7

Classical and Fractional Inequalities
of Rellich Type

7.1 The Classical Inequalities

Rellich’s classical inequality in [153] asserts that for all u € C5°(R" \ {0}) and
n e N\ {2},

dx, (7.1.1)

n*(n — 4)2 / |u(x)|*
Rn

Au(x)|* dx >
/Rn| WP dvz =

with sharp constant n?(n — 4)2/16. The inequality also holds for n = 2 (with
constant 1), but only for those functions u € Cg° (R?\ {0}) which, in terms of
polar co-ordinates (r, 0), satisfy

/ u(r, 0) cos 6 do =/ u(r, 0) sin@ do = 0. (7.1.2)
0 0

In [73], Rellich-type inequalities involving magnetic Laplacians with magnetic
potentials of Aharonov—Bohm type are studied, which are valid for all n € N
in some circumstances. What is of particular significance for (7.1.1) is that they
clarify the situation for the case n = 2 and also the trivial case n = 4. The
study was motivated by the Laptev—Weidl inequality (5.1.9) in which a magnetic
Hardy inequality is shown to be valid in the case n = 2 (when there is no non-
trivial Hardy inequality) if the magnetic potential is of Aharonov—Bohm type

X2 X
(27 x|

Ax)=w ( ) , X = (X1, x2) (7.1.3)

with non-integer flux ¥; the magnetic field curl A = 0in R?\ {0}. The following
two theorems are proved in [73]: in them

Aa = (V — A)? is the magnetic Laplacian.
Theorem 7.1 For all u € C°(R? \ {0}),

dx
v dx, (7.1.4)

/ AP d = c@. s) f (o
R2 x| R2

|x[*
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122 Classical and Fractional Inequalities of Rellich Type

where
242
C(2,5) = min {(m PRSI 22) } . (71.5)
IfV ¢ 7 (¥ € (0, 1) without loss of generality), we have
C(2,0) = min{(¥? — )%, W2(¥ —2)%}
- i wels ),
- { VAW —2)? if Welo, ). (7.16)

Remark 7.2

If ¥ € Z, then C(2,0) = 0. However, if (7.1.2) is satisfied, then the minimum
in (7.1.5) is over m € Z \ {—1, 1} and this recovers the result C(2, 0) = 1.

Theorem 7.3  Let u € C°(R*\ L4), where L4 := {x = (r,0), 01, 65; 01,0, €
(0, 7), 63 € (0,27): rsin6; sin@, = 0}. Then curl A = 0 on R* \ L4 and

2 dx ) dx
/ AP > c@, 5) / G- (7.17)
R4 |x]* R4 |x|s+4
where
2
Cl4,s) = inf H(m —wY 11— s(s:ﬂ } , (71.8)

and 7/ = {m € Z: (m — W)*> > 1}. In particular, when s = 0 and ¥ € (0, 1),
C4,0) =min{[(1 = ¥)> = 1% [(-2—=¥V) =11’} > 0.

When W = 0, (7.1.7) is satisfied on C3°(R* \ {0}). The inequality is trivial if
C(4,0) = 0, but there is a restricted class of functions which is such that the
infimum is attained for m = 2, and so C(4,0) = 9; this is an analogue for
n = 4 of the result for n = 2 in Remark 7.2. We refer to [15], Corollary 6.4.10,
for further details.

Similar results to Theorems 7.1 and 7.3 are given in the case n = 3 in [15],
and for n > 4 in [166].

Next, we consider Rellich inequalities on a domain 2 C R", n > 2. Let Q2
be a proper, non-empty open subset of R*(n > 2) and §(x) := dist(x, 9€2), the
distance from x € €2 to the boundary of 2. The following Rellich inequality in
L,($2) is established in [15], Corollary 6.2.7,

2
/Q|Au(x)|2dx > % ) |ZE§L dx, ue C(Q), (7.1.9)

under the assumption that § is superharmonic, i.e., A § < 0 in the distributional
sense; this requirement is met if €2 is convex or if €2 is weakly mean convex with

https://doi.org/10.1017/9781009254625.009 Published online by Cambridge University Press


https://doi.org/10.1017/9781009254625.009

7.1 The Classical Inequalities 123

() = 2\ G(2) anull set; see Section 5.3. The proof in [15] is based on the
abstract Hardy-type inequality

2
/Q|AV(x)||u(x)|2dx < 4/Q %Wu(x)lzdx, ue CP(Q),

which was proved for AV of one sign in [123], Lemma 2 (see also [49]). For
s # 0, choose V(x) = —[(s + 1)/5s]6(x)™* and for s = 0 let V(x) = Ind(x).
Then |[VV(x)|> = (s + 1)28(x) 26D and when AS(x) < 0,

—AV(x) = (s+1D?80) 4 (s+ D) (= AS(x) > (s+1)8(x) .

