
10

Monopole Pair Production

In this chapter we will study the analysis by Affleck and Manton [4] of the
decay of constant, external magnetic fields due to the production of magnetic
monopole–anti-monopole pairs. The calculation is analogous to a calculation of
the decay of external electric fields by Schwinger [109] due to the production
of electron–positron pairs. In both cases the effect is due to non-perturbative
tunnelling transitions.

10.1 ’t Hooft–Polyakov Magnetic Monopoles

In Chapter 9, we saw the solutions that correspond to magnetic monopoles,
in the Georgi–Glashow model [54]; however, as we were in 2+1 dimensions
these solutions were instantons in Euclidean three dimensions. Clearly the same
solutions in 3+1 dimensions correspond to static soliton solutions and correspond
to particle states of the 3+1-dimensional theory. There is a perturbative spectrum
of particles corresponding to quantization of the small oscillations about the
trivial vacuum. These particles correspond to a massless photon, a charged
massive vector boson, and a neutral scalar from the Higgs field. We will consider
the limit that the Higgs field mass and the vector gauge boson masses are very
heavy while the photon remains massless. In this limit the monopoles are heavy,
essentially point particles. We will see that in the presence of a constant external
magnetic field, the Euclidean equations of motion admit instanton solutions
that describe the production of monopole–anti-monopole pairs. The form of the
instanton is surprisingly simple.

10.2 The Euclidean Equations of Motion

The solutions to the Euclidean equations of motion for a ’t Hooft–Polyakov
magnetic monopole in a constant external magnetic field must exist in general,
as the initial value problem for the corresponding set of non-linear differential
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186 Monopole Pair Production

equations is well-defined. The solutions must be well-approximated by the
solutions to the equations for point-like monopoles, certainly in the limit that the
masses of the Higgs field and the massive vector bosons are taken to be very large.
Then, apart from the self-action of each monopole being very large, the additional
contribution to the action from the Euclidean trajectories of the monopoles will
not diverge. The state of the system in the presence of a constant magnetic
field should correspond to a meta-stable state, similar in principle to a false
vacuum. There will be a finite probability for the creation of a monopole–anti-
monopole pair. Creation of the pair of course costs energy; however, separating
the monopoles in an external magnetic field gives back energy. After a separation
to a critical radius, it is energetically favourable for the monopoles to separate
to infinity. Thus the analogy to the decay of a meta-stable state is quite apt.
The result is an exact analogy to the Schwinger calculation [109] of the decay of
a constant electric field due to the creation of charged boson–anti-boson pairs.
Schwinger found the amplitude

Γ=
e2E2

8π3

∞∑
n=1

(−1)n+1e−nπm
2/eE

n2
(1+ o(e2)), (10.1)

where E is the amplitude of the external electric field and m is the boson mass.
Manton and Affleck [4] found the result

Γ=
g2B2

8π3
e−(πM

2/gB+g2/4)
(
1+ o

(
g3B

M2

)
+ o(e2)

)
(10.2)

with g the magnetic charge, B the amplitude of the magnetic field, and M the
mass of the monopole, which corresponds to the first term in the expansion found
by Schwinger, interchanging electric charge and field with magnetic charge and
field.

To find this amplitude, we will look for a solution to the classical Euclidean
equations of motion that interpolate between the false vacuum in the presence
of the constant background magnetic field, and the configuration containing a
monopole–anti-monopole pair which are separating to infinity in the background
magnetic field. The Euclidean solution will actually be a bounce-type instanton,
thus we expect the pair will move apart up to a critical separation and then
bounce back and return to each other and annihilate. The bounce point will
correspond to the point at which the tunnelling occurs in Minkowski spacetime,
and after the appearance of the physical monopoles in Minkowski spacetime,
the magnetic field will pull them apart to infinite separation. The bounce should
have one negative mode and all the rest positive. The negative mode will give rise
to the imaginary part of the functional integral, with the appropriate analytical
continuation. Effectively, the imaginary part of the functional integral is given by

Im
(
TV Ke−SE

)
, (10.3)
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10.3 The Point Monopole Approximation 187

where

K =

det−1/2

(
δ2SE
δφ2i

∣∣∣
inst.

