Can. J. Math., Vol. XXXI, No. 6, 1979, pp. 1269-1280

PROJECTIONS ON BERGMAN SPACES
OVER PLANE DOMAINS

JACOB BURBEA

1. Introduction. Let D be a bounded plane domain and let L,(D) stand for
the usual Lebesgue spaces of functions with domain D, relative to the area
Lebesque measure do(z) = dxdy. The class of all holomorphic functions in D
will be denoted by H(D) and we write B,(D) = L,(D) N\ H(D). B,(D) is
called the Bergman p-space and its norm is given by

1/p
1711 = {f P 0<p <o,
Hf ||oo = Supz€D|f(Z)|'

Let K, (z, {) be the Bergman kernel of D and consider the Bergman projection

(L1 @PHE) = (£, Kp( () =j;f(Z)Ko(§,2)da(2)-

It is well known that P is not bounded on L,(D), p = 1, o, and moreover, it
can be shown that there are no bounded projections of L. (A) onto B, (A).
Here and throughout this paper A stands for the unit disk {z: |z] < 1}. Bers
[3], by replacing the Lebesgue measure with the Poincaré measure
Mo~ 2(2)do (2), where \p(2) is the Poincaré metric for D, was able to show that
L,(D) is continuously projected onto B;(D). It is impossible, however, to
deduce from Bers result or its modification the existence of bounded projec-
tion from L,(D) onto B,(D) for 1 < p < o0.

Zaharjuta and Judovic [14], using the Calderon-Zygmund theory of singular
integrals, showed that P is bounded on L,(A) for 1 < p < o and Stein [11]
extended this result to the unit ball in C".

Our main contribution in this paper is in showing that for a multiply
connected domain D, with some smoothness requirements to be specified later,
the Bergman projection P is bounded on L,(D) for 1 < p < 0. As in [14] we
also exploit the Calderon-Zygmund theory of singular integrals. However, our
method proceeds in a different direction by first showing that an operator
involving the ‘“‘adjoint” of the Bergman kernel [2] is bounded on L,(D),
1 < p < . This operator behaves like the Hilbert transform and thus has
the required singularity of the Calderon-Zygmund theory. This property is not
shared by the operator P.

Quite recently Bekollé and Bonami [1] have characterized the weighted
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measures w on the unit disk A for which the Bergman projection P is bounded
on L,(Atw), 1 < p < 0. Our method can be also applied to this situation and
even extend their result to the multiply connected case. This and other related
results, however, will be elaborated elsewhere.

In § 2 we review some results from the theory of singular integrals which are
needed in our work, and §3 is devoted to a brief discussion on the various
kernels of a domain. In §4 we introduce some concepts relevant to the degree
of smoothness of the domain. We prove two propositions associated with these
concepts (Propositions 3 and 4) and we define the crucial class W,. The main
theorem (Theorem 1) is proved in § 5. There we also prove Theorem 2. In § 6
we discuss weak convergence in B,(D).

Finally, we wish to thank the referee and J. E. Brennan for their valuable
comments.

2. Singular integrals. Let D be a bounded domain and set
CD)={AecRA=kip+ki(p —1)"},1<p <0,

where &, and k, are positive constants depending only on the shape of D. We
consider the following familiar transforms; the Hilbert transform

e =t [ @)
and the Riesz transform

L iz $37(edo @),

Rpf) () =

271'_ D |Z

where the integrals are taken in the principal value sense. These transforms
are singular integrals of the Calderdon-Zygmund type. Therefore, they are
bounded on L,(D) and in fact (cf. [10, p. 22])

175l = 4y, [Rplly = 4,5 4, € Cp(D).

The usefulness of the Riesz transform follows from the following well known
proposition [10, p. 59]:

ProposITION 1. If f5 € L,(D) then f, = — Rp*; and therefore
”fZ”P = Ap”fEHv 4, € C;v(D)-
Here f, = df/0z and f3 = 9f/dz.

