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ON THE SEMI-TENSOR PRODUCT OF THE
DYER-LASHOF AND STEENROD ALGEBRAS

H. E. A. CAMPBELL AND P. S. SELICK

0. Introduction. This paper arises out of joint work with F. R. Cohen and
F. P. Peterson [5, 2, 3] on the joint structure of infinite loop spaces OX. The
homology of such a space is operated on by both the Dyer-Lashof algebra, R,
and the opposite of the Steenrod algebra A,. We describe a convenient summary
of these actions; let M be the algebra which is R @ A, as a vector space and
where multiplication Q' ® P/ -Q" ®P!' is given by applying the Nishida relations
in the middle and then the appropriate Adem relations on the ends. Then M is
a Hopf algebra which acts on the homology of infinite loop spaces.

The paper is organized as follows. In Section one, for the convenience of
the reader, we recall without proofs some of the results and notations of [5]. In
Section 2, we define M and prove that it is a Hopf algebra over A,. In addition
we define the canonical subalgebras M [k] = R[k] ® A. and show that their duals
M{[k]* are completed polynomial algebras. Section 3 computes the action of the
Steenrod algebra on M [k]*. Finally, in Section 4, we apply our results to show
that QRP? is a mod 2 H -atomic.

1. Notations, conventions and useful facts. In order to make this paper
as self-contained as possible, we reproduce here many of the results (without
proofs) of Section 1 from [5], which in turn relied heavily on J. P. May’s article
in [4]. We follow May’s convention and write the paper as it would be for odd
primes and put the minor modifications necessary when p = 2 in square brackets
[ ]. When convenient P will be used to denote Sq, when the prime is 2.

We will often use the lower notation for elements in the Dyer-Lashof algebra,
R. That is, if p > 2,

Osp—1)y = QU*hh/2y,
provided s + |y| is even (|y| means “degree of y”) and if p = 2,
0,y = 0°*Ply  for every s.
This differs by a unit in F, from the notation in [4]. Qy is the p-th power oper-

ation. We write simply / for the sequences (i1(p — 1),..., (P — 1)), (€1, ..., €)
where ¢; = 0 or 1: then Q; denotes the composition of operations

B Qip-1B% Qirp-1) - - - B Qis(p-1)-
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[If p = 2, all the ¢, are zero.] In this notation Q; is admissible if 0 = i;_| < ij—¢,
2 = | £ k, but note that then the notation is somewhat redundant since all the
€; except the first are determined by the i;’s. Namely ¢, = i; — i;_;(mod 2). We
say that the length of I is k. We have

k k k
Q=@ =Y P = P e {IQ;] = ZSHI-,J
I=1 I1=1 =1

and the excess of Q;, denoted e(Qy), is i} — €;.
In lower notation, the Adem relations have the following form: (first kind) if
i1>],

Qip-1Qjp—1)

—1
20 — —1
-3 nf«“(( (") )QQ

1/2—1—1

where

al) = (ij%___l_)) +1,

[ifi >j, Q:0;= Z (f :]l B } ) Qi+2j—2lQl] )

1

and (second kind), if p > 2 and i > j,
Qip-160jp-1)

p—1
= Z( 1)’ ((21 j)l) .2 2 > ) BO i—1+pj—2piyp—1)Q2up—1)
(-

pP—

+E( 1)'® ((2] J)< 2 ) )Q(lﬂ)j —2p1yp—1)B02(p—1)5
(i—1)/2-1

where

(=1+jp-1)

Y = 2]

We note that the Dyer-Lashof algebra, R, admits the structure of a coalgebra
under the coproduct given on generators by

0 — ZQi-j ® Q.
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Furthermore, the set of elements determined by the sequences of length k, R[k],
is a sub-coalgebra.
For a space X with H.(X;F,) of finite type, the hom-duals of

P" : HI(X;F,) — HI*0~D(X;F,)
[Sq" : HI(X;F2) — H" (X, Fy)]
are denoted
Hq(X; Fp) —H —2r(p—1)(X; Fp)

[Sq; : Hq(X; FZ) - Hq—r(X; F2)]

They turn H,(X;F,) into an A,-module, where A, denotes the opposite of the
Steenrod algebra.
The Nishida relations in lower notation are (first kind)

o p—1
PLQip-1x = Z(-UW ((l 2r+ ) ( 2 )) Q-2r+2ppp- 1 PLX,

j r—pj

—r+|x
|:Sq;le = Z ( r— I I) Ql r+2qu{k :|
J
and if p > 2, (second kind)
P.BQip-1yx

-1
—E( 1)’*/((’ 2’*"‘“( )_l)ﬁQu—zrnpj)(p—x)Piﬂx

r—pj

—1
+Z( 1y ((z 2r +x|) ( ) - 1) 3o ,PLAx

r—pj—l

The R and R[k] are A,-coalgebras. In order to describe their duals R* and
R[kT* let

ajx = 0(0,...0,2(0—1),..2(—1)) "
N e —
k—j j

[y = Q,.0.1,..00"], j=kandifp>2
k—j J

Tk = Q—1,p=120-D 20- 2ty T =K
e —
k=j J
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J— *
Tijk = Q(0,.,0,0=1,ep— L2120~ 1) Aty +Ahint 3
L et s

k—j i i

i<j=k,
in the dual basis to the basis of admissible sequences for R[k].
Thus
lai] = 20" =p*) flag| =24 = 2",
ITa| = 20" —p*7)—1 and
loi| = 2¢* = p*~ = p*7).

