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ON THE SEMI-TENSOR PRODUCT OF THE 
DYER-LASHOF AND STEENROD ALGEBRAS 

H. E. A. CAMPBELL AND P. S. SELICK 

0. Introduction. This paper arises out of joint work with F. R. Cohen and 
F. P. Peterson [5, 2, 3] on the joint structure of infinite loop spaces QX. The 
homology of such a space is operated on by both the Dyer-Lashof algebra, R, 
and the opposite of the Steenrod algebra A*. We describe a convenient summary 
of these actions; let M be the algebra which is R ® A* as a vector space and 
where multiplication Q1®P{ Q1 ®Pi is given by applying the Nishida relations 
in the middle and then the appropriate Adem relations on the ends. Then M is 
a Hopf algebra which acts on the homology of infinite loop spaces. 

The paper is organized as follows. In Section one, for the convenience of 
the reader, we recall without proofs some of the results and notations of [5]. In 
Section 2, we define M and prove that it is a Hopf algebra over A*. In addition 
we define the canonical subalgebras M[k] = R[k]<g>A* and show that their duals 
M[k]* are completed polynomial algebras. Section 3 computes the action of the 
Steenrod algebra on M[k]*. Finally, in Section 4, we apply our results to show 
that QRP2* is a mod2 //-atomic. 

1. Notations, conventions and useful facts. In order to make this paper 
as self-contained as possible, we reproduce here many of the results (without 
proofs) of Section 1 from [5], which in turn relied heavily on J. P. May's article 
in [4]. We follow May's convention and write the paper as it would be for odd 
primes and put the minor modifications necessary when p = 2 in square brackets 
[ ]. When convenient P* will be used to denote Sqr* when the prime is 2. 

We will often use the lower notation for elements in the Dyer-Lashof algebra, 
R. That is, i f / ?>2 , 

Qs(P-i)y = Qis+^2y 

provided s + \y\ is even (\y\ means "degree of y") and if p — 2, 

Qsy = Qs+Wy for every s. 

This differs by a unit in ¥p from the notation in [4]. go is the p-th power oper­
ation. We write simply / for the sequences (i\(p — 1) , . . . , ikip — 1)), (e i , . . . , e*) 
where e/ — 0 or 1 : then Qj denotes the composition of operations 

/3 e iÔ/ l (p-i#2Ô/2(P-i)-- .^Ô^-i)-
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STEENROD ALGEBRAS 677 

[Ifp — 2, all the t\ are zero.] In this notation Qi is admissible if 0 ^ //_i Û //—e/, 
2 ^ / ^ k, but note that then the notation is somewhat redundant since all the 
e/ except the first are determined by the //'s. Namely e/ = // — //_i(mod2). We 
say that the length of / is k. We have 

|G/| = <P-l)ï>/"I|"'-Ë/,'"'£' 
l=\ 1=1 

iô/i = E ^ ' ' ' 
i=\ 

and the excess of Q/, denoted e(Qi), is z'i — ei. 
In lower notation, the Adem relations have the following form: (first kind) if 

i >j, 

Qi(p-\)Qj(p-

= B-1>al ;(;), ( 2 / - y ) | ^ J - l - l 

i/2 -I-I 
Q(i+pj-2Pi)(p- \)Qinp-1 ) -, 

where 

ceil) .(ii^),,, 

if ' >h QiQj = E ( • _ / _ J ) Qw-»Q' 

and (second kind), if p > 2 and / > y, 

Qi(p-i)PQj(p-i) 

£<-» ,7(/) (2/-y) 
p - \ 

2 / PQ(i-i+pj-2pr)(p-i)Q2i(p-i) 
( / - i ) / 2 - / y 

•£(-i)*'fc '-»(£T1)-1U 
/ v a-DI2-1 ) 

i+pj-2pl)(p-\)PQ2l(p-l), 

where 

7(/) = o - i + y - i ) ) + , 

We note that the Dyer-Lashof algebra, R, admits the structure of a coalgebra 
under the coproduct given on generators by 

Gi —SG«-y®G.r 
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678 H. E. A. CAMPBELL AND P. S. SELICK 

Furthermore, the set of elements determined by the sequences of length k, R[Jc]y 

is a sub-coalgebra. 
For a space X with //*(X; ¥p) of finite type, the hom-duals of 

Pr : Hq(X; ¥p) -> Hq+2r{p~x\X\ ¥p) 

[Sqr : Hq{X\ F2) -+ Hq+r(X; F2)] 

are denoted 

^* • Hq(X; ¥p) —• Hq-2r(p-\)(X; ¥p) 

[S<£:Hq(X-9¥2)^Hq-r(X;¥2)] 

They turn H*(X;¥P) into an A*-module, where A* denotes the opposite of the 
Steenrod algebra. 

The Nishida relations in lower notation are (first kind) 

KQup-x* = £ ( - i ) r + y (i - 2r + \x 
> ( 

p_zl)\ 
2 J Q(i-2r+2pj)(p-\)Pix, 

r-pj 

Sq*QiX = ] T I ^ _ j Qi-r+ySfa 

and if /? > 2, (second kind) 

P:PQ1(P-DX 

Y+j ( V - 2r + |x 

r-pj 

r-pj-I 

PQ(i-2r+2pj)(p-\)P{Px 

Q(i-2r+2pj)(p-\)P{Px 

The 7? and /?[&] are A*-coalgebras. In order to describe their duals R* and 
R[k]* let 

<*jk — ô(0,...,0,2(p-l),...,2(p- D) 

[fly* = G(0,...,o, i,...,n*], 7 = k and if /? > 2 
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STEENROD ALGEBRAS 679 

<*ijk - 6 ( 0 , . . . , 0 ^ - 1 , ,p-\;2(p-\) 2<j>-l)),AM+l+Ak_i+l*, 

k-j j-i 

i<j^k, 

in the dual basis to the basis of admissible sequences for R[k]. 
Thus 

\ajk\=2(pk-pk-J) [\ajk\=2k-2k-l], 

\rjk\=2(pk-pk-J)-\ and 

\<Tijk\ = 2(pk-pk-i-pk-J). 