)
det−1/2

(
δ2SE
δφ2i

∣∣∣
0

) . (10.4)

There are also some zero modes that give the usual complications, which we
will deal with using the Faddeev–Popov method. Our conventions will be the
following for an SU(2) gauge field Aμ = AaμT

a and a scalar field in the triplet
representation, φ= φaT a, where T abc = εabc are the anti-symmetric 3× 3 matrix
representation of SU(2),

L=
1

e2

(
1

4
F aμνF

a
μν +

1

2
(Dμφ)

a(Dμφ)
a+

λ

4e2
(
|φ|2−M2

W

)2)
, (10.5)

where [T a,T b] = εabcT c, |φ|2 = φaφa, Fμν = ∂μAν − ∂νAμ− [Aμ,Aν ] and Dμφ=

∂μφ− [Aμ,φ], and MW provides the mass scale. The equations of motion are

DμFμν = [Dνφ,φ]

DμDμφ=
λ

e2
(
|φ|2−M2

W

)
φ. (10.6)

If we take A4 =0 and all fields independent of x4, the equations of motion reduce
to the static, Euclidean three-dimensional equations that we have already studied
in Chapter 9, and there is a finite energy, stable, static non-trivial solution of the
equations corresponding to the magnetic monopole. The action of the monopole
is, of course, not finite as the solution is independent of x4. The mass is

M =
4πMW

e2
k
(
λ/e2

)
where k ≈ 1 for λ/e2 ≤ 1 (10.7)

and the magnetic charge is g = 4π/e, the core radius is rcl = g2/M and the
“Abelian” field strength can be defined as fμν = F aμνφ

a/eMW . The Abelian field
strength satisfies the Maxwell equation if |φ|2 =M2

W and Dμφ= 0. In the limit
of λ→∞, e2→∞ but λ/e2 remaining finite, the monopole core size goes to zero
and it looks very much like a point monopole.

10.3 The Point Monopole Approximation

Then in an external, constant magnetic field, the monopole solution cannot
remain static. In Euclidean time, it must respect the Euclideanized magnetic
“Lorentz” force law

M
d2zμ
ds2

=−gf̃μν
dzν
ds

, (10.8)

where zμ is the position of the magnetic charge, s is a world line parameter
normalized so that dzν

ds
dzν
ds =1 and f̃μν = 1

2εμνστfστ . This equation is simply the
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188 Monopole Pair Production

dual of the usual Euclidean “Lorentz” force for a charged particle in electric and
magnetic fields

M
d2zμ
ds2

=−efμν
dzν
ds

. (10.9)

For the magnetic field with constant magnitude B in the three-direction, f12 =B

which means f̃34 =B. Then a solution of the equation of motion (10.8) is simply
z1 = z2 = 0 and

z3 =
M

gB
cos

(
gB

M
s

)
z4 =

M

gB
sin

(
gB

M
s

)
. (10.10)

The solution is obviously a circle. This is the analytic continuation of the
corresponding Minkowski space solution, which would be a hyperbola.

10.4 The Euclidean Action

The point monopole equations of motion are, of course, approximative, but we
can derive them in the limit of a weak external magnetic field [4]. This circular
Euclidean solution is exactly the bounce solution that we are looking for. We
can equally well think of the solution in the (x3,x4) plane as the creation of
a monopole–anti-monopole pair, the two separating to a finite critical distance
and then bouncing back together and annihilating. The diameter of the circle is
the critical separation and corresponds to the point to which the pair separates
in the Euclidean solution, but also the separation at which the pair appears in
the tunnelling process, in Minkowski space. The circular solution neglects the
Coulomb attraction between the monopole–anti-monopole pair. We will see that
the Coulomb interaction does not greatly affect the instanton. To analyse the
corrections, we consider the following decomposition of the action

SE =

∫
d4x

(
L− 1

4
f̃μν f̃μν

)
+

∫
d4x

1

4

(
f̃μν f̃μν − fext.μν fext.μν

)
, (10.11)

where we have separated the Lagrangian into the first term that governs the
dynamics above the Abelian gauge field and subtracted the action of the
external gauge field. We define the dual Abelian gauge field into the core of
the monopole as

∂μf̃μν = j̃ν

∂μfμν = 0 (10.12)

where j̃ν is an appropriate, conserved, Abelian definition of the dual current into
the core. Outside the core, jν = 0 and the source-free Maxwell equations are
perfectly valid. Equation (10.12) are just the Euclidean, dual, Abelian Maxwell
equations with magnetic sources. As these are just the dual Maxwell equations,
there exists a gauge potential ãμ such that

f̃μν = ∂μãν −∂ν ãμ. (10.13)
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x4

x3

z=0

z=–R

θ

Figure 10.1. Circularly symmetric monopole–anti-monopole instanton

Exploiting the circular symmetry of the point-like solution we write

ãμ = (0,0,−sinθ,cosθ)ψ(x,y.z)

j̃μ = (0,0,−sinθ,cosθ)ρ(x,y.z), (10.14)

where x,y are the normal cartesian coordinates, but z,θ are polar coordinates in
the x3,x4 plane, with the radius shifted so that z = 0 corresponds to the radius
of the circular point-like monopole instanton, i.e. the usual radial coordinate
is r = z +R, as shown in Figure 10.1. Thus z = −R is the origin, and we will
expand the action about z = 0. Then for the first term of the decomposition in
Equation (10.11) we write

