DERIVATIONS OF HIGHER ORDER IN PRIME RINGS

YOUPEI YE AND JIANG LUH

AbSTRACT. Let R be a prime ring of characteristic not 2 and d a derivation of R. It is shown that if $d^{2 n}$ is a derivation of R, where n is a positive integer, then $d^{2 n-1}=0$.

Let R be a prime ring of characteristics not 2. In [3], Poster shows that if the product of two derivations of R is a derivation, then one of these two derivations must be zero. In particular, if d is a derivation of R and $d^{2}=0$ then $d=0$. Recently Chung and Luh [1] showed that if d is a derivation of R such that $d^{2 n}=0$, where n is a positive integer, then $d^{2 n-1}=0$, i.e., the index of a nilpotent derivation of a prime ring is necessarily odd. A natural question arises: If d is a derivation of a prime ring R and if $d^{2 n}$ is a derivation, is $d^{2 n-1}=0$? This question has been settled by Martindale and Miers [2] if the characteristic of R is greater than n and if d and $d^{2 n}$ are both inner derivations of R.

In this paper we will be given an affirmative answer to this question for any derivation d of a prime ring of characteristic not 2 , and thereby extend the results of Martindale and Miers as well as that of Chung and Luh.

Theorem. Let R be a prime ring of characteristic not 2 and d be a derivation of R. If n is a positive integer such that $d^{2 n}$ is a derivation of R, then $d^{2 n-1}=0$.

Throughout this paper, R is a ring, d a derivation of R, \mathbb{Z} the ring of integers and $d^{k}(R)=\left\{d^{k}(x) \mid x \in R\right\}$, for any positive integer k.

Let us begin with
Lemma 1. If $d^{2 n}$ is a derivation of R, then for any $x, y \in R$,

$$
\begin{equation*}
\sum_{j=1}^{2 n-1}\binom{2 n}{j} d^{2 n-j}(x) d^{j}(y)=0 \tag{1}
\end{equation*}
$$

Proof. Since d and $d^{2 n}$ are derivations of R, by Leibniz' rule, for any $x, y \in R$,

$$
\begin{equation*}
d^{2 n}(x y)=\sum_{j=0}^{2 n}\binom{2 n}{j} d^{2 n-j}(x) d^{j}(y), \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
d^{2 n}(x y)=d^{2 n}(x) y+x d^{2 n}(y) . \tag{3}
\end{equation*}
$$

Subtracting (3) from (2) side by side yields (1).

LEMMA 2. Let $k<n$ be two positive integers. Then there are integers $m_{1, k}, m_{2, k}, \ldots$, $m_{k-1, k}$, such that

$$
\begin{align*}
d^{n+k}(x) d^{n-k}(y)+d^{n-k}(x) d^{n+k}(y)=d^{2 k} & \left(d^{n-k}(x) d^{n-k}(y)\right) \tag{4}\\
& +\sum_{i=1}^{k-1} m_{i, k} d^{2 k-2 i}\left(d^{n-k+i}(x) d^{n-k+i}(y)\right) \\
& +(-1)^{k} 2 d^{n}(x) d^{n}(y)
\end{align*}
$$

for all $x, y \in R$.
Proof. Clearly, (4) is true by Leibniz' rule if $k=1$. Now assume (4) holds for $k=1,2, \ldots, t-1$ where $t<n$. By Leibniz' rule, for any $x, y \in R$,

$$
\begin{aligned}
d^{2 t}\left(d^{n-t}(x) d^{n-t}(y)\right)= & d^{n+t}(x) d^{n-t}(y)+d^{n-t}(x) d^{n+t}(y) \\
& +\sum_{j=1}^{2 t-1}\binom{2 t}{j} d^{n+t-j}(x) d^{n-t+j}(y) \\
= & d^{n+t}(x) d^{n-t}(y)+d^{n-t}(x) d^{n+t}(y) \\
& +\sum_{j=1}^{t-1}\binom{2 t}{j}\left(d^{n+t-j}(x) d^{n-t+j}(y)\right. \\
& \left.+d^{n-t+j}(x) d^{n+t-j}(y)\right)+\binom{2 t}{t} d^{n}(x) d^{n}(y)
\end{aligned}
$$

