
7

Classical and Fractional Inequalities
of Rellich Type

7.1 The Classical Inequalities

Rellich’s classical inequality in [153] asserts that for all u ∈ C∞
0 (Rn \ {0}) and

n ∈ N \ {2},
∫

Rn
|�u(x)|2 dx ≥ n2(n − 4)2

16

∫

Rn

|u(x)|2
|x|4 dx, (7.1.1)

with sharp constant n2(n − 4)2/16. The inequality also holds for n = 2 (with
constant 1), but only for those functions u ∈ C∞

0 (R2 \ {0}) which, in terms of
polar co-ordinates (r, θ), satisfy

∫ ∞

0
u(r, θ) cos θ dθ =

∫ ∞

0
u(r, θ) sin θ dθ = 0. (7.1.2)

In [73], Rellich-type inequalities involving magnetic Laplacians with magnetic
potentials of Aharonov–Bohm type are studied, which are valid for all n ∈ N
in some circumstances. What is of particular significance for (7.1.1) is that they
clarify the situation for the case n = 2 and also the trivial case n = 4. The
study was motivated by the Laptev–Weidl inequality (5.1.9) in which a magnetic
Hardy inequality is shown to be valid in the case n = 2 (when there is no non-
trivial Hardy inequality) if the magnetic potential is of Aharonov–Bohm type

A(x) = �

(

− x2

|x|2 ,
x1

|x|2
)

, x = (x1, x2) (7.1.3)

with non-integer flux�; the magnetic field curl A = 0 inR2\{0}. The following
two theorems are proved in [73]: in them

�A = (∇ − A)2 is the magnetic Laplacian.

Theorem 7.1 For all u ∈ C∞
0 (R2 \ {0}),

∫

R2
|�Au(x)|2 dx

|x|s dx ≥ C(2, s)
∫

R2
|u(x)|2 dx

|x|s+4 dx, (7.1.4)
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122 Classical and Fractional Inequalities of Rellich Type

where

C(2, s) = min
m∈Z

{

(m +�)2 − (s + 2)2

4

}2

. (7.1.5)

If � /∈ Z (� ∈ (0, 1) without loss of generality), we have

C(2, 0) = min{(�2 − 1)2, �2(� − 2)2}

=
{
(�2 − 1)2 if � ∈ [ 1

2 , 1),
�2(� − 2)2 if � ∈ [0, 1

2 ).
(7.1.6)

Remark 7.2

If � ∈ Z, then C(2, 0) = 0. However, if (7.1.2) is satisfied, then the minimum
in (7.1.5) is over m ∈ Z \ {−1, 1} and this recovers the result C(2, 0) = 1.

Theorem 7.3 Let u ∈ C∞
0 (R4 \L4), where L4 := {x = (r, θ1, θ2, θ3; θ1, θ2 ∈

(0, π), θ3 ∈ (0, 2π) : r sin θ1 sin θ2 = 0}. Then curl A = 0 on R4 \ L4 and
∫

R4
|�Au(x)|2 dx

|x|s ≥ C(4, s)
∫

R4
|u(x)|2 dx

|x|s+4 , (7.1.7)

where

C(4, s) := inf
m∈Z′

{[

(m −�)2 − 1 − s(s + 4)
4

]2
}

, (7.1.8)

and Z′ := {m ∈ Z : (m −�)2 ≥ 1}. In particular, when s = 0 and � ∈ (0, 1),

C(4, 0) = min{[(1 −�)2 − 1]2, [(−2 −�)2 − 1]2} > 0.

When � = 0, (7.1.7) is satisfied on C∞
0 (R4 \ {0}). The inequality is trivial if

C(4, 0) = 0, but there is a restricted class of functions which is such that the
infimum is attained for m = ±2, and so C(4, 0) = 9; this is an analogue for
n = 4 of the result for n = 2 in Remark 7.2. We refer to [15], Corollary 6.4.10,
for further details.

Similar results to Theorems 7.1 and 7.3 are given in the case n = 3 in [15],
and for n > 4 in [166].

Next, we consider Rellich inequalities on a domain � ⊂ R
n, n ≥ 2. Let �

be a proper, non-empty open subset of Rn(n ≥ 2) and δ(x) := dist(x, ∂�), the
distance from x ∈ � to the boundary of �. The following Rellich inequality in
L2(�) is established in [15], Corollary 6.2.7,

∫

�

|�u(x)|2 dx ≥ 9
16

∫

�

|u(x)|2
δ(x)4 dx, u ∈ C∞

0 (�), (7.1.9)

under the assumption that δ is superharmonic, i.e., � δ ≤ 0 in the distributional
sense; this requirement is met if� is convex or if� is weakly mean convex with
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7.1 The Classical Inequalities 123

�(�) = � \ G(�) a null set; see Section 5.3. The proof in [15] is based on the
abstract Hardy-type inequality

∫

�

|�V(x)||u(x)|2dx ≤ 4
∫

�

|∇V(x)|2
|�V(x)| |∇u(x)|2dx, u ∈ C∞

0 (�),

which was proved for �V of one sign in [123], Lemma 2 (see also [49]). For
s �= 0, choose V(x) = −[(s + 1)/s]δ(x)−s and for s = 0 let V(x) = ln δ(x).
Then |∇V(x)|2 = (s + 1)2δ(x)−2(s+1), and when �δ(x) ≤ 0,

−�V(x) = (s+1)2δ(x)−(s+2)+(s+1)δ(x)−(s+1)(−�δ(x)) ≥ (s+1)2δ(x)−(s+2).