By convention a^ = 0 if / = j . When dealing with a fixed k we drop the last 
subscript. 

THEOREM 1.1. As an A-algebra R[k]* is isomorphic to the free commutative 
graded algebra on {tf/,7}, o^} [{#/}] modulo the relations 

( i ) TtTj = akOij 

(ii) GijTs = TiTjTs/ak 

(iii) Gij(Tst = TiTjTsTt/ak
2 

with 

( -St-'^aj+i , t < k - l 
PP'aj = laiOj ,t = k - \ 

* 0 , t > k - \ 

and ifp>2, 

t-St-'-Wj+x , t < k - \ 
Pprj = \ aXTj + ajT{ ,t = k - l 

l o , t>k-i 

PP aij = { a\Gij + diOij — CLjO\i , t = k — 1 
' 0 , t > k - \ 

(3rk = ak, (3oik = -riy /3TJ = faij =0 (j < k), /toy = 0. 

Proof. See [4, §1.3] for/? ^ 2 or [7, §3]. 

As an algebra R[k]* = P[k] <8> Af[*], where P[k] = Fp[au...,ak] is the 
subalgebra of R[k]* generated by {aj} and M[k] is the subalgebra generated by 
{T/ ,0- / /} . Observe that P[k] is closed under the Steenrod algebra and so forms 
an A-subalgebra. Let P = ®P[k]. 
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680 H. E. A. CAMPBELL AND P. S. SELICK 

Let PA% s ^ 1 and F , 5 i 0 denote the elements of A inductively defined 
by Milnor [6] as 

pAi = p\^ pAs+i = [pp\p*s] and 

Using the inductive definition above and the fact that PAs and Ts act as deriva­
tions it is easy to verify that the actions of PAs and Ts for s ^ k are given by 
the following. 

THEOREM 1.2. For s ^ k, we have 

PAscij = —8j~lak, if s < k, and PAkaj = a^ak 

and if p > 2, 

Taj = 0, 

PAsTj = -8j~sTkl if s <k, and PAkTj = akTj + a/r*, 

rVy = —6j~saic, if s < k, and TkTj — ajakl 

PAsoi} = -8\~sGjk - 8k-s(jik, ifs<k, and 

PAk(Jij = aj(jik + akal} - aiajk, 

Ts(Jij = 8j~sTi — 8ki~sTj, if s < /:, and TkO[j = a-{Tj — a^. 

In Theorem 3.1, we compute the action of the higher-order Milnor elements 
on R[k]*. 

COROLLARY 1.3. Let a = a\l ,...,ar
k
k be a monomial in P[k] = Fp[<zi,..., ak] 

and let r — Er/. Then 

(i) PA°a = (-ir-'rk-sa ( — ) , l ^ ^ t - 1 , 

(ii) PAka = raak. 

COROLLARY 1.4. Suppose a G P[k]. The following are equivalent: 

(1) a is a p-th power: 

k 

(2) aEp|Ker/>A;; 
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STEENROD ALGEBRAS 681 

(3) aef^KerP^. 

Proof. See [5, Corollary 1.4]. 

THEOREM 1.5. 

/>[*] = p | K e r F . 

Proof. See [5, Theorem 1.5]. 

2. The Hopf algebra M and its dual M*. In this section, we define M 
and prove that it is a Hopf algebra over A*. In addition, we define the canonical 
sub-coalgebras M[k] = R[k] (g) A* and show that their duals are completed 
polynomial algebras. 

Let A* denote the opposite of the mod/7 Steenrod algebra and let R denote 
the mod/? Dyer-Lashof algebra. We grade A* by declaring \P{\ = —\J\. Here 

J = 0ô-- . ,7 / ) , fe , . . . ,e / ) and 

We denote the respective multiplication maps (Adem relations) by 

<j>At '• A* 0 A * -—• A* and (j>R \ R&R—+R. 

We denote by 77 : A* ® /? —-* /? ® A* the map which is inductively defined by the 
Nishida relations 

v(K ® Ô') = Ç ( - i r ' ( ° +^ r~-^' ~ 1}) Qi~r+i:®P*> large *' 

ViSt ® <?') = E (' ^ - 9 r ) e''"r+y' ® V „ large 

*n ® «2') = £ ( - i r (°+ / / " / ^ T ° ~ * ) m"+J ® n 

+ £ ( _ i r (<'' ^ ^ - ' ) Q^> ® * & large , . 

We show that 77 is well-defined in the proof of Theorem 2.1. 

ee s 
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682 H. E. A. CAMPBELL AND P. S. SELICK 

We define M to be the algebra which is R <g) A* as a vector space but which 
has multiplication given by the composite. 

M®M =R <g> A* <g>fl® A* •rt<g)rt<g)A*<g>i4* ^/?®A* 

= M. 

