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Abstract

In this paper, we obtain some criteria for p-nilpotency and p-supersolvability of a finite group and extend
some known results concerning weakly S -permutably embedded subgroups. In particular, we generalise
the main results of Zhang et al. [‘Sylow normalizers and p-nilpotence of finite groups’, Comm. Algebra
43(3) (2015), 1354–1363].
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1. Introduction

Throughout the paper, we suppose that G is a finite group and p is a prime. Let
π(G) be the set of all the prime divisors of |G|. To state our results, we need to
recall some notation. According to Kegel [10], a subgroup H of a finite group G is
called an S -permutable subgroup of G if H permutes with every Sylow subgroup of G.
According to Ballester-Bolinches and Pedraza-Aguilera [2], a subgroup H of a finite
group G is said to be S -permutably embedded in G if, for each prime p dividing
|H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some S -permutable
subgroup of G. According to Li et al. [16], a subgroup H of a finite group G is
called a weakly S -permutably embedded subgroup of G if there exist T E EG and
H1 ≤ G such that G = HT , H ∩ T ≤ H1 ≤ H and H1 is S -permutably embedded in G.
Following Berkovich and Isaacs [3], if G is a finite group and p is a prime divisor
of |G|, we denote by G∗p the unique smallest normal subgroup of G for which the
corresponding factor group is abelian of exponent dividing p − 1. It is well known that
G is p-supersolvable if and only if G∗p is p-nilpotent (see [3]).

Let p be a prime dividing the order of a finite group G and P ∈ Sylp(G). Let D(P)
denote the set of subgroups P1 ≤ P for which there exists P2 ≤ G with P1 ∩ Op(G∗p) ≤
P2 ≤ P1 and P2 is S -permutably embedded in G. It is not difficult to see that if P1 ≤ P
is weakly S -permutably embedded in G, then P1 ∈ D(P). However, there exist a finite
group G with p an odd prime divisor of |G|, and P ∈ Sylp(G) with |P| ≥ pe+1, where e
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is a positive integer, such that every subgroup P1 of P of order pe is in D(P), but P has
a subgroup P3 of order pe which is not weakly S -permutably embedded in G. See the
following example.

Example 1.1. Let T = 〈a, b | ap2
= b2 = 1, b−1ab = a−1〉 � D2p2 , where p is an odd

prime. There exists c ∈ Aut(T ) such that ac = a and bc = ba. Consider G = T o 〈c〉 �
〈a, b, c | ap2

= b2 = cp2
= 1, b−1ab = a−1, c−1ac = a, c−1bc = ba〉. Let P = 〈a〉 × 〈c〉.

Then P is the normal Sylow p-subgroup of G with order p4. It is not difficult to
see that G is p-supersolvable and thus P ∩ Op(G∗p) = 1. Hence, for any subgroup P1
of P with order p, P1 ∈ D(P). Consider 〈cp〉 and note that |〈cp〉| = p. It is not difficult
to see that 〈cp〉 is not weakly S -permutably embedded in G.

There are many criteria for p-nilpotency of a finite group in the literature. Recently,
Huang et al. and Zhang et al. both proved the following theorem.

Theorem 1.2 ([7, Theorem 1.8] and [20, Theorem 3.2]). Let p be a prime dividing the
order of a finite group G, e a positive integer and P ∈ Sylp(G) with |P| ≥ pe+1. Suppose
that NG(P) is p-nilpotent and, for any subgroup D of P with order pe, D is weakly
S -permutably embedded in G. In addition, suppose that all cyclic subgroups of P with
order 4 are weakly S -permutably embedded in G if p = 2, e = 1 and P is nonabelian.
Then G is p-nilpotent.

In [18], the author investigated some necessary and sufficient conditions for
p-supersolvability and p-nilpotency of a finite group. In this note, we continue the
work of [18] and prove the following results, which generalise the main theorems
of [7, 11–13, 19] and [20].

Theorem 1.3. Let p be an odd prime dividing the order of a finite group G, e a positive
integer and P ∈ Sylp(G) with |P| ≥ pe+1. Then G is p-nilpotent if and only if NG(P) is
p-nilpotent and, for any subgroup P1 of P with order pe, P1 ∈ D(P).

Definition 1.4. Let p be a prime and P a nonidentity p-group with |P| = pn. Fix an
integer k with 1 ≤ k ≤ n. We define the set Lk(P) as follows.

(i) Assume that k = 1. If p = 2 and P is nonabelian, L1(P) = {P1 | P1 ≤ P, |P1| = 2}
∪{P2 | P2 ≤ P and P2 is a cyclic subgroup of order 4}. Otherwise, set L1(P) =

{P1 | P1 ≤ P and |P1| = p}.
(ii) Assume that n ≥ 2 and 2 ≤ k ≤ n. Then Lk(P) = {P1 | P1 ≤ P and |P1| = pk}.