S1
E = 2π

∫
dxdydz(R+ z)(L−LAbelian) , (10.15)

where LAbelian = 1
4 f̃μν f̃μν which can be evaluated from Equation (10.14)

LAbelian =
(
1

2
(∂iψ∂iψ+

1

R+ z
ψ∂zψ+

1

2(R+ z)2
ψ2

)
, (10.16)

where the index i goes over x,y,z and L is of course the full Lagrange density
given in Equation (10.5). Away from z = 0, we expect that the solution is
exponentially zero, Diφ ≈ V (φ) ≈ e−MW |�x| and F aijF

a
ij → fijfij , exponentially

fast, and consequently (L−LAbelian) also vanishes exponentially.
We make no great error by changing the range of z from −R ≤ z ≤ ∞ to

−∞ ≤ z ≤ ∞, as long as all fields and densities are exponentially small away
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190 Monopole Pair Production

from z = 0, thus we get

S1
E = 2πR

∫
d3x(L−LAbelian)+

z

R
(L−LAbelian) , (10.17)

where now the integral is over an entire three-dimensional Euclidean space. We
expect that we can perform an expansion in powers of 1/R. The Maxwell equation
for the Abelian fields is

∂i∂iψ+
1

R+ z
∂zψ−

1

(R+ z)2
ψ = ρ (10.18)

then if

ψ(�x) =

∞∑
n=0

ψn(�x)
1

Rn
(10.19)

the density ρ(�x) must also admit a similar expansion

ρ(�x) =

∞∑
n=0

ρn(�x)
1

Rn
(10.20)

as well as the Lagrange density L. The terms in the expansion must be of
alternating parity as z → −z. The second term in Equation (10.17) vanishes
to lowest order. The limit, as R →∞, i.e. B → 0, which is the order n = 0

term, the solution is simply a static monopole at rest, the circle has infinite
radius and thus becomes effectively a straight, world line. Then the first term of
Equation (10.17) just gives

S1
E = 2πR(M −MAbelian), (10.21)

where M is the mass of the monopole and MAbelian is just the contribution to
the Coulomb energy from the zeroth order part of the current density ρ0(�x),
while the second term must give vanishing contribution due to parity. Thus, due
to parity, the next correction only comes at o

(
1/R2

)
.

10.5 The Coulomb Energy

The second term in the action, Equation (10.11), contains simply the energy in
the Euclidean Abelian gauge fields, f̃μν = f̃ loopμν + f̃ext.μν , where f̃ loopμν comes from
the monopole loop, and f̃ext.μν comes from the fields outside of the loop. Then

S2
E =

1

4

(
f̃μν f̃μν − fext.μν fext.μν

)
=

1

4
f̃ loopμν f̃ loopμν +

1

2
f loopμν fext.μν ≡ S2,loop

E +S2,int.
E .

(10.22)
We will find

S2,loop
E =

∫
d4x

1

4
f̃ loopμν f̃ loopμν =

∫
d4xd4x′

1

8π2

j̃μ(x)j̃μ(x
′)

|x−x′|2 . (10.23)
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10.5 The Coulomb Energy 191

This can be shown by first observing that in the gauge ∂μãμ=0, we can solve the
dual Maxwell field equation (10.12) for the dual gauge field simply as ãμ = 1

� j̃μ
where the Green’s function is

1

� =− 1

4π2

1

|x−x′|2 (10.24)

and the dual field strength is as usual

f̃μν = ∂μ
1

� j̃ν −∂ν
1

� j̃μ. (10.25)

Then it is straightforward to evaluate the contribution to the action

S2,loop
E =

1

2

∫
d4x

(
∂μ

1

� j̃ν
)(

∂μ
1

� j̃ν
)
−
(
∂μ

1

� j̃ν
)(

∂ν
1

� j̃μ
)

=
1

2

∫
d4x−

(
1

� j̃ν
)(

j̃ν
)
+

(
1

� j̃ν
)(

∂μ∂ν
1

� j̃μ
)
. (10.26)

The second term in the first line vanishes after integration by parts, the second
term in the last line vanishes since ∂μ commutes with 1/� and ∂μj̃μ = 0 by
current conservation, which is necessary for the consistency of the dual Maxwell
equations and is assumed to be verified by the current. Then

