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EQUATIONALLY COMPACT ARTINIAN RINGS 

DAVID K. HALEY 

By a Noetherian (Artinian) ring g% = (R; + , —, 0, •) we mean an associa­
tive ring satisfying the ascending (descending) chain condition on left ideals. 
An arbitrary ring 3% is said to be equationally compact if every system of ring 
polynomial equations with constants in £% is simultaneously solvable in S% 
provided every finite subset is. (The reader is referred to [2; 8; 13; 14] for 
terminology and relevant results on equational compactness, and to [4] for 
unreferenced ring-theoretical results.) In this report a characterization of 
equationally compact Artinian rings is given - roughly speaking, these are 
the finite direct sums of finite rings and Priifer groups; as consequences it is 
shown that an equationally compact ring satisfying both chain conditions 
is always finite, as is any Artinian ring which is a compact topological ring. 
Further, using a result of S. Warner [11], we give a necessary and sufficient 
condition for an equationally compact Noetherian ring with identity to be a 
compact topological ring. A few remarks on the embedding of certain rings 
into equationally compact rings are made, and we obtain also here generaliza­
tions of known results on compact topological rings. 

Acknowledgement. I am indebted to my supervisor, G. H. Wenzel, for his 
invaluable advice and assistance, and in particular for numerous corrections 
and improvements in this paper. 

Preliminary results. We begin by deriving a few useful tools. Let 3% be 
a ring and A an ideal of £% ("ideal" always means two-sided ideal), and let 2 
be a system of equations with constants in A. If (x0, Xi, . . . , xy, . . . ) 7 < a are 
the variables occurring in 2, then the solution set of 2 in 3? is a certain subset 
S of Ra. If such a system 2 exists such that the projection of S onto the first 
component is the ideal A, then we shall say that A is expressible by equations. 
For example, if M has an identity and A is finitely generated as a left ideal, 
then A is expressible by the equation x0 = Xidi + . . . + xnan, where 
ai, . . . , an generate A. 

If x is a variable and A is an ideal of ^?, then "x G A" will denote, quite 
naturally, the relational predicate A(x) for the unary relation A on R. 

We will make recurrent use of the following observation: 

Remark. Let S% be an equationally compact ring. Suppose (At\i £ I) is a 
family of ideals of ^ , each of which is expressible by equations, and suppose 
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(xt\i Ç 7) is a family of variables. Let 2 be a set of equations with constants 
in 8ft. Then the system of formulas 

12 : = 2 \J {Xi £ At\i 6 7} 

is solvable in 8ft provided it is finitely solvable in 8ft. 

Proof. Let At be expressible by the system 2*, i Ç 7; let 

ij X\i, . . . , #<yf, . • ')y<oti 

denote the variables appearing in 2t-, whereby it is assumed that the variables 
xyi and xSj are distinct if i ^ j or y 9^ ô, and that no xyi occurs in 2. Now the 
finite solvability of Q, implies the finite solvability of the system of equations 

U (2*1* 6 I) U {Xi = x0i; i Ç I)\J 2, 

which is then solvable by the equational compactness of 8ft, and a solution 
obviously yields a solution of Œ in ^?. 

PROPOSITION 1. L ^ 8ft be a ring and A an ideal of 8ft such that A is expressible 
by equations and 8ft is equationally compact. Then 8ft IA and A are equationally 
compact rings. 

Proof. Suppose 2 = {<ï>* = 0; i Ç 7} is a system of equations with constants 
in 8ft IA and finitely solvable in 8ft I A. Now each <£* induces a polynomial 
in 8ft, say $ / , by replacing the constants by arbitrary representatives in R. 
If Zi, i £ I, are variables not occurring in 2, then the system 

{*/ = * , ; * 6 7} W{s* 6 4;* ' 6 /} 

is clearly finitely solvable in 8?, hence (by the last Remark) solvable in 8ft y 

and any solution taken modulo A yields a solution for 2 in 8ft I A. Thus 8ft IA 
is equationally compact, and a similar argument shows that A is equationally 
compact. 

Next we derive a useful remark on matrix rings. 

PROPOSITION 2. Let 8ft be a ring with identity, let va be a nonzero cardinal and 
let 5f — ^ i x m ( ^ ) (i.e., y is the ring of linear transformations on the free 
8ft-module^ on m generators). Then y is equationally compact if and only if 
8ft is equationally compact and m is finite. 

