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Abstract

We prove some zero density theorems for certain families of Dirichlet L-functions. More specifically, the
subjects of our interest are the collections of Dirichlet L-functions associated with characters to moduli
from certain sparse sets and of certain fixed orders.
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1. Introduction

It goes without saying that the locations of the nontrivial zeros of Dirichlet L-functions
are of fundamental importance in analytic number theory. Let χ be a Dirichlet
character of conductor q. Suppose that ρ = β + iγ with β, γ ∈ R is a nontrivial zero
of the Dirichlet L-function L(s, χ). Let σ > 1/2 and T > 0. Set

N(σ, T , χ) = #{ ρ : L( ρ, χ) = 0, β ≥ σ, |γ| ≤ T}.

The generalised Riemann hypothesis (GRH) asserts that β = 1/2 for all ρ, that is,
N(σ, T , χ) = 0 for all σ > 1/2 and T > 0.

Although the GRH is currently still an unresolved conjecture, there have been many
upper bounds over the past century for N(σ, T , χ) in the literature, both individually
and on average as χ runs over a family of characters. We refer the reader to [14, Ch. 10]
and [16, Ch. 12] for discussions of these results. In brief, these estimates, dubbed zero
density theorems, amount to saying that the zeros lying off the critical line should at
least be very rare.

The aim of this paper is to extend these zero density results to various special
collections of Dirichlet characters, more specifically, families of primitive Dirichlet
characters to moduli from certain sparse sets and of certain fixed orders.
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[2] Zero density theorems 225

Our first result is on sparse sets of moduli. Let Q be a set of natural numbers
contained in (Q0, Q0 + Q]. Using the nomenclature of [1], we define, for each t ∈ N,
the set

Qt = {q ∈ N : tq ∈ Q}.
Suppose that, for t ∈ N and 0 ≤ Q0 ≤ Q, there is a Φ ≥ 1 such that the bound

max
Q0/t≤v≤(Q0+Q)/t

|{q ∈ Qt ∩ (v, v + u] : q ≡ l mod k}| ≤
(
1 +
|Qt |tu
Qk

)
Φ (1.1)

holds for (k, l) = 1. In this case, we say that the set Q is well distributed. We now state
our results for sparse sets of moduli.

THEOREM 1.1. Let T > 1, ε > 0 and Q ⊂ (Q0, Q0 + Q], with |Q| ≤ Q1/2, be a
well-distributed set of natural numbers such that (1.1) holds with Φ � (QT)ε. Then,
for sufficiently large T and any σ with 1

2 ≤ σ ≤ 1,∑
q∈Q

∑∗

χ mod q

N(σ, T , χ) � (QT)εmin(ηQ,T , |Q|(QT)3(1−σ)/(2−σ), (|Q|Q3T2)(1−σ)/σ)

where

ηQ,T = T3(1−σ)/(2−σ)

⎧⎪⎪⎨⎪⎪⎩
|Q|3(3−4σ)/(5−4σ)Q if 1

2 ≤ σ ≤
3
4

(|Q|4σ−3Q12σ−7)(1−σ)/(9σ−4(σ2+1)) otherwise.

Here the implied constant depends on ε alone.

As in [1], one can easily check that the set of perfect k-powers, with k ≥ 2,
form a well-distributed sparse set. Thus we readily get the following corollary from
Theorem 1.1.

COROLLARY 1.2. For k ≥ 3, sufficiently large Q, T > 0, and any ε > 0, we have∑
q≤Q

∑∗

χ mod qk

N(σ, T , χ) � (QT)εmin((Q3k+2−(3k+1)σT3(1−σ))1/(2−σ), (Q3k+1T2)(1−σ)/σ),

where the implied constant depends on ε and k at most.

Corollary 1.2 also holds for k = 2. But for square moduli, we have the following
result which is better.