Theorem 1.5. Let p be a prime dividing the order of a finite group G and suppose that
(|G|, p − 1) = 1. Let e be a positive integer and P ∈ Sylp(G) with |P| ≥ pe+1. Note that
G∗p = G. Then the following statements are equivalent.

(a) G is p-nilpotent.
(b) For any P1 ∈ Le(P), P1 ∈ D(P).
(c) For any P1 ∈ Le(P), P1 ∩ Op(G) is S -permutably embedded in G.

Theorems 1.3 and 1.5 generalise [7, Theorems 1.3 and 1.8] and [20, Theorem 3.2].
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Theorem 1.6. Let p be an odd prime dividing the order of a finite group G, e a positive
integer and P ∈ Sylp(G) with |P| ≥ pe+1. Then G is p-nilpotent if and only if for any
subgroup P1 ≤ P with |P1| = pe, P1 ∈ D(P) and NG(P1) is p-nilpotent.

Theorems 1.5 and 1.6 generalise [11, Theorem 1.2], [13, Theorem 1.3] and [19,
Theorem 3.2].

Theorem 1.7. Let p be a prime dividing the order of a finite group G, P ∈ Sylp(G)
and P′ ≤ P1 ≤ Φ(P). Assume that K ≤ G with P1 ∈ Sylp(K). Also assume that there
exist H, K1 ≤ G such that G = KH, K ∩ H ≤ K1 ≤ K and, for any L ∈ Sylp(K1), L is
S -permutably embedded in G. If NG(P) is p-nilpotent, then G is p-nilpotent.

Here, as usual, Φ(P) denotes the Frattini subgroup of P. Theorem 1.7 generalises
[20, Theorems 3.3 and 3.4]. Finally, we also give another criterion for p-nilpotency of
a finite group.

Theorem 1.8. Let p be a prime dividing the order of a finite group G and P ∈ Sylp(G).
Then G is p-nilpotent if and only if NG(P) is p-nilpotent and there exists P1 ∈ D(P)
such that P′ ≤ P1 ≤ Φ(P).

The proofs of the main results of [7, 11, 12, 19] and [20] all require Thompson’s
normal p-complement criterion (see [9, Theorem 7.1]). However, our proof does not
appeal to Thompson’s normal p-complement criterion and is much more elementary.

2. Preliminaries

Lemma 2.1. Let p be a prime dividing the order of a finite group G and let P1 ≤ G be
a p-group, X ≤ G and N EG.

(a) If P1 is S -permutable in G, then P1 ≤ Op(G) and Op(G) ≤ NG(P1) [18,
Lemma 2.5(a)].

(b) P1 is S -permutable in G if and only if Op(G) ≤ NG(P1) [18, Lemma 2.5(b)].
(c) If P1 is S -permutable in G, then P1 ∩ N is S -permutable in G [corollary of (b)].
(d) If X is S -permutable in G, then X E EG [10].
(e) If X is S -permutable in G and L ≤ G, then X ∩ L is S -permutable in L.
(f) If X is S -permutably embedded in G and X ≤ L, then X is S -permutably

embedded in L [corollary of (e)].
(g) If X is S -permutable (S -permutably embedded) in G, then XN/N is

S -permutable (S -permutably embedded) in G/N.
(h) If X is S -permutable (S -permutably embedded) in G, then X ∩ Op(G) is

S -permutable (S -permutably embedded) in G.

Proof. (d) See [10]. Here we derive Lemma 2.1(d) from Wielandt’s famous zipper
lemma (see [9, Theorem 2.9]). Firstly, we claim that if H ≤ K ≤ G, then H is
S -permutable in K. For any p ∈ π(K) and for any P1 ∈ Sylp(K), there exists
P ∈ Sylp(G) with P1 = P ∩ K. Since HP = PH, by Dedekind’s lemma, it follows that
HP1 = P1H. Hence, H is S -permutable in K.
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We claim that for any p ∈ π(G) and for any P ∈ Sylp(G), H E EHP. Note that H
is S -permutable in HP. Since [HP : H] is a power of p, it is not difficult to see that
Op(HP) ≤ H and thus H E EHP.

Suppose that G is a counterexample with minimal order; we work to obtain a
contradiction. Note that H < G. For any proper subgroup K of G such that H ≤ K,
H is S -permutable in K. Hence, H E E K. Recall that we assumed that H is not
subnormal in G. By Wielandt’s zipper lemma, there is a unique maximal subgroup
L of G that contains H. For any p ∈ π(G) and for any P ∈ Sylp(G), since H E EHP,
it follows that HP < G and thus HP ≤ L. In particular, we have P ≤ L. Since G is
generalised by all of its Sylow subgroups, it follows that G ≤ L. This is the desired
contradiction.