Proof. Sufficiency. If 2 is a finitely solvable system of equations with 
constants in y then by replacing each variable x by the variable matrix 
(xi3\\ ^ i,j ^ m), 2 reduces in the obvious fashion to a system over 8ft, 
finitely solvable in 8ft, hence solvable in ^ ; such a solution yields a solution 
for 2 in y . 

Necessity. Let 7 be a set with cardinality m and let {eu i Ç 7} be a basis 
for ^ Fix i0 € 7. For each i Ç J define Trt 6 y as follows: ir^ef) = ôjioeit 

for all j € 7. Let pt be the retraction of &" onto ^ g f . Then the system 

2 = {/>,* = irû i £ 7} 

(xo 
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is finitely solvable (for a finite subset J Q I of indices appearing, take x as 
follows: x(ei0) = E ^ / ^ » and x{es) = 0 for j ^ i0). However 2 forces x to 
be such that x(ei0) = Y^^i^i which is impossible unless m is finite. To see 
that S% is equationally compact, consider a system 2 of equations with 
constants in 3% and finitely solvable in S%. For r 6 i? let e(r) denote the matrix 
{(lij) where an = r and a^ = 0 otherwise. Replace every constant r £ R 
appearing in 2 by e(r) and every variable x by e(l) • x • e(l) . Then the 
system of equations thus obtained from 2 is finitely solvable in £f, hence 
solvable in y . Taking the upper left hand entries from a solution in y yields 
obviously a solution of 2 in ^?. 

If M = (R; + , —, 0, •) is a ring, we denote by &+ the underlying additive 
abelian group (R; + , —, 0). 

PROPOSITION 3. Let S% be an equationally compact ring and let 3) = 
(D ; + , —, 0) be the largest divisible subgroup of &+. Then R • D = D • R = {0}. 
In particular, 3 is an ideal of S%. Moreover, the ring S%13) is equationally 
compact. 

Proof. Let d £ D and r Ç R. Consider the system of equations 

2 = {(pct - x,)x^ = r-d;i,j € I,i 9* j} 

where / is a set with cardinality larger than \R\. 2 is finitely solvable in 8%, 
since for any finite subset of indices J Q I, choose nu i £ J, to be distinct 
natural numbers, set ct = ntr, and pick dtj such that (nt — nf)da = d for 
i j* j . Then clearly (ct — cf)dij = r • d for all i, j £ J,i 9^ j . Thus 2 must 
be solvable in S%. However 2 implies xt = Xj for some i 5* j , because of the 
cardinality of / , hence r • d = 0. An almost identical argument shows that 
d • r = 0. 

We recall that an abelian group @ is algebraically compact (in the sense of 
Kaplansky [6]) if 

&9Ê& @(Tl(&p\p = prime)) 

where ^ is divisible and each ^v is a module over the £-adic integers complete 
in its £-adic topology and containing no nonzero element which is divisible 
by all powers of p. The group 8%+ is equationally compact and therefore 
algebraically compact as was shown by S. Balcerzyk in [1] ; thus in view of the 
latter condition on the Gp's the subgroup Qf under discussion equals ^ and 
is expressible by the equations 

{xo = n • xn) n 6 N}. 

Thus, 8ft 13 is equationally compact by Proposition 1. 

PROPOSITION 4. If s/ is a finite ring and 8% is an equationally compact 
s/-algebra, then se * 8ft is an equationally compact ring, where the carrier set of 
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sé * 01 is A X i ? , addition is defined componentwise, and multiplication is 
defined by 

(a, x) (b, y) = (ab, ay + bx + xy). 

Proof. Let 2 be a system of equations with constants in s/ * «̂ ?, finitely 
solvable in s/ * g%. Let (x0, Xi, . . . , x7, . . .)y<a be the variables appearing 
in 2. Replace each variable xy by (z7, yy), inducing the system 2 0 with the 
obvious interpretation of solvability (i.e., yy must be replaced by an element 
of R and zy by an element of A). We construct by transfinite induction a 
sequence (a0, ai, . . . , a7, . . .)7<« € ^4a, such that 20((s7 —> ay)y<a) is finitely 
solvable ("zy —> a7" means that the variable zy is replaced by ay). Let /3 be an 
ordinal and let ay, 7 < jô, be already constructed such that 