THEOREM 1.3. For sufficiently large Q, T > 0 and any ε > 0, we have∑
q≤Q

∑∗

χ mod q2

N(σ, T , χ) � (QT)εmin(ηQ,T , (Q7T2)(1−σ)/σ)

where

ηQ,T =

⎧⎪⎪⎨⎪⎪⎩
Q(17−16σ)/2(2−σ)T3(1−σ)/(2−σ) if 1

2 ≤ σ ≤
3
4

Q(1−σ)(28σ−17)/(9σ−4(σ2+1))T3(1−σ)/(2−σ) otherwise,

and the implied constant depends on ε alone.

Our result on fixed order characters is as follows.
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226 C. C. Corrigan and L. Zhao [3]

THEOREM 1.4. Let j ∈ {2, 3, 4, 6} and Cj(Q) be the collection of primitive Dirichlet
characters of order j and conductor q ≤ Q. Then, for T 
 1, we have∑

χ∈C2(Q)

N(σ, T , χ) � (QT)εmin((Q3T4)(1−σ)/(2−σ), (QT)3(1−σ)/σ). (1.2)

If j = 3 or 6 and T 
 Q2/3, we have∑
χ∈Cj(Q)

N(σ, T , χ) � (QT)εmin(Q(125−108σ)/(90−72σ)T (49−44σ)/(22−8σ), (QT)7(1−σ)/2σ).

(1.3)

Finally,∑
χ∈C4(Q)

N(σ, T , χ) � (QT)εmin(Q(41−36σ)/(30−24σ)T (49−44σ)/(22−8σ), (QT)7(1−σ)/2σ)

(1.4)

for T 
 Q1/2. Here the implied constants depend on ε.

2. The setup

Our plan of attack goes along similar lines to those in [16, Ch. 12]. Let α > 0
be some fixed constant and C be a family of primitive Dirichlet characters, all
with conductors not exceeding Q. Now define R to be a finite set of ( ρ, χ) such
that L( ρ, χ) = 0 for some χ ∈ C, where β ≥ σ > 1

2 and |γ| ≤ T for all ( ρ, χ) ∈ R and
|γ − γ′| ≥ α log QT for some constant α and all distinct ( ρ, χ) and ( ρ′, χ) ∈ R.

Let {an} be a arbitrary sequence of complex numbers. We define

R( χ) =
∑
n≤N

anχ(n) and S(s, χ) =
∑
n≤N

anχ(n)
ns .

If {Al} and {Bl} are sequences of nonnegative real numbers and L ∈ N, then we set

Δ(Q, N) =
∑
l≤L

QAl NBl and ΔT (Q, N) =
∑
l≤L

QAl NBl T1−Bl .

With these conditions and notation, we can show, using the same arguments as those
for (12.28) or (12.29) in [16], that it is possible to choose the elements of R so that, for
any ε > 0, ∑

χ∈C
N(σ, T , χ) � (QT)ε(|R| + 1), (2.1)

where the implied constant depends on ε only. Consequently, our attention is shifted
to estimating the size of R.

We define, for X ≥ 2

MX(s, χ) =
∑
n≤X

μ(n)χ(n)
ns ,
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where μ is the Möbius function. We note here that the Dirichlet series of MX(s, χ) =
L(s, χ)MX(s, χ) has coefficients mX,nχ(n) with

mX,n =
∑
d|n

d≤X

μ(d).

Thus mX,1 = 1, mX,n = 0 for 2 ≤ n ≤ X, and |mX,n| ≤ τ(n) for n > X, with τ denoting
the divisor function.