It follows that for n ≥ 2,

(s + 1)2
∫

�

|u(x)|2
δ(x)s+2 dx ≤ 4

∫

�

|∇u(x)|2
δ(x)s

ds, u ∈ C∞
0 (�). (7.1.10)

We show that (7.1.9) is a consequence of (7.1.10). With the notation uj =
∂ju, ujk = ∂j∂ku and ujkl = ∂j∂k∂lu, we have

∫

�

|�u(x)|2dx = �n
j,k=1

∫

�

ujjukk dx

= �j=k

∫

�

|ujj|2dx −�j�=k

∫

�

ujujkk dx

= �j=k

∫

�

|ujj|2dx +�j�=k

∫

�

ujkujk dx

= �n
j=1

∫

�

|∇(uj)|2 dx. (7.1.11)

Hence from (7.1.10),
∫

�

|�u(x)|2 dx = �n
j=1

1
4

∫

�

|∇u(x)|2
δ(x)2 dx

≥ 9
16

∫

�

|u(x)|2
δ(x)4 dx,

thus (7.1.9),
In the Lp setting, results have been obtained by Davies and Hinz in [49].

Their main tool is an abstract Rellich-type inequality reminiscent of the ab-
stract Hardy-type inequality in [123], but now depending on the existence of a
positive function V which is such that �V < 0 and �(Va) ≤ 0 for some a > 1:
this is that if p ∈ (1,∞) and u ∈ C∞

0 (�),
∫

�

|�V(x)||u(x)|p dx ≤
(

p2

(p − 1)a + 1

)p ∫

�

Vp(x)
|�V(x)|p−1 |�u(x)|p dx.
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124 Classical and Fractional Inequalities of Rellich Type

When � = R
n \ {0} and n > s > 2, the choice V(x) = |x|−(s−2), a = n−2

s−2 gives
∫

Rn

|�u(x)|p
|x|s−2p

dx ≥ (

p−2(n − s)[(p − 1)n + s − 2p])p
∫

Rn

|u(x)|p
|x|s dx,

whence the Rellich inequality
∫

Rn
|�u(x)|pdx ≥

(
n(p − 1)(n − 2p)

p2

)p ∫

Rn

|u(x)|p
|x|2p

dx; (7.1.12)

the constant is shown to be sharp in [15], Corollary 6.3.5.
In [63], the mean distance function Mp defined in (6.2) by

1
Mp(x)p

:=
√
π�

( n+p
2

)

�
(

p+1
2

)

�
( n

2

)

∫

Sn−1

1
δ

p
ν (x)

dω(ν) (7.1.13)

is used to obtain Rellich inequalities of the form
∫

�

|�u(x)|p dx ≥ C
∫

�

|u(x)|p
M2p(x)2p

dx, u ∈ C∞
0 (�),

for general domains �. The following is proved in [63]:

Theorem 7.4 Let � be a non-empty, proper, open subset ofRn, let p ∈ (1,∞)

and suppose that u ∈ C2
0(�). Then

∫

�

|u(x)|p
M2p(x)2p

dx ≤ K(p, n)
∫

�

|�u(x)|p dx, (7.1.14)

where

K(p, n) = cpB(n, 2p)nd cot2p
(

π

2p∗

)

. (7.1.15)

Here

d = 2 if 1 < p < 2, d = 2p/p′ if 2 < p < ∞,

p∗ = max
{

p, p′} , cp =
(

p
2p − 1

)p ( p
p − 1

)p

,

and

B(n, 2p) =
√
π�

(
n+2p

2

)

�
(

2p+1
2

)

�
( n

2

) .

If p = 2, then
∫

�

|u(x)|2
M4(x)4 dx ≤ 16

9

∫

�

|�u(x)|2 dx. (7.1.16)

For � convex, M2p(x) ≤ δ(x) := inf{|y − x| : y ∈ Rn \�}.
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7.2 Fractional Rellich Inequalities in Rn 125

We refer to [63] for a proof but some comments might be helpful. The cotan-
gent factor in (7.1.15) appears in the inequality

‖DjDku‖p ≤ cot2
(

π

2p∗
)

‖�u‖p, u ∈ C∞
0 (Rn)

for j, k = 1, 2, ..., n, which follows from the identity

DjDku = −RjRk�u

involving the Riesz transform Rj in Lp(R
n) and the remarkable result

‖Rj : Lp(R
n) → Lp(R

n)‖ = cot2
(

π

2p∗
)

proved in [105] and [16]. A brief background discussion of Riesz transforms
may be found in [65], Section 1.4.

7.2 Fractional Rellich Inequalities in Rn

Frank and Seiringer establish the following Hardy inequality in [82], Theorem
1.1. Let 0 < s < 1 and suppose that u ∈ C∞

0 (Rn) if 1 ≤ p < n/s, while
u ∈ C∞

0 (Rn\{0}) if n/s < p < ∞. Then
∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+ps dx dy ≥ Cn,s,p

∫

Rn

|u(x)|p
|x|ps dx, (7.2.1)

where

Cn,s,p := 2
∫ 1

0
rps−1

∣
∣1 − r(n−ps)/p

∣
∣
p
n,s,p(r) dr, (7.2.2)

n,s,p(r) = ∣
∣S

n−2
∣
∣

∫ 1

−1

(

1 − t2
)(n−3)/2

(

1 − 2rt + r2
)(n+ps)/2 dt if n ≥ 2, (7.2.3)

and

1,s,p(r) = (1 − r)−1−ps + (1 + r)−1−ps if n = 1. (7.2.4)

In the case p = 2, (7.2.1) follows from Proposition 3.28, and the identity

∥
∥(−�)s/2 u

∥
∥

2
2,Rn = C(n, s)

∫

Rn

∫

Rn

|u(x)− u(y)|2
|x − y|n+2s dx dy, (7.2.5)

in which

C(s, n) = 22sπ−n/2�
(n

2
+ s
)

/ |�(−s)| (7.2.6)
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126 Classical and Fractional Inequalities of Rellich Type

and thus

lim
s→1−

C(s, n)/(1 − s) = 2nπ−n/2�(n/2) = 4n/ωn−1.