S2,loop
E =

1

2

∫
d4x−

(
1

� j̃ν
)(

j̃ν
)
=

1

8π2

∫
d4xd4x′

j̃μ(x)j̃μ(x
′)

|x−x′|2 (10.27)

as desired. To calculate it explicitly is not too difficult. First of all, j̃μ(x)j̃μ(x′) =
(sinθ sinθ′ + cosθ cosθ′)ρ(x)ρ(x′) = cos(θ − θ′)ρ(x)ρ(x′), thus we get, writing
d2x= dx1dx2 and d2x′ = dx′1dx

′
2

S2,loop
E =

1

8π2

∫
d2xd2x

(
rr′ cos(θ− θ′)ρ(x)ρ(x′)drdθdr′dθ′

(x1−x′1)2+(x1−x′1)2+ r2+ r′2− 2rr′ cos(θ− θ′)

)
.

(10.28)
The integral over θ and θ′ can be done explicitly, we leave the reader to work it
out or find it in tables, giving

S2,loop
E =

∫
d2xd2xdrdr′

1

4
ρ(x)ρ(x′)

(
W√
W 2− 1

− 1

)
, (10.29)

where, writing (x1−x′1)2+(x1−x′1)2+(z− z′)2 = |�x−�x′|2

W =
(x1−x′1)2+(x1−x′1)2+ r2+ r′2

2rr′

=
(x1−x′1)2+(x1−x′1)2+(R+ z)2+(R+ z′)2

2(R+ z)(R+ z′)

= 1+
|�x−�x′|2
2R2

− |�x−�x′|2(z+ z′)
2R3

+ o

(
1

R4

)
(10.30)

and intriguingly the terms 1/R exactly cancel. Then expanding carefully

W√
W 2− 1

− 1 =
R

|�x−�x′| − 1+
z+ z′

2|�x−�x′| + o
(
|�x|, z,z′
R

)
(10.31)
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and we note that actually the numerator only contributes to the the terms that
have been neglected. Then in the evaluation of the contribution of this term to
the action, the third term in Equation (10.31) vanishes because of parity when
the lowest-order, spherically symmetric monopole charge density is put in for ρ,
and the net remaining is simply

S2,loop
E =

∫
d2xd2xdrdr′

1

4
ρ0(x)ρ0(x

′)
(

R

|�x−�x′| − 1

)
+ o

(
1

R

)
. (10.32)

The first term is exactly the Coulomb energy in the magnetic field while the
second is proportion to the magnetic charge squared,

S2,loop
E = 2πRMAbelian−

1

4
g2+ o

(
1

R

)
, (10.33)

where g is the magnetic charge. The first term exactly cancels against the
identical term found in S1

E , which is expected, since it arises solely because
of the somewhat artificial Abelian magnetic charge density that was invented to
extend the Abelian integration into the core. No physical phenomenon should
depend on it. Thus

S1
E +S2,loop

E =−1

4
g2+2πRM. (10.34)

The interaction part of S2
E , which we will call S2,int.

E , is, integrating by parts
and using the equation of motion,

S2,int.
E =

∫
d4x

1

2
f̃ loopμν f̃ext.μν =−

∫
d4xj̃μã

ext.
μ . (10.35)

The external gauge potential can be taken with circular symmetry as

aext.μ = (0,0,−1

2
B(R+ z)sinθ,

1

2
B(R+ z)cosθ) (10.36)

and the current is
jμ = (0,0,−sinθ,cosθ)ρ(�x). (10.37)

Then using d4x = dx1dx2drdθr = dx1dx2dzdθ(R + z) = d3x(R + z)dθ and
integrating over θ gives a factor of 2π so that we get

S2,int.
E =−

∫
d3xπB(R+ z)2ρ(�x) =−gπBR2+ · · · . (10.38)

Thus the total action is

SE = 2πM − gBπR2− 1

4
g2+ o

(
1

R2

)
. (10.39)

We vary the action with respect to R and demand that it be stationary to find
the radius of the loop,

0 =
δSE
δR

= 2πM − 2gπBR, (10.40)
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which gives R =M/gB. This is exactly the same value as in the case of the
point-like monopoles, therefore we see that the inclusion of the Coulomb energy
does not affect the radius of the loop. Inserting the value of R back into the
action yields

SE =
πM2

g2B
− 1

4
g2, (10.41)

and we observe that the Coulomb energy is ∼ 1/R integrated over a circle of
circumference 2πR, which yields g2/4 which is independent of R. Finally, if we
take the second variation we find

δ2SE
δR2

=−2gBπ < 0, (10.42)

which means that the action has at least one negative mode and hence is at a
saddle point. The negative mode is expected and gives rise to the decay width
of the magnetic field.