It follows that for n > 2,

WP o, [ 1VueP

2
D s TSt s

ds, ue Cy(Q). (7.1.10)

We show that (7.1.9) is a consequence of (7.1.10). With the notation u; =
oju, ujx = 0;0ru and ujy = 9;0r;u, we have

/IAu(x)|2dx= E;kaI/uJ-,»u—kkdx
Q ’ Q
= Ej:k/ |ujj|2dx— E#k/ Uil dx
Q Q
= Ej:k/ |ujj|2dx+ Ej#k/ ujk@dx
Q Q
= z;':l/Qw(uj)Fdx. (7.1.11)
Hence from (7.1.10),

s e 1/ Vi) 2
/$;|Au(x)| dx—Ej:14 Q—é(x)z dx

U9 [ P

=16 Jg 8(x)*

)

thus (7.1.9),

In the L, setting, results have been obtained by Davies and Hinz in [49].
Their main tool is an abstract Rellich-type inequality reminiscent of the ab-
stract Hardy-type inequality in [123], but now depending on the existence of a
positive function V which is such that AV < 0 and A(V%) < 0 for some a > 1:
this is that if p € (1, 00) and u € C3°(R2),

2 p
) P VP (x)
/Q|AV(x)||u(x)|1 dxf((p_l)a+l> /va(x)'pilmu(x)v’dx.
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124 Classical and Fractional Inequalities of Rellich Type

When © = R"\ {0} and n > 5 > 2, the choice V(x) = |x|"“"?, a = =2 gives

[ a1 - vnrs -2 [ M5

bl vl

whence the Rellich inequality
-1 -2 P P
/ |Au()Pdx > (W) / WIP 4, (7.1.12)
R” p o |x|

the constant is shown to be sharp in [15], Corollary 6.3.5.
In [63], the mean distance function M, defined in (6.2) by

L ﬁr(%)/ 1
S

M,y T (,%1) r(2) Jor 8009

do(v) (7.1.13)

is used to obtain Rellich inequalities of the form

|u(x)|”

Aux)|Pdx > C
/S.Z | | Q MZp(x)2p

dx, u € Cy°(S),

for general domains 2. The following is proved in [63]:

Theorem 7.4 Let Q2 be a non-empty, proper, open subset of R", let p € (1, 00)
and suppose that u € C%(Q). Then

P »
———-dx < K(p,n) | Au(x)|? dx, (7.1.14)
o My, (x)? Q
where
K(p.n) = c,B(n, 2p)n cot™ (l) (71.15)
2p*
Here
d=2ifl<p<2,d=2p/p if2 <p < o0,
P \(r Y\
et () ()
and
n+2,
n,4p) =
2p+1
r(zre)
If p = 2, then
2
16
@ dx < — / |Au(x)|? dx. (7.1.16)
o Ma(x) 9 Ja

For Q convex, My, (x) < §(x) := inf{|ly — x|: y € R"\ Q}.
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We refer to [63] for a proof but some comments might be helpful. The cotan-
gent factor in (7.1.15) appears in the inequality

DDyl < cot® (2’;—*) | Aully, u € CR)
forj, k = 1,2, ..., n, which follows from the identity
D;Diu = —R;Ri Au
involving the Riesz transform R; in L,(R") and the remarkable result
IRz L(R") — L,(R")| = cot’ <l>
2px

proved in [105] and [16]. A brief background discussion of Riesz transforms
may be found in [65], Section 1.4.

7.2 Fractional Rellich Inequalities in R"

Frank and Seiringer establish the following Hardy inequality in [82], Theorem
1.1.Let 0 < s < 1 and suppose that u € C° (R") if 1 < p < n/s, while
u e Cy° (R"M\{0}) if n/s < p < oo. Then

lu(x) — u(y)l” u(x) [P
/ll /n yl’H‘Pé dXdyzcnﬂsvp ./l;” |x|ps dx? (721)

where
1
Cusp =2 / P = e g, () dr, (7.2.2)
0
)(n 3)/2
D,5,(r) = |S" 2[ ———dtifn > 2, (72.3)
’ | 1—2n+ 2) /2
and
O, == A+ Pifn=1. (7.2.4)

In the case p = 2, (7.2.1) follows from Proposition 3.28, and the identity

2
(- A)°/2u||2Rn = C(n, s) /R /R %dmy, (7.2.5)
in which
C(s, n) = 227 ~"°T (g n s) /IT(=9)] (12.6)
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and thus
lim C(s,m)/(1 =) = 20 2T (n)2) = 4n/w,_, .
S—>1—

Fors e (0,1), p=2, n> 2sand u € C§° (R") (7.2.1) is then a consequence
of (7.2.5) and the Herbst inequality [96]