For s ∈ (0, 1), p = 2, n > 2s and u ∈ C∞
0 (Rn) (7.2.1) is then a consequence

of (7.2.5) and the Herbst inequality [96]
∫

Rn

∣
∣(−�)s/2 u(x)

∣
∣
2

dx ≥ Cs,n

∫

Rn

|u(x)|2
|x|2s dx, (7.2.7)

which has the sharp constant

Cs,n = 22s�
2
( n+2s

4

)

�2
( n−2s

4

) . (7.2.8)

Therefore, for s ∈ (0, 1), n > 2s and u ∈ C∞
0 (Rn),

∫

Rn

∫

Rn

|u(x)− u(y)|2
|x − y|n+2s dx dy ≥ Cn,s,2

∫

Rn

|u(x)|2
|x|2s dx, (7.2.9)

with sharp constant

Cn,s,2 = 2Cs,n/C(s, n) = 2πn/2 �
2
( n+2s

4

) |�(−s)|
�2
( n−2s

4

)

�
( n+2s

4

) . (7.2.10)

Another consequence of (7.2.5) is

Corollary 7.5 Let σ ∈ (0, 1) and n > 2σ . Then for all C∞
0 (Rn),

n
∑

i=1

∫

Rn

∫

Rn

|Diu(x)− Diu(y)|2
|x − y|n+2σ dx dy ≥ 2C(σ, n)−1Cσ+1,n

∫

Rn

|u(x)|2
|x|2+2σ dx,

(7.2.11)

where the constant is sharp.

Proof From (7.2.5) with s = 1 + σ and σ ∈ (0, 1), we have
n
∑

i=1

∫

Rn

∫

Rn

|Diu(x)− Diu(y)|2
|x − y|n+2σ dx dy

= 2C(σ, n)−1
n
∑

i=1

∫

Rn
|ξ |2σ |(F (Diu)) (ξ)|2 dξ

= 2C(σ, n)−1
n
∑

i=1

∫

Rn

∣
∣F−1 (|ξ |σ+1 F(u)(ξ)

)∣
∣
2

dξ

= 2C(σ, n)−1
∥
∥(−�)(σ+1)/2 u

∥
∥

2
2,Rn

≥ 2C(σ, n)−1Cσ+1,n

∫

Rn

|u(x)|2
|x|2+2σ dx. (7.2.12)

https://doi.org/10.1017/9781009254625.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009254625.009
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Note that we also have from (7.2.1)
n
∑

i=1

∫

Rn

∫

Rn

|Diu(x)− Diu(y)|2
|x − y|n+2σ dx dy

≥ Cn,σ,2

∫

Rn

n
∑

i=1

|Diu(x)|2
|x|2σ dx

= Cn,σ,2

∫

Rn

|∇u(x)|2
|x|2σ dx

≥ Cn,σ,2

∣
∣
∣
∣

2 + 2σ − n
2

∣
∣
∣
∣

2 ∫

Rn

|u(x)|2
|x|2+2σ dx,

the final step being the weighted Hardy inequality (7.1.10). Since the constant
in (7.2.12) is sharp, it follows that

Cn,σ,2

∣
∣
∣
∣

2 + 2σ − n
2

∣
∣
∣
∣

2

≤ 2C(σ, n)−1Cσ+1,n;

hence by (7.2.10),

Cσ,n

∣
∣
∣
∣

2 + 2σ − n
2

∣
∣
∣
∣

2

≤ Cσ+1,n. (7.2.13)

For n > 2 the inequality (7.2.13) is strict since, on allowing σ → 1−, the
left-hand side tends to ((n − 2)(n − 4))2 /16 while the right-hand side tends to
(n (n − 4))2 /16, the optimal constant in the Rellich inequality (7.1.1). If σ →
0+, (7.2.11) becomes the Hardy inequality and the constants on both sides of
(7.2.13) tend to the optimal Hardy constant (n − 2)2/4.

Remark 7.6

The inequality (7.2.5) is the special case p = 2 of Herbst’s inequality in [96]
which is, for 1 < p < ∞, s > 0, n > ps and u ∈ C∞

0 (Rn), that
∫

Rn

|u(x)|p
|x|ps dx ≤ Kp

n,p,s

∥
∥(−�)s/2 u

∥
∥

p
p,Rn , (7.2.14)

with best possible constant

Kn,p,s = 2−s
�
(

n(p−1)
2p

)

�
(

n−ps
2p

)

�
(

n
2p

)

�
(

n(p−1)+ps
2p

) . (7.2.15)