By convention o, = 0 if i = j. When dealing with a fixed & we drop the last
subscript.

THEOREM 1.1. As an A-algebra R[k]* is isomorphic to the free commutative
graded algebra on {a;,7j,0;} [{a;}] modulo the relations

@ TiT; = a0y
(i) 0yTs = TiTjTs [ ax
(i) 00y = TiTTT | ay
with
=& a1 <k—1
r J ]
Ppaj= aq; Jt=k—1
0 1>k —1
and if p > 2,
, 6 M 1 <k—1
PP = aitj+am L t=k—1
0 ,t>k—1
. —0f i, =8 oy 1<k —1
PP oij = { ajoy + ajo;; — ajoy; S t=k—1
0 >k —1

B = ax, fow = —7i, B1; = Po;; =0 ( <k), Ba; = 0.
Proof. See [4, §1.3] for p 2 2 or [7, §3].

As an algebra R[k]* = P[k] ® M[k], where P[k] = Fylay,...,a] is the
subalgebra of R[k]* generated by {aj} and M [k] is the subalgebra generated by
{Tj,a,»j}. Observe that P[k] is closed under the Steenrod algebra and so forms
an A-subalgebra. Let P = ®P[k].
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Let P4, s 2 1 and T%, s 2 0 denote the elements of A inductively defined
by Milnor [6] as

ph =p!, pA=[P” PY] and

TO — ,8, Ts+l — [Pp"TS]'

Using the inductive definition above and the fact that P% and T* act as deriva-
tions it is easy to verify that the actions of P* and T* for s < k are given by
the following.

THEOREM 1.2. For s £ k, we have

PYa; = —5;‘“1611(, if s <k, and P*a; = ajay
and if p > 2,
Txaj = 0,
PA’T]‘ = —5f_sTk, if s <k, and PA*'TJ- = aTj + a;jTy,
T’ = —6ay, if s <k, and T'r; = aja,
PYhoy = =5 oy _5;(_50'1‘1(, if s <k, and

PAkO'ij = ajOj +ax0;; — A;0j,
TPo; = 6}“% — &5, ifs <k, and T*oj; = ai1j — ajT;.
In Theorem 3.1, we compute the action of the higher-order Milnor elements
on R[k]*.

CoroLLARY 1.3. Let a =d\',...,a} be a monomial in P[k] =F,[ay,...,a;]
and let r = Zr;. Then

@ PYa=(—1)"r_a ( & ) , 1S5s<k-—1,
Af—s

(ii) P%a = raay.

CoroLLARY 1.4. Suppose a € Plk]. The following are equivalent:

Q)] a is a p-th power:
k
2) ac ﬂKerPAf;
j=1
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[o0]
3) ac ﬂKerPAf.
j=1

Proof. See [5, Corollary 1.4].

THEOREM 1.5.

k—1
Plk] = ﬂ Ker T*.
=0

Proof. See [5, Theorem 1.5].

2. The Hopf algebra M and its dual M*. In this section, we define M
and prove that it is a Hopf algebra over A,. In addition, we define the canonical
sub-coalgebras M[k] = R[k] ® A, and show that their duals are completed
polynomial algebras.

Let A, denote the opposite of the modp Steenrod algebra and let R denote
the mod p Dyer-Lashof algebra. We grade A, by declaring [P/| = —|/|. Here

J = iy vy J1), (€iy...,€) and
P/ = pePlpepl . gPL.

We denote the respective multiplication maps (Adem relations) by
P4, AQA— A, and ¢ :RQR—R.

We denote by 1 : A, ® R — R ® A, the map which is inductively defined by the
Nishida relations

T](P: ® Ql) — Z(__l)rﬂ ((l +p r__r;J(.P - 1)) Qi—r+j ®P{“ large s,
J

ln(Sqi ®Q)=)" (i ’;2_ z*jr) Q"™ ® 5., large s] ;

) G+ =D -1 =1 L )
,,’(P: ®IBQ1) — Z(_l)r+] <(l +P . 1(1;’ ) ) [);Ql—r+j ® Pi
J

(G =P =D =1\ i
+;(—1)1( r—pi—1 )Q I ® P, large s.

We show that 7 is well-defined in the proof of Theorem 2.1.
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We define M to be the algebra which is R ® A, as a vector space but which
has multiplication given by the composite.

1x@n®1 .
MOM=ROAORDA, "L RR®A, ® A, 22 R A,
=M.
Intuitively, one thinks of this multiplication of Q' ® P - QX ® PL as being given
by Nishida relations in the middle and then Adem relations on either end, as

appropriate. We grade M by interpreting Q' ® P/ as acting on an element of
Ho(QX; Fp) ie.,

o' ® Pl = 1] - I.