Now we consider the Dirichlet series with coefficients mX,nχ(n)e−n/Y where 1 �
X � Y � (QT)K for some sufficiently large K ≥ 1. From (12.25) and (12.26) of [16],
for sufficiently large α = 3A, each ( ρ, χ) ∈ R satisfies at least one of the inequalities∣∣∣∣∣

∑
X<n≤Y2

mX,nχ(n)n−ρe−n/Y
∣∣∣∣∣ ≥ 1

6
(2.2)

and

1
2π

∣∣∣∣∣
∫ A log(QT)

−A log(QT)
MX

(1
2
+ iγ + iu, χ

)
Y1/2−β+iuΓ

(1
2
− β + iu

)
du
∣∣∣∣∣ ≥ 1

6
. (2.3)

Let R1 and R2 be the sets consisting of all elements of R satisfying (2.2) and (2.3),
respectively. Hence,

|R| ≤ |R1| + |R2| (2.4)

and it suffices to estimate from above the sizes of R1 and R2.
Along similar lines to the treatment in [16], we obtain

|R1| � (log Y)3
∑

( ρ,χ)∈R1

∣∣∣∣∣
2U∑

n=U

mX,nχ(n)n−ρe−n/Y
∣∣∣∣∣
2
, (2.5)

for some U with X ≤ U ≤ Y2. For R2, we get

|R2| � Y2/3−4σ/3(QT)ε
( ∑

( ρ,χ)∈R2

∣∣∣∣∣L
(1
2
+ itρ, χ

)∣∣∣∣∣
4)1/3( ∑

( ρ,χ)∈R2

∣∣∣∣∣MX

(1
2
+ itρ, χ

)∣∣∣∣∣
2)2/3

.

(2.6)

Here, for each ( ρ, χ) ∈ R2, t ρ is defined to be the real number in the interval
[γ − A log(QT), γ + A log(QT)] for which |MX( 1

2 + it ρ, χ)| is maximum.
Now we are led to estimate sums of the form∑

χ∈C

∑
s∈Sχ

∣∣∣∣∣
∑
n≤N

anχ(n)
ns

∣∣∣∣∣
2
, (2.7)

where Sχ is a set of complex numbers. To that end, various kinds of large sieve
inequalities will play an indispensable role. We refer the reader to [16, 18] and
[14, Ch. 7] for more extensive discussions on the large sieve, a subject of independent
interest.

We first write down a general result for sums of the form (2.7).
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LEMMA 2.1. Let C be an arbitrary set of primitive Dirichlet characters with conduc-
tors at most Q, and Sχ be a finite set of complex numbers s = σ + it. Suppose T0,
T, σ0 > δ > 0 are such that T0 + δ/2 ≤ |t| ≤ T0 + T − δ/2 for all s ∈ Sχ, 1/2 ≤ σ0 ≤
σ ≤ 1 for all s ∈ Sχ and |t − t′| ≥ δ for distinct s, s′ ∈ Sχ. If the bound

∑
χ∈C
|R( χ)|2 � Δ(Q, N)

∑
n≤N

|an|2

holds, then we have

∑
χ∈C

∑
s∈Sχ

|S(s, χ)|2 �
(1
δ
+ log N

)
ΔT (Q, N)

∑
n≤N

|an|2

n2σ0

(
1 + log

log 2N
log 2n

)
.

PROOF. The proof is rather standard and thus we only give a sketch here. Let

Su(s, χ) =
∑

2≤n≤u

anχ(n)n−s.

Partial summation and Cauchy’s inequality give

|Su(s, χ)|2 � |a1|2 + |S(σ0 + it, χ)|2 +
∫ N

2
|Su(σ0 + it, χ)|2 du

u log u
.

Using [16, Lemma 1.4], we get

∑
χ∈C

∑
t∈Tχ

|S(it, χ)|2 �
(1
δ
+ log N

)∑
χ∈C

∫ T0+T

T0

|S(it, χ)|2 dt (2.8)

where Tχ = {t : s = σ + it ∈ Sχ}. Now arguing along similar lines to the proof of
[7, Theorem 2], we arrive at

∑
χ∈C

∫ T0+T

T0

|S(it, χ)|2 dt � ΔT (Q, N)
∑
n≤N

|an|2. (2.9)

The desired bound follows easily by combining all the bounds above. �

From this discussion, we have the following general result which can be used to
derive a zero density result for any collection of primitive Dirichlet characters if the
corresponding large sieve inequality and bound for the fourth moment of L-functions
are available.