This is also established in [156]; moreover, Samko determines a sharp con-
stant for the Hardy–Stein–Weiss inequality for fractional Riesz operators in
Lp (R

n, ρ) with a power weight ρ(x) = |x|β and as a corollary finds the sharp
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constant for a similar weighted inequality for fractional powers of the Laplace–
Beltrami operator on the unit sphere. A proof of (7.2.14) in the case p = 2 was
given in [172]; moreover, Yafaev shows that if n < 2(1 + σ), 1 + σ − n/2 /∈ Z
and k := [

1 + σ − n/2
]

, then

∫

Rn
|x|−2−2σ

∣
∣
∣
∣
∣
∣

u(x)−
∑

|α|≤k

(α!)−1 (Dαu) (0)xα

∣
∣
∣
∣
∣
∣

2

dx

≤ K2
n,σ

∥
∥(−�)(1+σ)/2 u

∥
∥

2
2,Rn ,

where

Kn,σ = 2−1−σ max

{

�
( n−2−2σ

4

)

�
( n+2+2σ

4

) ,
�
( n−2σ

4

)

�
( n+4+2σ

4

)

}

.

Thus in particular, (7.2.14), with p = 2, s = 1 + σ and constant K2
n,σ , holds for

all u ∈ C∞
0 (Rn\{0}) if n < 2(1 + σ) and 1 + σ − n/2 /∈ Z.

7.3 Fractional Rellich Inequalities in General Domains

The mean distance defined in (6.2.1), namely

1
Ms,p(x)ps

:= π1/2�
( n+ps

2

)

�
(

1+ps
2

)

�
( n

2

)

∫

Sn−1

1
δ

ps
ν (x)

dω(ν), (7.3.1)

will again feature prominently in this and following sections, with the range of
the parameter s specific to the problem being considered. It remains true that if
� is convex with non-empty boundary, then Ms,p(x) ≤ δ(x) := inf{|y − x| : y /∈
�}.

The main theorem on fractional Rellich inequalities comes from [66] and
sets the scene for much of what follows in this chapter. The method of proof is
that in [130] which was what was used to prove Theorem 6.8 and (6.2.20). We
shall use the following notation, some of which is reminiscent of that in Section
6.2. Suppose that 1 < p < ∞, 1/p < σ < 1 and define

ep(n) :=
{

1 if p ≤ 2,
n−(p−2)/2 if p > 2,

(7.3.2)

and

Dn,p,α :=
π(n−1)/2�

(
1+p+α

2

)

�
( n+p+α

2

) D1,p,α, (7.3.3)
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where

D1,p,α = 2
∫ 1

0

∣
∣1 − r(α−1)/p

∣
∣
p

(1 − r)1+α dr. (7.3.4)

In the special case in which p = 2, we have from the appendix of [22] that

D1,2,α = 2
α

{
2−α
√
π
�

(
1 + α

2

)

�

(
2 − α

2

)

− 1
}

. (7.3.5)

Theorem 7.7 Let � be an open subset of Rn with non-empty boundary, let
p ∈ (1,∞) and suppose that σ ∈ (1/p, 1). Then for all f ∈ C∞

0 (�),

n
∑

i=1

∫

�

∫

�

|Dif (x)− Dif (y)|p
|x − y|n+pσ dx dy

≥ ep(n)Dn,p,pσ (σ + 1 − 1/p)p
∫

�

|f (x)|p
M1+σ,p(x)p+pσ

dx. (7.3.6)

The following improvement is possible in the case p = 2 with σ ∈ (1/2, 1):

n
∑

i=1

∫

�

∫

�

|Dif (x)− Dif (y)|2
|x − y|n+2σ dx dy

≥ 2κn,2σ (σ + 1/2)2
∫

�

|f (x)|2
M1+σ,2(x)2+2σ dx, (7.3.7)

where

2κn,2σ := 2
π(n−1)/2�

( 3+2σ
2

)

σ�
( n+2+2σ

2

)

{
2−2σ

√
π
�

(
1 + 2σ

2

)

�

(
2 − 2σ

2

)

− 1
2

}

> Dn,2,2σ . (7.3.8)

The proof of this theorem will be given later, after the establishment of var-
ious one-dimensional inequalities based on ones in [130]. Only the case k = 1
of the first lemma is needed in this section, but the general case will be required
when we consider higher-order inequalities later.

Lemma 7.8 Let −∞ < a < b < ∞, p + s − 1 > 0, 1 < p < ∞, k ∈ N and
for t ∈ (a, b), set δ(a,b)(t) := min{t − a, b − t)}. Then, for all f ∈ C∞

0 (a, b),
∫ b

a
|f k(x)|p

{
1

(x − a)
+ 1
(b − x)

}s

≥ !k
j=1

(
jp + s − 1

p

)p ∫ b

a

|f (x)|p
δ(a,b)(x)kp+s

dx.

(7.3.9)
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Proof Let c = (a+b)/2, j ∈ {1, 2, · · · , k} and q = p/(p−1). On integration
by parts and the use of Hölder’s inequality, we have (cf. [66], Lemma 4.7)

Ia :=
∫ c

a

|f (x)|p
|x − a|jp+s

dx

= p
jp + s − 1

∫ c

a
|f (x)|p−2"[f̄ f ′] [(x − a)−(jp+s)+1 − (c − a)−(jp+s)+1]

≤ p
jp + s − 1

∫ c

a

|f |p−1

(x − a)(jp+s)/q
(x − a)(jp+s)/q|f ′|[(x − a)−(jp+s)+1

− (c − a)−(jp+s)+1] dx

≤ p
jp + s − 1

∫ c

a

( |f |p
(x − a)jp+s

)1/q

|f ′|(x − a)−(jp+s)/p+1

×
[

1 −
(

x − a
c − x

)jp+s−1
]

dx.

