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We develop a method based on the Burau matrix to detect conditions on the linking
numbers of braid strands. Our main application is to iterated exchanged braids.
Unless the braid permutation fixes both braid edge strands, we establish under some
fairly generic conditions on the linking numbers a ‘subsymmetry’ property; in
particular at most two such braids can be mutually conjugate. As an addition, we
prove that the Burau kernel is contained in the commutator subgroup of the pure
braid group. We discuss also some properties of the Burau image.
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1. Motivation and summary

Alexander’s and Markov’s theorems (§2.1) exhibit a fundamental relation between
braids and links in 3-space. One of the basic problems in understanding braid rep-
resentatives of a given link L, i.e. those braids b ∈ Bn with closure b̂ = L, is to
describe the conjugacy classes of such braid representatives.

In this context the exchange move (§2.7) was extensively studied. Assume b ∈ Bn

is of the form b = αβ with α ∈ B1,n−1 having isolated right strand and β ∈ B2,n

having isolated left strand, which we formalize in §2.8 under the term exchangeable
structure (ES). Then there is a sequence of braids bm, indexed by m ∈ Z, with
b = b0, obtained by (iterated) exchange moves from b, satisfying

b̂m = b̂. (1.1)

The main question we are concerned in is the conjugacy of these bm, which we
write ∼.

There is a condition of degeneracy (3.6), identified in two equivalent forms in
[14, 24], under which all bm are conjugate. We will exclude this trivial case. Then

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Society

of Edinburgh. This is an Open Access article, distributed under the terms of the Creative Com-

mons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/

by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is unaltered and is properly cited. The written permis-
sion of Cambridge University Press must be obtained for commercial re-use or in order to create
a derivative work.

154

https://doi.org/10.1017/prm.2023.1 Published online by Cambridge University Press

mailto:stoimeno@stoimenov.net
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/prm.2023.1&domain=pdf
https://doi.org/10.1017/prm.2023.1
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the work in [24] protruded, and extensive experimental evidence [28] cemented, the
evidence of an unexpected subsymmetric pattern (definition 3.3):

there is a μ ∈ Z such that whenever bm ∼ bm′ (for m �= m′), then m+m′ = μ.

This is a very strong restriction; it implies for instance that at most two bm can
be conjugate, and that bm �∼ bm′ are pairwise non-conjugate for all m > m′ > 0 or
all m < m′ < 0. Both many experimental examples in Bn for small n and more
sporadic but systematically constructable ones for higher n show that the subsym-
metry property cannot be generally strengthened, i.e. there exist symmetric ES.
However, it is very much possible that subsymmetry is universal, as formulated in
conjecture 3.7.

Let π : Bn → Sn be the permutation homomorphism. When π(b)(1) �= 1 and
π(b)(n) �= n, then the conjecture holds by the work in [24] (theorem 3.4). Here
we will be concerned with the case

π(b)(1) = 1 and π(b)(n) �= n (1.2)

[and some equivalent forms of it, like (2.21)], which requires a very different (but
still quite substantial) treatment. It involves degenerate ES that obviously have to
be excluded somehow. We accomplish this by formulating a linking number con-
dition (1.3). Linking numbers can be visually combinatorially defined (§2.6) and
calculated. Under (1.2), for every j > 1, the linking number lkj = lk(1, j) is an
integer, and lkn = 0.

For degenerate cases all lkj for 1 < j < n are equal, say, to some lk ∈ Z [see
(4.1)]. In particular, when C �= {1} is a cycle of π(b), then

there is a lk ∈ Z so that for every C we have lk(1, C) = lk · |C \ {n}|. (1.3)

(Note that lk(1, C) is the linking number of the corresponding components of the
closure link b̂.) This condition is generically violated [under (1.2)], and can be
rapidly tested from a braid picture (easier than, e.g. degeneracy). We express (1.3)
in §4 through specifying defective cycles [so that the absence of such a cycle is a
slightly stronger form of (1.3)].

Theorem 4.2 states, among others, the following.

Theorem 1.1. If there is a defective cycle, then conjecture 3.7 holds.

This is sufficient to extend, in §8, some knot-theory applications of non-
degeneracy given in [28].

Our proof (see §2.1) consists in deriving a conjugacy invariant from the Burau
matrix (§2.3). The Burau representation ψn plays a fundamental role in the study of
braid groups, and has been extensively treated, e.g. [4, 17]. By replacing conjugacy
of Burau matrices by equality, we gain some characterization result (theorem 9.1),
which is motivated here by its two following simple consequences.

Corollary 1.2. (see corollary 9.4) The Burau kernel ker(ψn) is contained in the
commutator subgroup P c

n of the pure braid group Pn.

Corollary 1.3. The only scalar matrices that occur in the image of ψn are the
image of center (Bn) [i.e. powers of (2.9)].

https://doi.org/10.1017/prm.2023.1 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.1


156 A. Stoimenow

2. Some basics about braids and links

2.1. General background

The braid groups Bn were introduced in the 1930s in the work of Artin [2]. We
consider the n-strand braid group Bn on Artin’s generators σi. Until §9, will assume
n � 4.

Alexander [1] related braids to links in real 3-dimensional space (henceforth
always assumed oriented), by means of a closure operation ˆ. Markov’s theorem
relates braid representatives of a link by two moves, the conjugacy in the braid
group, and (de)stabilization, which passes between b ∈ Bn and bσ±1

n ∈ Bn+1 (see,
e.g. [21]). The exchange move was apparently discovered by Markov in an earlier
version of his theorem, but later showed a consequence of his other two moves. It
was then, however, extensively studied by Birman and Menasco [6–9].

Let α ∈ Bn have isolated right strand (do not involve σ±1
n−1), β have isolated left

strand (no σ±1
1 ), and b = αβ. Write δ2[2,n−1] for the (right) full-twist on strands 2

to n− 1 (see §2.2). Then for m ∈ Z the braids

bm = αδ2m
[2,n−1]βδ

−2m
[2,n−1] (2.1)

are obtained by iterated exchange moves on b and have the same closure link (1.1).
The property (1.1) (which means that the closure link is useless as a conjugacy

invariant), together with theorem 3.1 strongly motivate that

{ bm : m ∈ Z } (2.2)

are the most important infinite families of braids, on which the conjugacy problem
is worth studying.

The question when the exchange move generates non-conjugate braids has been
considered for some time. In [24] we proved that if π(b)(1) �= 1 and π(b)(n) �= n,
then infinitely many bm are non-conjugate (theorem 3.4), extending the case of a
cycle π(b) in [23]. This was later improved by Ito [14] (theorem 3.5), using some
dilatation bound in the mapping class group.

The main goal here is to study the cases excluded in theorem 3.4, while obtain-
ing stronger non-conjugacy properties of iterated exchanged braids bm than those
arising from geometric analysis. For the case (1.2), we will introduce a method
using the Burau matrix, which essentially shows how it can account for the link-
ing numbers in strands of a pure braid. It applies under very relaxed (and easy to
test) assumptions, but requires effort to derive (theorems 4.1 and 4.2). The sce-
nario π(b)(1) = 1 and π(b)(n) = n is (even) more difficult, and will likely require
the Lawrence–Krammer matrix (see §7).

Algorithmic decision of conjugacy bm ∼ bm′ for particular m,m′ is, of course,
possible starting with Garside’s [11], and later many others’ work. This process
runs efficiently on a computer [12], and is very useful for experimental tests as in
[28], on a large – but finite – number of instances. It is well-known, though, to be
too involved to be manually manageable, even on such explicit infinite families of
braids as (2.1).
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Figure 1. An n-braid.

The practical approach (behind all results summarized in §3) is rather to seek
some, sufficiently successful, conjugacy invariant υ, for which υ(bm) can be evalu-
ated. The core qualitative contribution of this paper can be formulated in exploring
(and exploiting) a new type of such invariant.

2.2. Braid groups and closures

For many standard terms and facts about braids, see [5].

Definition 2.1. The braid group Bn on n strands can be defined by generators and
relations as

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣∣ [σi, σj ] = 1 |i− j| > 1
σjσiσj = σiσjσi |i− j| = 1

〉
. (2.3)

The σi are called Artin standard generators. An element b ∈ Bn is called an n-braid.

For example, in b1 of figure 1, we have n = 4 and the word b1 = σ−1
3 σ−1

2

σ−1
3 σ2

1σ2σ
−1
1 .

Let

δn = (σ1 · · · · · σn−1) · (σ1 · · · · · σn−2) · · · · · (σ1σ2) · σ1 (2.4)

be the (right-handed) half-twist on n strands. The center center (Bn) of Bn (ele-
ments that commute with all Bn) is infinite cyclic and generated by the full
twist

δ2n = (σ1 · · · · · σn−1)n.

Let similarly

δ2[i,j] = (σi · · · · · σj−1)j−i+1

be the restricted full twist on strands i to j. Let also for 1 � i < j � n,

Bi,j := 〈σi, . . . , σj−1 〉 (2.5)

be the subgroup of Bn of braids operating on strands i, . . . , j. Where ambiguity is
avoided (as indicated by diagrams we will draw), we can identify Bi,j � Bj−i+1.
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Specifically, Bn−1 as a subset of Bn will by default be considered to be B1,n−1, e.g.
in (2.7).