Intuitively, one thinks of this multiplication of Q1®P{- QK ®P* as being given 
by Nishida relations in the middle and then Adem relations on either end, as 
appropriate. We grade M by interpreting Q1 <g> P{ as acting on an element of 
//o(fiX;FP)i.e., 

\Q!®pi\ = \i\-\J\. 

WesetM[k]=R[k]®A*. 
Now consider the map ( r : R—>R defined by 

UQi) = QJ 

where if / = (iu ..., ik), (eu . . . , e*), then 

/ = / - 2 ( p - l ) ( p r , . . . , p r ) , ( c i , . . . , C i t ) , 

[ / = / - ( 2 r , . . . , 2 r ) L 

By convention, Qi = 0 if 1 < 0. 

LEMMA 2.1. TTze ma/7 £r w well-defined. 

Proof. Suppose / > j so that 

Qi(p-\)Qj\ 'i<p-v 

» & ) -

where 

= X>Da ( , )[ J \ 2 ) I ô(/+w-2P;)(p-,)G2/^-,), 
Y \ Î / 2 - / - 1 ' 

a(/) = + /. 

Then 

Cr (Qi(p-l)Qjip-l)) = Q(i-2p')(p-\)Q(j-2pr)(p~l)-
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But / — 2pr >j — 2pr so 

Q(i-2pn(p-l)Qu-2pr)(p-l) 

im) 
(2m -j + 2/7 

( ( / - 2 / 7 0 / 2 ) 

Q(i-2pr+p(j-2pr)-2pm)(p-\)Q2m(p-l), 

<<?)-
m—\ 

where 

, , (i-2pr + (j-2pr)(p-\)) § a(m) = + m. 

On the other hand, taking £r of the right hand side of the equation above we get 

j2(-ir{ V) 

\ 

Q{i-2pr+pj-2pl){p-\)Q{2l-2pr)(p-\)' 
(i/2)-l-l J 

If we make the change of summation index / = m +pr, we discover 

(/ - 2pr + pj - 2pl) = i - 2pr + p(j -2pr)- 2pm, 21 - 2pr = 2m, 

(21 \ 

\ 

(2m-j + 2p 

( i / 2 ) - / - l I I ( i - 2 p O / 2 ) - « - l ) 
<<?)- and 

oc(l) = a(m)(mod 2), 

as required. 
A similar calculation shows that £r preserves Adem relations of the second 

kind. 

THEOREM 2.2. M is a Hopf algebra over A*. 

Proof. Let M = M jK where K is the subspace of M with basis 

{QI®PJMQi)<e(H)Y 

K is the subspace of operations which are identically zero when evaluated on 
any//*(e*;Fp). Let 

^ I I I I H*(QK(Fp,n);Fp) 
n xeH*(K0?p,n);Fp) 
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684 H. E. A. CAMPBELL AND P. S. SELICK 

and define O : M —•> P by 

(*(G7®^)W = Ô7^W-

Then O is an injection and ImO is a subset of P which is closed under the 
action of A*. So there is an induced A*-module structure on M, given explicitly 
by the Nishida relations used inductively. 

Let M(r) be the subspace of M with basis 

{Qi®Pi\e(Pi)£pr} [{Q,®Scfl\e(Scri) ^ 2r}] 

and let A* — F/S (where F is the free associative algebra on the symbols 
Plj/3Pj and S is the opposite of the Adem relations (including (32 = 0)). Now 
set K(r) = KC\M(r) and note that K(r) C ker((r). Set 

/(r) = Im(Cr|A#(r)). 

We have an epimorphism 

M(r)/K(r) —» M(r)/(ker(C) HM(r)) C I(r) 

whose kernel is ker(£r) DM(r)/K(r). Consider the following diagram 

0 ^ S <g) (M(r)/K(r)) + F (g) ((ker(C) H M(r))/K(r)) 

-*F ®M(r)lK(r)->A*®I{r)->0 

i i 
A»(g)M/ker(Cr) 

action = Nishida relations 

M/ker(Cr) = Image(Cr) -» M 

The action map makes sense because the action map takes A*(g)ker(£r) to ker(£r) 
since Nishida relations make the first entry in Qi smaller and if Adem relations 
are needed, these will make the first entry smaller still. See also [4, Theorem 
2.3 (iv), p. 17]. The left vertical composite is trivial on 

S®M(r)/K(r) + F® (ker(Çr) H M(r))/K(r) 

and also induces 

A*<g>/(r)->Im(Cr). 
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These maps are compatible, so taking the direct limit, they induce a map A*(g>M 
—» M making M into a A*-module. The action is explicitly given by the map 77 
defined above. 

It follows that M becomes a Hopf algebra under the multiplication defined 
above. 

In order to describe M[£]*, let 

<*} — (£?(0,...,0,2(/?-l),...,2(/?-l)) ® 1)* 

k-j 

[a/it = (G(0,...>o,il...,n®l)*] y ^ t , 

* - y J 

^ = (Co,...,o)®^)*, * > 0 , 

and if /? > 2 

*-/ ; 

^1/ = (6(0,...,0,{p-l), ,(p-l),2(p-l), 2(p-l))(A,_7_1+A,_,+1) ® 1)*, / <j = k 

dsk = (G(o,...,o) ® rj)*, J ^ 0, 

in the dual basis to the basis of {admissible elements}<g) {Milnor basis}, Qi®P{ 
for MM. Thus 

\ajk\=2(pk=pk-J) [\ajk\=2k-2k-Jl 

\Tjk\ = 2(pk = pk~i) - 1, \aijk\ = 2(pk -pk~l -pk~J\ 

\esk\ = -2(ps - 1), \esk\ = -{2s - 1)] and 

\dsk\ =-(2p* - I). 