2/3: = 20((z7 —» ay)y<p) 

is finitely solvable. (For ft = 0 the construction is trivial.) Suppose for each 
a £ A the system 2/3 (z/3 —» a) is not finitely solvable; i.e., for each a Ç A there 
exists a finite subset 2/3,a of 2/3 such that 2/3;a(z,3 —> a) is not solvable. But 
then the finite system 

U 2p,a Q 2? 

is clearly not solvable. This is a contradiction, so there exists a$ G A such that 
2/3 (z/3—> dp) is finitely solvable, and the induction step is complete. Thus 
2i : = 20((£7 —> ay)y<a) is a finitely solvable system involving only the 
variables (yy)y<a- Now any <É> 6 2i is equivalent to a pair of equations 
($1, 3>2), where <£2 is an equation with constants in S% and involving the 
variables (yy)y<a, and $1 involves on/3/ constants (from A). Therefore 2i is 
solvable because S% is equationally compact. 

COROLLARY. Let 8% be an equationally compact ring such that S%+ is a bounded 
torsion group. Then there exists an equationally compact ring 5^ with identity 
such that 8% is an ideal in ¥ of finite index. 

Proof. Let w b e a natural number such that n • R = (0), and let Z,n denote 
the ring of integers modulo n. Then clearly M is a Zw-algebra and therefore 
^ : = Zn * {% is equationally compact by Proposition 4. But £/ is a ring 
with identity (1, 0) and the map r 1—» (0, r) is a ring-embedding of S% into j ^ , 
making ^ clearly an ideal of «5̂  of finite index. 

Semisimplicity. A ring M is semisimple if its Jacobson radical J(0t) is 
zero. We consider now the impact of this condition on equationally compact 
Artinian and Noetherian rings. 

PROPOSITION 5. The Jacobson radical of a ring is expressible by equations. 

Proof. Recall that an element r of a ring S% is left quasi-regular if there 
exists an element y Ç R with r + y + y-r = 0. It is well-known that J(&) 
is the largest left quasi-regular left ideal in t%; that is, r £ J(3$) if and only if 
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the left ideal generated by r is left quasi-regular. Hence J (01) is expressible 
by the set of equations 

{s • x0 + z • x0 + yStZ + ys,z • (s • x0 + z • x0) = 0; 5 Ç R, z 6 Z}. 

COROLLARY. 7/ the ring & is equationally compact, then so are the rings 
0tlJi0t) and J(g%). 

Proof. The proof follows from Propositions 1 and 5. 

LEMMA 1. A semisimple Artinian ring S% is equationally compact if and only 
if it is finite. 

Proof. Sufficiency. It is perhaps appropriate at this point to remark that 
an arbitrary universal algebra<$/ = {A ; F) which is also a compact topological 
algebra (i.e., A can be endowed with a compact Hausdorff topology compatible 
with the algebraic structure) is equationally compact (see [8]). Indeed, the 
solution set of any equation is a closed subset of an appropriate power of A 
endowed with the Tychonov product topology. 

As a special case, any finite algebra, hence any finite ring, is equationally 
compact. 

Necessity. It is easily seen that a finite direct sum of rings is equationally 
compact if and only if every summand is. By Wedderburn's theorem g% is a 
finite direct sum of matrix rings over division rings, each of which, therefore, 
is equationally compact. By Proposition 2 the respective divisions rings are 
equationally compact. However, equationally compact division rings are 
known to be finite (consider, for example, the system 2 = {(xt — Xj)yti = 1; 
i,j G I,i 9^ j) for suitably large I). Thus S% is finite. 

PROPOSITION 6. Let Sft be an equationally compact semisimple Noetherian ring 
with identity. Then S% is finite. 

In view of the fact that equationally compact Noetherian rings with 
identity are necessarily linearly compact for the discrete topology, Proposi­
tion 6 follows from D. Zelinsky's decomposition of linearly compact semi-
simple rings [15, Proposition 11] and Lemma 1. For completeness' sake we 
give a proof, which is in the spirit of an argument of S. Warner [12, p. 55]. 

LEMMA 2. Let S% be as above but, in addition, a primitive ring. Then 8% is 
finite (and hence simple Artinian). 

Proof. By the Jacobson-Chevalley Density Theorem S% is a dense ring of 
linear transformations on a vector space V with basis, say, {e^i G I}. For 
each i G / , let 

^ = | K R;4>(et) = 0}. 