There is a permutation homomorphism of Bn,

π : Bn → Sn , given by π(σi) = (i, i+ 1). (2.6)

The permutation on the right is a transposition. More generally, we will write
(x1 x2 . . . xl) for the cycle xi 	→ xi+1 for i = 1, . . . , l − 1, and xl 	→ x1. By abuse of
notation, we will also sometimes identify C = (x1 . . . xl) with its set {x1, . . . , xl} of
elements. In particular, we will use |C| for the length of the cycle.

We call π(b) the braid permutation of b. We call b a pure braid if π(b) = Id. We
write Pn = kerπ for the pure braid group.

Also, there is a homomorphism e : Bn → Z sending all σi to 1. We will write
e = e(b) for the image, and call it exponent sum or writhe of b.

When we choose a (non-empty) subset C of {1, . . . , n} whose elements form a
subset of the cycles of π(b), we can define a subbraid b′ = b[C] of b by choosing only
strings numbered in C. Then b̂[C] is a sublink of b̂. For example, in b2 of figure 1,
the two components b̂′2 and b̂′′2 of b̂2 are given by the subbraids b′2 = (b2)[{1,3,5}]
comprising the strings starting at the top as number 1, 3, 5, and b′′2 = (b2)[{2,4}] of
strings 2, 4.

Markov’s theorem (see, e.g. [21]) relates braid representatives [29] of the same
link by two moves, the conjugacy in the braid group, and the pair of stabilization,
which is the move to the right in

b ∈ Bn−1 ←→ bσ±1
n−1 ∈ Bn, (2.7)

together with its inverse (move to the left), called destabilization. As mentioned,
Markov’s moves have gained importance in knot theory, among others, as a tool for
defining link invariants via braids.

We call a braid b′ ∈ Bn positively resp. negatively stabilized if b′σ−1
n−1 resp. b′σn−1

lies in B1,n−1. We say that b ∈ Bn is irreducible, if b is not conjugate to a stabilized
braid b′.

2.3. Burau representation

The (reduced) n-strand Burau representation ψn, of dimension n− 1, which we
simply call ‘Burau’, can be found for example in [15, §2]. It associates to a braid
β ∈ Bn a matrix ψn(β) of size (n− 1)× (n− 1) and entries in Z[t±1].

Let us for square matrices M,N write for their block sum

M ⊕N =
[
M 0
0 N

]
.

Then ψn is defined by

ψn(σi)(t) = Idi−2 ⊕
⎡
⎣ 1 0 0
t −t 1
0 0 1

⎤
⎦⊕ Idn−i−2, (2.8)

with the first (resp. last) row and column of the 3× 3 block removed for σ1

(resp. σn−1).
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The following formula for the Burau matrix of the center is well-known (see e.g.
[15, 27]):

ψn(δ2n) = tn · Idn−1. (2.9)

We remark also that

detψn(β)(t) = (−t)e(β) (2.10)

and in particular detψn(β)(1) = (−1)π(β) is the sign of the permutation π(β).

2.4. Links and link polynomials

Among the different braid representatives of a link L the one with the fewest
strands is called a minimal braid. The number of strands of a minimal braid is
called the braid index b(L) of L (see e.g. [10, 20, 22, 26]). It makes sense to
consider throughout

n � max(4, b(L)). (2.11)

Obviously for a braid minimal implies irreducible, but the converse is not true [18]
(although it is for n � 3 [8]).

Consider links with diagrams differing just near one crossing. We call the three
diagram fragments in (2.12) from left to right a positive crossing, a negative crossing
and a smoothed out crossing (in the skein sense).

(2.12)

Below Δ is the Alexander polynomial. It is an invariant with values in Z[t, t−1],
and can be defined by being 1 on the unknot and the relation

Δ (L+)−Δ(L−) = (t1/2 − t−1/2)Δ (L0) .

The Conway polynomial is an oriented link invariant that takes values in Z[z]. It is
given by the value 1 on the unknot and the skein relation

∇(L+)−∇(L−) = z∇(L0). (2.13)

We have

∇(L)(t1/2 − t−1/2) = Δ(L)(t),

so that ∇ and Δ are interconvertible (and equivalent as invariants).
If β ∈ Bn has exponent sum e, then for the Alexander polynomial there is the

formula in terms of the Burau matrix(
−√t

)e−n+1

Δβ̂(t)
1− tn
1− t = det(Idn−1 − ψn(β)). (2.14)

This is discussed, for instance, in [15].
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2.5. Combed normal form

We present below some argument based on the combed normal form of a pure
braid. (See [5] for some more detailed discussion.)

For 1 � i < j � n, let

κi,j = δ2[i,j]δ
−2
[i+1,j] = σiσi+1 · · ·σj−2σ

2
j−1σj−2 · · ·σi (2.15)

(‘strand i goes around strands i+ 1, . . . , j’), with δ2[i,i] = Id. Then every pure braid
α ∈ Pn can be written as

α =
n−1∏
i=1

αi, αi =
ki∏

j=1

κ
εi,j

i,pi,j
, (2.16)

for pi,j > i and εi,j = ±1. This representation is also unique, except for obvious
cancellations κ±1

i,kκ
∓1
i,k . More often one seems to use this form with

κ′i,j = κi,jκ
−1
i,j−1 = σiσi+1 · · ·σj−2σ

2
j−1σ

−1
j−2 · · ·σ−1

i (2.17)

(‘strand i goes around strand j behind strands i+ 1, . . . , j − 1’), setting κi,i = Id.
Both forms are equivalent, because a group is free in e1, . . . , el if and only if it is

free in e1, e1e2, . . . , e1 · · · el. We will be more convenienced to use (2.15).

2.6. Linking numbers

For b ∈ Pn, one can define the linking number lkij = lki,j(b) by numbering strands
from left to right, and taking half the sum of the signs of all crossings (exponents
of letters σk) involving strands i and j.

This definition can be extended to non-pure braids b, when for π(b)(i) �= i one
has to fix that strands are numbered where (with their orientation) they enter the
braid, and if (π(b)(i)− π(b)(j))(i− j) < 0, then lki,j will only be a half-integer. For
example, in b2 of figure 1, we have lk(2, 3) = 1 and lk(3, 5) = −1/2.

For subbraids b′ = b[C′] and b′′ = b[C′′] of a fixed braid b one can define the
subbraid linking number lk(C ′, C ′′) by the linking number

lk(b̂′, b̂′′) =
∑

i∈C′,j∈C′′
lkij

between sublinks of b̂. In (1.3), let lk(1, C) = lk({1}, C). For example, in b2 of
figure 1, we have lk({1, 3, 5}, {2, 4}) = 0.

In the presentation (2.16), one can see for α ∈ Pn that for i < j,∑
k:pi,k=j

εi,k = lki,j − lki,j+1, (2.18)

with lki,n+1 set to 0. We will use this property several times below.
When G is a group. we will write Gc for the commutator subgroup of G, generated

by elements ghg−1h−1. [We do not prefer to use the more standard notation [G,G]
to avoid confusion, since we will heavily deploy commutators starting from (5.11)
in a ring-theoretic sense.] Then set Ga = G/Gc to be the abelianization.
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Figure 2. The exchangeable n-braid b.

It follows easily from the combed normal form that the abelianization P a
n is iso-

morphic to Zn(n−1)/2, with the identification given by the vector of linking numbers
α 	→ (lki,j(α))1�i<j�n. Also note that

e(α) = 2
∑
i<j

lki,j , (2.19)

which is what specifies the braid commutator subgroup Bc
n = {β : e(β) = 0}, so

that the inclusion P c
n ⊂ Bc

n ∩ Pn is (very) proper.
Since we need this a few times, let us write

Λn := P c
n · center (Bn) (2.20)

for the set of pure braids with equal linking numbers.
Also, for a few schematic displays, it is useful to introduce the linking graph Υ(b),

which has a vertex labelled |C| for each cycle C of π(b) and edges between C,C ′

labelled by lk(C,C ′).

2.7. Exchange move

We say that b ∈ Bn admits an exchange move or is exchangeable, if b is as illus-
trated in figure 2, where α ∈ B1,n−1, β ∈ B2,n and n � 4. One transformation of
figure 2 into the same form is to conjugate with δnα−1. Then for instance the case

π(b)(1) �= 1 and π(b)(n) = n (2.21)

is seen equivalent to (1.2) (and obsolete to further discuss).
An (iterated) exchange move [6] is the transformation between the braid b and

the braids (2.1) shown in figure 3. Here m is some non-zero integer, and the boxes
labelled ±m represent the full twists δ±2m

[2,n−1] respectively, acting on the middle
n− 2 strands. (Thus a positive number of full twists are understood to be right full
twists, and −m full twists mean m full left-handed twists.) We can set b0 = b.

Of course, no non-trivial braid on 2 strands admits an exchange move, and all
exchange moves on 3 strands are trivial, so that we will naturally assume n � 4
throughout.
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Figure 3. The braid bm.

There is another, more common, way to describe the exchange move, namely by

αβ ←→ ακ−mβκm, where κ = (σ1 · · · · · σn−2)(σn−2 · · · · · σ1). (2.22)

Thus κ = κ1,n−1 in (2.15). This description is equivalent to the previous one,
because κ · δ2[2,n−1] = δ2[1,n−1], and this element commutes with α.