We set M[k] = R[k] ® A,.
Now consider the map (, : R — R defined by

¢ QN =0y

where if I = (iy,...,i), (€1,...,€), then
J :1_2(17’. 1)(pr7~--,pr)7(517~-'76k)7

J=r-@,...,2N].
By convention, Q; =0 if 1 <O0.
LemMma 2.1. The map (, is well-defined.
Proof. Suppose i > j so that

Qip-1Qjp-1
w @D (’i—; ) —1
= Z(—l) ) Qirpi—2o0p—-1)Q2(p—1)>
i l/2 - l - 1
where
a(l) = =0,
2
Then

C¢r (Qip-1Qjp-1)) = Q20 )p—1Q~20p—1)-
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Buti—2p" >j—2p" so

Qii—2p-1QG-2p)p—1)

= (=

Qm—j+2p") (’%1) 1

((i _ 2p’)/2) —m—1
Qi—2p+p(—-2p")—2pm)p—1)P2m(p—1)

where

_ (i~2p’+(i—2p’)(p—1))+m_

a(m) >

On the other hand, taking ¢, of the right hand side of the equation above we get

—1
@ —j) (’i——> —1
(— 1) 2
XI: (ir2) —1-1

Q(i_zpr+pj-2p])(p—I)Q(Zl—zpr Yo—1)-

If we make the change of summation index / = m + p", we discover

(i—2p" +pj—2pl)y=i—2p" +p(j—2p")—2pm, 21—2p" =2m,

-1 ~1
@i —j) (‘DT)—I Q@m—j+2p") (’-’2—>—1
= and
(if2) —1-1 (i-=20)/2) =m—1
a(l) = a(m)(mod 2),

as required.
A similar calculation shows that {, preserves Adem relations of the second

kind.
THEOREM 2.2. M is a Hopf algebra over A,.
Proof. Let M =M /K where K is the subspace of M with basis

{0" ® Plle(Q") < e(P])}.

K is the subspace of operations which are identically zero when evaluated on
any H,(QX;F,). Let

P=T] JI H.CK®, n:F,)

n xEH,(K(F,n)F,)

https://doi.org/10.4153/CJM-1989-031-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1989-031-x

684 H. E. A. CAMPBELL AND P. S. SELICK

and define ® : M — P by

(@Q' @ P)nsx = Q'PL(x).
Then @ is an injection and Im® is a subset of P which is closed under the
action of A,. So there is an induced A,-module structure on M, given explicitly

by the Nishida relations used inductively.
Let M (r) be the subspace of M with basis

{Qr@PlleP)=p'} {Q®Sqile(Sq) =2}
and let A, = F/S (where F is the free associative algebra on the symbols

P!, 3P/ and S is the opposite of the Adem relations (including 3°> = 0)). Now
set K(r) = K N M(r) and note that K(r) C ker((,). Set

I(r) = Im(, M (r)).

We have an epimorphism
M(r)/K(r) — M(r)/(ker(C,) "M (r)) C I(r)

whose kernel is ker((,) "M (r)/K(r). Consider the following diagram
0—S®M(r)/K(r)+F & ((ker(() "M (r)) /K (r))

—F @M (r)/K(r) —A, ® 1(r)—0
Ac®M(r)[K(r)

A ®M [ker((,)

action = Nishida relations

M [ker(,) = Image(¢,) — M

The action map makes sense because the action map takes A, ®ker((,) to ker((,)
since Nishida relations make the first entry in Q; smaller and if Adem relations
are needed, these will make the first entry smaller still. See also [4, Theorem
2.3 (iv), p. 17]. The left vertical composite is trivial on

S®M(r)/K(r)+F @ (ker((,) "M (r))/K(r)

and also induces

A, ®1(r) — Im((,).
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These maps are compatible, so taking the direct limit, they induce a map A, @M
— M making M into a A.-module. The action is explicitly given by the map 7
defined above.

It follows that M becomes a Hopf algebra under the multiplication defined
above.

In order to describe M[k]*, let

a; = (Q(0,...0 20— 1),..2(—1) @ D*
N e
) '

- J

lax = (Q,..0,1,..H® )] j =k,
=

es = (00,00 ®PY), s>0,
andif p >2

7 = Q1= 1201, 0= a0 @D =K,
k—j j

ij = (Q(0,..0,(— 1), (=120 20— Ak 1 +A i) @ Dy I <j Sk
k—j j—i i
dy = (Qo,.0 ®TH*, s20,

in the dual basis to the basis of {admissible elements } ® {Milnor basis}, O; ® P,
for M[k]. Thus

laie| = 20" =p*7) [lap| = 2* =27,

el = 20" =P =1, Jow| = 20" —p*~! = p*),
lese| = =2(p* = 1), [ew| =—(2"—1)] and

ld| = —@p° —1).