Note that, by our assumption, for $j=1,2, \ldots, t-1$, since $1 \leq t-j<t$,

$$
\begin{aligned}
& d^{n+t-j}(x) d^{n-t+j}(y)+d^{n-t+j}(x) d^{n+t-j}(y)=d^{2(t-j)}\left(d^{n-t+j}(x) d^{n-t+j}(y)\right) \\
&+\sum_{i=1}^{t-j-1} m_{i, t-j} d^{2 t-2 j-2 i}\left(d^{n-t+j+i}(x) d^{n-t+j+i}(y)\right)+(-1)^{t-j} 2 d^{n}(x) d^{n}(y)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
d^{2 t}\left(d^{n-t}(x) d^{n-t}(y)\right)= & d^{n+t}(x) d^{n-t}(y)+d^{n-t}(x) d^{n+t}(y) \\
& +\sum_{j=1}^{t-1}\binom{2 t}{j}\left[d^{2(t-j)}\left(d^{n-t+j}(x) d^{n-t+j}(y)\right)\right. \\
& +\sum_{i=1}^{t-j-1} m_{i, t-j} d^{2 t-2 j-2 i}\left(d^{n-t+j+i}(x) d^{n-t+j+i}(y)\right) \\
& \left.+(-1)^{t-j} 2 d^{n}(x) d^{n}(y)\right]+\binom{2 t}{t} d^{n}(x) d^{n}(y)
\end{aligned}
$$

By noting that $m_{k, 1}=0$ for all k, the summation

$$
\begin{aligned}
\sum_{j=1}^{t-1}\binom{2 t}{j} & \sum_{i=1}^{t-j-1} m_{i, t-j} d^{2 t-2 j-2 i}\left(d^{n-t+j+i}(x) d^{n-t+j+i}(y)\right) \\
& =\sum_{j=1}^{t-1} \sum_{i=j+1}^{t-1}\binom{2 t}{j} m_{i-j, t-j} d^{2(t-i)}\left(d^{n-t+i}(x) d^{n-t+i}(y)\right) \\
& =\sum_{i=2}^{t-1}\left(\sum_{j=1}^{i-1}\binom{2 t}{j} m_{i-j, t-j}\right) d^{2(t-i)}\left(d^{n-t+i}(x) d^{n-t+i}(y)\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& d^{2 t}\left(d^{m-t}(x) d^{m-t}(y)\right) \\
&= d^{n+t}(x) d^{n-t}(y)+d^{n-t}(x) d^{n+t}(y) \\
&+\binom{2 t}{1} d^{2 t-2}\left(d^{n-t+1}(x) d^{n-t+1}(y)\right) \\
&+\sum_{i=2}^{t-1}\left(\binom{2 t}{i}+\sum_{j=1}^{i-1}\binom{2 t}{j} m_{i-j, t-j}\right) d^{2 t-2 i}\left(d^{n-t+i}(x) d^{n-t+1}(y)\right) \\
&+\left(\sum_{i=1}^{t-1}\left((-1)^{t-i}\binom{2 t}{i} 2\right)+\binom{2 t}{t}\right) d^{n}(x) d^{n}(y) \\
&= d^{n+t}(x) d^{n-t}(y)+d^{n-t}(x) d^{n+t}(y) \\
& \quad-\sum_{i=1}^{t-1} m_{i, t} d^{2 t-2 i}\left(d^{n-t+i}(x) d^{n-t+i}(y)\right) \\
& \quad-m_{0} d^{n}(x) d^{n}(y), \text { where } m_{1, t}=-\binom{2 t}{1} \\
& m_{i, t}=-\left(\binom{2 t}{i}+\sum_{j=1}^{i-1}\binom{2 t}{j} m_{i-j, t-j}\right) \text { and } \\
& m_{0}=-\left(\sum_{i=1}^{t-1}\left((-1)^{t-i}\binom{2 t}{i} 2\right)+\binom{2 t}{t}\right) \\
&=(-1)^{t+1}\left(\sum_{i=1}^{t-1}(-1)^{i}\binom{2 t}{i} 2+(-1)^{t}\binom{2 t}{t}\right)=(-1)^{t} 2 .
\end{aligned}
$$

That is, (4) holds for $k=t$. This completes the proof.