(e) It is no loss to assume that L > 1. For any p ∈ π(L) and for any P1 ∈ Sylp(L),
there is a P ∈ Sylp(G) such that P1 = P ∩ L. By (d), X E EG. Since PX = XP, we
see that Op(PX) = Op(X) ≤ X. Consider PX ∩ L. Since P1 = P ∩ L ∈ Sylp(L) and
P1 = P ∩ L ≤ PX ∩ L ≤ L, it follows that P1 ∈ Sylp(PX ∩ L). Observe that Op(PX ∩ L)
≤ PX ∩ L ∩ Op(PX) ≤ PX ∩ L ∩ X = X ∩ L. Hence, PX ∩ L = P1Op(PX ∩ L) =

P1(X ∩ L) and P1(X ∩ L) = (X ∩ L)P1. This completes the proof.
(g) The proof is not difficult.
(h) It suffices to show that if X is S -permutable in G, then X ∩ Op(G) is

S -permutable in G. If π(G)\{p} , ∅, then for any q ∈ π(G)\{p} and any Q ∈ Sylq(G),
XQ = QX. By Dedekind’s lemma, (X ∩ Op(G))Q = Q(X ∩ Op(G)). For any P ∈
Sylp(G), we have PX = XP. By (d), X E EG and Op(PX) = Op(X) ≤ X ∩ Op(G).
Hence, PX = POp(X) = P(X ∩ Op(G)) and P(X ∩ Op(G)) = (X ∩ Op(G))P. This
completes the proof. �

Lemma 2.2 [18, Lemma 2.1]. Let p be a prime dividing the order of a finite group G,
P ∈ Sylp(G), N EG and e a positive integer. Write P1 = P ∩ N. Assume that P1 E N
and N is not p-nilpotent. Also assume that |P1| ≤ pe and |P| ≥ pe+1. Then P has a
normal subgroup P2 of order pe with [P1 : P1 ∩ P2] = p.

Lemma 2.3 [18, Lemma 2.2]. Let p be a prime dividing the order of a finite group G
and P ∈ Sylp(G). Write P1 = P ∩ Op(G∗p). Assume that P1 > 1 and P1 has a maximal
subgroup T with T EG. Then P1 5 G.

Lemma 2.4 [18, Theorem 1.3]. Let p be a prime dividing the order of a finite group
G, e ≥ 2 an integer and P ∈ Sylp(G) with |P| ≥ pe+1. Then G is p-supersolvable if and
only if P1 ∩ Op(G∗p) is S -permutable in G for all subgroups P1 ≤ P with |P1| = pe.

Lemma 2.5 [18, Theorem 1.4]. Let p be a prime dividing the order of a finite
group G and P ∈ Sylp(G). Then G is p-supersolvable if and only if P1 ∩ Op(G∗p) is
S -permutable in G for all subgroups P1 ≤ P with |P1| = p and, if p = 2 and P is
nonabelian, P2 ∩ Op(G∗p) is also S -permutable in G for all cyclic subgroups P2 ≤ P
with |P2| = 4.
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Lemma 2.6 [18, Lemma 2.8]. Let p be a prime dividing the order of a finite group G
and P1 be a p-subgroup of G. Let L EG and N be a normal p′-subgroup of G. Then
P1N/N ∩ LN/N = (P1 ∩ L)N/N.

Lemma 2.7 [18, Lemma 2.9]. Let p be a prime dividing the order of a finite group
G and N E G. Then (G/N)∗p = G∗pN/N, Op(G/N) = Op(G)N/N and Op((G/N)∗p) =

Op(G∗p)N/N.

Lemma 2.8. Let p be a prime dividing the order of a finite group G and P ∈ Sylp(G).
Let X ≤ G be S -permutable in G. Assume that P ∩ Op(G) 
 P ∩ X. Then PX < G.

Proof. By Lemma 2.1(d), X E EG. If PX = G, then Op(G) = Op(X) ≤ X and thus
P ∩ Op(G) ≤ P ∩ X, which is a contradiction. �

Lemma 2.9. Let p be a prime dividing the order of a finite group G, P ∈ Sylp(G) and
P1 ≤ P. Assume that there exists X ≤ G such that P1 ∩ Op(G) ∈ Sylp(X) and X is
S -permutable in G. If P ∩ Op(G) 
 P1, then PX < G.

Proof. Note that P ∩ X = P1 ∩ Op(G). By Lemma 2.8, it follows that PX < G. �

Lemma 2.10. Let p be a prime dividing the order of a finite group G, P ∈ Sylp(G),
P1 ≤ P and P1 EG.

(a) If P1 ≤ Φ(P) and G/P1 is p-nilpotent, then G is p-nilpotent [18, Lemma 2.13].
(b) If P′ ≤ P1 ≤ Φ(P) and NG(P) is p-nilpotent, then G is p-nilpotent.

Proof. (b) Consider G/P1. Note that P/P1 ∈ Sylp(G/P1) and P/P1 is abelian. Since
NG/P1 (P/P1) = NG(P)/P1 is p-nilpotent, by Burnside’s theorem (see [9, Theorem
5.13]), G/P1 is p-nilpotent. By (a), G is p-nilpotent. �

Lemma 2.11 (Tate; see [8, Satz IV.4.7] or [6, Theorem A]). Let p be a prime dividing
the order of a finite group G, P ∈ Sylp(G) and N E G. If P ∩ N ≤ Φ(P), then N is
p-nilpotent.