2
/ |(=A)Yu)|*dx = C,., / |“(x2)s| dx, (7.2.7)
R” R? |X|
which has the sharp constant
LI ()
— A
1

Therefore, for s € (0,1),n > 2s and u € C5° (R"),
_ 2 2
f f ) = WO gy > ¢, / Ol (72.9)
n n Rn

y|n+23 |x|2S

with sharp constant

2 (=) T (=9)]
—2s

Cn,s,Z = 2Cs,n/C(S, I’l) = 27-["/2 -
©2(58) T ()

(7.2.10)

Another consequence of (7.2.5) is

Corollary 7.5 Leto € (0, 1) and n > 20. Then for all Ci° (R"),

|Dju(x) — Diu(y)|* _ lu(x) |
Z/ﬂ /n o dxdy > 2C(o,n) ' Cyi1n /Rn de,

-y
(7.2.11)
where the constant is sharp.
Proof From (7.2.5) withs =1+ o0 and o € (0, 1), we have
- |D u(x) Diu(y)®
Z n+20 dy
i=1 R? y|
=2C(o,n)"" Z / &1 |(F (Daw)) () d&
i R?
=2C(o.n)™"! Z / (gl P @) [ dé
— 2C(0, n)"! ||(—A)("+')/2u||§Rn
2
> 2C(0, )" Cosin / %dx. (7.2.12)
Re [x]7F27
O
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Note that we also have from (7.2.1)
ID; u(X) Du(y)|* drd
Z N n |n+2a Y
|D; u(x)l
zc,,ngnz S
\%
—Cuon / ﬂ dx
Rr ||
2 2
lu(x)]
dx,
A” |x|2+26

the final step being the weighted Hardy inequality (7.1.10). Since the constant
in (7.2.12) is sharp, it follows that

2420 —n
2

> Cn.a,Z

2420 —nl
C”»Uvz u = ZC(Ua n)_ICU-H,n;
hence by (7.2.10),
2420 —nf
o.n T = C(H—l,n- (7213)

For n > 2 the inequality (7.2.13) is strict since, on allowing 0 — 1—, the
left-hand side tends to ((n — 2)(n — 4))? /16 while the right-hand side tends to
(n(n — 4))* /16, the optimal constant in the Rellich inequality (7.1.1). If o0 —
0+, (7.2.11) becomes the Hardy inequality and the constants on both sides of
(7.2.13) tend to the optimal Hardy constant (n — 2)?/4.

Remark 7.6

The inequality (7.2.5) is the special case p = 2 of Herbst’s inequality in [96]
which is, for 1 < p < 00,5 > 0,n > psand u € C° (R"), that

P , \
/n <K, =" ul) s (7.2.14)

|x[”*

with best possible constant

() ()
s P 2p
Knps—2 r(2\r n(—+ps .
E 2p
This is also established in [156]; moreover, Samko determines a sharp con-

stant for the Hardy—Stein—Weiss inequality for fractional Riesz operators in
L, (R", p) with a power weight p(x) = |x|’3 and as a corollary finds the sharp

(7.2.15)
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constant for a similar weighted inequality for fractional powers of the Laplace—
Beltrami operator on the unit sphere. A proof of (7.2.14) in the case p = 2 was
given in [172]; moreover, Yafaev shows thatifn <2(1 +o0),1+0 —n/2 ¢ Z
and k := [1 4+ o — n/2], then

2

f 7272 Jux) = Y (o) (D) (0)x*| dx

o] <k

< Koo [0y,
where
r (n7272a) r (n72a)
K — 2—1—0 4 4
n.o max ! r (n+2:—2rr) ’ r (n+4:—2a)

Thus in particular, (7.2.14), with p = 2, s = 1 4+ o and constant K? , holds for

all u e C° (R™\{0})if n < 2(1+0)and 1 + o —n/2 ¢ Z. '

7.3 Fractional Rellich Inequalities in General Domains
The mean distance defined in (6.2.1), namely
LA o
Moo = i e s T do(v), (7.3.1)
P r (T) r(3) Jet o

will again feature prominently in this and following sections, with the range of
the parameter s specific to the problem being considered. It remains true that if
2 is convex with non-empty boundary, then M, ,(x) < §(x) ;= inf{|y —x|: y ¢
Q}.