Let w be a positive locally integrable function in D. w is said to belong to
M,(D) (1 < p < ) if it satisfies the Muckenhoupt condition:

Sl;p [ -1 f § w(z)da(z)] [IVI*‘ f Vw(z)_”("—l)da(z)Jp—l < 0,

where the supremum is taken over all sectors V C D and |V| = o(V). For

v

https://doi.org/10.4153/CJM-1979-105-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-105-6

BERGMAN SPACES 1271

ready reference we record the following proposition which is due to Coifman
and Fefferman [5]:

PROPOSITION 2. Let w be a positive locally integrable function in D. Then T
1is a bounded operator on L,(D:w) if and only if o € M,(D).

3. The Bergman kernel. Let G = Gp(z, {) be the customary Green's
function of the domain D. We write

GD(zrg‘) = H(Zy g‘) - lOg IZ - g-lv

where H = H(z, ¢) is symmetric and harmonic in (3, {) € D X D. It is well
known (see [2]) that

[ o 296
(1) Kp,§) = = =5

and that its “‘adjoint’ is given by

2 9°G
Here
1 1
Lp(z, §) = P In(z,§)
where
2 0°'H
lD(Z! g‘) = ;; azag. ’

is symmetric and holomorphicin (z, {) € D X D. We note that the “correction
term’’ I, (2, ) is identically zero when D is a disk. Also, if dD is analytic then
Ip(z, ¢) is holomorphic in (z, ¢) ¢ D X D (cf. [2, p. 211]). If ¢ is a conformal
mapping of D onto @ then

and therefore

and

(34) Lo(z{) = La(e(2), 9(0))e' (2)9' (§).

We introduce the ‘“‘Bergman-Schiffer transforms”

B5) (@) = fD Lp(z, £)f (2)do (2)
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and

3.6)  (Sof)(©) =fD/D(z, $)f (2)da (2)

where the first integral is taken in the principal value sense. Therefore

(3-7) Ip = QD + Sp.

4. Smoothness conditions. We now make some assumptions on the
smoothness of the domain D. We assume that D is bounded by # nondegenerate
boundary components Ci, Cs, ..., C, where, say, C; is the outer boundary.
Then D can be conformally mapped onto a domain Q which is bounded by »
closed analytic curves. More specifically, let ¢:D — Q be such a mapping.
Then ¢ can be written as ¢, 0 ¢,—1 0. ..0 ¢1, where each factor ¢, is a con-
formal mapping of a simply connected domain D ;. For example, w; = ¢:(3) is
conformal on the simply connected domain D; which is bounded by C; and
contains D, and ¢1(D,) is the unit disk. w; = ¢,;(w;—1) (2 £j < #n) is con-
formal on the simply connected domain D; which is bounded by ¢, ;0
¢;—20...00¢:1(C;) and contains ¢;_1 0 ¢;20...0¢:1(D); ¢,;(D;) is the
exterior of the unit disk. For additional properties of the factorization of a
conformal mapping see [6]. We lety = ¢ tand ¢; = ¢,/ (1 =j = n). We
also write F; = ¢,0¢,10...0¢; and G, = F,/' (1 £j =< n). As far as
the smoothness properties of ¢; are concerned, we note that they are exactly
the same as those of ¢1, provided F;_;(C;) is of the same degree of smoothness
as that of C;. For example, as we shall see later, f,)1|¢>1’ (2)|Pdo (z) < oo for all
p < 3 just because C; bounds the simply connected domain D,. Therefore, for
any disk R with a fixed radius 0 < 7 < o0 we have

Lmn|¢j'(wj_1)|pdo(wj‘1) < oo forallp <3

and consequently the same is true when R M D, is replaced by I*,_; (D).
We write

t.(D) = Sup {r € R\U {0} [[¢']], < o0},

This definition is clearly independent of the particular choice of the analytic
doman @ = ¢ (D) and it is also obvious that ¢,(D) = 2. Here, however, we can
even say more. Indeed, Brennan [4] has shown that for any simply connected
domain D, #(D) = 3 + 7, where 7 is a positive constant which does not
depend on the domain. For close-to-convex domains 7 is equal to 1 and
probably so in all cases. It is interesting that Brennan’s theorem can be also
extended to the multiply connected case. This is shown in Proposition 3. The
fact that ¢ (D) = 3 is rather elementary as the following argument shows.