Lemma 3. If $d^{2 n}$ is a derivation of R, where n is an integer ≥ 2, then, for any x, $y \in R, 2 d^{n}(x) d^{n}(y) \in \sum_{j=1}^{n-1} \mathbb{Z} d^{2(n-j)}\left(d^{j}(x) d^{j}(y)\right)$.

Proof. From (1), we have

$$
\begin{equation*}
\sum_{j=1}^{n-1}\binom{2 n}{j}\left(d^{2 n-j}(x) d^{j}(y)+d^{j}(x) d^{2 n-j}(y)\right)+\binom{2 n}{n} d^{n}(x) d^{n}(y)=0 . \tag{5}
\end{equation*}
$$

Note that, for $j=1, \ldots, n-1$,

$$
d^{2 n-j}(x) d^{j}(y)+d^{j}(x) d^{2 n-j}(y)=d^{n+k}(x) d^{n-k}(y)+d^{n-k}(x) d^{n+k}(y)
$$

where $k=n-j$, and hence, by Lemma 2,

$$
\begin{aligned}
d^{2 n-j}(x) d^{j}(y)+d^{j}(x) d^{2 n-j}(y)= & d^{2 n-2 j}\left(d^{j}(x) d^{j}(y)\right) \\
& +\sum_{i=1}^{n-j-1} m_{i, n-j} d^{2 n-2 j-2 i}\left(d^{j+i}(x) d^{j+i}(y)\right) \\
& +(-1)^{n-j} 2 d^{n}(x) d^{n}(y) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \sum_{j=1}^{n-1}\binom{2 n}{j}\left(d^{2 n-j}(x) d^{j}(y)+d^{j}(x) d^{2 n-j}(y)\right) \\
& =\sum_{j=1}^{n-1}\binom{2 n}{j} d^{2 n-2 j}\left(d^{j}(x) d^{j}(y)\right) \\
& \quad+\sum_{j=1}^{n-1}\binom{2 n}{j} \sum_{i=1}^{n-j-1} m_{i, n-j} d^{2 n-2 j-2 i}\left(d^{j+1}(x) d^{j+i}(y)\right) \\
& \quad+\sum_{j=1}^{n-1}\binom{2 n}{j}(-1)^{n-j} 2 d^{n}(x) d^{n}(y) .
\end{aligned}
$$

It follows by (5) that

$$
\begin{align*}
\sum_{j=1}^{n-1}\binom{2 n}{j} & d^{2 n-2 j}\left(d^{j}(x) d^{j}(y)\right) \\
& +\sum_{j=1}^{n-1}\binom{2 n}{j} \sum_{i=1}^{n-j-1} m_{i, n-j} d^{2 n-2 j-2 i}\left(d^{j^{+i}}(x) d^{j+i}(y)\right) \tag{6}\\
& +\left(\binom{2 n}{n}+\sum_{j=1}^{n-1}\binom{2 n}{j}(-1)^{n-j} 2\right) d^{n}(x) d^{n}(y)=0 .
\end{align*}
$$

Since $\binom{2 n}{n}+\sum_{j=1}^{n-1}\binom{2 n}{j}(-1)^{n-j} 2=(-1)^{n-1} 2$ and all but the last term in the left-hand side of (6) belong to $\sum_{j=1}^{n-1} \mathbb{Z} d^{2 n-2 j}\left(d^{j}(x) d^{j}(y)\right)$, we have $2 d^{n}(x) d^{n}(y) \in$ $\sum_{j=1}^{n-1} \mathbb{Z} d^{2 n-2 j}\left(d^{j}(x) d^{j}(y)\right)$ as we desired.

Lemma 4. If $d^{2 n}$ is a derivation of R, where n is an integer ≥ 2, then, for any integer $k \geq 0$,
(7)
$2^{k+1}\left(\left(d^{n+k}(R)\right)^{2}\right) \subset d^{2 n+2 k-2}\left((d(R))^{2}\right)+d^{2 n+2 k-4}\left(\left(d^{2}(R)\right)^{2}\right)+\cdots+d^{2 k+2}\left(\left(d^{m-1}(R)\right)^{2}\right)$.