Af is a left ideal, hence finitely generated, and therefore expressible by 
equations. Let (vi)l(zI £ V1 be chosen arbitrarily. By denseness there exists 
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for each i G J <£t- G R such that <£*(£*) = vt. Thus the system of equations 

2 = {x = </>i + zt;i G 7} U {s< 6 4 , ; * G 7} 

is finitely solvable (again by denseness) and hence solvable. However 2 implies 
that x must map each et to vt. Thus «^ is the complete transformation ring, 
and therefore by Proposition 2 and Lemma 1 a finite matrix ring over a 
division ring. 

Proof of Proposition 6. As is well-known 3? is a subdirect product of a 
family of primitive rings {3%/Aùi G 7} where the -4/s are ideals of 3%. 
Since 3& is Noetherian with identity, each A t is expressible by equations, so 
3?IAi is equationally compact by Proposition 1 and Noetherian. Hence by 
Lemma 2 3%/At is finite, simple, and Artinian. Hence the At's are maximal 
ideals. Let r = (rt + At)^ G H(0H/Ai\i G 7). The system 

2 = {x = rt + zt; i G 7} VJ \Zi £ A^i £ 1} 

is finitely solvable by the Chinese Remainder Theorem, hence solvable in 3?. 
But 2 implies x = r, so r G «^. Hence £? is the full direct product and so 7 
must be finite because 3? is Noetherian. 

We summarize these results in the following 

THEOREM 1. For an equationally compact semisimple ring 3% the following 
are equivalent: 

(i) 3& is finite. 
(ii) 3% is Artinian. 

(iii) 3% is Noetherian with identity. 

Noetherian rings. Although we are not able to characterize structurally 
those Noetherian rings with identity which are equationally compact, 
Theorem 1 and a crucial result of Warner yield a pleasant critérium relating 
equational compactness and topological compactness in this class of rings. 
We paraphrase the relevant result: 

PROPOSITION 7 [11, Theorem 2]. Let 3% be a topological Noetherian ring with 
identity. Then 3$ is topologically compact if and only if the topology of 3% is the 
radical topology^, 3% is complete for that topology and 3% IJ(3?) is a finite ring. 

Now let 3? be an equationally compact Noetherian ring with identity. By 
Theorem 1, 3?/J(3$) is finite. Now the topology^7"" defined by taking the 
powers of J(3?) as a neighbourhood base of 0 is not necessarily Hausdorff. 
However, we shall show that the space (i?,^~) is complete. To see this, 
consider a Cauchy sequence (r*)*=i,2t... in R. For each natural number n 
choose in such that the subsequence (r^i ^ in) is J(3%)n-c\ose. Since 3% is 
Noetherian with identity, the ideal J(3%)n is expressible by equations, so we 
have the system of equations 

2 = {x = rin + zn; ^ N ) U ( 2 „ f J(0l)n\ ^ N ) 
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which is finitely solvable (if m is the largest index appearing in a finite subset, 
set x = rim and zn = rim •— rin for all n ^ m). Hence 2 is solvable and 
obviously any solution is a limit of (r*)*=i,2,.... As a matter of fact, ?7~ is 
compact. To see this we quote the following 

LEMMA 3. Let S! be a ring with identity, A and B two ideals such that B is 
finitely generated as a left ideal and both S% /'A and 3$ /B are finite. Then 
St IA • B is finite. 

The proof is a straightforward counting of cosets as given in the proof of 
[10, Lemma 4], where the hypothesized commutativity is not used. 

Now by Lemma 3 and induction, we see that J(Si)n has finite index in S% 
for each n. This means that the family of cosets 

& = {r + J(@)n;r ^ , ^ N | 

is a subbase of closed sets for the topology J?7", and by the Alexander Subbase 
Theorem $~ is compact if every subfamily of £F with the finite intersection 
property has a nonempty intersection. The latter is however clear by equa-
tional compactness of S& and the fact that each J{St)n is expressible by 
equations. In view of Proposition 7 we have proved 

THEOREM 2. Let St be an equationally compact Noetherian ring with identity. 
Then the radical topology is a complete and compact topology on R, and St IJ (St) 
is finite. Moreover, Si is a compact topological ring if and only if 

n ( J W | » e N) = {o}. 
Remark. By [3], equational and topological compactness coincide when St 

is a commutative Noetherian ring with identity. In general, we do not know 
of an equationally compact Noetherian ring with identity which is not topo­
logical^ compact. Moreover, this still leaves open the question, first posed 
(for universal algebras) by J. Mycielski [8, p. 5 P484] whether every equa­
tionally compact Noetherian ring with identity is a retract of a compact 
topological ring. 