Up to conjugating and changing the sign of m, a further equivalent formulation
of the move is

b0 = α̃σ1β̃σ
−1
1 ←→ b1 = α̃σ−1

1 β̃σ1, (2.23)

with α̃, β̃ ∈ B2,n, which can be generalized (up to conjugacy) by

bm = δ2m
[3,n]α̃δ

−2m
[3,n] σ1β̃σ

−1
1 . (2.24)

The below diagram displays this braid (again up to conjugacy).

The form (2.24) is a variant of (2.1), equivalent under conjugacy. It will be more
convenient for our treatment of exchangeable braids from §5 on. To contain the
(soon unfolding considerable) technicality of notation, we do not wish to introduce
different symbols for the different forms; rather we will remind below (5.13) in §5
that we use (2.24). Similarly see the start of the proof of theorem 4.2 in §6.
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Note that the exchange move in figure 3 is trivial when the leftmost strand of α
(or the rightmost strand of β) are isolated, i.e.

α ∈ B2,n−1

[for B2,n−1 from (2.5)]. We observed in [24] this failure to extend to braids b with

α ∈ 〈κ〉 ·B2,n−1, (2.25)

for κ in (2.22), since this element commutes with B2,n−1.
Note that the exchange move preserves the linking graph: there is an obvious

identification of cycles in π(b) and π(bm) so that Υ(b) = Υ(bm).

2.8. Exchangeable structure

It should be kept in mind that the result bm in (2.1) does depend on the
decomposition

b = αβ with α ∈ B1,n−1 and β ∈ B2,n, (2.26)

although some different pairs (α, β) give equal or conjugate bm. To formalize this,
let us say that the pair

(α, β) ∈ B1,n−1 ×B2,n with (2.26),

regarded up to the equivalences for γ ∈ B2,n−1

(αγ, β) ∼= (α, γβ) and (γα, β) ∼= (α, βγ), (2.27)

forms an exchangeable structure (ES) of b, regarded up to conjugacy in B2,n−1.
An easy argument with the combed normal form in [28] shows that, if a B2,n−1-
conjugacy class admits an exchangeable structure, then it is unique. An ES for a
link L is henceforth to be understood as one of a braid representative of L.

When we consider the family (2.2), we will then always understand that the
exchangeable structure is kept fixed. We must point out that when we later talk
about braids exchangeable ‘up to conjugacy’, we will mean conjugacy in the full
Bn, though. This raises the question how to identify (all) exchangeable structures
on braids in such a conjugacy class, if such exist. For instance, we know from [28]
that a conjugacy class can have infinitely many different exchangeable structures.

One should also notice, that an ES has no canonical preferred choice of m = 0
in (2.2), i.e. the indexing by m of the family (2.2) is only unique up to transitions
on Z.

2.9. The axis addition link

The axis (addition) link Lb of b ∈ Bn can be specified by the closure of the braid

b · (σn · · · · · σ1) · (σ1 · · · · · σn) ∈ Bn+1. (2.28)

We call the closure of strand n+ 1 the axis of b.
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If b ∼ b′ are conjugate in Bn, then Lb and Lb′ are isotopic links. Hence, one can
deploy link invariants of Lb as conjugacy invariants of b. In this connection, it is
useful here to briefly return to the Burau matrix.

It can be inferred from formulas (2.14) and (2.9) above that the characteristic
polynomial of the Burau matrix χ(ψn(b)) for b ∈ Bn holds, as an invariant of b,
equivalent information to the map

∇(L∗
b) : ν 	→ ∇(Lν

b ).

Here ν is, say, a braid pattern in the solid torus (arbitrary cable degree allowed),
and Lν

b the satellite link of Lb in which the axis component is cabled by ν, but
without cabling the component(s) of b̂. Another way of expressing the invariant
of ∇(L∗

b) is as the multi-variable Alexander polynomial of Lb, with all variables
corresponding to components of b̂ set equal, but different from the variable for the
axis (so that a two-variable polynomial remains). See, e.g., also [19].

3. Non-conjugacy properties

In [24] we treated the question when infinitely many conjugacy classes of n-braid
representatives of a given link L occur. Obviously it makes sense to consider
only n � b(L). Birman and Menasco [6] proved that an exchange move necessar-
ily underlies the switch between many conjugacy classes of braid representatives
of L.

Theorem 3.1 Birman–Menasco [6]. The n-braid representatives of a given link
decompose into a finite number of classes under the combination of exchange moves
and conjugacy.

We proved in [24] that it is also sufficient for generating infinitely many such
classes, under a very mild restriction. This leads to the question which braids bm,
indexed by m ∈ Z, of an ES are conjugate (in Bn).

There has now been a sequence of results in this direction, and to express ourselves
succinctly, it is better to specify some qualities of infiniteness, most of which are
rather self-motivating.

Definition 3.2. We will write ∼ for conjugacy. We say an ES (α, β) is

• infinitely non-conjugate (INC) if there are infinitely many mutually non-
conjugate bm, i.e. the intersection

ΣE = {m ∈ Z : bm ∈ E} (3.1)

is non-empty for infinitely many conjugacy classes E in Bn,

• finitely conjugate (FC) if for only finitely many m, the braids bm are mutually
conjugate, i.e. ΣE is finite for any conjugacy class E in Bn. We will also write
FC(s) if there is an upper bound s � |ΣE | independent of E,

• totally non-conjugate (TNC) if bm �∼ bm′ whenever m �= m′, i.e. FC(1),
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• totally non-conjugate at infinity (TNCI) if, when allowing M > 0 to depend on
(α, β) and choosing M large,

bm �∼ bm′ are pairwise non-conjugate for all m > m′ > M and all m′ < m < −M .

(3.2)

These properties are interrelated with some other features we considered, which
were partly (but not fully) formalized in [24, 28], and whose role will become
evident soon.

Definition 3.3. We specify an ES to be

• symmetric (S) if there is a μ ∈ Z so that bm ∼ bm′ whenever m+m′ = μ but
bm �∼ bm′ whenever m+m′ �= μ (and m �= m′).

• subsymmetric (SS) if, whenever bm1 ∼ bm′
1

and bm2 ∼ bm′
2

for mi �= m′
i, we

have

m1 +m′
1 = m2 +m′

2. (3.3)

• quasi-subsymmetric (QSS) if there is a finite set Σ ⊂ Z so that (3.3) holds for
mi,m

′
i �∈ Σ.

The implications are

The properties of definition 3.3 may not appear of obvious relevance at first. They
emerged from the method of proof of theorem 3.4, but were experimentally found in
[28] to be far more than a mere artefact of this technique. While TNC and S clearly
appear too strong to be expected in general, SS turns out practically omnipresent
(see conjecture 3.7).

Extensive experiments are made in [28]. As a brief extract of them, we mention
that there exist SS, but not symmetric, ES with up to two pairs (mi,m

′
i) as in

(3.3). We do not know if three distinct pairs (mi,m
′
i) always imply that the ES is

symmetric.
It then also became clear how to construct symmetric ES (although, of course,

this is far from the generic case).

Theorem 3.4 [24]. Let a braid b ∈ Bn be exchangeable as in figure 2 and the
permutation π(b) satisfy

π(b)(1) �= 1 and π(b)(n) �= n. (3.4)

Then the ES is SS. If π(b) is a cycle (i.e. b̂ is a knot) and n is even, then the ES
is TNC.
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The method consisted of evaluating coefficients of the Conway polynomial ∇
of the axis addition link Lbm

of bm, or subbraids thereof. More precisely, there is
always a conjugacy invariant υ so that

m 	→ υ(bm) (3.5)

is a (non-constant) at most quadratic polynomial in m. If the polynomial is
quadratic, it shows SS, and if it is linear, TNC. We will apply a similar strategy
later, just using as υ an invariant we derive from the Burau matrix.

Then Ito [14] much more recently obtained using the mapping class group a
very similar version of our theorem, in which (3.4) is replaced by the most general
assumption of non-degeneracy, namely that in figure 3

δ2[2,n−1] α �= α δ2[2,n−1] and δ2[2,n−1] β �= β δ2[2,n−1]. (3.6)

Theorem 3.5 [14]. If the ES is non-degenerate, then it is INC.

Non-degeneracy is obviously the weakest possible assumption, since for degen-
erate braids all exchange moves give conjugate braids. Also, despite not stated
explicitly, FC follows from Ito’s proof (as recalled for observation 7.1). However,
there is no control on the size of (3.1): it can depend not only on n, but on (the
ES of) b and on m (or, equivalently, E). In contrast, QSS implies FC(|Σ|+ 2) with
a bound depending on b only (but not on m), and SS implies FC(2). Both SS and
QSS imply TNCI from (3.2). (Cf. also the remarks below observation 7.1.)

We found that Ito’s conditions (3.6) coincide with our previously observed
instances (2.25) of failure:

α is of the form (2.25) ⇐⇒ α fails (3.6). (3.7)

(Only the reverse direction is non-trivial.) The form (2.25) also makes clear why
degeneracy can be defined on the ES (rather than the braid itself).

After finding a proof of (3.7) using theorem 3.4 and the combed normal form,
I was pointed by González-Meneses that (3.7) also follows from his work with
Wiest on describing the centralizer in braid groups [13]. This rendered the alter-
native argument obsolete, but we may note that our proof of theorem 9.1 can be
used to show a related form of the reverse direction in (3.7): when α fails (3.6) in
Bn/ ker(ψn), then α is of the form (2.25) in Bn/P

c
n.