Proof. We proceed by induction on k. By Lemma 3, we have $2\left(d^{n}(R)\right)^{2} \subset$ $\sum_{j=1}^{n-1} d^{2 n-2 j}\left(\left(d^{j}(R)\right)^{2}\right)$. So (7) holds for $k=0$. Now we assume that (7) holds for $k=t$. That is,

$$
2^{i+1}\left(d^{n+1}(R)\right)^{2} \subset d^{2 n+2 t-2}\left((d(R))^{2}\right)+d^{2 n+2 t-4}\left(\left(d^{2} R\right)^{2}\right)+\cdots+d^{2 t+2}\left(\left(d^{n-1}(R)\right)^{2}\right)
$$

Replacing R by $d(R)$, multiplying by 2 on both sides and using Lemma 3 yields

$$
\begin{aligned}
& 2^{t+2}\left(d^{n+t+1}(R)\right)^{2} \subset 2 d^{2 n+2 t-2}\left(\left(d^{2}(R)\right)^{2}\right) \\
& \quad+2 d^{2 n+2 t-4}\left(\left(d^{3}(R)\right)^{2}\right)+\cdots+2 d^{2 t+2}\left(\left(d^{n}(R)\right)^{2}\right) \\
& \subset d^{2 n+2 t-2}\left(\left(d^{2}(R)\right)^{2}\right) \\
& \quad+d^{2 n+2 t-4}\left(\left(d^{3}(R)\right)^{2}\right)+\cdots+d^{2 t+4}\left(\left(d^{n-1}(R)\right)^{2}\right) \\
& \quad+d^{2 t+2}\left(\sum_{j=1}^{n-1} d^{2 n-2 j}\left(\left(d^{j}(R)\right)^{2}\right)\right) \\
& \subset d^{2 n+2 t}\left((d(R))^{2}\right) \\
& \quad+d^{2 n+2 t-2}\left(\left(d^{2}(R)\right)^{2}\right)+\cdots+d^{2 n+4}\left(\left(d^{n-1}(R)\right)^{2}\right)
\end{aligned}
$$

That is, (7) holds for $k=t+1$. Hence (7) holds for any integer $k \geq 0$.
LEMMA 5. If $d^{2 n}$ is a derivation of R, where n is an integer ≥ 2, then $2^{n+1} d^{2 n}(R)$ is a subring of R.

Proof. Clearly, $2^{n+1} d^{2 n}(R)$ is an additive abelian group, and hence we need only to show that it is closed under multiplication. By Lemma 4, for $k=n, 2^{n+1}\left(d^{2 n}(R)\right)^{2} \subset$ $d^{4 n-2}\left((d(R))^{2}\right)+d^{4 n-4}\left(\left(d^{2}(R)\right)^{2}\right)+\cdots+d^{2 n+2}\left(\left(d^{n+1}(R)\right)^{2}\right)$ which is clearly contained in $d^{2 n+2}(R)$. Thus,

$$
\left(2^{n+1} d^{2 n}(R)\right)^{2}=2^{n+1}\left(2^{n+1}\left(d^{2 n}(R)\right)^{2}\right) \subset 2^{n+1} d^{2 n+2}(R) \subset 2^{n+1} d^{2 n}(R)
$$

Lemma 6. If R is a prime ring, $d^{2 n}$ is a derivation of R and $2 n$ is not divisible by the characteristic of R, then either $d^{2 n-1}=0$ or $\operatorname{ker} d=\operatorname{ker} d^{2}$.

PROOF. Suppose $\operatorname{ker} d \neq \operatorname{ker} d^{2}$. Then there exists an $a \in R$ such that $d^{2}(a)=0$ but $d(a) \neq 0$. Replacing y by a in (1) yields $2 n d^{2 n-1}(x) d(a)=0$ and hence $d^{2 n-1}(x) d(a)=0$, for all $x \in R$. It follows that $d^{2 n}(x) d(a)=0$, for all $x \in R$. Since $d^{2 n}$ is a derivation, $0=d^{2 n}(x y) d(a)=d^{2 n}(x) y d(a)+x d^{2 n}(y) d(a)=d^{2 n}(x) y d(a)$ for all $x, y \in R$. By the primeness of $R, d^{2 n}(x)=0$ for all $x \in R$, or $d^{2 n}=0$. By a result in [1], $d^{2 n-1}=0$.