By convention, a^ = 0 if 1 = j . When dealing with a fixed k we drop the last 
subscript. 

THEOREM 2.3. M[&]* = Fp[ay,7}, 07,, e5,dy] i t^ j < k, s ^ 0, subject to the 
relations 

(i) TiTj = ak(Jij 

(ii) GijTi = TiTjTi/ak 

(iii) GijGim = TiTjTiTm/al 

(iv) d5
2 = 0 

[M[&]* = F2I/Z/, ^y]] where " means completion with respect to the augmentation 
ideal. In other words, within any degree infinite sums of terms of that degree 
are allowed. 
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Proof. We clearly obtain a map from 

P = Vp[aj,Tj,aihes,ds\, 

modulo the relations above to M[k]*. Each basis element of M[k] pairs non-
trivially with only finitely many monomials in P so it is clear now to extend 
the pairing to get a map P —> M [k]*. It is easy to check that this map is an 
isomorphism. 

3. The action of the Steenrod algebra on M [k]*. In this section, we com­
pute the action of the Steenrod algebra on M[k]*. We are interested not only in 
the operations Pp\ and /3 but also in the Milnor operations Pàs and P . 

We recall Theorems 1.1 and 1.2 which give the action of Pp\ /?, Pàs and 
Ts for s ^ k on R[k]*. Our first result computes the action of the higher order 
Milnor elements on R[k]*. 

THEOREM 3.1. a) Pàk+sai = cQf,for c ^ 0, s > 0 where 

I = (p- l ) (2^. 1 12,4, . . . ,4 ,2(p J + - - -+p + 2)) 
k-i i 

[SqA^at = Qf, I = q 2 _ ^ , 2 , . . . , J 2 , 2 ^ ) ] ; 
k-i i 

Note that 

Q* — ctf+'"+paiak + others [Q7* = a\s+l~2aiak + others]. 

b) Tsat = 0, s ^ 0. 
c) />A*-T/ - eg/ + dg; , /or c, d ^ 0, s > 0 where 

J = (p- 1)(3^. ^ , 4 , . . . , 4,2(p* + • • • + p + 2);, Afe-f+i 

*:—* i 

27* = (f^-^aiTk + otf^rs g ; = <rf+-"+pakTi + others. 

d) 7>; = 0for s >L 
e) />M+S<jiy - 50/ + J g ; + eQl for c,d,e^0,s>0 where 

I =(p - l ) ( ^ . ^ , ^ . ^ 4 , . . . , 4 , 2 ( p ^ + - - - + p + 2)> 
*-y j-i i 

https://doi.org/10.4153/CJM-1989-031-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-031-x


STEENROD ALGEBRAS 687 

and 

J=(p- l ) (21 . . ._12,3 I . .^3,4, . . . ,4 ,2(p^+---+p + 2);, 

k-j j-i i 

Afc-y+1 + A/c-i+i 

K=(p- l ) ( ^ . . ^ 2 I . . . 1 2 , 4 , . . . , 4 , 2 ( p ^ + - - - + p + 2);, 

*-/ j-i i 

Ai + Aife-y+i. 

Ô* = d\+"'+paj0ik + 0f/œrj, G/ = ^P\+'"+p^k^jk + 0fAer.s, 

2A- = d\+"'+pai0jk + tff/œrs. 

f) r%- =0fors >k. 

Proof. Part (a) for p = 2 is Theorem 3 of [1]. The proofs of (b), (d) and (f) 
follow immediately from Theorem 1.2. We will give the proof of (c); the proofs 
of (a) and (e) are similar and left to the reader. 

Write the / and J of (c) as I(s) and J(s), for s > 0 and write 

7(0) = (p - 1 ) ( 2 1 : ^ , 4 U _ L 4 ) , Au 

k-i i 

J(0) = (p- 1 ) Q 1 _ J ^ , 4 1 : ^ 4 ) , A*_/+1; 
k-i i 

then Theorem 1.2 says that 

P k/Ti — ô/(0) + ô/(0)* 

Our proof proceeds via induction o n ^ 1 ; the step required to start the induc­
tion is the same as the general step. We leave the minor changes required when 
/ = 1 or k to the reader. 

So suppose 

P^Ti = cQ*l{s_V)+dQ*J(s_V) 

for c, d ^ 0, 1 < / < k and write k + s — r. Now 

pArT. = pP>P^Ti+P^PP>T. = cPPrQl(s_l) + dPPrQ*J(s_{) 

so we show that 

PP 2/(s-i) = Qj(s) 

https://doi.org/10.4153/CJM-1989-031-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-031-x


688 H. E. A. CAMPBELL AND P. S. SELICK 

the proof that 

is similar and is left to the reader. 
A simple duality argument shows that 

PP 0/(5-1) — Qj{Sy> 

if and only if Qj(s) is the only admissible element of R[k] mapped to Qj(s-\) 
under Pf . So let 

J = (P~ 1)(/V ••>./*), (ei,...,e*) 

be any admissible sequence (i.e., 0 ^ ji-\ ^ ji — e/, 2 ^ / ^ k and ji — ji-\ = 
e/ mod(2), 2 ^ / ^ Jfc), and write 

Jl = (P — 1 )(/*-/+b ' • ' > AX (e£-/+b • • • ? 6/:)-

Then write xi for Qy, and note that xk — Qj. We assume 

P?Qj = Qj(S-i)+ others, 

and show that then / = J(s). 
Now J(s — 1) has only one Bockstein in the k — i + 1 position from the left 

so that / can have only one Bockstein say in the /th position from the left with 
I ̂  k — / + 1 (this follows immediately from the form of the Nishida relations). 