We have in [28] the following version of theorem 3.4. This led to the property QSS,
sharpening the conclusion of theorem 3.5 under still very general circumstances.

Proposition 3.6 [28]. Assume some Q-Vassiliev braid conjugacy invariant υ
distinguishes some bm1 and bm2 (for some m1 �= m2). Then the ES is QSS.

A Q-Vassiliev conjugacy invariant is meant to be a conjugacy invariant of n-braids
which is a Q-valued Vassiliev invariant of braids [3]. (By standard arguments, Q-
valued is equivalent to Z-valued.) Polynomial invariants of Lb, as well as ∇(L∗

b) or
its equivalent χ(ψn(b)) (see §2.9), can be understood as infinite collections of such υ.
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Thus, while (3.6) remains the most general assumption, it is clear that, practically,
the one of proposition 3.6 is very likely no restriction. One can conjecture this
equivalence directly, but still, the construction of such invariant for large classes
of exchange moves is not straightforward. The invariants of [24], operating under
(3.4), and yielding theorem 3.4, can be argued to lie in this class.

We formulated in [28] the most optimistic (and simplest) expectation regarding
the (non-)conjugacy of bm, which combines Ito’s (weakest) assumption and our
(strongest) assertion, and which is supported not only by the above results but also
by some (and not yet refuted by any) computational evidence.

Conjecture 3.7. Every non-degenerate ES is SS.

Our main results can be seen as adding further pieces towards this conjecture.

4. Main results

There is some insight in [28] that failures of the method behind theorem 3.4 are
related to braids where strand 1 in α must have equal linking number with all
strands 2, . . . , n− 1:

lk2 = · · · = lkn−1, (4.1)

which can be written as

α ∈ P c
n−1 · center (Bn−1) ·B2,n−1. (4.2)

[Note that this turns into (2.25) when removing the first factor.] It was tempting
to expect that under exclusion of this situation, and its analogue for β, one can
always use the Conway polynomial to distinguish Lbm

.
We will show below that when replacing the Conway polynomial by the Burau

matrix, there is a way to perform a manageable calculation to get out this linking
number equality. While it is evident in (2.25), we will be led then to stronger
non-conjugacy properties of bm than FC, that one would have from theorem 3.5.

We have a complete result on linking number equality for two cycles in π(b).
[Note that, by the freedom of conjugating in B2,n−1, the form (4.3), and likewise
(4.5), is chosen only for convenience of notation and is no restriction of generality.]

Theorem 4.1. Let α, β as in figure 2 have π(α) = Id and

π(β) = (2 3 . . . n− 1 n) (4.3)

be a cycle. Let lkj = lk1,j be the linking number between strands 1 and j in α for
j = 2, . . . , n− 1. If the linking vector

(lk2, . . . , lkn−1) (4.4)

is not palindromic, then the ES is TNC. If not all lkj are equal, then the ES is SS.

https://doi.org/10.1017/prm.2023.1 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.1


168 A. Stoimenow

Now consider, w.l.o.g., that (still α is pure and) n lies in a non-trivial cycle

C0 = (n0 n0 + 1 . . . n− 1 n) (4.5)

in π(b) = π(β), but not of length n− 1, so 2 < n0 < n. To convey the exact meaning
of theorem 1.1, let us say that C0 is (linking-)defective if the equality

lkn0 = · · · = lkn−1 (4.6)

is not satisfied. (Keep in mind that always lkn = 0.)
While Burau cannot yet, as least completely, detect linking number equality of

individual strands j outside C0, it can still detect it on cycles in π(b). To make this
precise, let

lk = lkn0 , (4.7)

and write

{2, . . . , n0 − 1} = C1 ∪ C2 ∪ · · · ∪ Cr

for the rest cycles of π(b). We also need to consider cycle lengths

λi = |Ci|. (4.8)

We include

λ0 = |C0| = n− n0 + 1

in the notation, as it will be often needed. Set similarly

λ−1 = 1, C−1 = {1}.
(see also example 6.1). Once lk is fixed in (4.7) from C0, define for each cycle Ci,
1 � i � r (with the notation in §2.6) the linking defect

τ(Ci) = lk · λi −
∑
j∈Ci

lkj = lk · λi − lk({1}, Ci). (4.9)

We may call the cycle Ci (linking-)defective if τ(Ci) �= 0.
It is obvious that the presence of defective cycles depends on the ES only, that

it will generically occur, and that it can be examined directly from a braid picture
(like figure 1) without any braid-group calculations. It is linear in both n and the
braid word length. Thus it is slightly more economical than checking degeneracy,
which (as the referee informed) is linear in n and quadratic in the braid word length.

Theorem 4.2. (1) Let α, β as in figure 2 have π(α) = Id and the cycle
decomposition

π(β) = C0 · C1 · · · · · Cr (4.10)

with (4.5) for n > n0 > 2. If the linking vector

(lkn0 , . . . , lkn−1)

is not palindromic, then the ES is TNC. If not all lkj, n0 � j � n− 1, are
equal, then the ES is SS.
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(2) Now assume (4.6) and set (4.7) in (4.9). If

τ(Ci0) �= 0 for some 1 � i0 � r, (4.11)

then the ES is SS.

5. Proof for two cycles

Proof of theorem 4.1. Fundamentally, throughout this proof, we will be concerned
with the evaluation of ψ(k)

n (1), where the superscript means derivative taken
w.r.t. t, entrywise, and the resulting matrix in GLn−1(Z[t±1]) is evaluated at t = 1.

We prepare the following formulas for ψn(κ1,l), l = 2, . . . , n− 1.

ψn(κ1,l) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

tl 0 0 · · · 0 1− t
tl − t2 t 0 · · · 0 1− t
tl − t3 0 t 1− t
...

...
. . .

...
tl − tl−1 0 · · · 0 t 1− t

0 0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
⊕ Idn−1−l, (5.1)

whence

Âl = ψ′
n(κ1,l)(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

l 0 0 · · · 0 −1
l − 2 1 0 0 −1
l − 3 0 1 0 −1
...

...
. . .

...
1 0 · · · 0 1 −1
0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
⊕ 0n−1−l.

One can check (5.1) as follows. There are explicit matricesXn so that the embedding

ι1 : Bn−1 � B1,n−1 ⊂ Bn (5.2)

gives

ψn ◦ ι1 = Xn(ψn−1 ⊕ 1)X−1
n . (5.3)

The matrices are not difficult to find directly, and will also be explained in [27].
We just give the formula here. With s =

√
t,

〈k〉 = sk − s−k and ak =
s−k 〈n− 1− k〉
〈n− 1〉 ,

we have

Xn =

⎡
⎢⎢⎢⎢⎢⎣

1 · · · 0 an−2

0 1 · · · 0 an−1

. . .
...

1 a1

1

⎤
⎥⎥⎥⎥⎥⎦ . (5.4)

(The splitting behaviour of ψn ◦ ι1 is very well known [15].)
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With (2.9), one can then calculate ψn(δ2[1,n−1]) and ψn(δ2[1,n−2]) = ψn−1

(δ2[1,n−2])⊕ 1. The rest for obtaining (5.1) follows from (2.15).
We have the (non-commutative) matrix Leibniz rule (where prime refers to the

derivative in t),

(AB)′ = AB′ +A′B(�= AB′ +BA′). (5.5)

By differentiating AA−1 = Id for A = ψn(κ1,l), and using A(1) = Id, we see also

ψ′
n(κ−1

1,l )(1) = −ψ′
n(κ1,l)(1) = −Âl. (5.6)

It will be better in the following to move from ψn to the non-reduced Burau
representation ψ×

n of Bn acting on Cn by

ψ×
n (σi)(t) = Idi−1 ⊕

[
1− t 1
t 0

]
⊕ Idn−i−1.

The form (2.8) comes from looking at the action of ψ×
n on (the linear span of)

the set of vectors ei − ei+1, with ei the standard basis vector. There is an extra
dimension coming from the fixvector

∑
ei. Thus

ψ×
n = T (1⊕ ψn)T−1 T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 · · · 0

1 −1 1
...

1 0
. . .

. . . 0
...

... · · · −1 1
1 0 · · · 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (5.7)

This map (.)× augments matrix size, however, adding this extra dimension will
simplify calculation enormously. For instance, the embedding ι1 in (5.2) simplifies
(5.3) to ψ×

n+1 ◦ ι1 = ψ×
n ⊕ 1, while the one

ι2 : Bn−1 � B2,n ⊂ Bn (5.8)

gives ψ×
n+1 ◦ ι2 = 1⊕ ψ×

n . Also

Π = Π(b) = ψ×
n (b)(1) (5.9)

is just the permutation matrix of π(b), with Πi,π(b)(i) = 1 and Πij = 0 otherwise.
Since the transition matrix T does not depend on t, it is also clear that (ψ×

n )(k) =
(ψ(k)

n )×.
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One can calculate straightforwardly that

Al = ψ×
n (κ2,l+1)′(1) = 0⊕ (Âl)× � 0, (5.10)

where (M ⊕N)�N = M and (with a matrix having l − 1 rows and columns with
a ‘−1’ entry)

(Âl)×=

⎡
⎢⎢⎢⎢⎢⎢⎣

l − 1 −1 −1 · · · −1
−1 1 0 · · · 0

−1 0
. . . 0

...
... · · · . . .

