = e{k) = 0(\og\k\) and a — a(k) depends on the residue of 
k (mod 96). The dependence of a onk is given in Table 3 for k > 0. Here the entry in 
the row labelled 24/ and the column labelled] is a (24/ +/). For k < 0, the dependence 
of a on k is the same except that the last column of the table is changed to 0, 2, 0, 0. 

The general plan of this paper is as follows. In § 2 we set up the notation and phrase 
the result of Theorem 3 in a manner more suitable for proof. In particular, we will see 
that it largely amounts to the proof of a certain key lemma (Lemma 4); this lemma will 
be the topic of § 3. Included in § 3 is an item of independent interest: a modular equation 
between functions on To(289) and functions on To(17). In § 4 we prove Theorem 3. We 
make some concluding remarks in § 5. Finally, there are two appendices concerned with 
certain lengthy numerical calculations. 
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1 2 3 4 5 6 7 8 9 10 11 12 
0 0 0 1 0 0 0 0 0 0 0 0 0 
24 0 0 0 0 0 0 0 0 0 0 0 0 
48 1 1 1 1 1 2 1 0 0 0 0 0 
72 0 0 0 0 0 0 0 0 0 1 0 0 

13 14 15 16 17 18 19 20 21 22 23 24 
0 0 0 0 0 0 0 0 1 0 0 0 0 
24 1 0 0 0 0 0 0 0 0 0 0 0 
48 0 0 0 0 1 0 0 0 0 0 1 0 
72 0 0 0 0 0 0 0 0 0 0 0 0 

TABLE 3 

2. Preliminary discussion and lemmas. Let L be the complex vector space of 
meromorphic Laurent series E«>n0

 an^ , convergent in some deleted neighborhood of 0. 
Define the dissection operator U — Un on L by 

(1) 
n>no \ln>riQ 

One readily vérifies that U is linear and has the following property: 

(2) U(f(xll)g(x)) = f(x)U(g(x)) for f(x) and g(x) in L. 

Let k be a fixed nonzero integer. In using the dissection operator to isolate the desired 
subsequences of p-k(n), it is necessary to make a preliminary index shift half of the time. 
For this reason we define the auxiliary sequence Xr by 

* , - { 0 if r is odd; 
k if r is even. 

Using \r we define a recursive sequence of 17-dissections of P{x)h as follows: 

(3) 
DO(JC) - P(x)k 

Dr(x) = £/(JC12A-'D,._I(JC)) for r > 1. 

It is readily verified as in [5] that for each r > 0 we have 

(4) Dr(x)= X>_*(17 rm + ttr)x
m, 

m>/xr 

where nr = -fc(172L(r+1)/2J - l ) /24 and \ir = \-nrj 17r]; here [a\ and \a] respec
tively denote the floor and ceiling of a. It is apparent from (3) that 

(5) 

If we set 

u(k) = 

12Ar-i + / i r - l 
17 

1 ifjfc< 0mdk = 0 (mod 24); 
0 otherwise, 
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we have additionally from the above 

= f \ Ilk/24] +u(k) i f r > logl7\k\ and ris odd; 
[ir~ \ \kj 24] +u)(k) i f r > log17jfcj and ris even. 

Further, 24nr = k (mod 17r). From this last observation, it is clear that the coefficients 
of Dr(x) are those p~k(n) with 24n = k (mod 17r). Therefore, to prove Theorem 3 it 
suffices to show that 

(6) Dr(x) = 0 (mod Uar/2+£) 

where a and e are as described there, and where 

E ^ E S E M * (modM) 
means that an = bn (mod M) for all n. 

To establish (6), it is convenient to introduce a certain sequence of modular functions 
which are related to the Dr(x). We first introduce some preliminary notation and results 
concerning modular functions. We set x = e2lTlT and recall the Dedekind eta function 

oo 

T](T) = xl'24H(l-xnl Imr > 0. 
n=\ 

From Theorem 1 of [7], <j>{r) = ^2?^ is a meromorphic function on r0(289), holo-
morphic for Imr > 0, and having orders 12 and —12 at 0 and /oo respectively. For any 
positive integer N, let X0(N) be the compactified Riemann surface of the group r0(AO and 
let KQ(N) be the field of meromorphic functions on Xo(N). For any N, x — e2lTlT is a local 
uniformizing paramater at the cusp /oo of Xo(N). Thus <j> (r) has a Fourier expansion at 
/oo with lowest term xn . For/(r) in K0( 17) we denote the order at a point/? on X0( 17) by 
ordpf, and for F(r) in ATo(289) we denote the order at a point P on Ro(2S9) by Ord/> F. 
All modular fuctions of interest here are holomorphic in the upper half plane, and so 
have poles only at cusps. The cusps of Xo(17) are at /oo and 0. The cusp /oo of Xo(17) 
has width 1, and lying above it onXo(289) are the cusps /oo and hj 17,1 < h < 16, each 
having width 1. The cusp 0 of X0(17) has width 17, and the cusp 0 of X0(289) lies above 
it, the width being 289. We have, therefore, the following lemma. 