Lemma 2.12 [18, Corollary 3.8]. Let p be a prime dividing the order of a finite group
G and P ∈ Sylp(G). Then G is p-nilpotent if and only if NG(P) is p-nilpotent and there
exists P′ ≤ P1 ≤ Φ(P) such that P1 ∩ Op(G∗p) EG∗p.

3. Main results

Proof of Theorem 1.3. We only need to prove the sufficiency. Suppose that G is
a counterexample with minimal order; we work in the following steps to obtain a
contradiction.

Step 1. If P ≤ H < G, then H is p-nilpotent. By Lemma 2.1(f), the hypotheses are
inherited by H. Hence, H is p-nilpotent.

Step 2. Op′(G) = 1. By Lemmas 2.1(g), 2.6 and 2.7, the hypotheses are inherited
by G/Op′(G). If Op′(G) > 1, then G/Op′(G) is p-nilpotent and thus G is p-nilpotent.
Hence, Op′(G) = 1.
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Step 3. G is not p-supersolvable, G∗p = G and, for any subgroup P1 of P with order
pe, P1 ∩ Op(G) is S -permutably embedded in G. Assume that G is p-supersolvable
and thus G is p-solvable with p-length 1. Since Op′(G) = 1, it follows that P EG and
thus G = NG(P) is p-nilpotent. Hence, G is not p-supersolvable. Assume that G∗p < G.
By Step 1, it follows that G∗p is p-nilpotent and thus G is p-supersolvable. This is a
contradiction. Hence, G∗p = G. For any subgroup P1 of P with order pe, there exists
P2 ≤G such that P1 ∩Op(G) ≤ P2 ≤ P1 and P2 is S -permutably embedded in G. Since
P1 ∩ Op(G) = P2 ∩ Op(G), by Lemma 2.1(h), P1 ∩ Op(G) is S -permutably embedded
in G.

Step 4. There exists a subgroup P1 of P with order pe such that P1 ∩ Op(G) is not
S -permutable in G. Assume that for any subgroup P1 of P with order pe, P1 ∩Op(G) is
S -permutable in G. By Lemmas 2.4 and 2.5, G is p-supersolvable. But this contradicts
Step 3.

Step 5. If P1 ≤ P with |P1| = pe, X ≤ G is such that P1 ∩ Op(G) ∈ Sylp(X) and X is
S -permutable in G and PX < G, then P1 ∩ Op(G) is S -permutable in G. By Step 1,
PX is p-nilpotent and thus X is p-nilpotent. Since X E EG (Lemma 2.1(d)) and
Op′(G) = 1, it follows that X = P1 ∩ Op(G). Hence, P1 ∩ Op(G) is S -permutable in G.

Step 6. If P1 ≤ P is such that |P1| = pe and P ∩ Op(G) 
 P1, then P1 ∩ Op(G) is
S -permutable in G. There exists X ≤ G such that P1 ∩ Op(G) ∈ Sylp(X) and X is
S -permutable in G. By Lemma 2.9, it follows that PX < G. By Step 5, P1 ∩ Op(G) is
S -permutable in G.

Step 7. |P ∩ Op(G)| ≤ pe. By Steps 4 and 5, there exist P1 ≤ P with |P1| = pe and
X ≤ G such that P1 ∩ Op(G) ∈ Sylp(X), X is S -permutable in G and G = PX. Since
X E EG (Lemma 2.1(d)), it follows that Op(G) = Op(X) ≤ X and thus P ∩ Op(G) ≤
P ∩ X = P1 ∩ Op(G) ≤ P1.

Step 8. If P̂ = P ∩ Op(G), then P̂ has a maximal subgroup T such that T ≤ Op(G).
Since |P̂| ≤ pe and |P| ≥ pe+1, there exists P̃ ≤ P such that |P̃| = pe+1 and P̂ ≤ P̃. Assume
that P̂ ≤ Φ(P̃). Observe that P̃ ∈ Sylp(P̃Op(G)). By Lemma 2.11, Op(G) is p-nilpotent,
that is, G is p-nilpotent. This is a contradiction. Hence, P̂ 
 Φ(P̃) and P̃ has a
maximal subgroup P1 with P̂ 
 P1. Then |P1| = pe, P̃ = P̂P1 and [P̂ : P̂ ∩ P1] = p.
Let T = P̂ ∩ P1. Since P̂ 
 P1, by Step 6, P1 ∩ Op(G) is S -permutable in G. By
Lemma 2.1(a), T = P̂ ∩ P1 = P1 ∩ Op(G) ≤ Op(G).