Lemma 7. Suppose R is a prime ring, $d^{2 n}$ is a derivation of R and $2 n$ is not divisible by the characteristic of R. If $d^{m}=0$, where m is an integer $\geq 2 n$, then $d^{2 n-1}=0$.

Proof. Suppose, to the contrary, that $d^{2 n-1} \neq 0$. Then by Lemma $6, \operatorname{ker} d=\operatorname{ker} d^{2}$. Let k be the smallest integer such that $2 n-1<k \leq m$ and $d^{k}=0$. Since $d^{k-2}(R) \subset$ $\operatorname{ker} d^{2}$, we have $d^{k-2}(R) \subset \operatorname{ker} d$, or $d^{k-1}=0$, a contradiction.

Lemma 8. Suppose R is a prime ring, $d^{2 n}$ is a derivation of R and $2 n$ is not divisible by the characteristic of R. If $d^{2 n-1} \neq 0$, then $2^{n+1} d^{2 n}(R)$ is a prime subring of R.

Proof. Let $S=2^{n+1} d^{2 n}(R)$ and $D=d^{2 n}$. Then D is a non-zero derivation of R and $S=2^{n+1} D(R)$ is a subring of R by Lemma 5. We want to show that S is a
prime ring. Suppose not, let $a, b \in R$ be such that $D(a) \neq 0, D(b) \neq 0$ and $\left(2^{n+1} D(a)\right)\left(2^{n+1} D(x)\right)\left(2^{n+1} D(b)\right)=0$ for all $x \in R$. That is,

$$
\begin{equation*}
D(a) D(x) D(b)=0, \text { for all } x \in R \tag{8}
\end{equation*}
$$

Replacing x by $(D(x)) y$ in (8) yields

$$
\begin{equation*}
D(a)\left(D^{2}(x) y+D(x) D(y)\right) D(b)=0, \text { for all } x, y \in R . \tag{9}
\end{equation*}
$$

Note that since

$$
2^{2 n+2} D(x) D(y) \in S, \quad 2^{2 n+2} D(a) D(x) D(y) D(b)=0
$$

or $D(a) D(x) D(y) D(b)=0$, for all $x, y \in R$. Thus (9) becomes $D(a) D^{2}(x) y D(b)=0$, for all $x, y \in R$. By the primeness of R again, we obtain that

$$
\begin{equation*}
D(a) D^{2}(x)=0, \text { for all } x \in R . \tag{10}
\end{equation*}
$$

In (10), we replace x by $D(x) y$. We obtain

$$
D(a)\left(D^{3}(x) y+2 D^{2}(x) D(y)+D(x) D^{2}(y)\right)=0,
$$

for all $x, y \in R$. By (10), we get

$$
\begin{equation*}
D(a) D(x) D^{2}(y)=0, \text { for all } x, y \in R . \tag{11}
\end{equation*}
$$

Similarly, in (10), replacing x by $x D(y)$ yields

$$
D(a)\left(D^{2}(x) D(y)+2 D(x) D^{2}(y)+x D^{3}(y)\right)=0 .
$$

It follows, by (10) and (11), that $D(a) x D^{3}(y)=0$, for all $x, y \in R$. Consequently, $D^{3}=0$ or $d^{6 n}=0$. By Lemma 7, $d^{2 n-1}=0$, a contradiction. Hence S is a prime ring.

LEMMA 9. Let $S_{0}, S_{1}, S_{2}, \ldots, S_{m-1}$ be subrings of a ring $R, m>1$, and d a derivation of R with $d\left(S_{m-1}\right) \subset S_{m-1} \subset d\left(S_{m-2}\right) \subset S_{m-2} \subset \cdots \subset d\left(S_{0}\right) \subset S_{0}$. Suppose

$$
d^{m}(x) a_{m}+d^{m-1}(x) a_{m-1}+\cdots+d(x) a_{1}=0
$$

for all $x \in S_{0}$, where $a_{1}, a_{2}, \ldots, a_{m} \in R$. Then $d\left(y_{m-1}\right) d\left(x_{m-1}\right) d\left(x_{m-2}\right) d\left(x_{m-3}\right) \cdots$ $d\left(x_{1}\right) a_{m}=0$ for all $x_{i} \in S_{i}, i=1,2, \ldots, m-1$, and $y_{m-1} \in S_{m-1}$.