Ar t in ian r ings. As an immediate consequence of Theorem 2 we have the 
following 

COROLLARY 1. An equationally compact Artinian ring St with identity is 
finite. 

Proof. Two well-known results assert that St is Noetherian and J (Si) is 
nilpotent. Hence J{St)n = (0) for some n, thus the radical topology is discrete 
and, by Theorem 2, compact, which forces St to be finite. 

COROLLARY 2 [11, Theorem 2, Corollary]. A compact topological Artinian 
ring with identity is finite. 
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The case of arbitrary Artinian rings requires a closer look. 

LEMMA 4. If 2$ is an equationally compact Artinian ring such that 2%+ is a 
bounded torsion group, then 2% is finite. 

Proof. By Proposition 4 there is an equationally compact ring with identity 
2f, such that 2% is an ideal of */* and 2^/2% is finite. Thus 2% is an Artinian 
^-module , as is the finite j^-module 2S /2%, and so ¥ is an Artinian 2f-
module, i.e., 2f is an Artinian ring. But then 2f is finite by Corollary 1. 

LEMMA 5. Let 2% be an equationally compact torsion-free Artinian ring. Then 
2% = (0). 

Proof. A torsion-free Artinian ring has, as well-known, a left identity e and 
is an algebra over the rationals. But then the system of equations 

{(xt - x^jij = e\ i,j £ I,i 9* j} 

is finitely solvable in 2?, hence solvable in 2%. Taking \I\ > \R\ forces e = 0, 
i.e., 2$ = (0). 

Recall that the Priïfer group Z(pœ) is the subgroup of the unit circle in the 
complex plane consisting of all pnth roots of unity for all natural numbers n 
and fixed prime p. 

THEOREM 3. For an Artinian ring 2? the following are equivalent: 
(i) 2$ is equationally compact. 

(ii) 2?+ ^ 28 ®2? where 28 = (B; + , - , 0) is a finite group, 
2P = (P; + , — ,0) is a finite direct sum of Prûfer groups, and R • P = P • R = {0}. 

(iii) 2$ is a (algebraic) retract of a compact topological ring. 

Proof, (iii) => (i) holds for arbitrary universal algebras (see [8]). 
(i) =» (ii): By a result of F. Szâsz [9, Satz 4] every Artinian ring is the ring 

direct sum of its torsion ideal $~ and some torsion-free ideal 2$. But 2$ is 
then an equationally compact torsion-free Artinian ring, so must be (0) by 
Lemma 5. Hence $ = 3T. Let ^ ? + = 28 © 2P be the (group) decomposition 
of ^ + into its divisible part 2P and reduced part 28 (as a torsion divisible 
abelian group 2P is, as well-known, a direct sum of Prûfer groups). Now by 
Proposition 3, R • P = P • R = {0}. Thus every subgroup of 2P is an ideal 
of 2% and therefore 2P is a finite direct sum, because 2% is Artinian. 

Now the f a m i l y ^ = {n • 28 0 ^ ; W E N ) is easily seen to be a downward 
directed set of ideals of 2%, hence has a smallest element no - 28 ©2? since 
2% is Artinian. However n0 • 28 0 2P is clearly divisible, being the meet of ^ , 
and so n0 • 28 = (0) as 28 is reduced. Thus 28 is a bounded torsion group. 
The quotient 2% I2P is Artinian and, again by Proposition 3, equationally 
compact; moreover, (2%/2P)+ = 28. Hence 28 is finite by Lemma 4, and we 
are done. 
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(ii) =» (iii): Let f + ^ f © ^ i © . . . © ^ where 38 is finite and 
3P i = Zip™), i = 1, . . . , n. Each ^ t is divisible, hence injective and there­
fore retract of every extending abelian group, e.g., the compact topological 
circle group (if. L e t / * : ff-^^t be a retraction. Endowing 38 with the 
discrete topology, we have then a (group) retraction 

where 3f is the compact topological group 38 0 (© ( ^ | i = 1, . . . , #)) and 
/ = id 0 f i ® . . . e / « . 

If multiplication is defined on H by letting every element of 

0 (C\i = 1, . . . , n) 

annihilate H and then extending by distributivity, ^f clearly becomes a ring. 
Moreover ^ is a topological ring under the given topology, because the 
inverse image under the multiplication map of any subset of H is the finite 
union of sets of the form A i X A 2 where each A j is a coset of 

© W = l , . . . ,n) 

in J^, all of which, however, are closed; thus multiplication is continuous. 
By a straightforward calculation one sees t h a t / is a ring homomorphism, and 
the proof is complete. 