By convention, o = 0 if i = j. When dealing with a fixed £ we drop the last

subscript.
THEOREM 2.3. M[k]* & ﬁ‘p[aj,n,a,j,es,ds] i Sj<k,s 20, subject to the
relations

(i) 771 = a0y

(i) oy = Tijm1 [

(iil) 0,j0um = 71T/ a

@iv) ds2 =0
[Mk]* = I 2laj, e51]1 where ™ means completion with respect to the augmentation
ideal. In other words, within any degree infinite sums of terms of that degree
are allowed. :
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Proof. We clearly obtain a map from
P= Fp[aj7T]'7 Tij, esvds])

modulo the relations above to M [k]*. Each basis element of M [k] pairs non-
trivially with only finitely many monomials in P so it is clear now to extend
the pairing to get a map P — MIk]*. 1t is easy to check that this map is an
isomorphism.

3. The action of the Steenrod algebra on M [k]*. In this section, we com-
pute the action of the Steenrod algebra on M [k]*. We are interested not only in
the operations P”°, and 3 but also in the Milnor operations P* and T*.

We recall Theorems 1.1 and 1.2 which give the action of P”', B, P2 and
T* for s = k on R[k]*. Our first result computes the action of the higher order
Milnor elements on R[k]*.

THEOREM 3.1. a) PM=a; = cQf, for ¢ # 0, s > 0 where

I=@—1DQy..,2,4,..., 420"+ - +p+2)
k—i 1

1

[S¢**"a;=QF, I=(,...,1,2,...,2,2%)];
k—i i

Note that
S ... s+l _
Of =d} "Pa;ar + others [Qf = & a;ay + others).

b) Taq; = 0,5 2 0.
c) PMw1; = cQf +dQ3, for c,d# 0, s > 0 where

I=(p—1)(2,...,2,&1,...,4,2(ps+~--+p+21)),A1
k—i ;

L

J=@=1DG 3.4, 420"+ +p+2)), Ay
k—i i

1

Note that
Qf =d " Pam + others Qf =& Payr; + others.

d) Tsmi =0 for s > k.
&) PM¥0; = 5Qf +dQ; + eQi for ¢,d,e # 0, s > 0 where

I=p =D 1,3, ,3,4,...,4,20° +- - +p+2)),
k—j j—i

—i i

Ay + A,
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J=(p =@ ,2,3,..,3,4,...,4,2(0° + - +p +2)),
k—j j=i !

1

Ap—jrt + Dp—in

and

— — s “en
K=(p-Dl b2 224 420"+ +p+2),
k—j j—i i

A1+Ak_j+1.

Note that
Sa... S 4enn
Qf = d] " Pajoy + others, Q7 = di " Payoj + others,

Ox = aﬁ’“’"""’aiajk + others.
f) T°o;; =0 for s > k.

Proof. Part (a) for p = 2 is Theorem 3 of [1]. The proofs of (b), (d) and (f)
follow immediately from Theorem 1.2. We will give the proof of (c); the proofs
of (a) and (e) are similar and left to the reader.

Write the I and J of (c) as I(s) and J(s), for s > 0 and write

10)=(p—1DQ,...,2,4,...,4),A,
k—i i

J(O) = (P“ 1)(,37--'73,7,47”"4)7Ak7i+l;
k—i i

then Theorem 1.2 says that
A
P71 = Q10) + QJoy
Our proof proceeds via induction on s 2 1; the step required to start the induc-
tion is the same as the general step. We leave the minor changes required when

i =1 or k to the reader.
So suppose

Phiy; = cQfs—1) +dQJs—1
for c,d # 0, 1 <i <k and write k +s = r. Now

PY7 = PP P14+ PY PPy = PP Qf_yy +dP” Q)
so we show that

PP Q;(s—l) = Q;(s)
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the proof that
PP Q;(s—l) = Ql*(s)

is similar and is left to the reader.
A simple duality argument shows that

PP Qf—1y = QJsys

if and only if Qj) is the only admissible element of R[k] mapped to Q1)
under P?". So let

J:(p_1)017~-'7jk)7(€17”'a€k)

be any admissible sequence (i.e., 0= ji_| S jj—¢,2=[=kand j,—j_ =
emod(2),2 £ 1 = k), and write

JI = (P - 1)(ik—l+1a ceey jk)7 (ek—l+17 ceey 6k)'
Then write x; for Q;, and note that x, = Q;. We assume
Pf Qj = Qj(s_l) + OthCI’S,

and show that then J = J(s).

Now J(s — 1) has only one Bockstein in the k — i + 1 position from the left
so that J can have only one Bockstein say in the /" position from the left with
I # k —i+1 (this follows immediately from the form of the Nishida relations).