LEMMA 1. Supposef(r) G KQ(\7). Regarding f(r) dually as an element ofKo(289), 
we have 

Ord,/17/ = Ordfoo/ = o n W , 1 < A < 16 

and 
Ord0f= 17ordo/. 

If we let U act as in (1) on the Fourier expansions of elements of Ko(289), then U acts 
as a Hecke operator, since for/(r) in ̂ (289) with Fourier expansion/(T) = £«>n0 anX*1 

we have 

(7) Uf(r) = E an*** = ^ È / ( ( r + h)/ 17). 
\7n>n0

 l ' h=0 

We have the following lemma, proved in Corollary 1.10 of [6]. 
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LEMMA 2. Iff(r) e K0(2S9), then Uf(r) G K0(ll). Iff(r) is holomorphic for 
Imr > 0, then so is Uf(r). Furthermore, 

ord/00
 uf>Tj Ord/oo/ 

and 
ordn Uf > min Ord^/ }1f. 

J ~ 0<h<\6 n/UJ 

Now the Dr(x) are not themselves modular functions. However, we do have 

P(x)k = / / 2 \ ( r ) ^ and P(^9f = x2 m /2 4r /(289r)^, 

/fj(289rh* 
V TI(T) J 

so 
f(*)* = x-m 

P(X
2S9)k V t,(T) 

and 
m P(x)k _ / » ? ( 2 8 9 T ) X * _ . . 

F(x289)* V JJ(T) / 

From (2) we have 

<j>(Tf e K^2»9). 

, ,, U(xl2kP(x)k) 

P(xn)k 

= Di(x) , 
P(x17)* ' 

and more generally for i > 0 we have from (2) and (3): 

(8) 
) ^ \ PU17)* J ~ P(x)k ~ P(xf ' 

[ ^ 9 V H p(X)k ) - p(X")k - p(xi1 

We now define a new sequence of functions Lr(x) by 

(9) <7"V" o : l> ,forS>0. 
^ 2 s + l - p{x\i)k 

Therefore 

( 1 0 ) ( Lr(x) = [ / ( ^ ( T ^ ' V i W ) , for r > 1. 

By Lemma 2, the Lr(jc) are in KQ(\1) and are holomorphic for Imr > 0. From (4) we 
have 

(11) ord/oo Lr > /j,r. 
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In order to prove (6), it suffices to show that 

(12) Lr(x) = 0 (mod \larl2+e) 

where a and e are as before. This is the object of the rest of this paper. 
Let V be the algebra of functions in KQ(\1) which are holomorphic for Imr > 0. By 

Lemma 2, V is invariant under the linear operators T\ defined by T\g — U(<j>xg). We 
have Lr+i = T\rLr, so each Lr G V. In the next lemma we give a basis for V, so as to 
obtain matrices C(A) = (cfy) for the T\. We will show that divisibility by powers of 17 
of the entries cfy implies divisibility by powers of 17 of the Fourier coefficients of the 
Lr\ included in this lemma are facts which we will use to show this implication. We note 
that Atkin [2] has obtained some similar results for Ko(q), with 17 < q < 37, q prime. 

LEMMA 3 

properties: 
(i) Ju+4 • 

(ii) ord( 

There is a basis *B — {Jv \ — oo < v < 00} for V with the following 

- JVJ4; 
lioo Jv = = ^ >" 

(Hi) ordo-A, = %l)(v) 
- 1 ifv = \orl (mod 4), 
- 2 ifv = 3 (mod 4), 

ifv = 0 (mod 4), 
(iv) the Fourier series for JU(T) has 17-integral coefficients and leading coefficient 

1; 
(v) the Jv satisfy the multiplication table below, which determines the structure con

stants of (B. 

h h ^3 

J\ J2 + (17/4)- J4 h y4 + 875 + (17/4)-76 

h J A + 875 J5 + SJ6+2- 17J8 

h 76 + 877+(17/4)-78+2-1779 

TABLE 4 

PROOF OF LEMMA 3. To define J\, J2, J3 and J4, we use some results of Newman 
[7,8]. We begin by setting 74(T) = [r/(17r)/r/(r)]6, which by Theorem 1 of [7] is in 
Ko(ll). One can readily verify that J\ E V, that ord/oo J4 — 4 = — ordo J4, and that 74 

has integral Fourier coefficients and leading coefficient 1. From Table (2.8) of [8], we 
have (using Newman's notation) a function S5 in 1/ with a triple pole at 0 and with a 
Fourier series of the form 17_2(l — lO^Aix)), where A(x) has 17-integral coefficients 
and leading coefficient 1. We set J2 = (1 - 172S5)/ 10. Clearly J2 G V, ordIOo^2 = 2, 
ordo/2 = —3, and J2 has 17-integral Fourier coefficients and leading coefficient 1. Our 
next goal is to obtain X-3. The function/(r) = J2(— 1 / 17r) is in V. It has a triple pole at 
/oo and a double pole at 0, and by equation (2.7) of [8] it has a Fourier series of the form 
(l — ll~2B(x))/ 10, where B(x) has integral coefficients and leading coefficient —20. We 
set7_3 = (172/2)/,so/_3 G 'Kord/oo7_3 = — 3,ordo«/-3 = 2,and/_3has 17-integral 
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1/ = 0 i/ = 1 v = 2 v = 3 
[i = 0 - 1 10 13 20 