10.6 The Fluctuation Determinant

We must now take into account the Gaussian integration over the fluctuations
around the instanton

K =
1

2

∣∣∣∣det
(
δ2SE
δφ2i

∣∣∣
inst.

)∣∣∣∣−1/2

(
det

(
δ2SE
δφ2i

∣∣∣
0

))−1/2
. (10.43)

The factor of one-half occurs since we integrate over only half the Gaussian
peak for the negative mode and any Faddeev–Popov factors are assumed to be
included in the determinant. We have put the numerator in absolute value signs
so that the negative mode does not give an imaginary value when we take the
square root, as we explicitly put the i in by hand, in that the energy obtains an
imaginary part E = E + iΓ with

Γ= V Ke−SE/�(1+ o(�)). (10.44)

We must separate the zero modes, there are five, coming from four translations
and one from internal rotation. The translation modes will give a familiar factor
of the square root of the normalization

K→ 1

2

4∏
μ=1

(
Nμ
2πe2

)1/2

∣∣∣∣det′
(
δ2SE
δφ2i

∣∣∣
inst.

)∣∣∣∣−1/2

(
det

(
δ2SE
δφ2i

∣∣∣
0

))−1/2
. (10.45)

The internal rotation actually corresponds to the dyonic degree of freedom,
internal rotation at a given angular frequency gives rise to a magnetically and
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electrically charged state, called the dyon. The full rate of pair production and
consequent decay of the magnetic field must include the production of pairs of
dyons. But for the lowest order, we can restrict ourselves to the case of a simple
monopole pair production. The internal rotation is intimately connected with
gauge fixing and the Faddev–Popov factor.

The translation zero modes naively are not gauge-invariant and must be made
so by an accompanying gauge transformation, we find

(δAμ)ν = ∂νAμ−DμAν =−Fμν
(δφ)ν = ∂νφ− [Aν ,φ] =Dνφ (10.46)

and the normalization is (no sum on ν, sum on a assumed)

Nν =

∫
d4x

(∑
μ

F aμνF
a
μν +(Dν)

a(Dν)
a

)
. (10.47)

The calculation of the determinant is possible in the limit R →∞ (B → 0).
In this limit, the fluctuations separate into those that change the shape of the
monopole and those that change the shape of the loop.

Using the circular symmetry and the gauge Aθ = 0, we have

δ2SE
δφ2i

∣∣∣∣
inst.

=
δ2SE
δφ2i

∣∣∣∣
3,inst.

− 1

r2
∂2

∂θ2
, (10.48)

where the first term depends on x,y,r and is essentially a three-dimensional
operator, while the second term comes from the kinetic energy, for example,

DμDμ =D1D1+D2D2+DrDr+
1

r
Dr+

1

r2
∂2

∂θ2
. (10.49)

Eigenfunctions admit a separation of variables as

Ψ(x1,x2, r,θ) = ψ(x1,x2, r)

{
cos(nθ) n= 0,1,2, · · ·
sin(nθ) n= 1,2,3, · · ·

(10.50)

and then in the sector of angular momentum n we get

δ2SE
δφ2i

∣∣∣∣
inst.

=
δ2SE
δφ2i

∣∣∣∣
3,inst.

+
n2

r2
. (10.51)

Now we make an expansion in 1/R, with z = r−R, then, for example,

(DμDμ)3 =Dx1Dx1 +Dx2Dx2 +DzDz +
1

R+ z
Dz

=DiDi+

(
1

R
− z

R2
+ · · ·

)
Dz. (10.52)

To lowest order (1/R)
0 we just get the operator corresponding to the second

variation of the Hamiltonian with a static monopole at �x= 0

δ2SE
δφ2i

∣∣∣∣
3,inst.

=
δ2H

δφ2i

∣∣∣∣
3,mono.

+ o

(
1

R

)
. (10.53)
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The angular momentum term also admits an expansion

n2

r2
=
n2

R2

(
1− 2z

R
+ · · ·

)
(10.54)

so that to lowest order we have(
δ2H

δφ2i

∣∣∣∣
3,mono.

+ o

(
1

R

)
+
n2

R2
+ o

(
1

R

3))
ψ
(n)
i = λ

(n)
i ψ

(n)
i (10.55)

and we note that the angular momentum term is a constant. The eigenvalues are
then simply

λ
(n)
i = ω2

i +
n2

R2
, (10.56)

where ω2
i are the eigenvalues of δ2H

δφ2i

∣∣∣
3,mono.