Case (i): / < k — i + 1. Then repeated applications of the Nishida relations 
yield 

P(Qj = X ^ - D ^ c i • • • ckQip-DK + others, 

with 

K = (ji- 2pr + 2pm!,..., 7/_i - 2m/_2 + 2/wi/_i, 

ji - 2m/_i + 2p/i/ + 1 , . . . , jk-i - 2nk-i-X + 2pnk-i + 1, 

jk-M - 2nk-t + 2pmk-i+\,..., 7*-i — 2m^_2 + 2/?/n*, y* - 2m*_i) and 

( (jq-2mq-i + \xk-q\) 

mq-x -pmq 

l^q^l-ltmàk-l + X^q^k 
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(set mo = pr, rrik-i = rik-i, and note mk = 0), 

(set ni-i = m/_i). The sum is over mq, nq with 

pmq ^ m^_i and pnq + 1 ^ w^-i. 

Since m0 = pr, it follows that mq ^ //-<7, 1 ^ q ^ / — 1 and k — i + 1 Û q4^ k, 
and «g ^ //-<7, / = <7 = k — /. We have used m's to indicate when a Nishida 
relation of the first kind has been used and iz's to indicate that the second term 
of a Nishida relation of the second kind has been used. 

We want jk — 2mk-\ = 2(ps + •••+/? + 2) so that 

Consequently, in order to have ck ^ 0mod(p) we must have mk-\ — 0 , 1 , . . . , 
p — 2, or /75+1 (here we use Lucas' lemma: see [9, Lemma 2.6]). Of course, 
mk-\ = Ps+l from above. 

Subcase (a). rrik-\ = ps+l. This maximal choice of rrik-\ forces mq — pr~q 

and nq — pr~q. However, no such choice of nq's can give nonzero cq's; for 
example we require 

/? ^ nk-i-\ ^ /?«*-/ + 1 = pp + 1, 

so that Q_/_I = 0. 
Subcase (b). m*_i = 0,1,...,/? — 2. Then 

7* = 2(// + •••+/? + 2 + m*_i). 

In order for ci ^ 0(modp) we must have 

7i + \xk-i\ ^ 2/7r. 

But J is admissible so in particular 

7i ^ • • • ̂  A = 2(p* + • • • +p + 2 + mk-x), and 

k 

?=2 
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Then it is not hard to see that 2pr >j\ + |jca| to that c\ = 0(mod/?). 

Case (ii). I = k — i+ 1. Then repeated applications of the Nishida relations 
yield 

P(QjX^-D"^ ' • • ckQ(P-\)K + others, 

with 

K = (/i - 2pr + 2pm\,..., jk-\ - 2mk-2 + 2pmk-U jk - 2mk^x) and 

( (/? - 2mq^x + l̂ -̂ l) ( - y - j - 1 \ 
mq-\-pmq J 

(from the first term of a Nishida relation of the second kind). As above, we 
obtain mq ^ pr~q, I ^ q ^ k. Also, we have 

jk-2mk-{ =2(ps + •••+/? + 2) 

and so again, for c* ^ 0(mod/?), we have 

/Wit_i = 0 , . . . , p - 2 orps+1. 

Subcase (a). mk_\ = ps+l. This maximal choice of mk^\ forces m^ = //-<7, 
I ^ q ^ k. Then it is straightforward to see / = J(s) and cq ^ 0(modp), 
1 è q è k. 

Subcase (b). mk-\ = 0,...,/? — 2. We see as in (i)(b) that c\ = 0(mod/?) for 
such choices of mk-\. 

Finally we compute the action of the Steenrod algebra on the e's and d's. 

THEOREM 3.2. 

(a) Ppres=0 ifr<k\ 

P^es = (Q!)*eL{ for 

I = (pk+r -P
k+r~\ . . . ,p r + 2 -P

r+\pr+l - 1). 

Note that Q1 = Qj for 

J = 2(p - 1)(1, . . . , 1,// + •••+/? + 1) and 

Q*j =ap
l
r+l~pap

k~
l + others. 

[Sq2'es = 0ifr<k, Sq2"+r es = {Qlfe2_x for I = (2*+'" >,..., 2 r+2,2'+1 - 1). 
Note that Q1 = Qj for 

J = ( ! , . . . , ! , 2r+1 - 1) and 
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Qj — of lak + others. ] 

(b) PAres = 0 ifr<k\ 

PAk+res = <QlTetr for I = (pk+r~\ . . . , / / ) • 

Note that Q1 = Qj for 

J = 2(p-l)(pr,...,pr) and Q*j=4. 

[SqA'es = 0ifr<k; 

Sq^es = (Q!)*ef_r for I = (2k+r~l,..., 2r). 

Note that Q1 = Qj for J = (2r,..., 2r) and Q) = af. ] 
/ / P > 2 

(c) Pprds = 0 ifr<k\ 

DPk+r A / 0 , r < S - \ „ 

p d'=Wr*^ ,r±s-x f°r 

i = (pk+r -P
k+r-\...,pr+l -P

ry -P°-1). 