Case (i): | < k — i+ 1. Then repeated applications of the Nishida relations
yield

P,l:rQJ = Z(—l)pr+ka1 .. -CkQ(p—l)K + others,
with

K = (ji1 = 2p" +2pmy,..., jio1 — 2m_5 + 2pmy_y,
Ji—=2m_y+2pn+ 1. emi — 20—y + 2pm—; + 1,

Je—itl = 2 + 2Py ity oy Jimt — 2myp + 2pmy, i — 2my_ ;) and
. p—1
Ug = 2mg—1 + i) (T)
Cq == 9
mg—1 — pmy

I1=gsl—landk—1+1=2¢g=k
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(set mo = p", my—; = mx—;, and note my = 0),
. p—1
g = 21 + e >(_)_1
=" 7 b 2 1Sg<k—1
ng—1 —pnq-n
(set mj_y = my_;). The sum is over my, n, with

pmg=my_y and png+1=n, .
Since mg = p”, it follows that m;, < p" 9, 1=g</—landk—i+1= g =k,
and ny = p"9, 1 = q = k —i. We have used m’s to indicate when a Nishida
relation of the first kind has been used and »’s to indicate that the second term

of a Nishida relation of the second kind has been used.
We want j, —2my;_y = 2(p* + -+ p +2) so that

-1
o = Uk — 2my—y) (PT> _ (p”l+p—2).

my_1 My

Consequently, in order to have ¢; # 0mod(p) we must have my;_; = 0,1, ...,
p — 2, or p**! (here we use Lucas’ lemma: see [9, Lemma 2.6]). Of course,
mi—1 = p**! from above.

Subcase (a). m;_; = p**'. This maximal choice of my;_, forces my = p"1
and n, = p"~% However, no such choice of n,’s can give nonzero c,’s; for
example we require

P Zme i S pryi+1=ppt+1,

so that ¢;_;—; = 0.
Subcase (b). my—; =0,1,...,p — 2. Then

Je=20p'+--+p+2+m_y).
In order for ¢; # O(mod p) we must have
Ji+ el 2 2p".
But J is admissible so in particular

jlé~-~§jk=2(ps+--~+p+2+mk_1), and

k
|x2' = qu-l(/.q)-
q=2
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Then it is not hard to see that 2p” > j; + |x2| to that ¢; = O(mod p).

Case (ii). / = k — i+ 1. Then repeated applications of the Nishida relations
yield

Perj Z(—l)pwkal ... cxQp-nk + others,
with
K = (i —2p" +2pmy, ..., ji—1 — 2my—p + 2pmy_y, jx — 2my—;) and

. —1
Ug = 2mg—1 + i) (pT> —1

My—1 — phly

cq =
(from the first term of a Nishida relation of the second kind). As above, we.
obtain m; = p"79, 1 = q < k. Also, we have

Je=2m—y =2(p° +---+p+2)
and so again, for ¢; Z O(mod p), we have

My :0,...,[7—'201‘}7”1.

Subcase (a). my_; = p**'. This maximal choice of my;_; forces mg = p'4,
1 = g = k. Then it is straightforward to see J = J(s) and ¢, Z O(modp),
1=¢g=k.

Subcase (b). my;_; =0,...,p —2. We see as in (i)(b) that ¢; = O(mod p) for
such choices of my_;.

Finally we compute the action of the Steenrod algebra on the e’s and d’s.

THEOREM 3.2.
(a) Ple, =0 ifr<k;

Ppk+res _ (Ql)*ep fO"

s—1
I = (pk+r _pk+r-l’ . ’pr+2 _Pr”,er _ 1)
Note that Q' = Q; for

J=2p—-DA,...,1,p"+---+p+1) and

r+l _
t=a" Pa '+ others.

k+r

[Sg% es =0 if r <k, Sq
Note that Q' = Q; for

es = (QNyeX | for I = k=1, . 22 0+

J=,...,1,27"" — 1) and
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r+l
Q) =a 'a + others.]

(b) PYe, =0 ifr<k;

Phereg = (QIyrel',  for I =@, p").
Note that Q' = Q; for

J=2p—-DQ@",....,p") and Q=4 .
[Sg*es =0 if r <k;

SqMre, = (O eX  forI =1 ... 2.

S—=r

Note that Q' = Qy for J = (2",...,2") and Q} = a; .]
Ifp>2

(©) PPd, =0 ifr<k;

pr 10 ,r<s—1
P ds {(Q’)*ar_l r<s—1 T
I = (pk+r __pk+r~l’ L ,pr+l _pr’pr _ps—l).

Note that Q' = Q; for
J=2p0-0{,...,L,p" '+ 4pY and

Qr =" 7P @ & others.
(d) PYd, =0 ifr <k;
PYd, = §(Q"*d, forl= @™ ,...,p".
Note that Q' = Q; for J =2(p — D(@',...,p") and Q} = a} .

(e) T'e; =T dy =0,Vr,s.
First we need a series of lemmas.
Lemma 3.3. (Summary of [6]). (a) PLP! = P + others if and only if
I=A, J=p'A_,, 0<r<s.
In particular PLP! = P% + others if and only if j = 1 and J = pA,_;.

(b) PPTTS =TSP 4 TS,
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(c) PATY = TOPY +T7.

Proof. Only (a) needs a proof. We use Milnor’s description of the multipli-
cation in terms of matrices. P appears in the Milnor expansion of P/ P! if and
only if the rightmost (s — r,r + 1)-matrix below appears, and this can only be
obtained from the matrix on the left.

x 0 - 0 1 x 0 -~ 0 0
0 0 - 00 0 0

Do S Bl IERNNE: Do
0 0 - 00 0 0 00
pr0 - 0 0 0 0 0 1

LemMa 3.4. (a) PP Q% = Q°PI + others, if and only if
a=p —j, j=jop’ +ip T+
0<jo<---<Jjm<p,
pisp, s=r—1.