The main theorem on fractional Rellich inequalities comes from [66] and
sets the scene for much of what follows in this chapter. The method of proof is
that in [130] which was what was used to prove Theorem 6.8 and (6.2.20). We
shall use the following notation, some of which is reminiscent of that in Section
6.2. Suppose that | < p < 00, 1/p < o < 1 and define

e,(n) :z{ n_(,,l_z)/z iﬁ ii (13.2)
and
—1)/2 1+p+a
Dypo = i <+) Dipas (13.3)
r(=5)
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where

1 \1 _ r(a—l)/pil’
Dipa=2| ————dr. 7.3.4
" A a—nme @ (34

In the special case in which p = 2, we have from the appendix of [22] that
2 (27 1 2—
Dige= - loor (X% “) -1l (13.5)
R BV 2 2

Theorem 7.7 Let Q be an open subset of R" with non-empty boundary, let
p € (1, 00) and suppose that o € (1/p, 1). Then for all f € C3° (),

" [ D@ = DO
dxd
M e
Foor

_ P 7
> ¢,(W)Dyppo (0 +1—1/p) dx. (7.3.6)

The following improvement is possible in the case p = 2 with o € (1/2,1):

IDJ() DJ@NZ
Z / / . |n+2<7 dy

2
> 2kp20 (0 + 1/2)2/ i [f ()]

Q +(7,2(x)2+20

(7.3.7)

where
p=DRE (322) (2720 /1 420 2-20\ 1
2K”*2‘7 =2 n+2+20 r r )
ol (T) VT 2 2 2
> 'sz’zg. (738)

The proof of this theorem will be given later, after the establishment of var-
ious one-dimensional inequalities based on ones in [130]. Only the case k = 1
of the first lemma is needed in this section, but the general case will be required
when we consider higher-order inequalities later.

Lemma?78 Let—oco<a<b<oo, p+s—1>0,1<p<oo, ke Nand
fort e (a,b), set 84 (t) :=min{t — a, b — 1)}. Then, for all f € Ci°(a, b),

L I )
llf“”{&—af+w—m}

; _ P b p
>k, (et / _wr
! P a Sap ()T

(7.3.9)
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Proof Letc= (a+b)/2,je{1,2,---,k}andg = p/(p—1). On integration
by parts and the use of Holder’s inequality, we have (cf. [66], Lemma 4.7)

¢ p
1, = / lf(;)l dx
|x — aprts

.W+s /1V@W7%W7H( —a) P — (¢ — gy PO

c p—1
P U
“jpts—1J, (x—a)rtla

— (¢ — a)~ PO gy

c 1/q
<t f (( W;,-,W) [Fl0e— @)=t
Jp+s— a X—a $

o Jpts—1
X |:l — (x a) ]dx.
c—x
Therefore,

P pe /1P _ \Jps—17P
L<=(—2~ Ui - (=2 dx
jp+s—1) J, (x—a)i—br+s c—a

P pc /1P
<|- P A |, dx. (7.3.10)
jp+s—1) J, (x—a)i—br+s
We also have forj = 1,

P c / o +s—177
1as< P ) Y dx|:l—<x “)P ]dx.
p+s—1 . x—a) c—Xx
=TGR
ho(x) == 1— — |1+ .
c—a b—x

Then, h,(a) = 0, hy(c) = —2° and K (x) < 0 on (a, ¢), and so h,(x) < 0 on
(a, c). Hence when j = 1,

e x—a\|
v s [ o[ G=)] Jo

¢ 1 1 s
= I ()P { + } dx. (7.3.11)
/a x—a) (b—x)
Similar inequalities to (7.3.10) and (7.3.11) hold for the integral

L= /b Fr

|x _ b|1p+s

(x— a)(j”+“)/q[f/|[(x _ a)—(/p+s)+l

Let
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and hence for

b
e
a 8(a,b)(x)]p+s

It follows that forj € 2, .. .k,

b | £k—)) P P rb (k—j+1) 14
de < <L> de, (7.3.12)
a Oy (X)PTs Jjp+s—1 a O(ap) (x)U=Dpts
and forj =1,
b (k—1) p P b 1 1 s
f o] dxs( P ) / lf"(x)l”{ + } dx.
a S@p ()P p+s—1 a x—a) (b-x
(7.3.13)
Therefore

O 1 Sd
fa el {(x—a>+(b—x>} g
(p+s—1>p(2p+s—l>p <kp+s—1>p/b If ()P
> dx
p p p a S (s

and the lemma is proved. O

The following lemma is a key result in the proof of Theorem 7.7, and is a
consequence of Lemma 7.8, and Theorems 2.1 and 2.6 in [130].