Note that Q1 = Qj for 

J = 2(p- 1)(1, . . . , I , / / " 1 + • • • + / / _ 1 ) W 

g* = aÇ-pS~X-p~X(fk-
x + offer*. 

(d) PArds=0 ifr<k; 

PAk+rds = ^ ( ô ' ) X /or / = (p r +*-\ . . . , / / ) . 

Afote r/iar Q1 = Qj for J = 2(p- \)(pr',...,//) a/wi g ; = of. 

(e) Tres = Trds=0,Vr,s. 

First we need a series of lemmas. 

LEMMA 3.3. {Summary of [6]). (a) P[P{ — PAs + others if and only if 

I = Ar, / = prAs-n 0 < r < s. 

In particular P{P{ = /*£* + others if and only if j — 1 and J — pAs-\. 

(b) Pp:~'K = Ti-lpP'+Tt. 
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(C) 
pKj[) TOpAr +jr 

Proof. Only (a) needs a proof. We use Milnor's description of the multipli­
cation in terms of matrices. PAs appears in the Milnor expansion of PJP1 if and 
only if the rightmost (s — r,r + l)-matrix below appears, and this can only be 
obtained from the matrix on the left. 

* 0 • • o l - • * o • • 0 0 
0 0 • 

0 • 

• 0 0 

• 0 0 

0 0 

0 0 • 0 

0 • 

0 • 

• 0 0 

• 0 0 

0 0 

0 0 • • 0 0 
pr 0 • • 0 0J L0 0 • • 0 1 

LEMMA 3.4. (a) P(Qa = Q°P{+ others, if and only if 

a=Pr -J, 

0<j0 < ••• <jm <p, 

J=JoPs+JiPs l + '-+JmPs m, 

PJ=Pr, < 1. 

(b) P^Qa = cQa~prP?r+ others (r ^ l,c ^ 0). None of the terms labeled 
"others" has the form QjPAr for any j\s. 

In particular, 

pAr+l QP" = QOpAr + ^ / ^ ^ 

P(Qpr~l =Q°Pl 

(c) Ifj is as in (a) then P{Qa = Q°P[ if and only if 

0 < / 0 < ••• <lm <p, pl^j, l ^ r - l . 

Proof 

(a) p?Q*=j2(-iy+j((a Pr)(p- l))Qa-pr+jpi. 
*jJ V pr-pj J 

So a — pr +7 = 0 if and only if a = pr — j so the coefficient is 

V pr-pj J V pr-pj J 

The proof that this is non-zero only when j is of the stated form is by brute 
force; see Appendix A, Lemma A. 

(c) pior = £( - iy + ' ( ( a ~/^~1}) Qa-»p[. 
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So a — j' +1 = 0 if and only if a = j — /, so the coefficient is 

and again brute force is required. The proof is similar to the proof of Lemma 
A, consequently we omit it. 

(b) Here we use induction on r. For r = 1, we have 

pA2Qa = plpPQ°+PP+lQa = ((a ~P)(P " l)} PlQ'-P 

+ plQa-p+lpl +f(a-(p+D(p-D\ Qa_^X) 

^na-(p + i))(p-i)\Qa_ppl 

= ff(a-p)(p-l)\r(a-p-l)(p-\)\\ 

and 

Now 

Qa-ppl 

+ other term, 

(a -p)ip - 1) + (a -p - \)(p - 1) = (1 - 2a) mod/? ^ 0(mod/?) and 

1 — 2a = l(modp) if a = /?. 

pAr+1g« = pPrp*rQa+pArpprQa = ?f (ga-p'-1
/,Ar_1 + o m e r t e r m s ) 

7 

yv-iy^' ( ( a"^ _ / / ) ( / 7 " 1 } > ) Q°~pr-l-pr+jpjp^ 

Y(-if+j ((a ~pr)(p ~l)) Q°-p^-pr+jp^pi + o t h e r s + 

Check the j — pr l terms to get 

Qa~P\pPr~l P^-l + p A r _ 1 p ^ - 1
) + o m e r s 

= Qa~PKr + others. 
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We may assume by induction that P*rQa has no terms of the form QjPAs 

other than the given one; in PAQa no such term can arise from 

PÏPÏQ* = Y,cJpîrQa~pr+JpJ* 

by Lemma 3.3. But Lemma 3.3 also says that no such term can arise from 
P*' P*rQa using the induction hypothesis. 

LEMMA 3.5. (a) PfQ1 =Q... Q°PPS, I admissible, Oûs^r, if and only 

if 

I = (pr+k-pr+k-l,...,pr+>-ps). 

(b) P*»Q' =Q°... Q°P*r, I admissible, if and only if 

I = (pk+r-\...,pr). 

Proof, (a) The proof is an easy induction on the length k of / , the case 
k = 1 following from Lemma 3.4 above (the general case uses Appendix A). 
(b) follows from Lemma 3.4(b) above. 

Proof of Theorem 3.2. We have 

(PRx,Q,Pl) = (x,PÎQ,Pl) 

so we must show 

P*Q*Pl = x* + others. 

We note that Lemma 3.4 implies the first statements in (a), (b), (c) and (d) that 
only operations of the form Pp r or PAk+r need be considered. We note also that 
(e) follows easily by induction on r. 

(a) By Lemmas 3.5(a) and 3.3(a) we have 

PfQIpl = e(0 '-'0)/>^ + others (k zeros) 

if and only if 

S = P*-1 and / - (pk+r~\ . . . ,pr+2 -pr+\pr+l - 1). 