. The λ(n)i admit an expansion in

1/R as

λ
(n)
i = ω2

i +
n2

R2
+
ai
R2

+
bin

2+ ci
R4

+ · · · , (10.57)

where the odd powers vanish as the order zero eigenfunctions have definite parity
under z→−z. The correction ai is difficult to compute, but it is expected to give
a small correction for the non-zero eigenmodes. To calculate them in principle, we
must find the correction to the instanton to order o(1/R2) and then compute the
correction to the eigenvalues to second order in perturbation theory. However,
for the zero modes the correction is important, but easily calculable.

There are three translational zero modes; first, consider the modes for
translation in the x1 and x2 directions. These are out of the plane of the loop
and correspond to ω2

x1
= 0 and ω2

x2
= 0. For these n = 0 and λ

(0)
x1 = 0 = λ

(0)
x2 .

Thus for these to remain zero modes to order 1/R we must have ax1 = ax2 = 0.
For translation in the z direction, we see these are translational zero modes
of the monopole in the plane of the loop. These must come with multiplicity
two as there are two independent directions for the translation. Furthermore,
they must deform the loop, hence they must correspond to n �= 0. Indeed, the
first deformation of the loop occurs for n= 1 and the two independent angular
eigenmodes give the two independent directions of the deformation. Thus we
require that λ(1)z ≡ λ

(1)
x3 = λ

(1)
x4 = 0. For the zero-order Hamiltonian, we already

have ω2
x3

= 0 and ω2
x4

= 0, hence to order 1/R we must have

λ(1)z = 0= 0+
n2

R2

∣∣∣∣
n=1

+
az
R2

+ · · ·= 1

R2
+
az
R2

⇒ az =−1. (10.58)

We perform exactly the same separation of variables and analysis for the
denominator in Equation (10.45)

δ2SE
δφ2i

∣∣∣∣
3,0

=
δ2H0

δφ2i

∣∣∣∣
3

+ o

(
1

R

)
, (10.59)
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which gives

λ
(n)
i,0 = ω2

i,0+
n2

R2
+
ai,0
R2

+ · · · . (10.60)

The determinant corresponds to the product of the eigenvalues, thus the angular
momentum family corresponding to eigenmode i contributes as

lnKi =−1

2

(
lnλ

(0)
i − lnλ

(0)
i,0 +2

∞∑
n=1

(
lnλ

(n)
i − lnλ

(n)
i,0

))
, (10.61)

where the factor of 2 is because all the n �= 0 modes come with multiplicity
two while the mode n = 0 is solitary. To perform the summation we use the
Euler–Maclaurin formula [2]

f(0)+2

N∑
n=1

f(n) = 2

(∫ N

0

dxf(x)

)
+ f(N)+B1(f

′(N)− f ′(0))

− 1

12
B2(f

′′′(N)− f ′′′(0))+ · · · , (10.62)

where the Bis are the Bernoulli numbers and f(n) = ln(ω2
i +

n2

R2 + ai
R2 + · · ·)−

ln(ω2
i,0 + n2

R2 +
ai,0
R2 + · · ·). For large n, we expect that λ

(n)
i → λ

(n)
i,0 , hence

f(N),f ′(N),f ′′′(N), · · · all vanish. Also since λ(n)i is actually a function of n2

the odd derivatives vanish at n= 0, and only the first term contributes, giving
(letting Ry = x)

lnKi =−R
∫ ∞

0

dy
(
ln(ω2

i + y
2+

ai
R2

+ · · ·)− ln(ω2
i,0+ y

2+
ai,0
R2

+ · · ·)
)

=−R
∫ ∞

0

dy

(
ln

(
ω2
i + y

2

ω2
i,0+ y

2

)
+ o

(
1

R2

))

=−Rπ(ω2
i −ω2

i,0)+ o

(
1

R

)
. (10.63)

This follows from using the integral,

=R

∫ N/R

0

dy ln(ω2+ y2) Ry ln(ω2+ y2)− 2Ry+2Rωarctan
y

ω

∣∣∣N/R
0

=N ln

(
ω2+

N2

R2

)
− 2N +2Rωarctan

(
N

ωR

)

=N ln

(
ω2+

N2

R2

)
− 2N +Rπω (10.64)

taking N→∞. This approximation is fine for all the angular momentum families
that do not have exact zero modes. For n= 0,1 we would get a vanishing result
and singularities in the amplitude.
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We can, of course, still apply the method to the comparison theory of the true
vacuum without the monopole. Here we get

=
1

2
lnλ

(0)
i,0 +

N∑
n=1

lnλ
(n)
i,0

1

2
lnω2

i,0+

N∑
n=1

(
ω2
i,0+

n2

R2

)

=R

∫ N/R

0

dy ln(ω2
i,0+ y

2)+
1

2
ln

(
ω2
i,0+

N2

R2

)
+ o

(
1

N

)