Lemma 7.9 Let —co <a<b<ooandl <o < 2. Thenforf e Ci°(a, b),

/ o 2 2 b 2
f I ) =" dxdyzZ(a—H) Km[ [f ()] v
(a,b)x(a,b) 2 a

|x _ y|]+a 5((1,17) (x)a+2 :
(7.3.14)

Forl <a <p < oo,

/ If' () = f' 1P dxdy
(a,b)x(a,b)

|x — y[i+e

-1 P b 1
> <%) Dipe / _Ver (73.15)
p a 18@p (@)]*HP
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Proof From Theorem 2.1 in [130],
/ _ 2
[ Uror,,
(a,b)x (a,b)

|x_y|1+a

b / 2 1 1 “
> 2K1,0 If" | T—a + dx

b—x
1 o
i| dx
b—x

c b 1
=2, (/ +f )lf/(x)IQ [—+
a c X—a
b / 2
I )1 dx
a S(a,h)(x)a

and (7.3.14) follows from the case k = 1 of Lemma 7.8. The inequality (7.3.15)
follows from Theorem 2.6 in [130] and Lemma 7.8. O

(7.3.16)

= 2K1,a

The same argument as in the proof of (6.2.6) in Lemma 6.2.2, gives
Corollary 7.10 Let J be an open subset of R and
8y(t) := min{|s|: t + s & J}. (7.3.17)
Forl <a <2andf € C3°(J),
') =W
pxg =yt

Ifl <o <p< oo,

/ o p _ p
/ If' @) =] dedy > <a +p 1) Dl’p’a/Mdﬁ (7.3.19)
IxJ p y

lx — y| 't 85 (e

o | ———— dx. 7.3.18
Ty 8y(x)t? " ( )

@+ 1)2 1 F ()2

dxdy > 2
xdy > ( >

Corollary 7.11  For each x in the domain Q C R" and v € S"~!, define
J,v) :={t: x+1tv € Q}, (7.3.20)
8jx,v) = min{|t]: t ¢ J(x, v)}. (7.3.21)

Let 1 < a < p < oo and set D = (Dy,D,,...D,), D; = 3/dx;. Then for
xeQ, feCPUkx, v)andv € s

[(Df - v)(x + sv) — (Df - v)(x + )P
e ds dt
T v)xJ(x,v) s — 1|
1
> E(a, p) [(Df - v)(x + )| ———dt
T(xv) 370wy (D¢

a+p—1\ 1
> Ea. p) <—> fGt+ P ————dr,  (13.22)
p J(xv) 87, (TP

where E(a, p) = D) o for 1 < p < oo and 2k, when p = 2.
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Proof Since 2 is an open connected set, then each J(x, v) is an open set in
R. As a function of ¢, f(x + tv) € C5°(J(x, v)) and by the chain rule,

d
d_tf(x +tv) = (v-Df) (x + tv).
Thus, (7.3.22) follows from Corollary 7.10 applied to f(x + tv). O

Lastly we need a lower bound for

n -p/p
ep(n) = (ZW) Lv=() e S
i=1
Ifl<p<2,
Yol < il =1,
i=1 i=1

and if p > 2,

1-p//2

n n P2 n
Yol < (Zmﬁ) (Z 1) =n'"7"2,
i=1 i=1 i=1

Thus

n -/ .
) s {2, Ters2
— ' - n~ =212, if p > 2.

(7.3.23)
Hence, for v = (v;) € S*!,
[(v-Df) (x+sv) — (v-Df) (x + 1)
= |El.”=1v,-Dif(x +sv) — XL vDif (x + tv)}p
< e, L, IDf (x + sv) — Dif (x + 1),
and we have as in Lemma 6.10,
Lemma7.12 Letl/p <o <1, 1<p<ooandf e C;(R2). Then
Dif(x) — DF )P
2/ / IDif (x) n+{(§y)| dvdy
— J/eJa lx =yl
Wp—1
> / e,(n)dw(v) dLr,(x) ds
2 gn—=1 x:xv=0 x+sveQ
-D —(W-D )P
X/ {l(V )f) (X + sv) I(J\: f) (x + tv)| }dr, (73.24)
x+tve |S - t| L
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where L, (x) denotes the (n — 1)-dimensional Lebesgue measure on the plane

x-v=0.
‘We now have all we need for the proof of Theorem 7.7.

Proof of Theorem 7.7 From Lemma 2.4 in [130],

/ IDF) = DI dy
QJIQ

|X _ y|n+20
= 2o / do(v) dL, (x) ds
2 g1 x: xv=0 x+sve
ID;if (x+ sv) — D;f (x + )|
x 1420 dr.
+rveQ [s — ¢

Thus, on applying (7.3.24),

IDJ() DJ@)F
Z/f - —y|t dxdy

> Ont / dw(v) AL, () ds
sn—1 x:xv =0

- 2 x+sveQ

x/ {|(u-Df)<x+sv> v Df)(x+tv)|2}
x+tveQ

| t|1+20

From Corollary 7.11, we therefore have

IDJ(x) DJ(y)|2
Z// y|n+20 dy

> Gt K120 / doo(v) 4L, ()
Snfl

x:xv =0

1
X v-Df)(x + sv)|? ———— ds
/);JrsveQ'( P ) av(x'i's‘))zg

20 +1\°
2( s ) Wp—1 Kl,ZU/ dw(v) dL, (x)
2 n—1 x: xv=0

1
X i d
/ersveQ e+ sv)l 6\%+20 (x4 sv) s

20 + 12 2
22<0+ >Kn’26 &dx

2 Q M1+0,2(-x)2+2”

The proof for p = 2 is complete. For general p the proof is similar.
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7.4 Higher-Order Fractional Hardy—-Rellich Inequalities

Some more notation and preliminary remarks are required before stating the
main theorem.