Therefore,

Ia ≤ =
(

p
jp + s − 1

)p ∫ c

a

|f ′|p
(x − a)(j−1)p+s

[

1 −
(

x − a
c − a

)jp+s−1
]p

dx

≤
(

p
jp + s − 1

)p ∫ c

a

|f ′|p
(x − a)(j−1)p+s

dx. (7.3.10)

We also have for j = 1,

Ia ≤
(

p
p + s − 1

)p ∫ c

a

|f ′|p
(x − a)s

dx

[

1 −
(

x − a
c − x

)p+s−1
]p

dx.

Let

ha(x) :=
[

1 −
(

x − a
c − a

)p+s−1
]p

−
[

1 +
(

x − a
b − x

)]s

.

Then, ha(a) = 0, ha(c) = −2s and h′
a(x) ≤ 0 on (a, c), and so ha(x) < 0 on

(a, c). Hence when j = 1,

Ia ≤
∫ c

a

|f ′(x)|p
(x − a)s

{

ha(x)+
[

1 +
(

x − a
b − x

)]s}

dx

=
∫ c

a
|f ′(x)|p

{
1

(x − a)
+ 1
(b − x)

}s

dx. (7.3.11)

Similar inequalities to (7.3.10) and (7.3.11) hold for the integral

Ib :=
∫ b

c

|f (x)|p
|x − b|jp+s

dx

https://doi.org/10.1017/9781009254625.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009254625.009


7.3 Fractional Rellich Inequalities in General Domains 131

and hence for

I :=
∫ b

a

|f (x)|p
δ(a,b)(x)jp+s

dx.

It follows that for j ∈ 2, . . . k,

∫ b

a

∣
∣f (k−j)(x)

∣
∣
p

δ(a,b)(x)jp+s
dx ≤

(
p

jp + s − 1

)p ∫ b

a

|f (k−j+1)(x)|p
δ(a,b)(x)(j−1)p+s

dx, (7.3.12)

and for j = 1,

∫ b

a

∣
∣f (k−1)(x)

∣
∣
p

δ(a,b)(x)p+s
dx ≤

(
p

p + s − 1

)p ∫ b

a
|f k(x)|p

{
1

(x − a)
+ 1
(b − x)

}s

dx.

(7.3.13)
Therefore

∫ b

a
|f k(x)|p

{
1

(x − a)
+ 1
(b − x)

}s

dx

≥
(

p + s − 1
p

)p (2p + s − 1
p

)p

· · ·
(

kp + s − 1
p

)p ∫ b

a

|f (x)|p
δ(a,b)(x)kp+s

dx

and the lemma is proved.

The following lemma is a key result in the proof of Theorem 7.7, and is a
consequence of Lemma 7.8, and Theorems 2.1 and 2.6 in [130].

Lemma 7.9 Let −∞ < a < b < ∞ and 1 < α < 2. Then for f ∈ C∞
0 (a, b),

∫

(a,b)×(a,b)
|f ′(x)− f ′(y)|2

|x − y|1+α dx dy ≥ 2
(
α + 1

2

)2

κ1,α

∫ b

a

|f (x)|2
δ(a,b)(x)α+2 dx.

(7.3.14)
For 1 < α < p < ∞,

∫

(a,b)×(a,b)
|f ′(x)− f ′(y)|p

|x − y|1+α dx dy

≥
(
α + p − 1

p

)p

D1,p,α

∫ b

a

|f (x)|p
|δ(a,b)(x)|α+p

dx. (7.3.15)
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Proof From Theorem 2.1 in [130],
∫

(a,b)×(a,b)
|f ′(x)− f ′(y)|2

|x − y|1+α dx dy

≥ 2κ1,α

∫ b

a
|f ′(x)|2

[
1

x − a
+ 1

b − x

]α

dx

= 2κ1,α

(∫ c

a
+
∫ b

c

)

|f ′(x)|2
[

1
x − a

+ 1
b − x

]α

dx

≥ 2κ1,α

∫ b

a

|f ′(x)|2
δ(a,b)(x)α

dx, (7.3.16)

and (7.3.14) follows from the case k = 1 of Lemma 7.8. The inequality (7.3.15)
follows from Theorem 2.6 in [130] and Lemma 7.8.

The same argument as in the proof of (6.2.6) in Lemma 6.2.2, gives

Corollary 7.10 Let J be an open subset of R and

δJ(t) := min{|s| : t + s /∈ J}. (7.3.17)

For 1 < α < 2 and f ∈ C∞
0 (J),

∫

J×J

|f ′(x)− f ′(y)|2
|x − y|1+α dx dy ≥ 2

(
α + 1

2

)2

κ1,α

∫

J

|f (x)|2
δJ(x)α+2

dx. (7.3.18)

If 1 < α < p < ∞,
∫

J×J

∣
∣f ′(x)− f ′(y)

∣
∣
p

|x − y|1+α dx dy ≥
(
α + p − 1

p

)p

D1,p,α

∫

J

|f (t)|p
δJ(t)p+α dt. (7.3.19)

Corollary 7.11 For each x in the domain � ⊂ R
n and ν ∈ Sn−1, define

J(x, ν) := {t : x + tν ∈ �}, (7.3.20)

δJ(x,ν) := min{|t| : t /∈ J(x, ν)}. (7.3.21)

Let 1 < α < p < ∞ and set D = (D1,D2, . . .Dn), Di = ∂/∂xi. Then for
x ∈ �, f ∈ C∞