THEOREM 2.2. Let C be a finite family of primitive Dirichlet characters, none of which
have conductors greater than Q, and suppose that

∑
χ∈C
|R( χ)|2 � Δ(Q, N)

∑
n≤N

|an|2 and
∑
χ∈C

∫ T

−T

∣∣∣∣∣L
(1
2
+ it, χ

)∣∣∣∣∣
4

dt � L
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hold. Then, for any σ with 1
2 ≤ σ ≤ 1, and X, Y satisfying 1 � X � Y � (QT)K for

some absolute constant K, there is a U with X � U � Y2 such that∑
χ∈C

N(σ, T , χ) � (QT)ε(L1/3ΔT (Q, X)2/3Y2(1−2σ)/3 + ΔT (Q, U)U1−2σe−2U/Y ),

where the implied constant depends on ε alone.

PROOF. We take δ = 3A log QT in Lemma 2.1, where A is as in (2.3), and obtain

∑
( ρ,χ)∈R1

∣∣∣∣∣
2U∑

n=U

mX,nχ(n)n−ρe−n/Y
∣∣∣∣∣
2
� (QT)εΔT (Q, U)U1−2σe−2U/Y (2.10)

and
∑

(ρ,χ)∈R2

∣∣∣∣∣MX

(1
2
+ it, χ

)∣∣∣∣∣
2
� (QT)εΔT (Q, X). (2.11)

Using similar methods to [16, Theorem 10.3], we can show that
∑

(ρ,χ)∈R2

∣∣∣∣∣L
(1
2
+ it, χ

)∣∣∣∣∣
4
� (QT)εL. (2.12)

Now, from (2.5) and (2.10) we obtain a bound for |R1|, and (2.6), (2.11) and (2.12) give
rise to a majorant for |R2|. The result now follows from (2.1) and (2.4). �

Our second general result below does not require any large sieve-type bound.

THEOREM 2.3. Let C, Q, T ,L be as in Theorem 2.2. Then, for any σ with 1
2 < σ ≤ 1

and any ε > 0,∑
χ∈C

N(σ, T , χ) � (QT)ε((LQ2T)(1−σ)/σ + (Q2T)(1−σ)/(2σ−1)),

where the implied constant depends on ε alone.

PROOF. The proof follows the same arguments as [16, (12.14)]. The only difference is
that we do not insert any specific bound for the fourth moment of L-functions. �

3. Proof of Theorems 1.1 and 1.3

Before proving Theorems 1.1 and 1.3, we need the following lemma.

LEMMA 3.1. Let Q be as above. Then, for any T � 2 and ε > 0,
∑
q∈Q

∑∗

χ mod q

∫ T

−T

∣∣∣∣∣L
(1
2
+ it, χ

)∣∣∣∣∣
4

dt � |Q|(QT)1+ε,

where the implied constant depends on ε alone.

PROOF. This result follows readily from [16, Theorem 10.1]. �
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We now proceed with the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. From [1, Theorem 2] we have∑
q∈Q

∑∗

χ mod q

|R( χ)|2 � (QN)ε(|Q|Q + N + QN1/2)
∑
n≤N

|an|2. (3.1)

Moreover, the classical large sieve inequality gives (see the discussion around (5.4)
and (5.5) in [19]),∑

q∈Q

∑∗

χ mod q

|R( χ)|2 � min(|Q|(Q + N), Q2 + N)
∑
n≤N

|an|2. (3.2)

Using (3.1), Lemma 3.1 and Theorem 2.2, we obtain
∑
q∈Q

∑∗

χ mod q

N(σ, T , χ) � (QT)ε
(
(|Q|QT)1/3(|Q|QT + X + QT1/2X1/2)2/3Y2(1−2σ)/3

+ |Q|QTX1−2σ + Y2−2σ + QT1/2

⎧⎪⎪⎨⎪⎪⎩
Y3/2−2σ if 1

2 ≤ σ ≤
3
4

X3/2−2σ otherwise

)
.