Forv = (1) € """, & = (1, ..., ;) € N} and k € N, use of the multino-
mial theorem shows that

(\) . D)k — (UlDl + - + vnDn)k (741)
k!
= Z .o, (DD ... (VD)™
1ho!
lo|=k
k! o
= Z o (veD*), vy = V0o (74.2)
o=k &

Forp € (1,00), ke Nandv € S™ !, we shall need

’ ]/17,
kY ,
Sk,p/(\)) = ‘;k (;) |Ua |p s Sk,p’ = UIEI'é%Z(I Sk,p’(v)v (743)
where |, | := ylzo‘l N v}%a”'
Remark 7.13

1. It follows from (7.3.23) that

o <{ 1, ifl <p<2,

L= p®=220=D if2 < p < oo. (744

2. Estimation of S ,; when k > 1 requires more effort. For example, suppose
that k = 2. Then there are two possibilities:

(a) two components of «, say «; and «;, are 1 and the others are zero;
(b) one component of «, say o, is 2 and the others are zero.

Incase(a),a!:landvlza'—i—n-—kv,f"‘" =vl.2—|—vjz+n—2,sothatn—2§

|vO[|2 <n—1and

2 2
4(n—2) = (;) vel? < 4(n —1).

Incase (b), ! =2andn — 1 < |y, > < vj2 +n — 1 < n, showing that
2 2

n—1<— |l <n
o!

In the sum for S%,z there are n(n — 1) /2 terms of type (a) and n of type (b). Thus

2n(n — 1)2n —3) < 85, (v) < 2n(n —1)* +n?,
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136 Classical and Fractional Inequalities of Rellich Type

and so
n(n—1)2n—3) <83, (v) <n@2n* —3n+2). (7.4.5)

The mean distance function for the higher-order inequalities is, for 1 < p <
ooand 1/p <o < 1,

: il e —do).  (146)
- w(v), 4.
R C S IO R

and the following constants are analogous to those in Section 7.3:

(n—1)/2 1+pk+po
i (ke )

Dinppo = . <n+pk+pa) D p.pos (7.4.7)
2
Zn(nfl)/ZF (1+2k+2(r) (74 8)
Kkn2o = k120 K1,20 L.
r(=522)

where Dy p, ,, and k2, are given in (7.3.4) and (7.3.5). If @ is convex with
non-empty boundary, 0 < 0 < 1 and 1/0 < p < oo, then for all values of &,
we have

Miso,p(x) = 8(x) :=inf{ly —x[: y ¢ Q}. (74.9)

Note that in the case k = 1, our notation for (7.4.7) and (7.4.8) was D, ,, ,, and
Kn20- The constant

: p
me, (Bme=t)’, ke,

G(mo, k,p) =] = (7.4.10)
1, k=1

appears in our main theorem.

Theorem 7.14 Let Q2 be a domain in R" with non-empty boundary, 1 < p <
oo and 1/p < o < 1. Then, for all f € C°(£2),

[(D*f (x) — D*f ()P
£, [ s o,

lot|=k
=SP Z /f| i ka (x) |1(1+;(1r : Djkf)(y)|pdxdy

SJe=1
lf ()17
= Ek,n.p,p(rG(pO', k, P) f M,

Q o,p (x)pa+kp

(7.4.11)

where Ey j p po = Dinppos; When p = 2 the inequality holds with Ey 206 =
2Kk,n,20-
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Proof Corollaries 7.10 and 7.11 have the following analogues for any k € Ny:

/ o) —fOmpP
IxJ

| — y[+Pe

dx dy

If o) 1P
7 18;(x) [kptpo
where E(po, p) = D p po, E(20,2) = k125, and

/ (v D) (x +5v) — (- DYf(x + )" ds
J(x,v) xJ (x,v) |s — t|1+Po

’

> E(po, p)G(po, k, p)

dt

If (x + )P
Teow) Saew (DPFPT

To proceed with the proof, we need the following inequality to obtain an ana-
logue of Lemma 7.3.6, and thus of Lemma 2.4 in [130]. From (7.4.1) and (7.4.2),