...
−1 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
⊕ 0n−l.

Letting the commutator be

[A,B] = AB −BA, (5.11)

we also prepare for l = 2, . . . , n− 2,

[Al, An−1] = 0⊕

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 n− 1− l 1− l
l − n+ 1

... 0 1
l − n+ 1
l − 1
... −1 0

l − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.12)

with the blocks of (both horizontal and vertical) size 1, l − 1, n− 1− l, respectively
(and all entries within each block identical).

It will be easier to work with the form (2.24), which can be obtained from (2.1)
by conjugating β by

σ1σ2 · · · σn−1, (5.13)

and isolating the two letters σ±1
1 [so that (4.3) remains the same], while changing

α to ι2(α) from (5.8). For the rest of the proof, we will use (2.24), but continue
writing α for α̃ and β for β̃. Thus, for α, β ∈ B2,n, write

b(α, β) = ασ1βσ
−1
1 . (5.14)

Then by (2.24),

b0 = b(α, β). (5.15)

Furthermore, we keep n fixed and often simplify notation ψ× = ψ×
n .

Consider now the combed normal form for α. In (2.16), we can assume α1 = Id
because α ∈ B2,n. Also, since any right factor of α in B3,n can be moved into β
[and, being pure, will not affect (4.3)], we can assume w.l.o.g. αi = Id for i > 2.

https://doi.org/10.1017/prm.2023.1 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.1


172 A. Stoimenow

We write thus

α =
k∏

i=1

κεi
2,ji

. (5.16)

Using that δ2[2,n] commutes with α, we will also rewrite (2.24) in the form that,
to obtain b1 from b0, one adds a κ−1

2,n at the beginning and a κ2,n at the end of
the product in (5.16). Thus, in conformance with (5.14), and as a generalization of
(5.15),

b1 = b(κ−1
2,nακ2,n, β), bm = b(κ−m

2,n ακ
m
2,n, β). (5.17)

This is equivalent to (2.24), and thus also to (2.1), under conjugacy, and we will
afford to maintain the same notation bm.

Next, we will start evaluating

(ψ×)(k)(b1)(1)− (ψ×)(k)(b0)(1) (5.18)

by using the product (5.16) and its modification κ−1
2,nκ

ε1
2,j1
· · ·κεk

2,jk
κ2,n in b1 explained

below (5.16).
The case k = 0 is completely trivial, thus let k = 1. Using (5.5) iteratedly on

the form (5.16), one can see that the terms for (ψ×)′(b1)(1) are the same as for
(ψ×)′(b0)(1), except those coming from taking the derivative in the factors κ±1

2,n

added. But since α is pure (and ψ×
n (κ2,j) = Id) and because of (5.6), these two

terms cancel as well. The result of (5.18) is thus 0 for k = 1.
But so prepared, we examine now k = 2. This requires somewhat more careful

collection of terms, but the procedure is clear. Since we need them often later, let
us fix the permutation matrices of the cycle and transposition

P = Π((2 3 · · · n)) and Γ = Π((1 2)). (5.19)

Only products involving the terms κ±1
2,n added to α will contribute. We use again

ψ×
n (α)(1) = Id, and it is helpful to note that

(ψ×)′′(κ−1
2,n)(1) + 2(ψ×)′(κ−1

2,n)(1)(ψ×)′(κ2,n)(1) + (ψ×)′′(κ2,n)(1) = 0,

which is obtained like (5.6) taken one derivative further.
The result is given thus. Let in (5.16) for l = 2, . . . , n− 2

ηl =
∑

j:kj=l+1

εj

be the exponent sum of κ2,l+1, also written as

ηl = lk2,l+1 − lk2,l+2, (5.20)

from (2.18). Then let Al be as in (5.10), and with (5.11) and (5.12),

Ω =
n−2∑
l=2

ηl[Al, An−1]. (5.21)
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Then we have with (5.19)

(ψ×)′′(b1)(1)− (ψ×)′′(b0)(1) = ΩΓPΓ. (5.22)

The only conjugacy invariant we can really control from this is the trace, since it
is linear:

tr((ψ×
n )(k)(bm)(1)) = (trψ×

n (bm))(k)(1).

Assume the non-vanishing condition

tr
(
(ψ×)′′(b1)(1)− (ψ×)′′(b0)(1)

)
= tr(ΩΓPΓ) �= 0. (5.23)

Now note that this expression does not change when we modify b1 to bm+1 and
b0 to bm, since the contribution of κ±m

2,n added in (5.16) does not change (5.21).
Then (5.23) will imply that tr((ψ×)′′(bm))(1) is a linear progression in m, so all
tr(ψ×(bm)) will be distinct, all bm will be non-conjugate, and the ES will be TNC.
We will now regard the opposite of (5.23) via (5.21) as a linear condition on the ηl.

The goal is to collect enough similar linear conditions, until only the trivial
solution ηl = 0 remains. Now obviously, tr((ψ×)′′(bm)(1)) will give a scalar, which
is utterly insufficient. To help ourselves, we replace bm by bpm and repeat the process.
This means that for p > 0 we consider (3.5) for the series of conjugacy invariants

υ(b) = υp(b) = tr((ψ×
n )′′(bp)(1)). (5.24)

It is a technical, but with the above explanation straightforward, thought, that

(ψ×)′′(bp1)(1)− (ψ×)′′(bp0)(1) =
p−1∑
q=0

ΓP qΓΩΓP p−qΓ. (5.25)

The matrices summed are conjugated, thus the generalization of the logical negation
of (5.23) becomes

p · tr(ΩΓP pΓ) = 0, (5.26)

wherein we remove the unnecessary first factor. Since π(b) = π(β) has order n− 1,
it is also clear that only

1 � p < n− 1 (5.27)

makes sense. (The case p = 0 will give nothing.) This is again a linear condition

n−2∑
l=2

qp,lηl = 0,

where

qp,l = tr([Al, An−1] · ΓP pΓ).

Since ΓP pΓ is a permutation matrix from (5.19), and the commutator is given in
(5.12), one can directly evaluate qp,l. We obtain a homogeneous linear system with
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n− 2 equations for (5.27) and n− 3 variables for l = 2, . . . , n− 2. The matrix (qp,l)
of this system (with rows indexed by p and columns by l) looks⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · · · · 1 1 1
0 1 1 · · · · · · 1 1 0
0 0 1 · · · · · · 1 0 0
...

...
. . . . .

. ...
...

...
... . .

. . . .
...

...
... −1 · · · · · · −1

...
0 −1 −1 · · · · · · −1 −1 0
−1 −1 −1 · · · · · · −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.28)

(When n is odd, there will be a zero row in the middle.) Its kernel elements
(η2, . . . , ηn−2)T satisfy

ηl = −ηn−l, (5.29)

which with (5.20) (and shifting indices down by 1, to undo the change of form
of the exchange move we performed at the beginning of the proof), gives the
palindromicity of (4.4). In this situation, (5.24) run out of use.

This palindromicity problem was well-known in [28], with an example showing
that then indeed two distinct bm can be conjugate. Under such circumstance for
any conjugacy invariant υ a linear progression (3.5) will be trivial. So we look for
a quadratic one.

We will take k = 3, in the context of (5.18), and replace in (3.5)

υ(b) = υp(b) = tr((ψ×
n )′′′(bp)(1)). (5.30)

Our goal is, instead of (5.18), to determine

υp(bm+2)− 2υp(bm+1) + υp(bm) (5.31)

first for m = 0, and notice that this expression again does not depend on m (for
fixed p), and to show that it is not zero (for some p), unless all ηl = 0. This will
imply that m 	→ υp(bm) is a non-constant quadratic polynomial in m, and thus
complete the proof.

Write

αm = κ−m
2,n ακ

m
2,n , βm′ = κm′

2,nβκ
−m′
2,n , (5.32)

and set using (5.14)

b(m,m′) = b
(
αm, βm′

)
, (5.33)

so that with (2.24)

bm+m′ ∼ b(m,m′).

Instead of (5.31), we will evaluate, equivalently up to sign,

(υp(b(1, 1))− υp(b(1, 0)))− (υp(b(0, 1))− υp(b(0, 0))) . (5.34)
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The calculation will also make soon clear that this expression (5.34) remains the
same if we replace 1 by m+ 1 and 0 by m in the first argument of b(., .).

It will thus be enough to show that (5.34) �= 0 for some p.
Again apply the Leibniz rule on the product form (5.16). The linear combination

(5.34) was designed again so as to see that most terms cancel.
Since β is not pure, the above argument for k = 1 does not fully apply to βm′ ;

rather one is left to cancel terms of differentiated κ±1
2,n in βm′ [occurring in the

explicit form (5.32), not inside β] in a different way.
In the end, when writing b(m,m′)p as p copies of the r.h.s. of (5.33) one after the

other, one is left with terms, for m,m′ = 0, 1,

(ψ×
n )′′′(b(1, 1)p)(1)− (ψ×

n )′′′(b(1, 0)p)(1)− (ψ×
n )′′′(b(0, 1)p)(1) + (ψ×

n )′′′(b(0, 0)p)(1)

=
p∑

i,j=1

(
2 derivatives
in i-th αm

)
·
(

one derivative
in j-th βm′

)
. (5.35)

Hereby we understand αm and βm′ differentiated, using (5.5), in their product
forms (5.32), using the representation (5.16) for α. The number of derivatives ‘in’
αm is the number of factors differentiated in the subword corresponding to one of
the p copies of αm.