(b) By Lemmas 3.5(b) and 3.3(b) we have 

P^rQipS = Qio^MpAs + o t h e r s (£ z e r o s ) 
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if and only if 

S=PrA*-r and I = (pk+r-\...,pr). 

(c) Follows from Lemmas 3.5(b) and 3.3(a). 
(d) Follows from Lemmas 3.5(b) and 3.3(b). 

4. Applications. In this section we take p = 2 throughout so, for example, 
H*(X) means //*(X, F2). Our original interest in M arose from our study, with F. 
R. Cohen and F. P. Peterson, of atomic spaces see [5, 2, 3]. In this connection 
we recall that an unstable A -module N is said to be A-atomic if given an A-
map f : N —* N which is an isomorphism in lowest non-trivial degree, then / 
is an isomorphism. A natural class of examples is provided by H*(RP2) for 
s ^ 0. Roughly speaking, all cells are joined to the bottom one via Steenrod 
operations and since/ commutes with these operations, iff is an isomorphism 
on Hl(RP2) then/ is forced to be an isomorphism in all dimensions. We will 
see that the spaces QRPT behave the same with respect to M as the spaces QSS 

behave with respect to A. 
Let x\ denote the non-zero element of Hi(RP2) considered as an element of 

Hi(QRP2) via the injection induced by 

RP2 ->QRP2\ 

Then A* acts by 

S(&(xs)= ( )xs-r> 

It is not hard to see that for every /, 1 ^ / ^ 2s, we can choose an element yi 
of A with 

yi(x2s) = xi. 

In fact, 

yi* = 1, yi*-\ = Sql, ...,yi=Sql... Sq^' or yx = Sq^x. 

Now, according to J. P. May's paper in [4, Theorem 4.2, p. 40] we have 

H*(QRP2S) = ¥2[Qixh \ûl^2\l admissible ix > 0]. 

Let E2M be M regarded so that 

a2'Af)/=Af/+2,. 
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Our remark above implies that the (degree zero) A-module map 

<£:I2*M -^H*(QRPr) 

given by 

<KQiS<d) = QiSqlto) 

is onto the indécomposables; in fact 

<KQm) = Qi*i-

We denote by <\>k the map 

<t>\:l}sM[k]^H*(QRP2S); 

for example </>o(j/) = */. 
If An denotes the subalgebra of A* generated by Sql" , . . . , Sql, Sq\, then we 

note that yi EAS. Thus if / has length k, we have that 

where I?°M[k,s] denotes I?sR[k]®As. So 

(Qiyi)* = QîyîezTM[k,sr with 

M\k, s]* = M[k]*/(es+ues+2,...) = V2[au . . . , ak, eu . . . , e j . 

The map 

<j>* : H*(QRP2S) -> TTZ2*M[k,s]* 
k^O 

is an injection of A5-modules. The element of lowest degree in im(^) C M[k, s]* 
is akkes (the dual element is o(i,...,i)S<7^) a nd 

\akkes\ = 2s + [(2* - 1) - (2* - 1)] = 2* - 1. 

In fact, a**^ also has polynomial degree, d{akkes) = 2. If JC = (Jt*)*^o £ im(<£*) 
is homogeneous (i.e., |jt*| = |*/| for all fc, /) then it follows that JC can have only 
finitely many non-zero components. 

LEMMA 4.1. y G M[£, 5]* /s a square if and only if 

k+s 

yef|ker(V), 
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where ker(SqAl) denotes the kernel of SqAl restricted to M[k, s]. 

Proof. The Milnor elements act as derivations so, recalling 1.4 and 3.2 (b), 
we have that 

k 

o V «GplkerCV') 
/=i 

if and only if R = 25 i.e., if and only if aR is a square (so aR G ker(&/A/) for 
all /, 1 ^ / < oo). Now we have from 3.2 (b) that 

7=1 €' 

where 

e1 = e[l . . . el' and eH = 0 for j - I < 0. e0 = 1, 

so 

SQAk+le! = 0 

if and only if /,• = 0(2) for lûj^s. Thus 

k 

aReI G p i ker(SqAl ) f] ker(SqAk+s ) 
i=\ 

if and only if aR is a square and /5 = 0(2), and furthermore such elements are 
a vector space basis for 

k 

Ç}M(SqAl)Ç)kçr(SqAk+°). 
i=\ 

It then follows that 

k 

aReI G f^^(SqAl)Ç^^(SqAk+s)Ç^k&r(SqAk+^) 
i=\ 

if and only if aR is a square and is = /5_i = 0(2), and that such elements form 
a vector space basis for this set. Continuing, we obtain the result. 

LEMMA 4.2. Suppose x = (**) G Im(</>)*, then there is an a £ A such that 
a(x) is a non-zero square and 

d(a(x)) ^ d(x) + 1 
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where d(x) denotes polynomial degree. 

Proof. The proof is word for word that of [8, Lemma 11, p. 366]. 

THEOREM 4.3. QRP2* is mod 2 H-atomic. 

Proof. Suppose 

/ : QRP2S -> QRP2S 

is an //-map with f*(x\) = x\. We must show tha t / is a mod2 homotopy 
equivalence. Of course, because/is an //-map we need only show that/* is 
an isomorphism on the indécomposables QH*(QRP2) (or dually, on primitives 
PH*(QRP2)). However,/ is only an //-map, not an infinite loop space map, 
so the Dyer-Lashof operations serve only a book-keeping function. 