PROOF. We proceed by induction on m, the length of the chain $S_{m-1} \subset S_{m-2} \subset$ $\cdots \subset S_{0}$.

Suppose $m=2, d\left(S_{1}\right) \subset S_{1} \subset d\left(S_{0}\right) \subset S_{0}$, and

$$
\begin{equation*}
d^{2}(x) a_{2}+d(x) a_{1}=0, \text { for all } x \in S_{0} \tag{12}
\end{equation*}
$$

Then, for any $x_{1}, y_{1} \in S_{1}$, since $y_{1} d\left(x_{1}\right) \in d\left(S_{0}\right), y_{1} d\left(x_{1}\right)=d(x)$ for some $x \in S_{0}$. Replacing $d(x)$ by $y_{1} d\left(x_{1}\right)$ in (12) yields

$$
d\left(y_{1} d\left(x_{1}\right)\right) a_{2}+y_{1} d\left(x_{1}\right) a_{1}=0
$$

or

$$
d\left(y_{1}\right) d\left(x_{1}\right) a_{2}+y_{1}\left(d^{2}\left(x_{1}\right) a_{2}+d\left(x_{1}\right) a_{1}\right)=0 .
$$

Thus, $d\left(y_{1}\right) d\left(x_{1}\right) a_{2}=0$ for all $x_{1}, y_{1} \in S_{1}$. Therefore, Lemma 9 is true for $m=2$.
Now assume $m>2$, and assume

$$
\begin{equation*}
d^{m}(x) a_{m}+d^{m-1}(x) a_{m-1}+\cdots+d(x) a_{1}=0, \text { for all } x \in S_{0} \tag{13}
\end{equation*}
$$

Then, for any $x_{1}, y_{1} \in S_{1}$, since $y_{1} d\left(x_{1}\right) \in d\left(S_{0}\right), y_{1} d\left(x_{1}\right)=d(x)$ for some $x \in S_{0}$. Substituting $d(x)$ by $y_{1} d\left(x_{1}\right)$ in (13). We get

$$
\begin{equation*}
d^{m-1}\left(y_{1} d\left(x_{1}\right)\right) a_{m}+d^{m-2}\left(y_{1} d\left(x_{1}\right)\right) a_{m-1}+\cdots+y_{1} d\left(x_{1}\right) a_{1}=0 . \tag{14}
\end{equation*}
$$

By Leibniz' rule for each term of (14) and by (13), we obtain

$$
\begin{aligned}
& d^{m-1}\left(y_{1}\right) d\left(x_{1}\right) a_{m}+d^{m-2}\left(y_{1}\right)\left((m-1) d^{2}\left(x_{1}\right) a_{m}\right. \\
&\left.+d\left(x_{1}\right) a_{m-1}\right)+\cdots+y_{1}\left(d^{m}\left(x_{1}\right) a_{m}+\cdots+d\left(x_{1}\right) a_{1}\right)=0
\end{aligned}
$$

which is of the form

$$
d^{m-1}\left(y_{1}\right) b_{m-1}+d^{m-2}\left(y_{1}\right) b_{m-2}+\cdots+d\left(y_{1}\right) b_{1}=0
$$

for all $y_{1} \in S_{1}$. Note that $S_{m-1} \subset S_{m-2} \subset \cdots \subset S_{1}$ is a chain of length $m-1$. By the induction hypothesis,

$$
d\left(y_{m-1}\right) d\left(x_{m-1}\right) d\left(x_{m-2}\right) \cdots d\left(x_{2}\right) b_{m-1}=0
$$

for all $x_{i} \in S_{i}, i=2,3, \ldots, m-1$, and $y_{m-1} \in S_{m-1}$. That is,

$$
d\left(y_{m-1}\right) d\left(x_{m-1}\right) d\left(x_{m-2}\right) \cdots d\left(x_{2}\right) d\left(x_{1}\right) a_{m}=0
$$

for all $x_{i} \in S_{i}, i=2,3, \ldots, m-1, y_{m-1} \in S_{m-1}$. This completes the proof.
Lemma 10. Suppose R is a prime ring and $d^{2 n}$ is a derivation of R. If $2 n$ is not divisible by the characteristic of R, then $d^{2 n-1}=0$.