With a bit of care in collecting terms one sees that, the way the linear combination
on the left of (5.35) was designed, the terms with no derivative in βm′ and at most
one derivative in αm cancel out, as well as those with two derivatives in two different
copies of αm.

The two derivatives in αm are known to give Ω from (5.21), while those of κ−1
2,n

in the j-th β1 and of κ2,n in the j + 1-st copy (up to cyclic permutations) cancel
(in the trace). There remain one derivative of κ−1

2,n in a β1 and one of κ2,n for each
Ω, those not separated by a copy of P from Ω (but by a copy of Γ). We set

Ξl = [Γ[Al, An−1]Γ, An−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 n− 1− l 1− l
0 0 l + 1− n l − 1

n− l − 1 l + 1− n
...

... 0 0
n− l − 1 l + 1− n

1− l l − 1
...

... 0 0
1− l l − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.36)

with the blocks of sizes 1, 1, l − 1, n− 1− l, respectively (in both rows and columns,
and all entries within each block identical).

When the κ−1
2,n in the last copy of β1 is differentiated, we cycle it to the left, and

get, up to this modification (which does not affect the trace),

tr(5.35) = tr

(
p−1∑
d=0

ΓP d[ΓΩΓ, An−1]P p−dΓ

)
. (5.37)
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As Ω does not depend on m, it is also already clear that (5.31) does not either. We
will evaluate it for m = 0 via (5.34).

When taking traces, one can, as passing from (5.25) to (5.26), cycle powers of
ΓPΓ (the remnants, under setting t = 1, of undifferentiated copies of β) to one side.
We obtain thus

(5.34) = p · tr
(

n−2∑
l=2

ηlΞlP
p

)
. (5.38)

For the purpose of testing whether this is zero or not, we can again discard the
factor p.

Build a matrix M (of n− 2 rows), whose n− 3 columns,⎡
⎢⎢⎢⎣

φ(1)
φ(2)
...

φ(n− 2)

⎤
⎥⎥⎥⎦ ,

for l = 2, . . . , n− 2 and φ = φl, are given by

φl(p) = tr(ΞlP
p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2l − n p � l − 1
2l − 2 p > l − 1, p � n − 1 − l; l − 1 � n − 1 − l
2l − n p > n − l − 1

2l − n p � n − 1 − l
2l + 2 − 2n p > n − 1 − l, p � l − 1; l − 1 > n − 1 − l
2l − n p > l − 1

.

(5.39)
The matrix M is the analogue of (5.28), but is now antisymmetric when rows are
reflected. (The dotted diagonals do not meet at the same element, and when n is
even, the middle column is zero.)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4− n 6− n 8− n · · · · · · n− 4
2 6− n 8− n · · · · · · n− 8 n− 6 −2
2 4 8− n · · · · · · n− 8 −4 −2
2 4 6 · · · · · · −6 −4 −2
...

...
. . . . .

. ...
...

...
... . .

. . . .
...

...
... 6 · · · · · · −6

...
2 4 8− n · · · · · · n− 8 −4 −2
2 6− n 8− n · · · · · · n− 8 n− 6 −2

4− n 6− n 8− n · · · · · · n− 8 n− 6 n− 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.40)

The resulting equation system from setting (5.38) to 0 becomes

M · (η2, . . . , ηn−2)T = 0, (5.41)

and it does enough to enforce

ηl = ηn−l.
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With (5.29), this implies that all ηl = 0, and thus completes the proof of
theorem 4.1. �

6. Proof for three or more cycles

For this we use subbraids. There are two ways, outlined in [24]. The first is given in
[24, lemma 4.1]. A better alternative, though, is followed in [24, §8], and consists
in summing over invariants of suitably chosen subbraids of bm. We will use this
approach here, which we clarify below.

Proof of theorem 4.2. We will adapt the proof of theorem 4.1.
Again, it will be easier to work with the form (2.24). Since we can w.l.o.g.

conjugate α, β in (2.24) by B3,n, we can assume (4.5) turning into

C0 = (2 3 . . . n′ − 1 n′), (6.1)

with n′ − 2 = n− n0 > 0 and λ0 = n′ − 1. A few (obvious) modifications from the
formulation of the theorem have then to be made below.

We have now lk2 = 0 [instead of lkn = 0 with (2.1)]. Let us first argue that

lk3 = · · · = lkn′ . (6.2)

For every n0, we described in the proof of theorem 4.1 an invariant υ[n∗] on Bn∗
with υ[n∗](bm) being a quadratic polynomial in m, whose quadratic term we proved
to be non-trivial to establish SS.

For b ∈ Bn, define a conjugacy invariant

ξ(b) =
∑
D1,2

υ[|D1|+|D2|](b[D1∪D2]), (6.3)

where the sum goes over unordered pairs of (distinct) cycles D1,2 of π(b) whose
lengths are

{|D1|, |D2|} = {1, n′ − 1}.
(This is not immediately relevant, but let us specify already here that in selecting
collections of cycles, their length condition is meant as a multiset, with repeated
elements counted, i.e., it is an equality of tuples modulo permutations of their
entries.)

This ξ is a well-defined conjugacy invariant, and in ξ(bm) the contribution of
all pairs D1,2 of cycles will vanish, unless 1 ∈ C−1 = D1 and 2 ∈ C0 = D2. This
identifies

ξ(bm) = υ[n′]((bm)[D1∪D2]),

and the rest follows from the proof of theorem 4.1. This establishes (6.2). (The
non-palindromicity assertion follows similarly.) So we obtain part 1.

For the rest of the proof we deal with part 2 and assume (4.11).
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Also assume (6.2), so that

ηl = 0 for l = 2, . . . , n′ − 2. (6.4)

We can try to repeat the calculation in the proof of theorem 4.1, with the only
difference being that now P in (5.19) is the matrix of the new permutation

π(b) = C0 C1 · · · Cr.

If we try to evaluate (5.24), we can see that we get nothing new. However, for
(5.34), we do.

Assuming from (6.4) that l � n′ − 1 = λ0, we see that the minor of the matrix in
(5.36) consisting of rows and columns 2, . . . , n′ is comprised within the four central
blocks in the form on the right of (5.36). It includes the upper left one among the
four blocks, which is a single 0 but, since n′ � 3, has at least one further row and
column. This matrix does not change with P .

Then for any p not divisible by n′ − 1, say, p = 1 (here we need n′ > 2), we get
instead of (5.39), with our new P ,

φl(1) = 2(l + 1− n) l = n′ − 1, . . . , n− 2. (6.5)

What remains of (5.41) is the scalar equation

0 = 2
n−2∑

l=n′−1

(l + 1− n)ηl, (6.6)

which with (5.20) can be rewritten as

(n− n′)lkn′ = lkn′+1 + · · ·+ lkn. (6.7)

(Note that the contributions from Ci, i > 0 in P give nothing for the trace. This
observation will reappear for modification later.)

Also note that the symmetry of the right in n′ < j � n is necessary because of
the freedom to conjugate with Bn′+1,n. If (6.7) fails, which is the same as saying

r∑
i=1

τ(Ci) �= 0,

we have in (5.30) that υ(bm) has a non-trivial quadratic term in m.
The expression on the right of (6.7) goes over all cycles Ci, 0 < i � r. However,

the idea now is to apply this argument to (bm)[D1∪D2∪D3] where 1 ∈ D1 = C−1,
2 ∈ D2 = C0 and D3 = Ci0 is a proper single cycle (different from D1,2).

The statement of part 2 is then what one can do about it. A problem is that
when one tries to create an invariant like (6.3), we need to specify some condition,
preserved under conjugacy, to tell our favourite cycle Ci0 apart from others. How-
ever, this is not a problem if we can ‘confuse’ Ci0 only with ‘similar’ cycles that
give the same contribution to the m-quadratic term of m 	→ υ[n∗](bm). Then this
quadratic term only multiplies by some (non-zero) number.
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To this vein, fix [using the notation (4.8)]

lk =
lk(C−1, C0)
λ0 − 1

,

and an i0 in (4.11). Modify (6.3) to

ξ(b) =
∑

D1,2,3

υ[|D1|+|D2|+|D3|](b[D1∪D2∪D3]), (6.8)

where the sum goes over ordered triples (D1,D2,D3) of distinct cycles D1,2,3 of
π(b), with the following conditions:

(a) |D1| = λ0, |D2| = 1, |D3| = λi0

(b) lk(D1,D2) = (|D1| − 1) · lk and
lk(D2,D3) = lk(C−1, Ci0).