M = l 0 7 10 11 
M = 2 1 4 11 12 
/x = 3 - 2 5 12 15 

TABLE 5 

Fourier coefficients and leading coefficient 1. Setting J\ = J-3J4 and J3 = J\J2, we see 
that J\ and ̂ 3 are in V with ord/oo J\ = 1, ord/oo ̂ 3 = 3, ordo /1 = —2 and ordo ̂ 3 = —5. 
Moreover, J\ and J^ have 17-integral Fourier coefficients and leading coefficients 1. 

We now define Jv for any integer v. For v — 4i/\ +1/2,0 < 1/2 < 3, we set Jv — J^] JU2. 
Clearly properties (i) through (iv) hold for all Jv. That { Jv | —00 < v < 00} is a basis 
for V follows from an elementary argument using Liouville's theorem. The entries in 
Table 4 can be computed using the first few terms of the Fourier series of the Jv and their 
orders given in (ii) and (iii). The structure constants are determined by this table and (i). 
This completes the proof of Lemma 3. 

As discussed above, we let C(A) = ( c ^ ) denote the matrix of T\ relative to $, where, 
following [3,5], we let matrices act from the right, expressing elements of V as row 
vectors. Since ordIOO Lr > \ir, we can write 

(13) Lr = ]T ar#Jv 

(where the sum is finite). Application of the C(Ar) gives the recurrence 

(14) a„Xj, = £ a^c$ 

with initial conditions #o,o = 1 and ao,u = 0 for v > 0. Denoting the 17-adic order of a 
rational number a by n(a), we will prove (12) by showing that all the arjU are 17-integers 
with 

(15) 7r(«r,i/) > ccr + E. 
(A) Equation (15) follows from the facts that the c£j, are 17-integers with a certain lower 

bound on 7r(c^), and that iteration of the T\ causes an accretion in the values ir(arjV) 
as r increases. An explicit description of a and e will emerge in the course of the proof. 
We now give the lower bound for 7r(c^ ). 

LEMMA 4. All the c(*l are 17-integers and 

111/ - / 1 - 12A +£(/z,i/) 
(16) *0 > 24 

where 6(n,v) depends only on the residues of [i and v (mod 4) according to Table 5. 

The proof of Lemma 4 is fairly lengthy, involving a certain amount of numerical cal
culation. It is also the key to proving (15), and hence Theorem 3. The proof of Lemma 4 
is the topic of the next section. 
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3. Proof of Lemma 4. We obtain two recurrences for the T\ J^ together with initial 

conditions. This completely determines all T\J^, and hence all cfy. Lemma 4 will follow 

by induction on À and /i after writing the corresponding recurrences and initial conditions 

for the c(Xl. 

For the first (and simpler) recurrence, we observe, reasoning as in [5], that 

T\J^ — U((j)XJfl) = J-4U(<t)X+6Jn-4) = / _ 4 7 À + 6 ^ - 4 . 

Thus, we have 

Equating coefficients yields the corresponding recurrence for the cfy : 

(\1) c(X) - c(X+6) 

To obtain the second recurrence, we observe that 

TXJ, = U((t>XJ,) = ^j;<t>((T +h)/ llfj,((T +h)/ 11). 
11 h=0 

Each (f> Ur+h)/ 17) = f/,,0 < h < 16, is a root of the modular equation with coefficients 

ak in V, 

(is) r17 + Ë(- i )W 1 7 -Â : = o, 
k=l 
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where the Ok are given below: 

ox = 7- 177!+(115/2)- 172/2 + 84- 173/3 + 849 • 173/4+ 640 • 17475 

+ 158 • 17576 + 20 • 176/7 + 55 • 17678 + 13 • 177/9 + ( 1 / 2) • 1 7 % + 1 7 % , 