Step 9. The final contradiction. Consider NG(P̂). Assume that NG(P̂) < G. Then
T = Op(Op(G)). Note that P ≤ NG(P̂) < G. By Step 1, NG(P̂) is p-nilpotent. Hence,
NOp(G)/T (P̂/T ) is p-nilpotent. Note that P̂/T ∈ Sylp(Op(G)/T ) and |P̂/T | = p. By
Burnside’s theorem, Op(G)/T is p-nilpotent. Then Op(Op(G)) < Op(G). This is
a contradiction. Assume that NG(P̂) = G, that is, P̂ E G. Since Op(G) is not
p-nilpotent, by Lemma 2.2, P has a normal subgroup P1 with order pe such that
[P̂ : P̂ ∩ P1] = p and, in particular, P̂ 
 P1. By Step 6, P1 ∩ Op(G) is S -permutable in
G. By Lemma 2.1(b), P̂ ∩ P1 = P1 ∩ Op(G) E Op(G). Since P̂, P1 E P, it follows that
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P̂ ∩ P1 E P. Hence, P̂ ∩ P1 EG. Recall that G∗p = G. By Lemma 2.3, P̂ 5 G. This
contradicts P̂ EG. Hence, we obtain the final contradiction. �

Proof of Theorem 1.5. The implications (a) ⇒ (b) and (a) ⇒ (c) are not difficult to
prove. By Lemma 2.1(h), (b) is equivalent to (c).

To prove (c)⇒ (a), we modify the proof of Theorem 1.3. Since (|G|, p − 1) = 1, G
is p-nilpotent if and only if G is p-supersolvable. Suppose that G is a counterexample
with minimal order; we work in the following steps to obtain a contradiction. Steps
1–6 use the same arguments as in the proof of Theorem 1.3.

Step 1. If P ≤ H < G, then H is p-nilpotent.

Step 2. Op′(G) = 1.

Step 3. G is not p-supersolvable.

Step 4. There exists a subgroup P1 ∈ Le(P) such that P1 ∩Op(G) is not S -permutable
in G.

Step 5. If P1 ∈ Le(P), X ≤G is such that P1 ∩Op(G) ∈ Sylp(X) and X is S -permutable
in G and PX < G, then P1 ∩ Op(G) is S -permutable in G.

Step 6. If P1 ∈ Le(P) and P ∩ Op(G) 
 P1, then P1 ∩ Op(G) is S -permutable in G.

Step 7. e ≥ 2 and |P ∩ Op(G)| ≤ pe. By Steps 4 and 5, there exist P1 ∈ Le(P) and
X ≤ G such that P1 ∩ Op(G) ∈ Sylp(X), X is S -permutable in G and G = PX. By the
proof of Step 7 of Theorem 1.3, P ∩ Op(G) ≤ P ∩ X = P1 ∩ Op(G) ≤ P1. Assume that
e = 1; we work to obtain a contradiction. Since e = 1, it follows that P1 is cyclic
and thus P ∩ Op(G) is cyclic. Since (|G|, p − 1) = 1, by Burnside’s theorem, Op(G) is
p-nilpotent, that is, G is p-nilpotent. This is the desired contradiction. Hence, e ≥ 2,
|P1| = pe and |P ∩ Op(G)| ≤ pe.

Step 8. If P̂ = P ∩ Op(G), then P̂ has a maximal subgroup T such that T E Op(G).
The assertion follows by the same argument as in the proof of Step 8 of Theorem 1.3.

Step 9. The final contradiction. Consider Op(G)/T . Note that P̂/T ∈ Sylp(Op(G)/T )
and |P̂/T | = p. Since (|G|, p − 1) = 1, by Burnside’s theorem, it follows that Op(G)/T
is p-nilpotent. Then Op(Op(G)) < Op(G). This is a contradiction. �

Proof of Theorem 1.6. We only need to prove the sufficiency. Suppose that G is a
counterexample with minimal order; we work to obtain a contradiction. We mimic the
proof of Theorem 1.3. In fact, we only need to modify Step 3 of Theorem 1.3.

Step 3. G is not p-supersolvable and G∗p = G and, for any subgroup P1 of P with order
pe, P1 ∩Op(G) is S -permutably embedded in G. Assume that G is p-supersolvable and
thus G is p-solvable with p-length 1. Since Op′(G) = 1 (Step 2), P EG. Since G is
p-supersolvable, there exists a subgroup P1 ≤ P such that |P1| = pe and P1 EG. Then
G = NG(P1) is p-nilpotent. Hence, G is not p-supersolvable. By the proof of Step 3
of Theorem 1.3, it follows that G∗p = G and, for any subgroup P1 of P with order pe,
P1 ∩ Op(G) is S -permutably embedded in G. �
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Lemma 3.1. Let p be a prime dividing the order of a finite group G, P ∈ Sylp(G)
and P′ ≤ P1 ≤ Φ(P). Suppose that P1 is S -permutably embedded in G and NG(P) is
p-nilpotent; then G is p-nilpotent.