On taking

X = |Q|2T and Y = |Q|6/(5−4σ)T3/2(2−σ)

in the case 1/2 ≤ σ ≤ 3/4, and

X = |Q|(2σ−2)/(9σ−4(σ2+1))Q(4σ−2)/(9σ−4(σ2+1))T

and

Y = |Q|(4σ−3)/(18σ−8(σ2+1))Q(12σ−7)/(18σ−8(σ2+1))T3/2(2−σ)

in the other case, we obtain

∑
q∈Q

∑∗

χ mod q

N(σ, T , χ) � (QT)ε
⎧⎪⎪⎨⎪⎪⎩
|Q|3(3−4σ)/(5−4σ)QT3(1−σ)/(2−σ),
(|Q|4σ−3Q12σ−7)(1−σ)/(9σ−4(σ2+1))T3(1−σ)/(2−σ),

(3.3)

respectively, in the case 1/2 ≤ σ ≤ 3/4 and in the other case. Now, using (3.2) and
Lemma 3.1 in Theorem 2.2, we also have∑

q∈Q

∑∗

χ mod q

N(σ, T , χ) � (QT)ε((|Q|QT)1/3 min(|Q|QT + |Q|X, Q2T + X)2/3Y2(1−2σ)/3

+min(|Q|QTX1−2σ + |Q|Y2−2σ, Q2TX1−2σ + Y2−2σ)).

We first take

X = QT and Y = X3/2(2−σ)

and then

X = Q2T and Y = X3/2(2−σ),
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and on comparing these results, we arrive at∑
q∈Q

∑∗

χ mod q

N(σ, T , χ) � (QT)εmin(|Q|Q3(1−σ)/(2−σ), Q6(1−σ)/(2−σ))T3(1−σ)/(2−σ). (3.4)

Our desired result follows from comparing (3.3) with (3.4) and Theorem 2.3. �

Now, considering the case in which Q is the set of k-power moduli, from
[3, Theorem 1], we have, for any integer k ≥ 3 and any Q, ε > 0,∑

q≤Q

∑∗

χ mod qk

|R( χ)|2 � (QN)ε(Qk+1 + N + QkN1/2)
∑
n≤N

|an|2, (3.5)

which is just a special case of (3.1). Thus (3.5) will lead to a result already contained
in Theorem 1.1 and gives precisely Corollary 1.2. We note here that (3.5) has been
improved in certain ranges by a number of authors: Halupczok [10, 11], Munsch [17],
Halupczok and Munsch [12], and Baker et al. [5]. Unfortunately, using the method
here, the results in [5, 10, 11, 12] do not lead to any outcome better than Corollary 1.2.

In the case of square moduli, the best available large sieve inequality is found in [4],∑
q≤Q

∑∗

χ mod q2

|R( χ)|2 � (QN)ε(Q3 + N +min(N
√

Q, Q2
√

N))
∑
n≤N

|an|2,

and from this we can derive Theorem 1.3, which is better than what Theorem 1.1 gives
in certain regions.

PROOF OF THEOREM 1.3. By Theorem 2.2,∑
q≤Q

∑∗

χ mod q2

N(σ, T , χ)

� (QT)ε
(
(Q3T)1/3(Q3T + X +min(Q1/2X, Q2T1/2X1/2))2/3Y2(1−2σ)/3 + Q3TX1−2σ

+ Y2−2σ +min
(
Q1/2Y2−2σ, Q2

⎧⎪⎪⎨⎪⎪⎩
Y3/2−2σ if σ ≤ 3

4

X3/2−2σ otherwise

))
.