a2 = 176 • 17/2 - 142 • 17273 - 4888 • 17274 - 4371 • 173/5 - (2851/2) • 174/6 

- 224 • 175/7 - 595 • 175/8 - 171 • 17679 - (15/ 2) • ll7Jl0 - 1 7 % , 

a3 = - 1 4 • 172J3 + 900 • 17274 + 987 • 173/5 + (847/ 2) • 174/6 

+ 80 • 175/7 + 215 • 17578 +71 • 17679 + (7/ 2) • 1 7 % + 9 • 1 7 % , 

G4 = - 1 0 • 1773 - 2858 • 17/4 - 3287 • 17275 - (3107/2) • 173/6 

- 312 • 17477 - 939 • 17478 - 323 • 175/9 - (35/2) • 1 7 % - 3 • 1 7 % , 

G5 = 163- 1774 + 311 •17275+(435/2)-17376 

+ 46 • 17477 + 188 • 17478 + 63 • 175/9 + (7/ 2) • 1 7 % + 11- 176y12, 

a6 = -247 • 1775 - (659/2) • 17276 

- 54 • 17377 - 590 • 17378 - 167 • 174/9 - (15/ 2) • 1 7 % - 1 7 % , 

G7 = 1775+(33/2)-172/6 

- 2 • 17377 + 120 • 17378 +29 • 17479 + (1/2) • 1 7 % - 5 • 1 7 % , 

a8 = 6 • \1J6 + 12 • ll2Ji - 401 • 17278 - 104 • 17379 + 3 • 1 7 % , 

G9 = 63 • 17278 + 20 • 17379 - 15 • 1 7 % , 

al0 = -103 • 17/8 - 44 • 17279 + 3 • 1 7 % , 

an = 5- 1778 + 4- 17279 — 5 • 173712, 

a12 = - 4 • 17/9 - 1 7 % , 

a13 = 11 • 1 7 % , 

a\4 = —3 • 17 7i2, 

o-i5 = 9 • 17J12, 

OÏ6 = — 17/ l2 , 

0"l7 — J\2-

The Gk can be obtained from the £/(</>*), since we have HU((j)k) = EJ, i0^ = f*» a 
power sum; the Newton identities relate the Gk and the 71*, and with the TT^ known we can 
obtain the Gk. The U{<j>k) arise also in computing initial conditions, so we discuss their 
computation there. Since each th satisfies (18), we deduce that for any integer A 

(19) tf = Ë(-l)*+1<7^-*. 
k=l 

Multiplication of (19) by JM ((r + h)/ 17) and summation on h gives 

k=\ 
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We get the corresponding recurrence for the (^ by equating coefficients of the Jv, ob
taining equations 

(20) E /^V)^-

The result depends on the residue class of v (ftiod 4) and it is very long, so we do not 
reproduce all of it here. We give details only for the case v = 0 (mod 4) as an example: 

< „ = 7 • 17c^"-i +(115/2). n%x;ll +(5719/4)- 1 7 2 c ^ 

+849 • 173c£Ti> + 11352 • 17 3 c^> +2656 • 1 7 4 c ^ 

6„a-o +500 • 17 5 c^> + 55 • \7%X;ll + 622 • 176c£ ,v-9 

+(97/2). 1 7 7 c ^ 1 0 + (13/4). 17 8 c^! i , + 178c££>2 

+ i 7 9 ^ i i 3 - 1 7 6 • i7c£;_2> +142 • n^;ll 

+4888 • 1 7 2 c ^ + (149117/2) • 172c^\ + (49035/ 2) • 1 7 3 c ^ 

+(19703/4) • 1 7 4 c ^ + 595 • \l5éX~l\ + 6710 • 175c^"2) 

+(1151/2) • 176c^-_2)
10 + (171/4) • \V$;\ + 1 7 8 c £ 3 2 

+15 • 178c^-_2!3 - 14 • 1 7 2 c ^ + 900 • 1 7 2 c ^ 
7 3 j A - 3 ) >nAiAi/r)\m 1 7 3 J A - 3 ) .(fLA«nlA\. 1 7 4 j A - 3 ) 

9 

+215 • 1 7 5 c ^ + 2394 • 1 7 5 c ^ + (439/ 2) • 17^~_3 ) 

+(1967/ 2) • \l*&;-% + (14343/ 2) • 1 7 3 c ^ + (6427/ 4) • 1 7 4 c ^ 
3) 
-10 

+(71/4) • Y?c%?u + 9 • 1 7 7 c ^ i 2 + 7 • 1 7 ^ , 3 

+10 • 17ĉ "_4> + 2858 • 17c^-_4} + (6579/ 2) • 1 7 2 c ^ 

+(52859/ 2) • 1 7 2 c ^ + (24503/4) • 1 7 3 c ^ » + 939 • 1 7 4 c £ ^ 

+4433 • 174c£;_4> + (1843/2) • 175c^_4)
10 + (323/4) • n6c^n 

+3 • n7ix;l\2 + 35 • i77c<V-4)
13 +163 • nix;l\ 

+311 • 172ĉ "_5> + (435/ 2) • 1 7 ^ , 4 + (3439/4) • 173c£;_5> 

+188 • 174ĉ "_5> + 2332 • I74c(x;% + 303 • I75c{^\0 

+(63/4) • i76c£;_5)
n + ii • i76c^;_5»2 + 7 • i77^;Jî3 

+247 • \7c%% + (659/2) • 1 7 2 c ^ + (3919/4) • 172ĉ 7_6> 

+590 • 173ĉ ;_6» + 2308 • n3c(X~% + (471/2) • 174c^-_6,
10 

+(167/4) • 175c^-_6)„ + 176c<V_6l2 + 15 • I76c(x;% 
+lK*-s + ( 3 3 / 2 ) • 1 7 2 c ^ - (135/4) • 1 7 2 c ^ 