0 (J(x, ν)) and ν ∈ Sn−1,
∫

J(x,ν)×J(x,ν)

|(Df · ν)(x + sν)− (Df · ν)(x + tν)|p
|s − t|1+α ds dt

≥ E(α, p)
∫

J(x,ν)
|(Df · ν)(x + tν)|p 1

δJ(x,ν)(t)α
dt

≥ E(α, p)
(
α + p − 1

p

)p ∫

J(x,ν)
|f (x + tν)|p 1

δJ(x,ν)(t)α+p
dt, (7.3.22)

where E(α, p) = D1,p,α for 1 < p < ∞ and 2κ1,α when p = 2.
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Proof Since � is an open connected set, then each J(x, ν) is an open set in
R. As a function of t, f (x + tν) ∈ C∞

0 (J(x, ν)) and by the chain rule,

d
dt

f (x + tν) = (ν · Df ) (x + tν).

Thus, (7.3.22) follows from Corollary 7.10 applied to f (x + tν).

Lastly we need a lower bound for

ep(n) :=
(

n
∑

i=1

|νi|p′
)−p/p′

, ν = (νi) ∈ S
n−1.

If 1 < p ≤ 2,
n
∑

i=1

|νi|p′ ≤
n
∑

i=1

|νi|2 = 1,

and if p > 2,

n
∑

i=1

|νi|p′ ≤
(

n
∑

i=1

|νi|2
)p′/2 ( n

∑

i=1

1

)1−p′/2

= n1−p′/2.

Thus
(

n
∑

i=1

|νi|p′
)−p/p′

≥
{

1, if 1 < p ≤ 2,
n−(p−2)/2, if p > 2.

(7.3.23)

Hence, for ν = (νi) ∈ Sn−1,

|(ν · Df ) (x + sν)− (ν · Df ) (x + tν)|p
= ∣
∣�n

i=1νiDif (x + sν)−�n
i=1νiDif (x + tν)

∣
∣
p

≤ ep(n)−1�n
i=1 |Dif (x + sν)− Dif (x + tν)|p ,

and we have as in Lemma 6.10,

Lemma 7.12 Let 1/p < σ < 1, 1 < p < ∞ and f ∈ C∞
0 (�). Then

∑

i=1

∫

�

∫

�

|Dif (x)− Dif (y)|p
|x − y|n+pσ dx dy

≥ ωn−1

2

∫

Sn−1
ep(n) dω(ν)

∫

x : x·ν=0
dLν(x)

∫

x+sν∈�
ds

×
∫

x+tν∈�

{ |(ν · Df ) (x + sν)− (ν · Df ) (x + tν)|p
|s − t|1+pσ

}

dt, (7.3.24)
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where Lν(x) denotes the (n − 1)-dimensional Lebesgue measure on the plane
x · ν = 0.

We now have all we need for the proof of Theorem 7.7.

Proof of Theorem 7.7 From Lemma 2.4 in [130],

∫

�

∫

�

|Dif (x)− Dif (y)|2
|x − y|n+2σ dx dy

= ωn−1

2

∫

Sn−1
dω(ν)

∫

x : x·ν=0
dLν(x)

∫

x+sν∈�
ds

×
∫

x+tν∈�

{

|Di f (x + sν)− Di f (x + tν)|2
|s − t|1+2σ

}

dt.

Thus, on applying (7.3.24),

n
∑

i=1

∫

�

∫

�

|Dif (x)− Dif (y)|2
|x − y|n+2σ dx dy

≥ ωn−1

2

∫

Sn−1
dω(ν)

∫

x : x·ν =0
dLν(x)

∫

x+sν∈�
ds

×
∫

x+tν∈�

{

|(ν · Df ) (x + sν)− (ν · Df ) (x + tν)|2
|s − t|1+2σ

}

dt.

From Corollary 7.11, we therefore have

n
∑

i=1

∫

�

∫

�

|Dif (x)− Dif (y)|2
|x − y|n+2σ dx dy

≥ ωn−1 κ1,2σ

∫

Sn−1
dω(ν)

∫

x : x·ν =0
dLν(x)

×
∫

x+sν∈�
|(ν · Df )(x + sν)|2 1

δν(x + sν)2σ
ds

≥
(

2σ + 1
2

)2

ωn−1 κ1,2σ

∫

Sn−1
dω(ν)

∫

x : x·ν=0
dLν(x)

×
∫

x+sν∈�
|f (x + sν)|2 1

δ2+2σ
ν (x + sν)

ds

≥ 2
(

2σ + 1
2

)2

κn,2σ

∫

�

|f (x)|2
M1+σ,2(x)2+2σ dx.

The proof for p = 2 is complete. For general p the proof is similar.
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7.4 Higher-Order Fractional Hardy–Rellich Inequalities

Some more notation and preliminary remarks are required before stating the
main theorem.

For ν = (νi) ∈ Sn−1, α = (α1, ..., αn) ∈ Nn
0 and k ∈ N, use of the multino-

mial theorem shows that

(ν · D)k = (ν1D1 + · · · + νnDn)
k (7.4.1)

=
∑

|α|=k

k!
α1!...αn! (ν1D1)

α1 ... (νnDn)
αn

:=
∑

|α|=k

k!
α! (ναDα) , να = ν

α1
1 ...ναn

n . (7.4.2)

For p ∈ (1,∞), k ∈ N and ν ∈ Sn−1, we shall need

Sk,p′(ν) :=
⎛

⎝
∑

|α|=k

(
k!
α!
)p′

|να|p′
⎞

⎠

1/p′

, Sk,p′ := max
ν∈Sn−1

Sk,p′(ν), (7.4.3)

where |να|2 := ν
2α1
1 + · · · + ν2αn

n .