Proof. By the hypotheses, there exists X ≤ G such that P1 ∈ Sylp(X) and X is
S -permutable in G. We work by induction on |G|. By Lemma 2.1(g), the hypotheses
are inherited by G/Op′(G). If Op′(G) > 1, by induction, G/Op′(G) is p-nilpotent and
thus G is p-nilpotent. Hence, we can assume that Op′(G) = 1.

By Lemma 2.1(d), X E EG. Since PX = XP, we have P ∩ Op(PX) = P ∩ Op(X) ≤
P ∩ X = P1 ≤ Φ(P). In the subgroup PX, by Lemma 2.11, PX is p-nilpotent and thus
X is p-nilpotent. Since X E EG and Op′(G) = 1, it follows that X = P1. Then P1 is
S -permutable in G. By Lemma 2.1(a), Op(G) ≤ NG(P1). Since P′ ≤ P1 ≤ P, we see
that P1 E P. Hence, P1 EG. By Lemma 2.10(b), G is p-nilpotent. �

Proof of Theorem 1.7. By Sylow’s second theorem, there exists k ∈ K such that
Pk ∩ H ∈ Sylp(H). Since G = KH, it follows that Pk = Pk

1(Pk ∩ H). Since Pk
1 ≤ Φ(Pk),

it follows that Pk = Pk ∩ H. Hence, Pk ≤ H and thus Pk
1 ≤ K ∩ H ≤ K1 ≤ K. Hence,

Pk
1 ∈ Sylp(K1) and thus Pk

1 is S -permutably embedded in G. By Lemma 3.1, G is
p-nilpotent. �

Proof of Theorem 1.8. It is no loss to assume that Op′(G) = 1. Since P1 ∈ D(P), there
exist P2,X ≤G such that P1 ∩Op(G∗p) ≤ P2 ≤ P1, P2 ∈ Sylp(X) and X is S -permutable
in G. By the proof of Lemma 3.1, it follows that P2 = X is S -permutable in G.
By Lemma 2.1(a), Op(G) ≤ NG(P2). Hence, P1 ∩ Op(G∗p) = P2 ∩ Op(G∗p) E Op(G).
Since P′ ≤ P1 ≤ P, it follows that P1 ∩ Op(G∗p) E P. Hence, P1 ∩ Op(G∗p) EG. By
Lemma 2.12, it follows that G is p-nilpotent. �

4. Applications

Recently, Ballester-Bolinches and Li proved the following theorem, which includes
the main theorems of [17].

Theorem 4.1 [1, Theorem 3]. Let p be a prime dividing the order of a finite group G, e
a positive integer and P ∈ Sylp(G) with |P| ≥ pe+1. Suppose that for any subgroup P1

of P with order pe, P1 is S -permutably embedded in G. In addition, suppose that all
cyclic subgroups of P of order 4 are S -permutably embedded in G if p = 2, e = 1 and
P is nonabelian. Then G is p-supersolvable.

Here we take a different approach to Theorem 4.1. We need the following lemma.

Lemma 4.2. Let P be a finite nonidentity p-group, where p is a prime. Let P1 < P with
P1 � Φ(P) and let L = {T | T is a maximal subgroup of P with P1 � T }. We write |L| to
denote the cardinality of L. Then |L| ≥ p.
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Proof. Note that P1Φ(P) < P. Let L1 = {T | T is a maximal subgroup of P} and
L2 = {T | T is a maximal subgroup of P with P1 ≤ T }, so L = L1\L2. Since P1 � Φ(P),
it follows that |L| ≥ 1. Now L2 = {T | T is a maximal subgroup of P with P1Φ(P) ≤ T }.
There exist n,m ∈ N+ such that [P : Φ(P)] = pn and [P : P1Φ(P)] = pm. It is not difficult
to see that |L1| = (pn − 1)/(p − 1) and |L2| = (pm − 1)/(p − 1). Hence, |L1| ≡ |L2| ≡ 1
(mod p) and |L| ≡ 0 (mod p). Since |L| ≥ 1, it follows that |L| ≥ p. �

We modify the proof of Theorem 1.3 to prove Theorem 4.1.

Proof of Theorem 4.1. By Theorem 1.5, it suffices to prove the theorem for the case
that p is an odd prime. Suppose that G is a counterexample with minimal order; we
work in the following steps to obtain a contradiction.

Step 1. If P ≤ H < G, then H is p-supersolvable. By Lemma 2.1(f), the hypotheses
are inherited by H. Hence, H is p-supersolvable.

Step 2. Op′(G) = 1. By Lemma 2.1(g), the hypotheses are inherited by G/Op′(G). If
Op′(G) > 1, then G/Op′(G) is p-supersolvable and thus G is p-supersolvable. Hence,
Op′(G) = 1.

Step 3. There exists a subgroup P1 of P with order pe such that P1 is not S -permutable
in G. Assume that for any subgroup P1 of P with order pe, P1 is S -permutable in G.
By Lemmas 2.4 and 2.5, G is p-supersolvable. This is a contradiction.