+120 • 1 7 3 c ^ + (1029/ 2) • 173ĉ -_7» + (9/ 2) • 174c^"7) 

+(29/4) • n^;l\t - 5 • 17'#r:{2 + 17^^-_7» 

- 6 • \ltf;% - 12 • 172ĉ -_8> +401 • 173c£7_8> 

10 

3 
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+1765 • \l2tf;% - 24 • 173c^--8)io + 26 • H ^ V - n 

- 3 • 17^V_8)
12 + 63 • 1 7 ^ + 20 • 1 7 ^ 

+5 • 1 7 ^ u - 15 • 17^V_9)
12 + 103 • 17c<£2> 

+44 • 1 7 ^ + H • 173c?"Ti " 3 • 1 7 ^ 2 

+5 • 17c(A_11) + 4 • 172c(A_11) + 173c(A_11) 

- 5 • 17VA_11) +4 • 17c(A~12) + 172c(A_12) 

1 ? 3 (A-12) n . n 2 (A-13) 3 . 172C(A-14) 

+9 • 17c(A~15) + 17c(A~16) +c (A_17) 

We do not actually need the full details of the second recurrence for the cfy. Rather, 
we use only the following consequences, which can be verified from the above for v = 0 
(mod 4). 

(a) For each residue class of v (mod 4), the recurrence gives éfy as a linear combi
nation of the £ "̂-«7» 1 — P — 17 an (l 1 — G — 13' wilh 17-integral coefficients. 
For each residue class of v (mod 4), we can also write ëfy as a linear combina
tion of the c^+l, 1 < p < 17 and — 1 < a < 12, with 17-integral coefficients. 

(b) For any À, \i and v we have 

(2D 7T(c£> ) > A ( T T ( C ^ ) + # V ) ) 
i < p < r 
1<<T<13 

and 

(22) *(<£>) > min (*(<£;"_'> ) + e ^ ' V ) ) 
1<p<17 
1<<T<12 

where the e^(y) depend on the residue class of v (mod 4) and are given in 
Tables 6-9 of Appendix 1. In particular, we note that in all cases 

(23) # > = c^Hl (mod 17). 

If the c^l are 17-integers for a fixed \x and any 17 consecutive integers A, then they 
are 17-integers for this fixed // and all À. This follows from a two-way induction on A 
using (a). We conclude from this that all the ëfy are 17-integers if there are 4 consecutive 
integers [i for each of which there are 17 consecutive integers A so that the c^l are 17-
integers for these \x and A. This follows from a two-way induction on \i using (17). We 
assert that /x = - 3 , - 2 , - 1 and 0 have this property with - 1 3 < A < 3, - 1 4 < A < 2, 
—17 < A < — 1 and —16 < A < 0, respectively. The corresponding initial values 
c^l are quite unwieldy to state and derive. We do not reproduce all of them here; a brief 
account of their derivation is given in Appendix 2. For example, 

(24) 7Vo = £/(</>") = E 4 % 
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where the c^ are as follows: 

1/(1) = L/o, 

t / ( ^ - 1 ) = - 1 7 o , 

f/((/>-2)--170 , 

t / ( 0 - 3 ) = 1770, 

t / ( 0 - 4 ) = - 1 7 7 o , 

U(<f>-5)= -207_3 + 17270, 

U(<t>-6)= -307_4 - 17270, 

f/(^-7) = -1267-4 - 56 • 177_3 + 17370, 

£/((/>-8)=-17370, 

£/(</> ~9) = 547_6 + 108 • 177_5 + 144 • 177_4 + 108 • 1727_3 - 17470, 

U(<t>-m) = -107-7 - 145 • 177_6 

- 100 • 1727_5 - 250 • 1727_4 - 130 • 1737_3 - 5 • 1747_2 - 17470, 

U(<t>-n) = 12107-7 - H • 177_6 + 88 • 1727_5 

+ 88 • 1727_4 + 154 • 1737_3 + 11 • 1747_2 + 17570, 

U(ct>-12) = 5947-8- 17570, 

U((t)-13) = -1307-9 + 187597-8+9594 • 177_7 + 1053 • 1727_6 

- 78 • 1737_5 - 247 • 1737_4 - 234 • 1747_3 - 13 • 1757_2 - 17670, 

U^~14) =-17%, 

U((j> ~15) = -39907-10 - 4690 • 177_9 + 49605 • 177_8 

+ 2050 • 1737_7 + 7185 • 1737_6 + 90 • 1747_5 

+ 945 • 1747_4 - 330 • 1757_3 - 15 • 1767_2 - 17770, 

U(<t>-16) = 12487-n + 18096 • 177_i0 + 12480 • 1727_9 

+ 31200 • 1727_8 + 16224 • 1737_7 + 624 • 1747_6 - 17770. 