Remark 7.13

1. It follows from (7.3.23) that

Sp
1,p′ ≤

{
1, if 1 < p ≤ 2,

n(p−2)/2(p−1) if 2 < p < ∞.
(7.4.4)

2. Estimation of Sk,p′ when k > 1 requires more effort. For example, suppose
that k = 2. Then there are two possibilities:

(a) two components of α, say αi and αj, are 1 and the others are zero;
(b) one component of α, say αj, is 2 and the others are zero.

In case (a), α! = 1 and ν
2α1
1 + · · · + ν2αn

n = ν2
i + ν2

j + n − 2, so that n − 2 ≤
|να|2 ≤ n − 1 and

4(n − 2) ≤
(

2
α!
)2

|να|2 ≤ 4(n − 1).

In case (b), α! = 2 and n − 1 ≤ |να|2 ≤ ν2
j + n − 1 ≤ n, showing that

n − 1 ≤ 2
α! |να|2 ≤ n.

In the sum for S2
2,2 there are n(n−1)/2 terms of type (a) and n of type (b). Thus

2n(n − 1)(2n − 3) ≤ S2
2,2 (ν) ≤ 2n(n − 1)2 + n2,
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and so

n(n − 1)(2n − 3) ≤ S2
2,2 (ν) ≤ n(2n2 − 3n + 2). (7.4.5)

The mean distance function for the higher-order inequalities is, for 1 < p <

∞ and 1/p < σ < 1,

1
Mk+σ,p(x)pσ+kp

=
√
π�

(
n+pσ+kp

2

)

�
(

1+pσ+kp
2

)

�
( n

2

)

∫

Sn−1

1

δ
pσ+kp
ν,� (x)

dω(ν), (7.4.6)

and the following constants are analogous to those in Section 7.3:

Dk,n,p,pσ :=
2π(n−1)/2�

(
1+pk+pσ

2

)

�
(

n+pk+pσ
2

) D1,p,pσ , (7.4.7)

κk,n,2σ = 2π(n−1)/2�
( 1+2k+2σ

2

)

�
( n+2k+2σ

2

) κ1,2σ , (7.4.8)

where D1,p,pσ and κ1,2σ are given in (7.3.4) and (7.3.5). If � is convex with
non-empty boundary, 0 < σ < 1 and 1/σ < p < ∞, then for all values of k,
we have

Mk+σ,p(x) ≤ δ(x) := inf{|y − x| : y /∈ �}. (7.4.9)

Note that in the case k = 1, our notation for (7.4.7) and (7.4.8) was Dn,p,pσ and
κn,2σ . The constant

G(mσ, k, p) =
{

!k
j=1

(
jp+mσ−1

p

)p
, k ∈ N,

1, k = 1
(7.4.10)

appears in our main theorem.

Theorem 7.14 Let � be a domain in Rn with non-empty boundary, 1 < p <

∞ and 1/p < σ < 1. Then, for all f ∈ C∞
0 (�),

Sp
k,p′
∑

|α|=k

∫

�

∫

�

|(Dαf (x)− Dαf (y))|p
|x − y|n+pσ dx dy

= Sp
k,p′

n
∑

j1,··· ,jk=1

∫

�

∫

�

∣
∣
(

Dj1 · · · Djk f
)

(x)− (Dj1 · · · Djk f
)

(y)
∣
∣
p

|x − y|n+pσ dx dy

≥ Ek,n,p,pσG(pσ, k, p)
∫

�

|f (x)|p
Mk+σ,p(x)pσ+kp

dx, (7.4.11)

where Ek,n,p,pσ = Dk,n,p,pσ ; when p = 2 the inequality holds with Ek,n,2,2σ =
2κk,n,2σ .
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Proof Corollaries 7.10 and 7.11 have the following analogues for any k ∈ N0:
∫

J×J

|f (k)(x)− f (k)(y)|p
|x − y|1+pσ

dx dy

≥ E(pσ, p)G(pσ, k, p)
∫

J

|f (x)|p
|δJ(x)|kp+pσ

dx,

where E(pσ, p) = D1,p,pσ , E(2σ, 2) = κ1,2σ , and
∫

J(x,ν)×J(x,ν)

|(ν · D)kf (x + sν)− (ν · D)kf (x + tν)|p
|s − t|1+pσ

ds dt

≥ E(pσ, p)G(pσ, k, p)
∫

J(x,ν)

|f (x + tν)|p
δJ(x,ν)(t)kp+pσ

dt.