Step 4. If P1 ≤ P with |P1| = pe, X ≤ G is such that P1 ∈ Sylp(X) and X is
S -permutable in G and PX < G, then P1 is S -permutable in G. By Step 1, PX is
p-supersolvable and thus X is p-supersolvable and, in particular, X is p-solvable with
p-length 1. Since X E EG (Lemma 2.1(d)) and Op′(G) = 1, it follows that P1 is the
normal Sylow p-subgroup of X and thus P1 E EG. For any q ∈ π(G)\{p} and any
Q ∈ Sylq(G), we have XQ = QX. Since P1 E EG and P1 ∈ Sylp(XQ), it follows that P1
is the normal Sylow p-subgroup of XQ and thus Q ≤ NG(P1). Hence, Op(G) ≤ NG(P1).
By Lemma 2.1(b), P1 is S -permutable in G.

Step 5. If P1 ≤ P is such that |P1| = pe and P ∩Op(G∗p) 
 P1, then P1 is S -permutable
in G. There exists X ≤ G such that P1 ∈ Sylp(X) and X is S -permutable in G. Assume
that G = PX; we work to obtain a contradiction. Since X E EG (Lemma 2.1(d)), it
follows that Op(G) = Op(X) ≤ X and thus P ∩ Op(G∗p) ≤ P ∩ Op(G) ≤ P ∩ X = P1.
This is the desired contradiction. Hence, PX < G. By Step 4, P1 is S -permutable
in G.

Step 6. |P ∩ Op(G∗p)| ≤ |P ∩ Op(G)| ≤ pe. By Steps 3 and 4, there exist P1 ≤ P with
|P1| = pe and X ≤ G such that P1 ∈ Sylp(X), X is S -permutable in G and G = PX. By
the proof of Step 5, P ∩ Op(G∗p) ≤ P ∩ Op(G) ≤ P ∩ X = P1.

Step 7. The final contradiction. Let P̂ = P ∩ Op(G∗p). Since |P̂| ≤ pe and |P| ≥ pe+1,
there exists P̃ ≤ P such that |P̃| = pe+1 and P̂ ≤ P̃. Assume that P̂ ≤ Φ(P̃). Observe
that P̃ ∈ Sylp(P̃Op(G∗p)). By Lemma 2.11, Op(G∗p) is p-nilpotent and thus G is
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p-supersolvable. This is a contradiction. Hence, P̂ 
 Φ(P̃). By Lemma 4.2, P̃ has
two different maximal subgroups P1, P2 with P̂ 
 P1 and P̂ 
 P2. By Step 5, P1 and
P2 are both S -permutable in G. By Lemma 2.1(a), P1,P2 ≤ Op(G) and thus P̃ ≤ Op(G).
Hence, P̂ ≤ Op(G) and thus P̂ = Op(G) ∩Op(G∗p) EG. Since Op(G∗p) is not p-nilpotent,
by Lemma 2.2, P has a normal subgroup P1 with order pe such that [P̂ : P̂ ∩ P1] = p
and, in particular, P̂ 
 P1. By Step 5, P1 is S -permutable in G. By Lemma 2.1(a),
Op(G) ≤ NG(P1) and thus P̂ ∩ P1 = P1 ∩ Op(G∗p) E Op(G). Since P̂, P1 E P, it follows
that P̂ ∩ P1 E P. Hence, P̂ ∩ P1 EG. By Lemma 2.3, P̂ 5 G. This contradicts P̂ EG.
Hence, we obtain the final contradiction. �

Remark 4.3. There exists a finite non-p-supersolvable group G such that p is an odd
prime divisor of |G|, e is a positive integer, P ∈ Sylp(G) and |P| ≥ pe+1 such that for
every subgroup P1 of P with |P1| = pe, there are nonidentity subgroups P2 and X of G
with P1 ∩ Op(G∗p) ≤ P2 ≤ P1, P2 ∈ Sylp(X) and X is S -permutable in G. For example,
let p ≥ 5 be a prime and e ≥ 2 be an integer and consider G = S L(2, p) × Zpe .

However, for p-solvable groups, we have the following result.

Theorem 4.4. Let p be an odd prime dividing the order of a finite p-solvable group G,
e a positive integer and P ∈ Sylp(G) with |P| ≥ pe+1. Then G is p-supersolvable if and
only if for any subgroup P1 of P with order pe, P1 ∈ D(P).

Proof. We only need to prove the sufficiency. Suppose that G is a counterexample
with minimal order; we work in the following steps to obtain a contradiction. The
arguments are the same as in Steps 1–8 of Theorem 1.3.

Step 1. If P ≤ H < G, then H is p-supersolvable.

Step 2. Op′(G) = 1.

Step 3. There exists a subgroup P1 of P with order pe such that P1 ∩ Op(G∗p) is not
S -permutable in G.