To get the desired result, we simply take

X = Q2T and Y = Q15/4(2−σ)T3/2(2−σ)

if σ ≤ 3
4 , and

X = Q(10σ−6)/(9σ−4(σ2+1))T and Y = Q(28σ−17)/(18σ−8(σ2+1))T3/2(2−σ)

in the latter case. Hence,
∑
q≤Q

∑∗

χ mod q2

N(σ, T , χ) � (QT)ε
⎧⎪⎪⎨⎪⎪⎩

Q(17−16σ)/2(2−σ)T3(1−σ)/(2−σ) if 1
2 ≤ σ ≤

3
4

Q(1−σ)(28σ−17)/(9σ−4(σ2+1))T3(1−σ)/(2−σ) otherwise.

(3.6)

The result follows on comparing (3.6) with Theorem 1.1. �
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In [19], an optimal conjectural large sieve inequality for power moduli is given and
yields the bound ∑

q≤Q

∑∗

χ mod qk

|R( χ)|2 � Qε(Qk+1 + N)
∑
n≤N

|an|2. (3.7)

If (3.7) holds, then ∑
q≤Q

∑∗

χ mod qk

N(σ, T , χ) � (Qk+1T)3(1−σ)/(2−σ)+ε

holds for all positive Q and T.

4. Proof of Theorem 1.4

To establish Theorem 1.4, we require, in view of (2.5) and (2.6), bounds for
∑
χ∈C
|R( χ)|2 and

∑
χ∈C

∣∣∣∣∣L
(1
2
+ it, χ

)∣∣∣∣∣
4
,

where C is the family of characters under consideration.
For C2(Q), using [13, Corollary 3], we get∑

χ∈C2(Q)

|R( χ)|2 � (QN)ε(QN + N2) max
n≤N
|an|2. (4.1)

By setting σ = 1/2 in Theorem 2 of [13], for T > 1 and |t| ≤ T ,
∑
χ∈C2(Q)

∣∣∣∣∣L
(1
2
+ it, χ

)∣∣∣∣∣
4
� (QT)1+ε. (4.2)

Using (4.1) and Lemma 2.1 with some minor changes (the bound (4.1) is formally
different from what is in the condition of Lemma 2.1), we get

∑
( ρ,χ)∈R1

∣∣∣∣∣
2U∑

n=U

mX,nχ(n)n−ρe−n/Y
∣∣∣∣∣
2
� (QT)ε(QTX1−2σ + Y2−2σ). (4.3)

Now (2.8) and (2.9), together with [13, Corollary 1], produce the bound
∑

(ρ,χ)∈R2

∣∣∣∣∣MX

(1
2
+ itρ, χ

)∣∣∣∣∣
2
� (QT)ε(QT + X). (4.4)

Substituting (4.2), (4.3) and (4.4) into (2.5) and (2.6), we get∑
χ∈C2(Q)

N(σ, T , χ) � (QT)ε((QT2)1/3(QT + X)2/3Y2(1−2σ)/3 + QTX1−2σ + Y2−2σ).

Setting

X = QT and Y = (Q3T4)1/(2(2−σ)),

we arrive at the first term in the minimum in (1.2).
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In the case of Cj(Q) with j = 3, 4 and 6, we use the results in [2, 9]. The only
minor obstruction is that one requires the sum over n in R( χ) to be over square-free n.
This is easily handled by rewriting n = kl2 with k square-free and applying Cauchy’s
inequality and then utilising the large sieve inequalities for cubic, quartic and sextic
characters. For j = 3 and 6, from Theorems 1.4 and 1.5 of [2],∑

χ∈Cj(Q)

|R( χ)|2 � (QN)εmin{Q5/2N1/2 + N3/2, Q11/9 + Q2/3N}
∑
n≤N

|an|2. (4.5)

With j = 4, from Lemma 2.10 of [9], which is an improvement of [8, Theorem 1.2], we
arrive at the bound∑

χ∈C4(Q)

|R( χ)|2 � (QN)εmin{Q3/2N1/2 + N3/2, Q7/6 + Q2/3N}
∑
n≤N

|an|2. (4.6)

The results in [2, 9] have more terms in the minimum than those given in (4.5) and
(4.6). Here, we only cite what we will use later.