This is again a (suitably chosen) conjugacy invariant of b ∈ Bn.
Note again that the contribution of all (D1,D2,D3) in (6.8) to ξ(bm) is con-

stant (in m) unless both C−1 and C0 are among the Di. Also, C−1 and C0 are
distinguished by λ−1 = 1 < λ0. Because of (4.11), the m-quadratic contribution of

D1 	→ C0, D2 	→ C−1, D3 	→ Ci0 (6.9)

will be non-zero. Keep in mind that this contribution (as well as the choice of
invariant υ[n∗] contributed to) depends only on the ordered quadruple

(λ0, λi0 , lk(C−1, C0), lk(C−1, Ci0)). (6.10)

To specify what other matchings are possible, let us say that Ci′0 is similar to Ci0

for 1 � i′0 � r, if λi′0 = λi0 and lk(C−1, Ci′0) = lk(C−1, Ci0). The contribution of

D1 	→ C0, D2 	→ C−1, D3 	→ cycle Ci′0 similar to Ci0 (6.11)

should then be clearly equal to the one of (6.9).
Only in few situations do extra matchings occur, and they create no harm either.
If λi0 = 1 and ω := lk(Ci0 , C0) = lk(C−1, C0), then there is the additional

possibility

D1 	→ C0, D2 	→ Ci0 , D3 	→ C−1,

but its contribution remains the same because (6.10) does not change compared to
(6.9); it is the vertical symmetry of the subgraph

of Υ(b) = Υ(bm).
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Similarly if λi0 = λ0 and ω := lk(C−1, Ci0) = lk(C−1, C0), one can have

D1 	→ Ci0 , D2 	→ C−1, D3 	→ C0.

This corresponds to the vertical reflection of

and does not change (6.10) either. How to proceed with cycles Ci′0 similar to Ci0

instead of Ci0 should be clear. �

We include one example to illustrate the claim of the theorem.

Example 6.1. Use the convention (6.1) for the form (2.23). Let n = 10, n′ = 4,
and

π(b) = (1)(2 3 4)(5 6 7 8)(9 10),

so that λ0 = 3, λ1 = 4 and λ2 = 2. Part 1 of the theorem then states that SS
(and FC(2)) hold unless lk := lk2 = lk3 = lk4 are equal, and part 2 amplifies this
condition with τ(Ci) = 0, which is

4lk = lk5 + lk6 + lk7 + lk8, 2lk = lk9 + lk10. (6.12)

Remark 6.2. Regarding part 2, although this was not needed above, one may also
further separate different Ci in bm by a condition like this. Initially fix for every
λ > 0 a one-cycle conjugacy class Eλ or a two-cycle one E ′λ ⊂ Bλ (or a union of such).
Then one can build a conjugacy invariant of b ∈ Bn by requiring D1 = Ci0 in (6.3)
to be so that b[D1] ∈ E|D1|, or that there is a j �= i0 with b[D1∪Cj ] ∈ E ′|D1|+|Cj |, etc.
The use of conjugacy classes Eλ, E ′λ can also restrict the matching process that
occurs in the proof of [24, lemma 4.1] and so forth.

7. Relations, limitations and prospects

Probably, the present method can recover theorem 3.4 as well, by using for P in
(5.19) a proper permutation matrix. We will not try, though, to reinvent another
proof here; we focused on what is new.

It is worth pointing to a well-known connection between the eigenvalues of the
Burau matrix and entropy; see e.g. [16]. If we regard b ∈ Bn as a homeomorphism
of the punctured disk, then for the spectral radius ρ, the topological entropy h(b)
satisfies

h(b) � max { ln ρ(ψn(b))(t) : t ∈ C , |t| = 1 } . (7.1)
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Observation 7.1. Every non-degenerate ES is an example where for |m| → ∞, the
inequality (7.1) on bm becomes arbitrarily unsharp.

Proof. It follows from Ito’s proof of theorem 3.5 that h(bm)→∞ when |m| → ∞.
On the other hand, one can see using (2.9) and the embedding properties (5.3) that
for fixed unit norm t ∈ C, all entries of ψn(bm)(t) will remain bounded as |m| → ∞.
Thus so need to behave its eigenvalues as well. This bound is also universal (i.e.
depends on b only) for all such t. �

This leaves unclear, at least asymptotically, how to profit from the Burau matrix
to improve dilatation bounds (as asked by Ito [14]) for iterated exchanged braids.
The proof of our main results (as well as the one of theorem 3.4, via the relation in
§2.9) thus also reveals to show the eigenvalues change within a confined domain.

Remark 7.2. The method does definitely hit its limits when π(b)(1) = 1 and
π(b)(n) = n. In that case, one would have to examine two vectors (ηl) for α and
(η′l′) for β. The invariants in (5.18) would have to be combined as in (5.34), but
for k = 4. This will then give some condition on (η), (η′) under some bilinear form.
Higher p will not bring more than the order of π(b). If π(b) = Id, then all p would
only give multiples of the same form. If taking k > 4, the result like in (5.34), or
other linear combinations of the same sort, will depend on more than ηl, but on
the order of letters in (5.16).

In general, ψn exhibits some rigidity under operations, which often poses prob-
lems if wished to overcome. In addition to our above experienced difficulties, for
example, strand cabling will bring no new information in the proof of theorem 4.2
than strand omission.

Remark 7.3. Similarly unhelpful is the status of the braid power p. We saw with
(6.5) that the calculation (6.6) of the (now altered) trace (5.39) does no longer
depend on which power p we evaluate υ(bpm) on, as long as n′ − 1 � p. Also, a power
of cycles Ci for i > 0 in (4.10) of equal length will split into (possibly more) cycles of
equal (even if smaller) length. Thus if one likes to restrict lkj for strands n′ < j � n
which lie in the same cycle Ci of π(b), one sees that they cannot be distinguished
in a power of b more than in b itself. In particular, the defectiveness condition
(4.11) on τ(Ci)(bp) from (4.9) will not refine (but can weaken) this same condition
on τ(Ci)(b). Likewise, subbraids of braid powers are conjugate, so if one uses a
restriction like in remark 6.2, and evaluates τEλ

(Ci) for b[Ci] ∈ Eλ only, then a
condition on τEλ

(bpm) will again be dominated by a similar condition on τẼλ
(bm). It

is not clear how to profitably adapt [24, lemma 4.1], either.

In these situations, where algebra (apparently yet) leaves the edge to geometry,
it is then interesting to examine, for instance, what (more) the Lawrence–Krammer
representation may reveal about non-conjugacy. But we will not stretch our account
with this separate endeavour.
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8. Application to links

In connection with the form (2.25), we studied in [28] a notion of regularity of links
that allows one to exclude a degenerate ES for (a braid representative of) a link
L. Theorem 4.1 allows one to extend some of these considerations while improving
the quality of statement about non-conjugacy among the bm.

We will not repeat all discussion; let a few remarks suffice. The hyperbolicity
part of regularity and twisting cannot be used. The linking number conditions
of regularity can be used unless L has a U[2] sublink with the (there) discussed
properties. (We wrote U[2] for the two-component unlink.) The total linking number
of a cycle in theorem 4.2 is sufficient (instead of individual strand linking numbers),
since this is what transpires in the linking number of components of b̂m.

For demonstration, we revisit more explicitly only the two-component case.
We assume L is a 2-component link and write � for the linking number of its
components.

Corollary 8.1. If n− 2 � �, then every n-braid ES of L is SS.

Proof. Since L has 2 components, π(b)(1) = 1 and π(b)(n) = n will imply n = 2,
which is irrelevant in (2.11). If (3.4) holds, apply theorem 3.4. Thus we are left
in the situation of theorem 4.1. If the ES is not SS, then all lkj are equal, and
� =

∑n−1
j=2 lkj is divisible by n− 2. �

Corollary 8.2. If 0 < � < b(L)− 2, then every ES of L is SS.

Proof. Because no n � b(L) can satisfy n− 2 | �. �

This applies, among others, also to arbitrary component links L with no U[2]

sublink, for which 0 < lk(U,L \ U) < b(L)− 2 for every unknotted component U .
One then also obtains some of the consequences of regularity in [28] without using

theorem 3.5. The below statement, for instance, could be derived in [24, corollary
6.2] only modulo 2.

Corollary 8.3. If b(L)− 2 � �, then (for any n � b(L)) L has infinitely many
conjugacy classes of n-braid representatives if and only if L has an n-braid
representative admitting an exchange move.

Proof. The case n = b(L) follows from combining theorem 3.1 and corollary 8.1. Let
n > b(L). Let T (p, q) for the (p, q)-torus link. Since n− 1 � 3 from (2.11), which is
more than the components of L, we have that L �= T (n− 1, p(n− 1)) is not such a
torus link. Then L has infinitely many conjugacy classes of (reducible, and hence
exchangeable) n-braid representatives by [25]. �

9. On the Burau kernel and image

The problem on the kernel of the Burau representation has been long-standing
[4, 17]. Our proof of theorem 4.1 can be used to obtain a proof of the following
[using the designation (2.20)]. The case n = 3 should create no problem (although
less interesting), but n � 2 will be continuously excluded. See also remark 9.6.
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Theorem 9.1. Let β ∈ Bn be so that ψn(β) commutes with every matrix in ψn(Pn),
i.e.

[ψn(β), ψn(γ)] = 0 (9.1)

for all γ ∈ Pn. Then

β ∈ Λn = P c
n · center (Bn). (9.2)

Also ψn(β) is a scalar matrix.

Proof. Let us first argue that β ∈ Pn. Assume π(β) has a non-trivial cycle
C. W.l.o.g. conjugate β so that 1 ∈ C. Take some α ∈ B2,n+1 with π(βα) being
a single cycle. Then consider

bm = δ2m
[2,n]βδ

−2m
[2,n] α = κ−m

1,n βκ
m
1,nα.