Step 4. If P2 ≤ P1 ≤ P, X ≤ G is such that |P1| = pe, P1 ∩ Op(G∗p) ≤ P2 ≤ P1, P2 ∈

Sylp(X) and X is S -permutable in G and if PX <G, then P1 ∩Op(G∗p) is S -permutable
in G.

Step 5. If P1 ≤ P is such that |P1| = pe and P ∩ Op(G∗p) 
 P1, then P1 ∩ Op(G∗p) is
S -permutable in G.

Step 6. |P ∩ Op(G∗p)| ≤ pe.

Step 7. If P̂ = P ∩ Op(G∗p), then P̂ has a maximal subgroup T such that T ≤ Op(G).

Step 8. The final contradiction. Let L = Op(G) ∩ Op(G∗p). By Step 7, T ≤ L.
Note that L ≤ P̂. Assume that L = T . Consider G/T . Assume that T > 1. Since
|T | ≤ pe−1, by induction, G/T is p-supersolvable. Hence, Op(G∗p)/T is p-nilpotent.
Then Op(Op(G∗p)) < Op(G∗p). This is a contradiction. Assume that T = 1. Since
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P̂ E P and P̂ ∩Op(G) = L = T = 1, we have [P̂,Op(G)] = 1. Since G is p-solvable and
Op′(G) = 1, by the Hall–Higman lemma (see [9, Theorem 3.21]), it follows that P̂ = 1
and thus G∗p is p-nilpotent. Hence, G is p-supersolvable. This is also a contradiction.
Assume that L = P̂, that is, P̂ EG. Using the same arguments as in the proof of Step 9
of Theorem 1.3, we can obtain the final contradiction. �

Recently, Li et al. (see [12, 14, 15]) introduced the concept of E–S -supplemented
subgroups. A subgroup H of a finite group G is said to be E–S -supplemented in G if
there is a subnormal subgroup T of G such that G = HT and H ∩ T ≤ HeG, where HeG

is the subgroup of H generated by all those subgroups of H which are S -permutably
embedded in G. They used E–S -supplemented subgroups to establish many results.
One of their results is the following theorem.

Theorem 4.5 [12, Theorem 1.4]. Let p be an odd prime dividing |G| and P a Sylow
p-subgroup of G. Suppose that there exists a subgroup D of P with 1 < D < P such
that every subgroup H of P with order |D| is E–S -supplemented in G and NG(P) is
p-nilpotent. Then G is p-nilpotent.

We point out that for a p-subgroup H of G, the concept of E–S -supplemented
subgroups coincides with the concept of weakly S -permutably embedded subgroups.
In order to show this, we appeal to the following significant theorem of Deskins.

Theorem 4.6 [5, Theorem 1]. If a subgroup H of a finite group G is S -permutable in
G, then H/CoreG(H) is nilpotent and thus, for any p ∈ π(G) and for any P ∈ Sylp(G),
PCoreG(H)/CoreG(H) is S -permutable in G/CoreG(H).

Lemma 4.7. Let p be a prime dividing the order of a finite group G, P ∈ Sylp(G) and
P1, P2 ≤ P. If P1 and P2 are both S -permutably embedded in G, then 〈P1, P2〉 is
S -permutably embedded in G.

Proof. There exist X1, X2 ≤ G such that P1 ∈ Sylp(X1), P2 ∈ Sylp(X2) and X1, X2

are S -permutable in G. Let H1 = CoreG(X1) and H2 = CoreG(X2). By Deskins’
theorem 4.6, P1H1/H1 is S -permutable in G/H1 and P2H2/H2 is S -permutable in
G/H2. In G/H1H2, by Lemma 2.1(g), P1 and P2 are both S -permutable in G. It is
not difficult to see that 〈P1, P2〉 = 〈P1,P2〉 is S -permutable in G. Hence, 〈P1,P2〉H1H2

is S -permutable in G. Let B = 〈P1, P2〉H1H2. Since P permutes with B, we have
P ∩ B ∈ Sylp(B). It is not difficult to see that P ∩ H1H2 = (P ∩ H1)(P ∩ H2). Hence,
by Dedekind’s lemma, P ∩ B = 〈P1, P2〉(P ∩ H1)(P ∩ H2) = 〈P1, P2〉. Hence, 〈P1, P2〉

is S -permutably embedded in G. �

Let p be a prime dividing the order of a finite group G and H a p-subgroup of
G. By Lemma 4.7, HeG is S -permutably embedded in G. Hence, for H, the concept
of E–S -supplemented subgroups coincides with the concept of weakly S -permutably
embedded subgroups. Hence, our Theorems 1.3, 1.5 and 1.6 also generalise the main
theorems of [12].
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Recently, in [4], Chen et al. introduced the concept of S E-quasinormal subgroups,
which is the same as the concept of E–S -supplemented subgroups. Hence, our
Theorem 1.5 also generalises [4, Theorem B].
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