=Rπωi,0+(2N +1)ln

(
N

R

)
− 2N + o

(
1

N

)
. (10.65)

This follows from the integral Equation (10.64) after adding 1
2 ln

(
ω2
i,0+

N2

R2

)
and

expanding for large N .
For the three zero modes, the sum over λ(n)a for a= x1,x2, z is done explicitly

excluding λ
(0)
x1 , λ(0)x2 and λ

(1)
z (with multiplicity two). We will use the Stirling

approximation lnN ! ≈ N lnN −N + 1
2 ln(2πN). For a = x1,x2 we get, noting

ω2
a = 0

−
N∑
n=1

lnλ(n)a =−
N∑
n=1

ln

((
n2

R2

)
+ o

(
1

R

))

≈−2ln
(

1

RN

N∏
n=1

n

)
=−2ln

(
N !

RN

)

=−2
(
N lnN −N +

1

2
ln(2πN)

)
+2N lnR

=−2N ln

(
N

R

)
+2N − ln(2πN)+ o

(
1

N

)
. (10.66)

Then subtracting the true vacuum result, Equation (10.65), from the result in
the presence of the instanton, Equation (10.66), we get

lnKx1 =−Rπ(ωx1−ωx1.0)−ln(2πR) and lnKx2 =−Rπ(ωx2−ωx1.0)−ln(2πR)

(10.67)
keeping in mind that ω2

x1
= ω2

x1
= 0. For a = z we have λ(1)z = 0, thus we must

perform the sum

− 1

2
ln |λ(0)z |−

N∑
n=2

lnλ(n)z , (10.68)

where we have put absolute value signs around λ
(0)
z as it is negative (and the

i is taken out explicitly in the Equations (10.43) and (10.44)). As ω2
z = 0 and

a1 =−1, we get λ(0)z =−1/R. Furthermore, putting λ(n)z = (n2− 1)/R, we get

− 1

2
ln |λ(0)z |−

N∑
n=2

lnλ(n)z =−1

2
ln

∣∣∣∣−1R2

∣∣∣∣− N∑
n=2

ln

(
n2− 1

R2

)
. (10.69)
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We evaluate the sum as follows

=
N∑
n=2

ln

(
n2− 1

R2

) N∑
n=2

ln

(
n2

R2

(
1− 1

n2

))
=

N∑
n=2

ln
n2

R2
+

N∑
n=2

ln

(
1− 1

n2

)

= ln
N∏
n=2

n2

R2
+ln

N∏
n=2

(
1− 1

n2

)
= 2lnN !+ ln

N∏
n=2

(
(n+1)(n− 1)

n2

)

= 2lnN !− 2(N − 1) lnR+
N∑
n=2

(
ln

(
n+1

n

)
− ln

(
n

n− 1

))

= 2N ln

(
N

R

)
− 2N +ln2πN +2lnR− ln(2) (10.70)

as the final sum is telescopic and gives the − ln2. Adding the − 1
2 ln

(
|−1|
R2

)
= lnR

gives

−1

2
ln |λ(0)z |−

N∑
n=2

lnλ(n)z = lnR−
(
2N ln

(
N

R

)
− 2N +ln2πN +2lnR− ln(2)

)

=−2N ln

(
N

R

)
+2N − ln(πNR).

(10.71)

Then subtracting the vacuum result, Equation (10.65), we get

lnKz =−Rπ(ωz −ωz,0)− lnπR2, (10.72)

where of course ωz = 0. Thus finally adding all the three contributions together
we get∑

i

lnKi=−Rπ(ωi−ωi,0)−2ln2πR−lnπR2=Rπ(ωi−ωi,0)−ln4π3R4 (10.73)

or equally well

K =
1

4π3R4
e−Rπ

∑
i(ωi−ωi,0). (10.74)

The sum 1
2

∑
i(ωi−ωi,0) has a perfect physical interpretation as the renormalized

energy of the magnetic monopole due to vacuum fluctuations about the monopole
configuration. This energy is properly subtracted with the energy of the vacuum
fluctuations about the true vacuum. Thus we write

1

2

∑
i

(ωi−ωi,0) =ΔM. (10.75)

The Faddeev–Popov factors, which we have not explicitly dealt with, will
also contribute; however, their contribution also simply contributes to the
renormalization of the mass of the monopole.
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10.7 The Final Amplitude for Decay