= E(po. p)G(po., k. p)

k!
(v Dy =Y —u,D"
o!

loe|=k ~°

for v, = V" - v, and

(- DY) x4 5v) = (- D)) e+ )"

p
k!
= |20 S {00 D) f ) = (- DO f G+ 1)
lal=k
y » , v
< Z<J> |vel” DD (x4 sv) — (D) (x + )’
la|=k ’ ee|=k

<0 | D10 (et sv) = (%) e+ ) |

lor| =k

where Sy, is defined in (7.4.3). Then, for 1/p < 0 < 1, 1 < p < oo and
f e (),

D ik [ (DY) (x) — (D) I
Si”’//g/Q lol =k i dx dy

/ dw(v) dr,(x) ds
gn—=1 x: x-v=0

x+sveQ

Wp—1
>
-2

/ {|(v-D)"f(X+SV)—(v~D)"f(x+tv)|”}

X dt,

x+tveQ

|S _ t|l+p(r
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138 Classical and Fractional Inequalities of Rellich Type

where £, (x) denotes the (n — 1)-dimensional Lebesgue measure on the plane
x-v = 0. It follows that

> =k (DY) (x) = (D) DI
Sk fg /Q vt P dxdy
> E(po, p)G(po, k, p) dow(v) dL,(x)
sn—1 x: xv=0

/ If (x +sv)lP
X

+sveQ 8y (x + sv)p(H—kp

If (017
> E(po, p)G(po, k, d _—
= 2o pGipo.kp) [ dow [ TS
If (017
> Ex nppoe G(po, k, —————dx.
> Eknppoe G p)/ssz+o,p(x)pU+kp
This completes the proof. OJ

7.5 Higher-Order Inequality with a Remainder

An analogue of Proposition 6.14 is now readily established for higher-order
Hardy—Rellich inequalities. First we note that Corollary 7.3.5 has the extension

Corollary 7.15 Let Q2 be a bounded domain in R", and for x € Q and v €
S"™ !, define

J,v) :={t: x+1tv € Q},
8jxr,vy i=min{|t]|: t ¢ J(x, v)}.

Thenfor1/2 <o < 1,f € C°(R2) and k € N,

dt

/ 0 -D)ffx+rv) = v-Df e+ )
T(0) %I (5,0) |r — |42

o) Baem) (T2
4 — 23720 V‘(x)|2

——— G20 — 1,k,2 _—
20 diam (J(x, v)) 2o ) Iy 187G PFF20 1

> 2K1yzg GQ2o,k,2) dt
dx, (7.5.1)

using (7.4.8).
We may now follow a similar argument to that in the proof of Theorem 7.4.2,
and in Dyda’s Theorem 6.13, to derive
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7.6 Higher-Order Classical Inequalities 139

Theorem 7.16 Let 2 be a bounded domain in R" with non-empty boundary
and k € Ny, 1/2 < o < 1. Then, for all f € C3°(S),

|(DYf (x) — Df ()]
Slzzz.// ( fx |n+2]:(y) dx dy

|la|=k
()P
>2Kkn20G(20 k 2)/ mdx
+

4 — 2'% 20 20— 2
p Bn2ol Gooo — 1.k, 2)/ kol
20 diam (£2) K201 @ Miyo—12,2(x) K201

(7.5.2)

)

where, by (7.4.8),

—-1)/2 2k+2
Ki,n,20—1 2 =1/ F( 5 U)

= T (n+2k42—2tr—l )

K1,20-1

and Mo 2 is defined in (6.2.1). If Q2 is convex, Myiq2(x) < 8(x) := inf{[y —
x|y ¢ Q.
The constant multiplying the first integral on the right-hand side of (7.5.2)

cannot be replaced by a larger one in the case k = 0, but this is not proved for
k>1.

7.6 Higher-Order Classical Inequalities

It is proved by Bourgain, Brezis and Mironescu in [23] that if €2 is a connected
open subset of R" and 1 < p < oo, then for all f € C5°(R2),

lim (1 — o)// V» =1or dy:K(n,p)/ IVF0)IP dx
Q

o—>1— |x_y|"+p”

for some positive constant K(n, p) depending only on n and p; see Corollary
3.20 and Remark 3.21. If p = 2, the following precise information is established
in [78], Lemma 3.1:

/ lf(x) —fol
n Rn

T dx dy=2C(n,a)_1/Rn (=AY )| dx (76.1)

forO0 <o < 1and

r'(5+o0)

. 7.6.2
I (o)l 72

1
zc(n’ O') — 220—1”—11/2
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140 Classical and Fractional Inequalities of Rellich Type