Since ¥ (w) is univalent on A we have (cf. [9, p. 21])

WO 2 WOl Gk = 20— o)

w
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with & = 16~y (0)|. Hence, for 2 < r < 3,

IIA

E7 f (1 — Jo|*)*"do (w)

=73 — 7T <.

The theorem of Brennan coupled with a successive application of the
Holder’s inequality on the factorization of ¢ yields:

J oo = [ oo

ProposiTiON 3. Let D be an n-connected domain as before. Then t,(D) = 3 + 1
where T > 0 is a constant independent of D.

Proof. We use induction on the factors of ¢ = ¢, 0¢,_10...0 ¢;. Bren-
nan’s theorem shows that [[¢)/||, < o for p < 3 4 r. Assume that for
Fooi = ¢p—10...0¢1wehave || F,_i/ ], < oo forp <3+ 7.For¢ = ¢,0 F,;
we have to show that

1617 = [ 16/ @PIFr @Fde @)
is finite for p < 3 4+ 7. To do so, one has only to check what happens near the
boundary curves I',_; = C; + C2 + ... 4+ C,_1 and C,. Near I',_; we have
|6/ (Fuma(2))] = M
and near C, we have
0 <K'= |F/(z)| =K.

Let 7', be a tube near C, and let 7,_; be the tubes near I',_;. Then, by the
induction assumption,

J 18 (Ba@)P|Fur @) ) < M7 [ @i <

Tn n—1

if p < 3 4+ 7. On the other hand, by Brennan’s theorem,
J i ta@ris @ s jarmaer
n Tn

X I @fne) =& sl i) <o

Fn—:(T

if p <3+ 7. Here, F,_1(7,) is a tube around F,_;(C,). This concludes the
proof.

In view of the above proposition ¢, = t,(D) = 3 + 7. We can therefore
define the interval

t
flio s 10 <o
D—1

I(D) = ;
I(tb ’t”) el = 0.
'D—1
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We also write
J(D) = I(D) — {1, 0 }.

Therefore, if ||¢']|, < o or if [|¢'||, < co for each 3 + 7 < r < 00 we have
J(D) = (1,0). In the first case 1(D) = [1, 0] and in the second /(D) =
(1,00).

If D is simply connected and 9D is of class C' then it follows from a theorem
of Warschawski [13] (see also [4]) that [|¢']l, < o for every r < oo. This
theorem can be extended to our setting by using the same arguments as those
of Proposition 3. Therefore, if dD € C! then ¢, = . In this case, however, it
may happen that [|¢'|, = % as the example of [12, p. 377] shows. On the
other hand, if D is simply connected and 4D is of class C' with a Dini contin-
uous normal then it follows from yet another theorem of Warschawski (see
19, p. 298]) that there exist positive constants ¢ and b such that

41) 0<ae=1¢()| =£b<w,z€D.

This is also true in the more general case when D is multiply connected by
appealing to the above factorization of ¢. Hence, I(D) = [1, ] for D with
dD being Dini-smooth. The last inequality could be also derived from a
corresponding inequality for the derivatives of the Green’s function. Indeed,
if 9D is of class C* with a Holder continuous normal one has such an inequality
(see [7]) and the same is true under the weaker assumption that D is merely
Dini-smooth.

From (3.3) follows that, for every ¢ € D, Kp(,{) is in B,(D) whenever
r € I(D) and in fact:

ProrositioN 4. Let p € I(D). Then for each f € L,(D), the Bergman projec-
tion (1.1) zs in H(D) and Pf = f for every f € B,(D).

For a fixed p € J(D) we let ¢ = p/(p — 1) (of course ¢ € J(D)). D is said
to belong class W, if ¢ satisfies

1 , ,
Sup (_—7«__5' & |p] [ Hq:U) < 0,
U Hd) HZ:U

where the supremum is taken over all sectors U C D and

ho = | [ v@raee "

Obviously, the definition of D € W, is independent of the particular choice of
the analytic domain @ = ¢(D). It is also clear that always D € W, and that
D e W,ifand only if D € W, If 4D is Dini-smooth then it follows from (4.1)
that D € W, for all p. Note also that the above definition is exactly the
previously mentioned M,(Q) condition for the weight A = [¢/|>” and where
U= y(1).