(b) P1Q% = cQ* P PY¥+ others (r 2 1,c # 0). None of the terms labeled
“others” has the form QP for any j,s.
In particular,

P21 QP = Q°PY + others and

r—1

Py Q" =Q°P,.
(c) If j is as in (a) then PLQ* = Q°P! if and only if
| = lopt + l]pt—l +eeet lmpt—m7
0<lp<--<l,<p, pl=j, I=Sr—1.
Proof.
@ o=y ey (TI0 T guip,
7 P —p
Soa—p"+j=0if and only if a = p” —j so the coefficient is
((—j)(p - 1)) _ ((p’“ -Np =1
pr—p P —p

The proof that this is non-zero only when j is of the stated form is by brute
force; see Appendix A, Lemma A.

Pi a _ .| j+1 ((a—j)(P—l)) a-j+lPi~
© 0 213( Y o )e

) mod p.
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Soa—j+[=0if and only if a = j — I, so the coefficient is

((—1)(P— 1)) _ ((P' —-hp-1

. = ) mod p
J—npl J—rpl )

and again brute force is required. The proof is similar to the proof of Lemma
A, consequently we omit it.
(b) Here we use induction on r. For r = 1, we have

((1 —P)(P - 1)) PiQa~p
14

+P*1Qa_p+lPl + ((a - (P"‘ 1)(P - 1)) Qa—(p+l)
p+1

P2Q% = P,PPQ" + PP Q% = (

. ((a—<p+11)>(p - 1)) o rp!
_ (((a—p)l(p— 1)) . ((a—p - 1))) 0“7p!
+ other term,
and
(@-pp—D+@—p—-p—-1)=(1-2a)modp # 0(modp) and
1 —2a = l(modp) ifa=p.
Now

PA1QY = P PYQ%+ PAPY Q% = P (Q°7 P2 + other terms)

+Z(.-l)p,+j ((a—pr(p— 1)>P3’Q0_Pr+fpi
r P —pi

_ Z(‘*l)pq’j ((a —-pr—l —pHp— 1)) Q”—”r_'_”“'ijPf"'
; P —pj

i (@—pHp—1 S :
e (a Ir’ P =1 QPP HPpA-ip] 4 others
- P —pj

Check the j = p"~! terms to get
QP (PY P& 4 PA1 PPy 4 others

= Q%" P% + others.
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We may assume by induction that P2 Q? has no terms of the form Q/P%
other than the given one; in P& Q% no such term can arise from

PYPLQ =} PO P,
J

by Lemma 3.3. But Lemma 3.3 also says that no such term can arise from
PP P2 Q4 using the induction hypothesis.

Lemma 3.5. (a) PP“Q!' = Q...Q°PP', I admissible, 0 < s < r, if and only
if

I = (pr+k _pr+k~1, o ,le __pS).
(b) P&l = Q0 ... QP4 I admissible, if and only if

I = (pk+r‘l’ “.7pr).

Proof. (a) The proof is an easy induction on the length k of /, the case
k = 1 following from Lemma 3.4 above (the general case uses Appendix A).
(b) follows from Lemma 3.4(b) above.

Proof of Theorem 3.2. We have
(Px,Q'P) = (x, P/Q'PY)
so we must show
PRQ'PS = x* + others.
We note that Lemma 3.4 implies the first statements in (a), (b), (c) and (d) that
only operations of the form P?"" or P2+ need be considered. We note also that
(e) follows easily by induction on r.
(a) By Lemmas 3.5(a) and 3.3(a) we have
Pfk"Q’ PS = Q0-OpA 4 others (k zeros)
if and only if
S = PA,_| and I = (pk+rfl, . ’pr+2 _pr+l’pr+] _ 1).

(b) By Lemmas 3.5(b) and 3.3(b) we have

PAr Q! pS = Q©-OpA 4 others (k zeros)

https://doi.org/10.4153/CJM-1989-031-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1989-031-x

STEENROD ALGEBRAS 695

if and only if
S=P% and ="' ... p").

(c) Follows from Lemmas 3.5(b) and 3.3(a).
(d) Follows from Lemmas 3.5(b) and 3.3(b).

4. Applications. In this section we take p = 2 throughout so, for example,
H,(X) means H,(X, F;). Our original interest in M arose from our study, with F.
R. Cohen and F. P. Peterson, of atomic spaces see [§, 2, 3]. In this connection
we recall that an unstable A-module N is said to be A-atomic if given an A-
map f : N — N which is an isomorphism in lowest non-trivial degree, then f
is an isomorphism. A natural class of examples is provided by H*(RP?') for
s 2 0. Roughly speaking, all cells are joined to the bottom one via Steenrod
operations and since f commutes with these operations, if f is an isomorphism
on H'(RP?') then f is forced to be an isomorphism in all dimensions. We will
see that the spaces QRP?’ behave the same with respect to M as the spaces QS*
behave with respect to A.

Let x; denote the non-zero element of H,(RP?) considered as an element of
H;(QRP?) via the injection induced by

N

RP? — QRP?.