The final thing we must calculate are the normalization factors of the translation
zero modes using the explicit expressions for the zero modes given by
Equation (10.46). We use the coordinates x1,x2, r,θ, but will rather use r= z+R.
First for the directions i=x1,x2, circular symmetry gives a factor of 2π. The field
strength and covariant derivatives of the scalar field are independent of the θ
direction, i.e. Fθ,μ = 0,Dθφ = 0. The dominant contribution comes from the
regions near z = R. We can use spherical symmetry in the three independent
coordinates x1,x2, z. Then the normalization is given by,

=Ni 2π

∫
dx1dx2drr

(∑
μ

F aμiF
a
μi+(Diφ)

a
(Diφ)

a

)

≈ 2πR

∫
dx1dx2dr

(∑
μ

F aμiF
a
μi+(Diφ)

a
(Diφ)

a

)

=
2πR

3

∫
d3x

⎛
⎝∑

ij

F aijF
a
ij +(Diφ)

a
(Diφ)

a

⎞
⎠ (10.76)

as, for example, F 2
21+F

2
31 = (2/3)(F 2

21+F
2
31+F

2
32) = (1/3)

∑
jkF

2
jk.

For the mode i = 3,4 we get a similar expression, but there is angular
dependence. Then, for example, D3 = cosθDz and we get

=N3 2π

∫
dx1dx2drr

(∑
μ

F aμ3F
a
μ3+(D3φ)

a
(D3φ)

a

)

=R

∫
d3x

∫
dθ

⎛
⎝ ∑
i=1,2

F aizF
a
iz +(Dzφ)

z
(Dzφ)

a

⎞
⎠cos2 θ

=Ni
1

2π

∫ 2π

0

dθ cos2 θ=
1

2
Ni. (10.77)

Thus we only have to evaluate the integral
∫
d3x

(∑
ij F

a
ijF

a
ij +(Diφ)

a
(Diφ)

a
)
,

which can be related easily to the monopole mass. The monopole mass is given by

M =
1

e2

∫
d3x

(
1

4
F ajkF

a
jk+

1

2
(Djφ)

a
(Djφ)

a
+V (φ)

)
. (10.78)

However, the expression for mass, which is the energy of the monopole, must
be stationary with respect to arbitrary variations for the fields. Making a scale
transformation φ(x)→ φ(αx) and A(x)→ aA(αx) and demanding the mass be
stationary at α= 1 gives∫

d3x

((
1

4
F ajkF

a
jk

)
− 1

2
(Djφ)

a
(Djφ)

a− 3V (φ)

)
= 0. (10.79)
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Thus ∫
d3xV (φ(x)) =

1

3

∫
d3x

1

4
f2− 1

3
(Dφ)

2
, (10.80)

which gives

M =
1

e2

∫
d3x

(
1

3
F ajkF

a
jk+

1

3
(Djφ)

a
(Djφ)

a

)
=

1

e2
Ni
2πR

. (10.81)

So Ni = 2πRe2M and N3 =N4 = πRe2M . Thus(
Ni
2πe2

)1/2

= (RM)1/2 i= 1,2,

(
Ni
2πe2

)1/2

= (RM/2)1/2 i= 3,4 (10.82)

and

K =
1

2

4∏
i=1

(
Ni
2πe2

)1/2

K ′=RM×RM

2

1

4π3R4
e−Rπ2ΔM =

M2

8π3
e−Rπ2ΔM (10.83)

Then putting in the factor for the classical instanton action we get the final
expression for the amplitude of the decay of the magnetic field

Γ=
M2

8π3R2
e−Rπ2ΔMe−(πM

2/g2B−g2/4). (10.84)

Using M/R= gB, writing Mren. =M +ΔM and assuming ΔM �M

Γ=
g2B2

8π3
e−(πM

2
ren./g

2B−g2/4). (10.85)

We have not taken into account the zero mode corresponding to internal
rotations. As we have mentioned, this mode corresponds to the dyonic excitation.
Without the creation of dyonic pairs, the zero mode will give a factor of(

J

Re2

)1/2

, (10.86)

where J/R is defined to be the normalization of this zero mode. J is calculable
from the exact solutions for the dyons as is the mass of the dyon [66]. There is
a whole family of dyon solutions with all possible charges, all of which can be
produced in pairs. We will not treat the calculation in detail here and refer the
reader to the original article [4]. We simply quote the final result, writing ΓM
for the pure monopole result Equation (10.85)

Γ= ΓM

(
J

Re2

)1/2 ∞∑
−∞

e−(πJ/Re2)n2 =ΓM

∞∑
−∞

e−(πM/gB)(e2n2/J) (10.87)

using the Poisson summation formula∑
m

f(m) =
∑
m

(∫
dxe2πimxf(x)

)
(10.88)

and performing the ensuing Gaussian integral and that M/R= gB.
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