We have an epimorphism of A -modules 

l2SM[*,s] -^H*(QRP2S) — QH*(QRP2'), 

where 

M[ V ] = 0 M [ M ] , 

with kernel E24QcAf [*,s], where 

QeM[kJs] = (QlSqi\il = 0ori{ = 1). 

Now Q£M[*, s] is an A5-subcoalgebra of M[k,s]. We have 

M[*,s]/QeM[*,s] = ®M[kJs]/QeM[k,s] 
k 

so that dualizing we have an A-module isomorphism 

PH\QR2) = ir(M[k,s]/QeM[k,s])*. 
k 

It is not difficult to see that 

(M[k,s]/QeM[k,s]T C (akk)CM[k,s]\ 

see [2 or 8]. 
Now we have 

/* : PH*(QRP2) - • PH*(QRP2') 
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and we want to show it is an isomorphism; since PH*(QRP2) has finite type, 
it is enough to show /* is a monomorphism. 

Suppose x G ker(/*); then there is an a in A as in Lemma 4.2 such that 

0 ± a(x) G ker(/*), d(ax) ^ d(x) + 1, and a(x) = y2. 

Although <j>* of* o</>*-1 need not commute with multiplication in general, it does 
commute with squaring since squaring is a Steenrod operation. Thus 

y G ker(/*) and d(y) ^ ^ H l , 

Continuing with this process, we eventually obtain a z G ker(/*) such that 
d(z) — 1. In other words 

akk G ker(/*) for some k. 

We now show that a^ £ ker(/*) for any k, finishing the proof. Now akk is 
dual to 

QÎx2'=Qi...Qix2s 

in H*(QRP2) so we show Q\x^ is mapped to itself by/*. If k ^ 2, we have 

Sq\Q\x2s = QoGÎ"1** = {Q\'Xx2sf 

and no other term in our basis maps to this under Sq\. So we are finished by 
induction when we show Q\x^ and x^ are mapped to themselves by/*. Easy 
proofs of this are given in [2, §4]. 

Appendix A. This appendix is devoted to the proof of Lemma A. 

LEMMA A. 

c C r , » - ^ ' 7 > > » . - " ) . l o o » * , ) 
V pr-pj J 

if and only if 

j =JoPs + ' ' • +JmPs~m for 0 <yo < • • • <jm <p and s^r - \ . 

Proof. Suppose that 

j = ipl +j0p
s + • • • +jmps-m(modpt+l) 
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where we allow 0 ^ / < p with t ^ s + 2, but 0 < ji < p for 0 ^ / ^ m. 
Note that every j is of this form for some choice of t, and m. We are trying to 
characterize those j for which 

c(r, j) ^ 0(modp). 

Consequently we require pr ^ j so that t ^ r — 1 if / > 0 while s ^ r — 1 if 
/ = 0. 

In the case / > 0 we have that (pr+l —j)(p — 1) is congruent, modulo pt+2, to 

(*) (p-i- \)P
t+x + (/ - i y + (p -1)^-1 + • • • +//+ 2) + ip -joV+l 

HJO ~h)pS + • • • + Om-1 -jm)pS'm+l + 7 ^ " m . 

This need not be the /?-adic expansion of (pr+l)(p — 1). However, (*) also gives 
the case i = 0 if we set t = r. 

On the other hand, pr — pj is congruent, modulo //+2, to 

(**) (P ~ 0pt+l + (p ~ D(pr + • • • + / + 2 ) + (P -70 - Dps+l + (p - 7 i " DPS 

+ ••• + <? - 7 . - 1 - Dp" 1 * 2 + <P - 7 . ) / " w + 1 , 

which is the first few terms in the /7-adic expansion of pr — pj. 
We note that (**) also gives the case / = 0 if we set t = r — 2. 
Now ifym-i ^ jm then the factor 

/Jm—1 7m \ 
V p-7m y 

occurs in c(r, j) by Lucas' lemma. But this factor is zero because ym_i < p. 
Consequently, to ensure that this factor is not congruent to zero modulo p we 
needym_i <jm. In this case the last three terms of (*) are rewritten as 

(/m_2 -jm-X ~ DpS-m+2 + (P +jm-l ~jm)pS~m+l +jmpS"" 

so that the last two terms occur in the p-adic expansion of (pr+l — j)(p — 1). 
This guarantees that the factor associated with ps~m+l is non zero modulo p. 
Similar arguments force in turn j)-\ <j), 1 ^ / ^ m so that none of the factors 
associated with p% . . . ,ps~m are zero modulo p. Similar arguments force in turn 
ji-\ <ji, 1 ^ / ^ m so that none of the factors associated with ps,... ,ps~m are 
zero modulo p. Thus, in the case / = 0, we have shown that 

c(r, j) = 0(modp) 

unless j is of the stated form in which case 

c(r, j) ^ 0(modp). 
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It remains to show that 

c(r, j) = 0(modp) if i > 0. 

The argument given above guarantees that 

c(r, j) = 0(mod/?) 

unless we have 0 < jo < • • • < jm < p. In this case, the p-adic expansion of 
(pr+l-j)(p-I) is 

(p-i- 1)'+1 + (i - \)pl + (p- IK//"1 + • • • +ps+2) + (p -jo - l)ps+l 

+(P +k ~J\)PS + ' ' ' + (P +jm-l -jm)pS-m+l +jmpS~m. 

Consequently, the factor associated to p* is ( lz\ ) which is zero since / < p. 
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