Proof. Suppose to the contrary that $d^{2 n-1} \neq 0$. Let $S_{0}=R$, and $S_{i}=2^{n+1} d^{2 n}\left(S_{i-1}\right)$,
$i=1,2, \ldots, 2 n$. By Lemmas 7 and $8, S_{0}, S_{1}, S_{2}, \ldots, S_{2 n-1}$ are prime subrings of R, and $d\left(S_{2 n-1}\right) \subset S_{2 n-1} \subset d\left(S_{2 n-2}\right) \subset S_{2 n-2} \subset \cdots \subset S_{0}=R$. From Lemma 1,

$$
\binom{2 n}{1} d^{2 n-1}(x) d(y)+\binom{2 n}{2} d^{2 n-2}(x) d^{2}(y)+\cdots+\binom{2 n}{2 n-1} d(x) d^{2 n-1}(y)=0
$$

for all $x, y \in R$. By Lemma 9 , since $2 n$ is not divisible by the characteristic of R, we have

$$
\begin{equation*}
d\left(y_{2 n-1}\right) d\left(x_{2 n-1}\right) d\left(x_{2 n-2}\right) \cdots d\left(x_{1}\right) d(y)=0 \tag{15}
\end{equation*}
$$

for all $x_{i} \in S_{i}, i=1,2, \ldots, 2 n-1, y_{2 n-1} \in S_{2 n-1}$ and $y \in R$. Replacing y by $z y$ in (15) yields

$$
d\left(y_{2 n-1}\right) d\left(x_{2 n-1}\right) d\left(x_{2 n-2}\right) \cdots d\left(x_{1}\right) z d(y)=0,
$$

for all $x_{i} \in S_{i}, i=1,2, \ldots, 2 n-1, y_{2 n-1} \in S_{2 n-1}$, and $y, z \in R$. By the primeness of R, we have

$$
\begin{equation*}
d\left(y_{2 n-1}\right) d\left(x_{2 n-1}\right) d\left(x_{2 n-2}\right) \cdots d\left(x_{1}\right)=0 \tag{16}
\end{equation*}
$$

for all $x_{i} \in S_{i}, \mathrm{i}=1,2, \ldots, 2 n-1$, and $y_{2 n-1} \in S_{2 n-1}$. Now replace x_{1} by $y_{1} x_{1}$ in (16). By the primeness of S_{1}, it follows that

$$
d\left(y_{2 n-1}\right) d\left(x_{2 n-1}\right) d\left(x_{2 n-2}\right) \cdots d\left(x_{2}\right)=0,
$$

for all $x_{i} \in S_{i}, i=2,3, \ldots, 2 n-1$, and $y_{2 n-1} \in S_{2 n-1}$. Continuing this process, finally, we get

$$
d\left(y_{2 n-1}\right)=0 \text { for all } y_{2 n-1} \in S_{2 n-1} .
$$

Note that $S_{2 n-1}=2^{(2 n-1)(n+1)} d^{2(2 n-1) n}(R)$. Thus, we have $2^{(2 n-1)(n+1)} d^{2(2 n-1) n}(R)=0$. Since 2 is not the characteristic of $R, d^{2(2 n-1) n}=0$. By Lemma 7, $d^{2 n-1}=0$, a contradiction.

We are now in a position to prove our main result.
Proof of the Theorem. In view of the last lemma, we need only consider the case that the characteristic p of R is a divisor of n. Let $n=p^{k} q$, where $p \nmid q$ and $k \geq 1$, and let $D=d^{p^{k}}$. Then, clearly, D is a derivation of $R, d^{2 n}=D^{2 q}, p \nmid 2 q$, and $D^{2 q}$ is a derivation of R. By Lemma $10, D^{2 q-1}=0$, or $d^{2 n-p^{k}}=0$. Therefore, $d^{2 n-1}=0$, as we desired.

References

1. L. O. Chung and Jiang Luh, Nilpotency of derivations, Canad. Math. Bull. 26(1983), 342-346.
2. W. S. Martindale III and C. R. Miers, On the iterates of derivations of prime rings, Pacific J. Math. 104(1983), 179-190.
3. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(1957), 1093-1100.

Department of Computer Science
Nanjing University of Science and Technology
Nanjing, China

Department of Mathematics
North Carolina State University
Raleigh, NC 27695-8205
U.S.A.