Equations (24) not only illustrate that the initial values cfy are 17-integers (in fact, ordi
nary integers for JJL = 0), but they also provide the necessary data for computing the o^ 
in (18). In proving Lemma 4, we do not actually need the full details of the initial values 
for the c^l. Rather, we only use the following consequences which can be verified from 
(24) for/x = 0. 

(c) For [i — —3,-2 , -1 and 0 and A in the ranges given above, each T\J^ is a 
17-integral linear combination of the Jv. 

(d) For \i — —3, —2, —1 and 0 and A in the ranges given above, Tr(c^) has the 
values given in Tables 10-13 in Appendix 1. 

From (c), we conclude now that all cfy are 17-integers. 
It remains to discuss the proof of (16). One easily verifies from Tables 10-13 in Ap

pendix 1 that (16) holds for the A and \x shown there. A lengthy but straightforward 
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two-way induction on À using (b) shows that if (16) holds for a fixed /x and a range of 
17 consecutive A, then it holds for that fixed /x and all A. That (16) holds for all /x and 
all A follows from a two-way induction on /x using (17) and the fact that the right side 
of (16) is invariant under the index shift (A, /x, v) —• (A + 6, /x + 4, v + 4). Including the 
derivation of the initial conditions, this completes the proof of Lemma 4. 

4. Proof of Theorem 3. We introduce some notation in terms of which we give a 
bound on the growth of TT {ar,v ) for increasing r and thus prove Theorem 3. From ( 14) we 
have 

(25) 7r(flrtI/)> min ( T K ^ I ^ + T T ^ V 0 ) ) -

Set 
0(A,/x) = 

,.<*) 1 if T T ^ . J > 0 for 0 < i < 3 and all v\ 
{0 otherwise. 

Using (17) and (23), we see that0(A + 6,/x - 4 ) = 0(A,/x) and 0(A + 17,/i) = 0(A,/x). 
Thus 0 is completely determined by its values for 0 < A < 16 and 0 < /x < 3, 
and these can be determined from the initial conditions in Appendix 1. In this range 
0(A,/x) = 1 if and only if (A,/x) = (3,0),(3,1),(3,2), (3,3) or (14,3). Put A0 - 0 and 
Ar = Ar-\ + 0 (Ar_i, /xr_i) for r > 0. We will prove by induction that 

(26) 7r(ar,„) > Ar + max(o, I 1 7 ( l / ~ ^ ~ ^ I) for r > 0, 

where «̂  = 29,23,17 or 16 according as v = 0,1,2, or 3 (mod 4). A closer examina
tion of the Ar will then yield Theorem 3. 

To prove (26), it suffices by (11) to assume v > \ir. Clearly (26) holds for r — 0. Let 
r > 0 and suppose (26) holds for r — 1. We see from (25) that to complete the induction, 
it suffices to prove that 

(27) ^(a r-1 , ,) + 7 r (c^- ' ) )>A r + m a x ( 0 , [ 1 7 ( l / ~ 2 ^ ) ~ ^ j ) 

for /x > /xr_i and v > \ir. In proving (27), we will first suppose v = \ir or \ir + 1, and 
then v > /xr + 2. 

CASE 1. i/ = /xr or /xr +1. Proving (27) here reduces to showing that its left side is at 
least Ar. This holds for jxr_i < /x < /xr_i+3, since for t h e s e / x , ^ ^ ^ 0 ) > 0(Ar_i,^xr_i) 
by the definition of 0 and 7r(tfr-i,/i ) > ^r-i by the induction hypothesis. It also holds for 
M ^ Mr-i + 4, since by induction 

17(/X - / i r - l ) - ^ 
7r(ar-i,/i) > A r _ i + > Ar_i + 1 > Ar. 24 

Thus (27) holds for v — [ir or /xr 4-1. 

CASE 2. */ > /xr + 2. By (16) and induction, the left side of (27) is at least 

17(/x — /xr_i) — 8^ \\ I Hi/ — \x — 12Ar_i +^(/x,i/) (28) A r _ 1 + m ax(o4i^^iA^j) + ̂  
24 
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Now (28) cannot decrease if \i is increased by 4, so its minimum occurs for some \x — 
/xr_i + /, 0 < / < 3; and since from (5) we have \ir > (/xr-i + 12Ar_i )/ 17, the expression 
in (28) is at least 

Ar-\ + 1 + 
17(i/-/x r) + 5(/ir_i + i » - 2 7 

24 

From Lemma 4 we have 8 (/xr-i + /,*/) — 27 > —bv, where 6V is as in (26). Hence 

I 17( i / - / i r )+«( / i r _i+ / , i / ) -27 i | 17(i /- Hr)-6U 

24 J - L 24 J 
so (27) holds for v > [ir + 2. 

Having established (26), we know that ir(arjl/) > Ar for all r > 0. We now identify 
a and e so that Ar has the form ar + e with a and £ as described in Theorem 3. For 
r > 1 + log17 \k\ we have 