If j = 3 or 6, then for all T 
 Q2/3,
∑
χ∈Cj(Q)

∣∣∣∣∣L
(1
2
+ it, χ

)∣∣∣∣∣
4
� (QT)3/2+ε. (4.7)

The bound (4.7) also holds if j = 4 and T 
 Q1/2. The proof of (4.7) uses the same
arguments as in [13, Theorem 2]. The only difference is that, instead of (4.1), one uses
(4.5) or (4.6) with the first terms in the minima at the appropriate places.

Now proceeding in the same way as for C2(Q), using (4.7) and the second terms in
the minima given in the bounds (4.5) and (4.6), we deduce∑

χ∈Cj(Q)

N(σ, T , χ) � (QT)ε((Q3/2T5/2)1/3(Q11/9T + Q2/3X)2/3Y2(1−2σ)/3

+ Q11/9T max(X3/2−2σ, Y3/2−2σ) + Q2/3Y5/2−2σ)
(4.8)

for j = 3, 6, and∑
χ∈C4(Q)

N(σ, T , χ) � (QT)ε((Q3/2T5/2)1/3(Q7/6T + Q2/3X)2/3Y2(1−2σ)/3

+ Q7/6T max(X3/2−2σ, Y3/2−2σ) + Q2/3Y5/2−2σ).
(4.9)

Taking

X = Q5/27T1/2 and Y = Q5/(45−36σ)T12/(11−4σ)

in (4.8) and

X = Q2/9T1/2 and Y = Q2/(15−12σ)T12/(11−4σ)

in (4.9), we get the first terms in the minima in (1.3) and (1.4). The second terms in the
minima in (1.2), (1.3) and (1.4) are derived from Theorem 2.3 and either (4.2) or (4.7).
This concludes the proof of Theorem 1.4.
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Jutila [15, Theorem 2] previously gave the bound∑
χ∈C2(Q)

N(σ, T , χ) � (QT)(7−6σ)/(6−4σ)+ε (4.10)

without the advantage of the mean value estimate (4.1). After proving (4.1),
Heath-Brown [13, Theorem 3] was able to improve the Q-aspect of (4.10) to∑

χ∈C2(Q)

N(σ, T , χ) � (QT)εQ3(1−σ)/(2−σ)T (3−2σ)/(2−σ). (4.11)

However, (4.11) was obtained by first bounding the number of zeros in the subregions

{ρ : σ ≤ β < σ + (log QT)−1, τ ≤ γ < τ + (log QT)−1} with |τ| ≤ T

and then summing trivially over these subregions to obtain a bound for the total
number of zeros in the rectangle {ρ : σ ≤ β ≤ 1, |γ| ≤ T}. By considering the whole
rectangle from the start and employing Lemma 2.1 to average over the ρ in the
rectangle, we are able to improve the T-aspect of (4.11) in our result (1.2). Moreover,
(1.2) is an improvement of (4.10) when Q−4+11σ−6σ2 
 T−10+21σ−10σ2

, which is true for
all Q, T > 1 when σ ≥ (21 −

√
41)/20 ≈ 0.7298.

We end the paper with the following remark. Recent heuristics in [6] gave rise to
some surprising revelations on the true optimal bound in the large sieve inequality for
cubic Hecke characters, based on which, as well as its quartic analogue, the estimates
in (4.5) and (4.6) are derived. Thus it gives one pause in conjecturing what the best
possible form of the large sieve inequality for cubic and quartic Dirichlet characters
should be. Consequently, unlike Theorem 1.1, it is unclear what the best possible
unconditional bounds one can hope for in (1.3) and (1.4) may be using the methods
of this paper.
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