We do not know whether D € W, p # 2, when 3D is merely of class C*.
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5. The Bergman projection. The following lemma is crucial.

LemMA 1. Let p € J(D). The operator Qp is bounded on L,(D) if and only if
D is in W, and in this case ||Qpll, £ 4,, 4, € Co(D).

Proof. For 2z, { € D we write w = ¢(2), 7 = ¢({) with w, 7 € Q. Also, for
f€ L,(D)weletg = (foy) - ¢ Using (3.4), (3.5), (3.6) and (3.7) we have

@NG) = 76 - | Tal Do) = T - Q)¢)

= ¢'(¢) - (Tag)(r) — ¢'(§) - (Sag) (7).

Since lg(w, 7) is holomorphic for (w, r) € € X @ we have that [lo(w, 7)| £ 4
and therefore

LI¢'(s“)l"l(5szg)(f)|"d<r(s“) =fpl¢'(s“)|”| fﬂlu(w, 7)g(w)do (@) ["do (§)

= A"Il¢'|lp”[fb lf(2)|l¢’(2)ldv(2)]p = A1

Consequently, since p, g € J(D), we have that the L,(D) boundedness of
Qb is equivalent to the inequality

{ f ¢/ @[ (Tag) (w)l”da<z>}l"’ < A, |1f1]

The last inequality, however, is equivalent to

[ i@w@rvermo!” sal [ korvo o
. 9 ,

Therefore, Qp is bounded on L, (D) if and only if the Hilbert transform T'q is
a bounded operator on L,(Q:|¢'|*>?). An appeal now to Proposition 2 con-
cludes the proof.

We are now in a position to state our main theorem. Its special case when D

is the unit disk was resolved by a different method by Zaharjuta and Judovi¢
(14].

THEOREM 1. Let p € J(D). Then P s a bounded linear projection of L,(D)
onto B,(D) if and only if D ¢ W,,; and in that case ||P|], £ 4,, A, € C,(D).

Proof. In view of Proposition 4, we only have to prove the statement on the
boundedness of P. For any f € L,(D) we let

g(t) = 21r_1fD G:(3, $)f(z)do (2).

From classical results of potential theory it is well known that g; and gf exist
a.e. in D, and they are given by

(6.1) g@) =f¢) + Zw_lfDHzc(z, $)f (2)do (2)
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and

(.2) Q@) = 21r_1fD Gt (2, $)f (z)do (2).

According to (3.2) and (3.5), (5.2) can be written as
g () = —(Oof ) ().

Moreover, Hz = Gy, while by (1.1), (3.1) and (5.1)

g@) = I = P)f ),

where [ is the identity operator on L,(D). According to Proposition 1,
gr = —Rp2gr and therefore

[ - P = IgszD.

The theorem now follows from Lemma 1 and the boundedness of the Riesz
transform Rj.

Remark. According to the previously mentioned result of Bers [3] L,(D) is
continuously projected onto B, (D). Therefore we can deduce, using [8], that
B1(D), for any domain D whose boundary contains more than two points, is
topologically isomorphic to /;. In the same manner, Theorem 1 shows, for
p € J(D)and D € W,, that B,(D) is topologically isomorphic to Z,.

Throughout the rest of this section we shall always assume that p € J(D)
and D € W,. Forf € L,(D)and g € L,(D) we set

o = | reR@ue)
COROLLARY 1. The operator P 1s self-adjoint, and, in fact,

(Pf,g) = (f, Pg) = (Pf, Pg); f € L,(D), g € L,(D),
1P]l, = [|Pl, [IP]l: = 1.

Proof. These follow from Fubini’s theorem, Theorem 1 and Holder’s
inequality.