Ar = £0(A; , M / ) 

]T OiXi^d+Nrffi, \ Ilk/24} + CJ(*)) +N26(k, \k/24~] +u(k)), 
0 < i < l o g 1 7 | * | 

where Â i and 7V2 are respectively the numbers of odd and even integers / in the interval 
log17 \k\ < i < r. Further, for such r we always have 

(29) \NX - ( l / 2 ) ( r - 1 - log17 |*|) | + \N2 - ( l / 2 ) ( r - 1 - log17 \k\)\ < 1, 

and also 
(30) 

Ar= £ 0(\htii) 
0 < i < l o g 1 7 | * | 

+ ( l / 2 ) ( r - 1 -log17 |*|)[0(O, \ 17k/24] + u(k)) + 0(k, \k/24] + u;(*))] 

+ [Nx - ( l / 2 ) ( r - 1 - log17 |*|)]» (0, T 17*/241 + CLF(*)) 

+ [ ^ 2 - ( l / 2 ) ( r - l - l o g 1 7 | f c | ) ] ô ( * J t / 2 4 l + ^ ( * ) ) 

We now set 

(31) a = a (* )= 0(0, \\lk/24}+uj(k)) + e(K \ k/24]+u;(kj), 

and (for all r) 

(32) e = e(k,r) = A r - a r / 2 , 

so that Ar — ar/2 + e. By (29)-(32) and the definition of Ar , we have \e\ < 3 + 
2 log17 |*|, so e: = 0(log | k\ ). A straightforward argument using the definition of a in 
(31) and the properties of 6 shows that a (k+96) = a(k)fork> 0anda(£—96) = a(k) 
for k < 0. The values of a can be computed from (31) and are as given in Table 3. This 
completes the proof of Theorem 3. 
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5. Conclusion. The author has checked by machine computation that the congru
ences asserted in Theorem 3 actually hold for |fc| < 96 and n < 12,000. These com
putations show also that Theorem 3 can at least be sharpened for some k and small r. 
Atkin and Gordon have shown that Theorems 1 and 2 are best possible in the sense that 
every residue class (mod 240, where t — 1 and 5 in Theorems 1 and 2 respectively, 
contains both positive and negative values of k for which the constants a (&, q) cannot be 
increased without rendering the congruences false. Theorem 3 may not be best possible 
in this sense, although we assert nothing at present. 

It would be desirable to determine the extent to which the congruences in Theorems 1, 
2 and 3 can be generalized. In addition to the question of finding further values of q for 
which we have results of the form 

(33) p-k{qrm + n(q, r,kj) = 0 (mod qar+£) 

where a and e behave as in these theorems, there are questions concerning the existence 
of more general congruences such as those discussed by Atkin and O'Brien in [4]. The 
results presented here provide first steps in establishing congruences of the form 

(34) /?_*(l7r+2m + n(r + 2,jfc)) = K(r,k)P-k(\Tm + n(r,jfc)) (mod iTa{k)+£(k)). 

(In the present paper K(r, k) = 0.) As described in [1] and [2], working modulo various 
primes up to 67, Atkin has obtained results and developed conjectures involving the 
coefficients of Klein's functiony(r), some of these results and conjectures having a yet 
more general nature than (34). Analogous congruences may hold for the/7_^(«). 

APPENDIX 1 

Here we give tables of é£\v) and initial conditions for 7r ( C ^ ) . Blank entries are to 
be taken as co. 

a\p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
0 0 
1 1 
2 2 1 
3 2 2 2 1 
4 3 2 2 1 1 
5 3 2 3 2 2 1 1 
6 4 3 3 2 3 2 2 1 
7 5 4 4 3 3 2 2 2 
8 6 5 5 4 4 3 3 3 2 1 1 
9 6 5 5 4 4 3 3 2 3 2 2 1 
10 7 6 6 5 5 4 4 3 
11 8 7 7 6 6 5 5 4 4 3 3 2 
12 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 
13 9 8 8 7 7 6 6 

TABLE 6 :^ (0 ) 
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a\p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
0 0 
1 1 
2 1 1 
3 2 2 2 1 
4 3 2 2 1 1 
5 4 3 3 2 2 1 1 
6 4 3 3 2 2 1 1 1 
7 5 4 4 3 3 2 2 1 
8 6 5 5 4 4 3 3 2 2 1 1 
9 7 6 6 5 5 4 4 3 3 2 2 1 
10 7 6 6 5 5 4 4 3 3 2 2 1 
11 8 7 7 6 6 5 5 
12 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 
13 

TABLE 7 : ^ 0 ) 

a\p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
0 0 
1 1 
2 2 1 
3 2 1 2 1 
4 3 2 2 1 1 
5 4 3 3 2 2 1 1 
6 5 4 4 3 3 2 2 1 
7 5 4 4 3 3 2 2 1 
8 6 5 5 4 4 3 3 2 2 1 1 
9 7 6 6 5 5 4 4 3 3 2 2 1 
10 8 7 7 6 6 5 5 
11 8 7 7 6 6 5 5 4 4 3 3 2 
12 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 
13 