They satisfy (3.4), with n replaced by n+ 1. On the other hand, since ψn(β) com-
mutes with ψn(κ1,n), all ψn+1(bm) are equal, in particular by the remarks in §2.9,
so are ∇(Lbm

). Under (3.4) we proved theorem 3.4 in [24] (as explained below its
formulation in §3) by using some coefficient of ∇(Lbm

). (Since in our case, b̂m is a
knot, no subbraids of bm were taken.) This gives a contradiction. So β is pure.

The assertion β ∈ Λn now can be read as saying that all linking numbers in β are
equal. This is most easily proved by assuming the opposite. Assume again w.l.o.g.
by conjugacy (in Bn) that lk1,j �= lk1,k and choose the maximal such j < k. So by
combed normal form,

β = β0 · β′ , β0 =
k1∏

i=1

κεi
1,ji

,

with β′ ∈ P2,n = B2,n ∩ Pn, and the exponent sums

ηl =
k1∑

i=1
ji=l

εi,

satisfying ηj �= 0. But by looking at the form (5.12), we see that [Al, An] are linearly
independent matrices for 1 < l < n, and

(ψ×
n )′′(β0κ1,n)(1)− (ψ×

n )′′(κ1,nβ0)(1) =
n−1∑
l=2

ηl[Al, An] �= 0. (9.3)

(Since we assume equality of matrices, and not only conjugacy, we do no longer
need to restrict ourselves to their traces.) Thus

ψn(β0κ1,n) �= ψn(κ1,nβ0),

and by noting that β′ ∈ P2,n commutes with κ1,n ∈ Pn,

ψn(βκ1,n) = ψn(β0κ1,nβ
′) �= ψn(κ1,nβ0β

′) = ψn(κ1,nβ).

So ψn(β) does not commute with ψn(κ1,n). This gives the contradiction to finish
the proof of (9.2).
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Since we proved in [25] that ψn is dense in a unitary group for proper t even on
some subgroups of Pn, it also follows that ψn is irreducible on Pn, and that thus,
for β ∈ Pn as we already argued, ψn(β) is a scalar matrix. �

Remark 9.2. Also, if β ∈ Pn (not Bn), one sees from (9.3) that one can replace
ψn by ψn/(t− 1)3 ∈ GLn−1(Z[t±1]/(t− 1)3) (where t−1 = t2 − 3t+ 3).

We say that an element g in a group G is a root of another element h ∈ G if
gd = h for some d �= 0. A matrix is considered here to be idempotent if it is a root
(in G = GLn−1(Z[t±1])) of the identity matrix. (This is to be separated from the
common conflicting terminology for a projector.)

Corollary 9.3. Assume additionally β ∈ Pn. Then it is enough to demand that
for some non-zero p, the power ψn(β)p commutes in (9.1),

[ψn(β)p, ψn(γ)] = 0 (9.4)

(or then, equivalently, is scalar). That is, we have

{β ∈ Pn : ψn(β) is a root of a scalar matrix} ⊂ Λn. (9.5)

Proof. If β ∈ Pn, then (9.5) follows from the remainder of the proof of theorem 9.1.
One can generalize (9.3) to

(ψ×
n )′′(βp

0κ1,n)(1)− (ψ×
n )′′(κ1,nβ

p
0)(1) = p ·

n−1∑
l=2

ηl[Al, An] �= 0.

[Note that thus we may even allow in (9.4), p to depend on γ, but this remains
equivalent, as Pn is finitely generated.] �

Corollary 9.4. Any b ∈ Pn with idempotent ψn(b) must lie in P c
n. In particular,

ker(ψn) ⊂ Bn is contained in P c
n.

Proof. If ψn(b) is idempotent, then because of the determinant (2.10), we have
e(b) = 0, and the part of b in the second factor of the decomposition on the right
of (9.2) is trivial. This leaves b ∈ P c

n.
For the second assertion, observe that b ∈ ker(ψn) readily implies b ∈ Pn by

setting t = 1 [and keeping (5.7) and (5.9) in mind]. �

It is known that Pn is residually nilpotent (and thus residually solvable). Since
ψn is not faithful in general, one could ask how far down in the derived (or lower
central) series the kernel lies. The above corollary shows that ψn will detect at least
the first (coinciding) part of both filtrations.

The property (9.5) is obviously false for β ∈ Bn \ Pn, as central elements have
non-pure roots, like δn or (5.13). However, something more interesting happens if
we replace ‘scalar’ by ‘identity’. We would like to know if all roots (in Bn) of ker(ψn)
must lie in P c

n, but it seems not obvious whether there are non-pure b whose ψn(b)
is idempotent.
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In fact, it is not even clear if there are non-identity idempotent Burau matri-
ces, i.e. does the Burau image have torsion in GLn−1(Z[t±1])? For example,
t−1 · ψn(σ1σ2 · · · σn−1) has finite order. That this is not a Burau matrix is an
application of corollary 1.3 and cannot be concluded by setting t = 1 or, for n odd,
by the determinant.

At least we can say the following:

Proposition 9.5. Assume b ∈ Bn so that ψn(b) is idempotent. Then for each cycle
C of π(b), the subbraid exponent sum e(b[C]) = 0. In particular, π(b) has only odd(-
length) cycles. Also

lk(C,C ′) = 0 (9.6)

for every other cycle C ′ �= C.

Proof. We return to the explanation in remark 7.3, which now brings something.
Let C be a cycle of π(b) with λ = |C| and e(b[C]) �= 0. Then, because of (2.19),

for l = λ, in bl, we have

lkij �= 0 for some i, j ∈ C. (9.7)

If (9.6) fails, then take l = lcm (λ, λ′) for λ′ = |C ′|, showing in bl

lkij �= 0 for some i ∈ C, j ∈ C ′. (9.8)

Then there is some p > 0 so that b∗ = bpl is pure, and (9.7) or (9.8) still holds in
b∗. Now, if ψn(b∗) were idempotent, then by corollary 9.4, b∗ ∈ P c

n, contradicting
(9.7) or (9.8). Thus ψn(b∗) is not idempotent, and neither is ψn(b).

If e(b[C]) = 0, then it is easy to see, essentially because even cycles require an
odd number of transpositions, that λ must be odd. �

If gcd(λ, λ′) > 1, then (9.8) may hold even with (9.6). An example is b =
σ1σ

−1
2 σ4σ

−1
5 κ′3,4κ

′−1
3,5 in B6, with κ′ from (2.17).

Returning to another thought, one can again replace in corollary 9.3, and its
progeny, ψn by ψn/(t− 1)3. A similar remark applies to our last proved statement,
with a short extra calculation.

Proof of corollary 1.3. Let ψ = ψn(β) be a scalar matrix. From the determinant
(2.10) one can restrict diagonal entries of ψ to the form ±tl. Then, setting t = 1,
one also easily sees with (5.7) and (5.9) that a minus sign is ruled out (since Π is
not a permutation matrix otherwise).

Next one sees from these same two formulas (or by using theorem 9.1) that a
β ∈ Bn with scalar ψn(β) is pure. Now (9.2) implies that all linking numbers in β
are equal, and thus n(n− 1) | e(β). Thus detψn(β) is a power of tn(n−1), so that
the diagonal entry tl has l being a multiple of n. �

Remark 9.6. Note that now the conclusion (9.2) in theorem 9.1 improves to

β ∈ ker(ψn) · center (Bn). (9.9)

But the theorem is needed to prove corollary 1.3 first, as well as corollary 9.4, to
tell that (9.9) is indeed in improvement of (9.2).

https://doi.org/10.1017/prm.2023.1 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.1


186 A. Stoimenow

Acknowledgements
This work was supported by the National Research Foundation of Korea (grant
NRF-2017 R1E1A1 A0307 1032) and the International Research & Devel-
opment Program of the Korean Ministry of Science and ICT (grant NRF-
2016K1A3A7A03950702). The referee has made some helpful suggestions for
improvements and minor corrections.

References

1 J. W. Alexander. A lemma on systems of knotted curves. Proc. Natl. Acad. Sci. U.S.A. 9
(1923), 93–95.

2 E. Artin. Theory of braids. Ann. Math. 48 (1947), 101–126.

3 D. Bar-Natan. Vassiliev and quantum invariants of braids. Proceedings of Symposia in
Applied Mathematics, vol. 51 (Providence, RI: American Mathematical Society, 1996).
https://www.math.toronto.edu/drorbn/papers/glN/glN.pdf.

4 S. Bigelow. The Burau representation is not faithful for n = 5. Geom. Topol. 3 (1999),
397–404.

5 J. S. Birman. Braids, links and mapping class groups, Ann. of Math. Studies, vol. 82
(Princeton: Princeton University Press, 1976).

6 J. S. Birman and W. W. Menasco. Studying links via closed braids VI. A nonfiniteness
theorem. Pac. J. Math. 156 (1992), 265–285.

7 J. S. Birman and W. W. Menasco. Studying links via closed braids V. The unlink. Trans.
Am. Math. Soc. 329 (1992), 585–606.

8 J. S. Birman and W. W. Menasco. Studying links via closed braids III. Classifying links
which are closed 3-braids. Pac. J. Math. 161 (1993), 25–113.

9 J. S. Birman and W. W. Menasco. Stabilization in the braid groups I: MTWS. Geom. Topol.
10 (2006), 413–540.

10 J. Franks and R. F. Williams. Braids and the Jones–Conway polynomial. Trans. Am. Math.
Soc. 303 (1987), 97–108.

11 F. Garside. The braid group and other groups. Q. J. Math. 20 (1969), 235–264.
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