COROLLARY 2. We have the direct sum decomposition
L,(D) = B,(D) ® B,(D)*.

Proof. For f € L,(D), let h = Pf and ht = (I — P)f. Hence f = h + ht
and by Theorem 1,2 € B,(D). Letg € B,(D); then Pg = gand by Corollary 1

(ht,g) = (I —-P)f,g) = (f,9 — (Pf,g) = (f, g — (f,Pg) =0.
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If f € B,(D) N\ B,(D), then (f, g) = 0forall g € B,(D). However, K5(, {)
isin B,(D), and so, using Proposition 4, f(¢) = 0 forall { € D.

We now generalize a result of [14] proved for the unit disk A.
THEOREM 2. The projection P satisfies
4,® = |Pll, = 4,954, € G(D),j = 1,2

Proof. By Theorem 1 we have only to show that ||P]l, = 4,». We may
assume, without any loss of generality, that o € D. Let aq € C; and therefore
a = la,|] > 0. Consider the function

Fo(z) = go(z)[log (1 — z/a0) — log (1 — 2/a0)],

where go(z) = Kp(z,0). Clearly, Fy € L,(D) and [ F,| £ My||¢'|l,, where
My > 0 depends only on D. Let

ho(2) = go(2) log (1 — 2/a,).

We shall show that Phy = 0 or, in other words, that %, belongs to the anni-
hilator of B, (D). To this end we may also assume that dD € C'. Using Green’s
formula, we have

(Pho) (¢) = Lho(z)Ku(L £)do(z) = 31 faD [—27" 3G/ 1] 1=o)
X log (1 — 2/a0)Kp(¢, 2)d3.
Here, we used the fact that d/9zR,(2) = ho(z), where R, (z) is given by
Ro(2) = [—27710G/ 0% =) log (1 — 2/d).

(Pho) (£) = 0, because R, (z) vanishes near D, and therefore we need not make
any assumption on the smoothness of dD, apart from p € J(D) and D € W,.
Consequently,

fo(z) = (PFo)(z) = g(2) log (1 — z/ao),
and, by Theorem 1, f, € B,(D). Consider the sector
D(e,a) = {2: |32 — ao] £ ¢, | arg (ag — 2) — arg ao] = a/2},

where 0 < o < 1,0 < ¢ < a. Now, K;(z,6) has only a finite number of zeros
in D, none of which is near dD. We choose ¢ > 0 to be small enough so that
D(e,a) C D and that there |go(z)| = |Kp(3,0)| = 4 > 0. We can further
restrict € > 0 to be within

M < e < e, A,
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where M > 0 depends only on D, and is chosen to be large enough. Then,

4

Y4

P _ ? 2 >f ? l _ 2

[ foll5 fD lgo(2) [P | log (1 ao)i do(s) = | o ()" |log |1 — =
ol 2 —ad |?
X do(z) 2 g0 (2) ” | log — | do(2)
D(e,a) a
_ /4 € al2 14
= A”f log lz2 = ao do(z) = A”f f log = | rdrdg
D(e,@) a 0 —a/2 a

’ 11) ., [ 1\?
log; | rdr = A’aa fo log; sds

]
0
2

= A 2 ' 1 a ? p € a ’ » Ei ! —1yp
= A’ae og — ) idt > A%a = \log > A%a 5 (p]]¢'|1,47)
0 te 2 € 2

=5l > 5o |
Therefore || fol, > M||¢'|l,p, where M, > 0 depends only on D. Now,

PEL, 1ol - M
Folle — TFolly~ ?”

and hence [|P||, = Myp. From Corollary 1,
[P, = [Pl > Mg > M/ (p — 1)

and the theorem is proved.

I1Pll, =

Remark. The factor go(z) = Kp(z,0) in the definition of Fy(z) was needed
to ensure that ky € B,(D)L. If D was the unit disk A then go(z) = Ka(z,0) =
71 (ao will be chosen as 1). This property is characteristic to all disks.