In (6.6.1), (—A)/2f(x) = [F“ (|g|“f(g))] (x), where f = F(f), and it fol-

lows that

I(D"‘f (x) = D°f (y))|
R . |n+20
|Dl| k

=2C(n, o) Z/ |(— A)"/ZD"‘f(x)| dx

|or|=k

=2C(n, o) Z/

|or|=k

=2Cn, o) /
Rn

Hence, for f € C3°(£2),

~ 2
) eyt ae

o f(x)‘z dx.

e as

o "4 2
IC(n &) / / |(D f(X) Df(y)l dvdy
Rn n

2 = |n+20
1 I(D"‘f ) — D°f (y))l2
> Cn,0) > / / T dy. (7.6.3)

||=k

In (7.4.11), the constant multiple of the integral on the right-hand side is

2G(20, k, 2)kn 20

2 2
in which, as o — 1—, G(2,k,2) = (,fé‘zﬁ)f) = (%F (k + %)) and k, 2, 1S
asymptotic to

j.[(n 1)/2F (3+2k)

s S A F 3/2) (1 —
rEmy T R0
1 (3£
= §n<"—”/zr(£+—2}+z)(1 —o)7 L. (7.6.4)

Also, as 0 — 1—, 1C(n, o) in (7.6.3) satisfies

1

EC(n, o) ~2n "’ T (n)2 + 1)(1 — o), (7.6.5)
and for f € C3°(2),

I:= lim/ |(—A)<”+’<>/2f(x)}2dx=/ |(—=8)I2F () .
R Rn

o—>1—
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This follows by dominated convergence, on noting that

1= Jim [ ot de,

and, for0 <o <1,

N 2 ~ 2
(PP < |[0gP 2 +1]7®)|
= [F([=)*2 +1]1) ©f e Li®.

Hence from (7.4.11) and (7.6.3), the inequality we get in the limitaso — 1—
is

Ltk 2 . If )2
/n A2 f(x)‘ dx > K(n, k) a]—1>nl] / Mero 2 05727 dx, (7.6.6)

where

LrEHIrE+
K(n, k) =252 ; )
k2 7T3/2F( +22k+2)

(7.6.7)

Aso — 1-,M,_ fk 22” is bounded by Mk +1 2 on the support of f. Since
[flek ffzz € L;(R2) is proved in [143] (see (7.6.10) below) it follows by domi-
nated convergence from (7.6.6) that

J.

In [143], Owen establishes the following Hardy—Rellich inequality for poly-
harmonic operators with a sharp constant:

2
A#f(x))zdx > K(n, k) / A% dx. (7.6.8)

F(5+mT(m+3) [ [f@)P
r()r() o 4" (¥)

/Q f@ [(=A)"f] () dx =

for all f € C3°(2), m € N, and where

1 1
a2 /g L s e

Owen expresses his result in the quadratic form sense
F(Z+mr (m+ 1)
n 1
r)r()
where (-, -) is the L,(€2) inner-product, (—A)™ is the polyharmonic operator
of order 2m and A is the operator of multiplication by 1/a2"(x). On C(2),

(=8)"f.)) = (Af.),
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(—A)™ is the restriction of F~!(]-|?"), where F is the Fourier transform. In our
notation, withm =k + 1,
I _ T(k+3)rQ) 1
azn(x)  Jal (3 4+k+1) Myy20()>H*

Owen’s inequality therefore implies

2
/ FO [(=AY 1 £] () dx > Kok f VO 0 (769
Q o My

+1,2(x)2+2k '

where

I (3426)]?
Ko (k) = M (7.6.10)
T
Hence, in particular, [f|?M ;3" € Li(R"), as noted earlier.
The inequality (7.6.6) can also be expressed in the form sense, namely

2
/ F@ [0 ] dr = K, k)/ e
¢ @ My,

—— . ax
2()C)2+2k ’

and we have from (7.6.7) and (7.6.10),

Kok _ o AT (%52
K(n k)~ "“2r (B 12 4 1)

When k = 0 we have K(n, 0) = K((0) = 1/4, which confirms that the constant
in the Hardy case of Theorem 7.4.11 with p = 2 is sharp, as already proved
in [130]. However we cannot claim this for k > 1; for instance, when k = 1,
the value Ky(1) = 9/16 is sharp, but K(n, 1) = (9/16)(3/(n + 2)) < Ky(1) for
n>1.

When p # 2 it seems harder to use Fourier transform techniques. However,
there is an analogue of Corollary 1.4.8 of [63] that can be established by induc-
tion, namely that if p € (1, 00) and m € N, then for all « € Njj with |a| = 2m,

(7.6.11)

|DofIL, R™Y| < e | A™FIL, (RM)|| (7.6.12)

for all smooth f with compact support, where

¢, = cot® (;};) ,p* = max(p, p). (7.6.13)

This enables higher-order counterparts of Theorem 7.4 to be proved.
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