Then A, acts by
S —r
Sq.(x;) = ( ’ )xs—r-

It is not hard to see that for every [, 1 = [ = 2°, we can choose an element y,
of A with

yi(x2) = x;.
In fact,
ya=1, yr1 =58gh ...,y =Sql...5¢ " ory =S¢
Now, according to J. P. May’s paper in [4, Theorem 4.2, p. 40] we have
H.(QRP?) = F,[Qx;, 1 £1 < 2°.] admissible i; > 0].

Let 22 M be M regarded so that

(Z2°M); = M35
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Our remark above implies that the (degree zero) A-module map
¢ : T¥M — H.(QRP?)

given by
$(Q1Sq.) = Q1Sq,(x2)

is onto the indecomposables; in fact

¢Qry1) = Qix.
We denote by ¢, the map
¢| : ¥ M[k] — H.(QRP?);

for example ¢o(y;) = x;.
If A, denotes the subalgebra of A, generated by Sq*"_], ...,8¢%,5q!, then we
note that y; € A;. Thus if / has length &, we have that

Qry1 € Z¥ Mk, 5],
where X2 M [k, s] denotes X% R[k] ® A;. So
(Qiy)* = Qfyf € Z'Mlk,s]* with

Mk, s]* = MIk]*[(ess1, €502, ...) = Ealay, ..., ax, 1y ..., e5).
The map

¢* : H*(ORP?) — X ¥ Mk, s|*
k20

is an injection of A;-modules. The element of lowest degree in im(¢;) C M [k, s]*
is aice, (the dual element is Q. 1)S¢g%*) and

lawes| =22 + [ =1 =2 =] =2 — 1.

In fact, ay.e; also has polynomial degree, d(aye;) = 2. If x = (X )i € im(¢*)
is homogeneous (i.e., |x¢| = |x;| for all k, /) then it follows that x can have only
finitely many non-zero components.

LemMmaA 4.1. y € Mk, s]* is a square if and only if

k+s

y €[ )ker(Sg™),
=1
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where ker(Sq™) denotes the kernel of Sq* restricted to Mk, s).

Proof. The Milnor elements act as derivations so, recalling 1.4 and 3.2 (b),
we have that

k
afel € ﬂ Ke_r(SqA’)
=1

if and only if R = 2§ i.e., if and only if a® is a square (so a® € ker(Sq*) for
all /,1 =/ < 00). Now we have from 3.2 (b) that

(o)
. o \€j—1
SqA""eI = E zja,% e!
e:
j=1 !

where
el =el'...eb ande ;=0 forj—1<0.¢ =1,
o

sQ%e! =0

if and only if i; = 0(2) for I = j < s. Thus
k

afe’ € (\ker(Sq™) (| ker(Sq™+)
I=1

if and only if @® is a square and i; = 0(2), and furthermore such elements are
a vector space basis for

k
(ker(Sq™) [ ker(Sq™).
I=1

It then follows that
k
aRe’ € n E(SCIA’) ﬂ lie_r(Squﬁ) ﬂ lsg(Squﬂ.,l )
=l

if and only if a® is a square and i; = i;_, = 0(2), and that such elements form
a vector space basis for this set. Continuing, we obtain the result.

LeEMMa 4.2. Suppose x = (x) € Im(¢)*, then there is an a € A such that
o(x) is a non-zero square and

d(a(x)) S dx) +1
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where d(x) denotes polynomial degree.
Proof. The proof is word for word that of [8, Lemma 11, p. 366].
TueoREM 4.3. QORP? is mod 2 H -atomic.
Proof. Suppose
f : ORP* — QRP*
is an H-map with f,(x;) = x;. We must show that f is a mod2 homotopy
equivalence. Of course, because fis an H-map we need only show that f, is
an isomorphism on the indecomposables QH,(QRP?") (or dually, on primitives
PH*(QRP?)). However, f is only an H-map, not an infinite loop space map,
so the Dyer-Lashof operations serve only a book-keeping function.
We have an epimorphism of A-modules
I M[*,5] — H.(QRP*) — QH.(QRP?),

where

Mix,s1 = DMk, s),

k20
with kernel % Q.M [*, s], where
QMIk,s] = (Q1Sq.|iy =0 or iy = 1).
Now Q.M [*,s] is an A;-subcoalgebra of M [k, s]. We have

M(%,51/QM*,5) = EDMIk,s1/QMIk,s]
k

so that dualizing we have an A-module isomorphism
PH*(QR?) = (M [k, 5)/QcM [k, )"

It is not difficult to see that
(M k,s1/QeM Tk, sD)* C (aw) C Mk, sT",

see [2 or 8].
Now we have

f*: PH*(QRP?) — PH*(QRP?)
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and we want to show it is an isomorphism; since PH*(QRP?") has finite type,
it is enough to show f* is a monomorphism.
Suppose x € ker(f*); then there is an « in A as in Lemma 4.2 such that

0# a(x) € ker(f*), d(ax)<dx)+1, and a(x) =y

Although ¢* of* 0 ¢*~! need not commute with multiplication in general, it does
commute with squaring since squaring is a Steenrod operation. Thus

yEker(f) and d(y) < 2O+

Continuing with this process, we eventually obtain a z € ker(f*) such that
d(z) = 1. In other words

ay € ker(f*) for some k.