Forg € B,(D),welet L,(f) = (f, g) forall f € B,(D). Using the previous
assertions and a standard argument based on the Hahn-Banach theorem
yields (cf. also [14]):

COROLLARY 3. The mapping 1:B,(D) — (B,)* gwen by 1(¢g) = L, is an
anti-linear isomorphism of B,(D) onto the dual of B,(D), (B,)*. T is un isometry
for p = 2, and, for p € J(D) — {2}, the “‘isometry distortion’’, which is given by

I, = Sup {”g”q/”La”: g € B,(D)},

satisfies
4,2 < T, <4,0; 4,2 € CD),j=1,2.
6. Weak convergence. Let f,,f € B,(D), 1 £ p < o0. As usual, f, —>f

weakly in B, (D) if L(f,) — L(f) for each L € (B,)*. The uniqueness of the
weak limit, if it exists, is obvious in this case.
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Assume now that p € I(D) and let {,} be a dense sequence in the domain D.
Consider the sequence of functions ®,(z) = Ky(3,%,), n = 1,2,.... In view
of Proposition 4, for any f € B,(D), (f,®,) =0, n =1,2,...,if and only
if f = 0. We have the obvious:

LEMMA 2. Let p € J(D) and D € W,. Then the linear envelope of the
®,’s N = [®,] is dense in B,(D).

Proof. Suppose not, and let fy € B,(D) — N, fo # 0. The Hahn-Banach
theorem implies the existence of L € (B,)* with L(f,) = 1land L(N) = {0}.
According to Corollary 3, L(f) = (f, ¢g1), ¢1 € B,(D) and all f € B,(D).
Since L(N) = {0}, L(®,) = (®,,¢.) =0, n =1,2,.... Thus g, = 0, con-
tradicting L(fo) = 1.

TuaEOREM 3. (i) Suppose f, —f weakly in B,(D), 1 = p =co. Then
{II f2llp} is bounded and f, (z) — f(2) uniformly on compacta of D.

(ii) Let p € J(D) and D € W, and suppose that { || f,||p} is bounded, and that
fa(2) = f(2) for each 5 € D. Then f, — f weakly in B,(D).

Proof. (i) {]| full,} is bounded because, in any normed space, the norms of a
weakly convergent sequence are bounded. The subharmonicity of | f(z)[? in D
implies now that f,(z) — f(z) uniformly on compacta of D.

(ii) Assume || f,]l, £ M. Hence {| f,(2)|} is uniformly bounded on compacta
of D. Thusf € H(D)and | f ||, £ M. Since f,(tn) — f(in) as n — ©, we have
lim, o (fo —f, ) =0, m =1,2,.... Let L € (B,)*. According to Corol-
lary 3, L(f, — f) = (fu — [, ¢1) for some g;, € B,(D). Given ¢ > 0, there is,
in view of Lemma 2, an & € [®,], such that |g, — k||, < ¢/4M. Further,
there is an integer n(e) such that |(f, — f, #)| < ¢/2 for n > n(¢). Hence for
n > n(e)

S A fa =Sl

gr — hll, + ¢/2 <
and f, — f weakly in B, (D).

The fact that (ii) of Theorem 3 is not true for » = 1 can be seen from the
following example: Let f,(z) = nz", n = 1,2,.... Clearly f, € B1(A) and
Il f2lli < 27 for each n. Next, f,(z) — 0 uniformly on compacta of A. Choose a
function g(z) in L (A) to be defined as follows: Let

[Oy 1) = U(I)COZO[rkv TIH']); Yy = ]- - Q_ky k = O) 17 L]
and set
g(re’) = e forr € [ry, 7ip1).

Then, for

27

L(f) =fAf(Z)3FZ)da(z) = 2 k-0 fr:m \ f(re ®yre™ ™ " Gody,
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L € B;(A)*. However,
lim;, L(f2r+1) = 2w (e — e72) # 0,
and { f,} does not converge weakly.

COROLLARY 4. Let p € J(D) and D € W,. Suppose fnf € By(D) with
fa(2) = f(2) for each z € D and | flly = || f Il Then || fu — f [, — 0.

Proof. This follows from Theorem 3 (ii) and the fact that B,(D) is locally
uniformly convex.
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