TABLE 8: # ' ( 2 ) 
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a\p 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
0 0 
1 1 
2 2 1 
3 3 2 2 
4 3 2 2 1 1 
5 4 3 3 2 2 1 1 
6 5 4 4 3 3 2 2 1 
7 6 5 5 4 4 3 3 2 
8 6 5 5 4 4 3 3 2 2 1 1 
9 7 6 6 5 5 4 4 3 3 2 2 1 
10 8 7 7 6 6 5 5 
11 
12 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 
13 

TABLE 9: ^ ( 3 ) 

A \ i / -11 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 
0 0 

- 1 0 
- 2 0 
- 3 1 
- 4 1 
- 5 0 2 
- 6 0 2 
- 7 0 1 3 

I ~ 8 3 
- 9 0 1 1 2 4 
- 1 0 0 1 2 2 3 4 4 
-11 0 1 2 2 3 4 5 
- 1 2 0 5 
- 1 3 0 0 1 2 3 3 4 5 6 
- 1 4 6 
-15 0 1 1 3 3 4 4 5 6 7 
- 1 6 0 1 2 2 3 4 7 

TABLE 10: TTCC^) 
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A \ i / - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 
3 0 
2 0 
1 0 1 
0 0 1 

- 1 0 1 2 
- 2 2 
- 3 0 1 1 2 3 
- 4 0 1 2 2 3 3 
- 5 0 1 2 4 
- 6 0 4 
- 7 0 0 1 2 3 3 5 
- 8 5 
- 9 0 1 1 2 3 4 4 6 

- 1 0 0 1 2 2 3 4 6 
-11 0 1 3 2 3 4 5 5 7 
- 1 2 0 7 
- 1 3 0 0 1 2 3 3 4 5 6 7 8 

TABLE 11 ^ ( c ^ ) 

A \ i / - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 
2 0 1 1 2 3 
1 0 
0 0 0 

- 1 1 
- 2 1 
- 3 0 1 1 2 
- 4 2 
- 5 0 1 2 3 
- 6 0 3 
- 7 0 0 1 2 3 3 4 
- 8 4 
- 9 0 1 2 2 3 4 4 5 

- 1 0 0 1 2 2 3 4 5 
-11 0 1 2 2 3 4 5 5 6 
- 1 2 0 6 
-13 0 0 1 2 3 3 4 5 6 6 7 
- 1 4 0 1 1 2 3 4 4 5 6 7 7 7 

TABLE 12: T T C C ^ ) 
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X\i/ - 1 ? -11 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 
- 1 0 1 2 3 3 
- 2 0 
- 3 0 1 1 
- 4 1 
- 5 1 1 2 2 
- 6 0 2 
- 7 0 0 1 2 3 
- 8 3 3 3 
- 9 0 1 1 2 4 

- 1 0 0 1 2 2 3 4 4 
-11 0 1 2 2 3 4 5 5 
- 1 2 0 5 
- 1 3 0 0 1 2 3 3 5 5 6 7 
- 1 4 6 
- 1 5 0 1 1 2 3 4 4 5 6 7 
- 1 6 0 1 2 2 3 4 7 
- 1 7 0 0 1 2 2 3 4 5 5 7 8 8 8 

TABLE 13:7r(c (^) 

APPENDIX 2 

Here we briefly discuss derivation of the initial conditions for the recurrences (17) 
and (20). Consider the functions J^ on the Riemann surface X0( 17). By Lemmas 1,2 and 
3 we have TXJ^ £ K0(ll) with ordo TxJ^ > min(—12A + 17^(/i),/x), ord/oo T\J^ > 
|~(12A +/x)/ 17],andordp7A^ > 0forother/?onX0(17). Hence T\J^ G 1 ,̂ and using 
the orders at 0 and ioo we can determine for given A and \i a maximal range of values v 
for which c ^ can be nonzero. We can minimize the computation by selecting A and /i for 
which these ranges are as small as possible, and this can be accomplished by taking the 
valence of T\J^ small. Also, the case \x = 0 is of special importance since certain T\JQ 
are necessary for computation of the modular equation. Therefore we include /i — 0, 
first considering T\ JQ and then T\ J^ for other values of /x. 

For [i = 0, the A for which the T\JQ have the smallest valences turn out to be in the 
range —16 < A < 0. For these A we find c^ by equating the first 1 — [ 12A / 17] coeffi
cients in the Fourier series of T\Jo and the Fourier series of 
co,o^o + ' ' ' + c o r i2A/ i7]*̂ r i2^/17] * ^ ^ ^e t triangular systems of equations whose solutions 
yield (24). For /x = —3, —2 and —1 the ranges for A indicated in § 3 turn out to produce 
small valences for T\J^. We again are led to triangular systems of equations. 
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