It should be noted that the equivalence of (i) and (iii) answers a special 
case of the previously mentioned problem in Mycielski [8, P484]. 

Remark. It is not possible, in general, to obtain a ring-direct sum in the 
decomposition given in condition (ii). Consider, for example, the ring 3%, 
where m = Z2 0 Z(2œ), R • Z(2œ) = Z(2œ) • R = {0}, and (1, 0) • (1, 0) 
is defined to be the primitive square root of unity in Z(2°°). Here we have a 
nonzero divisible element appearing as a product of two nondivisible elements. 

The following improves Corollary 2 of Theorem 2: 

COROLLARY 1. A compact topological Artinian ring 3% is finite. 

Proof. By Theorem 3 we have ^ + ^ 38 © 3PX © . . . © 3Pn, where 38 is 
finite and 3P i = Z{p™). Let SP ? be the subgroup of 3P i consisting of all 
^ / t h roots of unity, and let 

m* = 38 © ^ V © . . . ®3Pn\ 

Now R = U (Rk\k = 1,2,3, . . . ) , that is, the intersection of the comple­
ments R\R* is empty. By the Baire Category Theorem [7, p. 200] at least one 
of the sets R\Rk is not dense in R, i.e., for some k0 the finite subgroup 3%kQ 

contains a nonempty open set; this forces the topology to be discrete and 
therefore by compactness 3$ must be finite. 
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COROLLARY 2. An equationally compact ring satisfying both chain conditions 
is finite. 

Proof. The proof is clear. 

Compactifications. We conclude with a few remarks on the question of 
embedding rings into equationally compact ones. Following the terminology 
of [14] we define, for a fixed universal algebra^/ , a compactification oisé to 
be an algebra Se such that Se is equationally compact and stf is a subalgebra 
of Se. Se is a quasi-compactification of s/ if stf is a subalgebra of ^ and every 
system of equations with constants in stf and finitely solvable in se is solvable 
in Se. The classes of compactifications (respectively quasi-compactifications) 
of sé are denoted by Comp(j^) (respectively c(s/)). Clearly Comp( j^) C 
c(stf). A positive formula is a formula of the first order predicate calculus 
which is built up from polynomial equations (of a fixed algebraic type) by 
application of the logical connectives V» 3 , A, V in a finite number of steps. 
We quote the following result of G. H. Wenzel: 

PROPOSITION 8 [14, Theorems 8.10 and 12]. Letstf be an algebra and let K 
be one of Comp(j^) or c (<$/). If K is not empty then there is an algebra Se in 
K such that Se satisfies every positive formula with constants in se which is 
satisfiable in s/. 

PROPOSITION 9. Let S% be a ring and A an infinite division ring. If S% contains 
A as a subringj then c(S$) = 0. In particular, an infinite semisimple Artinian 
ring cannot be quasi-compactified, and hence not (algebraically) embedded into 
a compact topological ring. If S% is an algebra over A and R2 9e {0}, then 
c(S?) = 0. If 2) denotes any divisible subgroup of S%+ and R • D ^ {0}, then 
c(S?) = 0. In particular, if S$ is a subring of a compact topological ring, then 
R-D = D-R = {0}. 

Proof. If c(S%) ?± 0, then c(3$) contains a ring by Proposition 8; the proofs 
are then implicit in Proposition 3. 

PROPOSITION 10. Let S% be an infinite Artinian ring with identity. Then 
Comp(«^?) = 0. In particular, S$ cannot be (algebraically) embedded in a com­
pact topological ring. 

Proof. S% is Noetherian by a well-known result; hence S% has finite length. 
If n is the (unique!) length of a maximal chain of left ideals then as is easily 
checked, the property of "maximal length of at most ri" is characterized by 
the positive formula 

¥ = (V*i) • • • (V*n+2) (3 yi) • • . (3 3Vf2) ( V xk = yi%i + . . . + ;y*_ix*_i). 
KJfc^n+2 

Thus if C o m p ^ ) 7e 0, there is by Proposition 8 an Sf € C o m p ( ^ ) satisfy­
ing SF, i.e., of finite length. But this cannot be, since by Corollary 2 of 
Theorem 3, j ^ 7 would be finite. 
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