We now show that ay & ker(f,) for any £, finishing the proof. Now ay is
dual to

Qixy =Q1...Q01x»
in H.(QRP?') so we show Q¥x, is mapped to itself by f,. If k = 2, we have
54,012 = Qo0 'x2 = (Qf 'x)?
and no other term in our basis maps to this under Sg!. So we are finished by
induction when we show Q;xp and xjs are mapped to themselves by f.. Easy

proofs of this are given in [2, §4].

Appendix A. This appendix is devoted to the proof of Lemma A.

Lemma A.

e =pHe—-1

0(mod
pr—pi )¢ (modp)

C(rvj):(
if and only if
J=jopt+Hjup’ ™" for0<jo < - <jm<pands=r—1.

Proof. Suppose that

Jj=ip'+jop* + -+ +jmp* "(modp"')
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where we allow 0 S [ < p witht 2 s+2,but 0 < jy < p for0 =/ = m.
Note that every j is of this form for some choice of ¢, and m. We are trying to
characterize those j for which

c(r, j) # 0(modp).
Consequently we require p” 2 jsothatt = r — 1 if i > 0 while s = r — 1 if
i=0.
In the case i > 0 we have that (p"*! —j)(p — 1) is congruent, modulo p™*?, to

*) P—i—Dp* +i—Dp'+@—DE + - +p) + (0 —jo)p!

s—m+1 +jmps_m-
This need not be the p-adic expansion of (p"*!)(p — 1). However, (*) also gives
the case i = 0 if we set t = r.

On the other hand, p” — pj is congruent, modulo p'*?, to

+(jo —jop’ + - + Um=t = Jm)P

) p—ipM+@—DE + AP+ —jo— Dp™ +(p—ji — Dp°

+ (P — Je1 — l)ps—m+2 +(@ _jm)Ps_MH,

which is the first few terms in the p-adic expansion of p” — pj.
We note that (**) also gives the case i = 0 if we set t =r — 2.
Now if j,—1 2 j, then the factor

(jm—l _jm)
P —Jm

occurs in ¢(r, j) by Lucas’ lemma. But this factor is zero because j,_; < p.
Consequently, to ensure that this factor is not congruent to zero modulo p we
need j,,—; < j,. In this case the last three terms of (*) are rewritten as

s—m+2

(im—2 _jm—l - 1)17 + (p +jm—l _jm)ps‘m*-l +jmps‘m

so that the last two terms occur in the p-adic expansion of (p"*! — j)(p — 1).
This guarantees that the factor associated with p*~"*! is non zero modulo p.
Similar arguments force in turn j,_; <jj, 1 =1 = m so that none of the factors
associated with p*,...,p*™™ are zero modulo p. Similar arguments force in turn
Ji—1 <Ji» 1 =1 = m so that none of the factors associated with p*,...,p* ™ are
zero modulo p. Thus, in the case i = 0, we have shown that

c(r, j) = 0(mod p)
unless j is of the stated form in which case

c(r, j) # O(mod p).
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It remains to show that
c(ry j) =0(modp) ifi > 0.
The argument given above guarantees that
c(r, j) = O(mod p)

unless we have 0 < jo < -+ < j, < p. In this case, the p-adic expansion of

@™ =P =1 is

P—i=D""+G=p'+p =D+ +p")+(p —jo— p*!

s—m+1

+(p +jo—jp’ + -+ (P + jmot —jm)p +jmp* "

Consequently, the factor associated to p’ is (;:ll) which is zero since i < p.

REFERENCES

1. H. E. A. Campbell, Upper triangular invariants, Canad. Math. Bull. 28 (1985), 243-248.
2. H. E. A. Campbell, F. R. Cohen, F. P. Peterson and P. S. Selick, Self maps of loop spaces II,
Trans. of the A.M.S. 293 (1986), 41-51.
The space of maps of Moore spaces into spheres, accepted by the Proceedings of a
Conference in Honour of J. C. Moore’s 60 Birthday.
4. F. R. Cohen, T. Lada and J. P. May, The homology of iterated loop spaces, Lecture Notes in
Math 533 (Springer-Verlag, Berlin and New York, 1976).
5. H. E. A. Campbell, F. P. Paterson and P. S. Selick, Self maps of loop spaces, I, Trans. of A.M.S.
293 (1986), 1-39.
. J. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171.
. . Madsen, On the action of the Dyer-Lashof algebra in H,(G), Pacific J. Math. 60 (1975),
235-275.
8. P. S. Selick, On the indecomposability of certain sphere-related spaces, CMS Conf. Proc. 2
Part 1 (AMS, Providence, R.1., 1982), 359- 372.
9. N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Annals of Math. Studies 50
(Princeton University Press, Princeton, New Jersey).

=N

Queen’s University,
Kingston, Ontario,
University of Toronto,
Toronto, Ontario

https://doi.org/10.4153/CJM-1989-031-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1989-031-x