To proceed with the proof, we need the following inequality to obtain an ana-
logue of Lemma 7.3.6, and thus of Lemma 2.4 in [130]. From (7.4.1) and (7.4.2),

(ν · D)k =
∑

|α|=k

k!
α!ναDα

for να = ν
α1
1 · · · ναn

n , and
∣
∣
(

(ν · D)kf
)

(x + sν)− ((ν · D)kf
)

(x + tν)
∣
∣
p

=
∣
∣
∣
∣
∣
∣

∑

|α|=k

k!
α! {(να · Dα) f (x + sν)− (να · Dα) f (x + tν)}

∣
∣
∣
∣
∣
∣

p

≤
⎛

⎝
∑

|α|=k

(
k!
α!
)p′

|να|p′
⎞

⎠

p/p′ ⎛

⎝
∑

|α|=k

|(Dαf ) (x + sν)− (Dαf ) (x + tν)|p
⎞

⎠

≤ Sp
k,p′

⎛

⎝
∑

|α|=k

|(Dαf ) (x + sν)− (Dαf ) (x + tν)|p
⎞

⎠ ,

where Sk,p′ is defined in (7.4.3). Then, for 1/p < σ < 1, 1 < p < ∞ and
f ∈ C∞

0 (�),

Sp
k,p′

∫

�

∫

�

∑

|α|=k |(Dαf ) (x)− (Dαf ) (y)|p
|x − y|n+pσ dx dy

≥ ωn−1

2

∫

Sn−1
dω(ν)

∫

x : x·ν=0
dLν(x)

∫

x+sν∈�
ds

×
∫

x+tν∈�

{∣
∣(ν · D)kf (x + sν)− (ν · D)kf (x + tν)

∣
∣
p

|s − t|1+pσ

}

dt,
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where Lν(x) denotes the (n − 1)-dimensional Lebesgue measure on the plane
x · ν = 0. It follows that

Sp
k,p′

∫

�

∫

�

∑

|α|=k |(Dαf ) (x)− (Dαf ) (y)|p
|x − y|n+pσ dx dy

≥ E(pσ, p)G(pσ, k, p)
∫

Sn−1
dω(ν)

∫

x : x·ν=0
dLν(x)

×
∫

x+sν∈�
|f (x + sν)|p

δν(x + sν)pσ+kp
ds

≥ E(pσ, p)G(pσ, k, p)
∫

Sn−1
dω(ν)

∫

�

|f (x)|p
δν,�(x)pσ+kp

dx

≥ Ek,n,p,pσG(pσ, k, p)
∫

�

|f (x)|p
Mk+σ,p(x)pσ+kp

dx.

This completes the proof.

7.5 Higher-Order Inequality with a Remainder

An analogue of Proposition 6.14 is now readily established for higher-order
Hardy–Rellich inequalities. First we note that Corollary 7.3.5 has the extension

Corollary 7.15 Let � be a bounded domain in Rn, and for x ∈ � and ν ∈
S

n−1, define

J(x, ν) := {t : x + tν ∈ �},
δJ(x,ν) := min{|t| : t /∈ J(x, ν)}.

Then for 1/2 < σ < 1, f ∈ C∞
0 (�) and k ∈ N0,

∫

J(x,ν)×J(x,ν)

|(ν · D)kf (x + rν)− (ν · D)kf (x + tν)|2
|r − t|1+2σ dr dt

≥ 2κ1,2σG(2σ, k, 2)
∫

J(x,ν)

|f (x + tν)|2
δJ(x,ν)(t)2k+2σ dt

+ 2
4 − 23−2σ

2σ diam (J(x, ν))
G(2σ − 1, k, 2)

∫

J(x,ν)

|f (x)|2
|δJ(x)|2k+2σ−1 dx, (7.5.1)

using (7.4.8).
We may now follow a similar argument to that in the proof of Theorem 7.4.2,

and in Dyda’s Theorem 6.13, to derive
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Theorem 7.16 Let � be a bounded domain in Rn with non-empty boundary
and k ∈ N0, 1/2 < σ < 1. Then, for all f ∈ C∞

0 (�),

S2
k,2

∑

|α|=k

∫

�

∫

�

|(Dαf (x)− Dαf (y))|2
|x − y|n+2σ dx dy

≥ 2κk,n,2σG(2σ, k, 2)
∫

�

|f (x)|p
Mk+σ,2(x)2σ+2k

dx

+ 2
4 − 23−2σ

2σ diam (�)

κk,n,2σ−1

κ1,2σ−1
G(2σ − 1, k, 2)

∫

�

|f (x)|2
Mk+σ−1/2,2(x)|2k+2σ−1 dx,

(7.5.2)

where, by (7.4.8),

κk,n,2σ−1

κ1,2σ−1
= 2π(n−1)/2�

( 2k+2σ
2

)

�
( n+2k+2σ−1

2

)

and Mk+α,2 is defined in (6.2.1). If � is convex, Mk+α,2(x) ≤ δ(x) := inf{|y −
x| : y /∈ �}.

The constant multiplying the first integral on the right-hand side of (7.5.2)
cannot be replaced by a larger one in the case k = 0, but this is not proved for
k ≥ 1.

7.6 Higher-Order Classical Inequalities

It is proved by Bourgain, Brezis and Mironescu in [23] that if � is a connected
open subset of Rn and 1 < p < ∞, then for all f ∈ C∞

0 (�),

lim
σ→1−

(1 − σ)

∫

�

∫

�

|f (x)− f (y)|p
|x − y|n+pσ dx dy = K(n, p)

∫

�

|∇f (x)|p dx

for some positive constant K(n, p) depending only on n and p; see Corollary
3.20 and Remark 3.21. If p = 2, the following precise information is established
in [78], Lemma 3.1:

∫

Rn

∫

Rn

|f (x)− f (y)|2
|x − y|n+2σ dx dy = 2C(n, σ )−1

∫

Rn

∣
∣(−�)σ/2 f (x)

∣
∣
2

dx (7.6.1)

for 0 < σ < 1 and

1
2

C(n, σ ) = 22σ−1π−n/2�
( n

2 + σ
)

|� (−σ)| . (7.6.2)
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In (6.6.1), (−�)σ/2f (x) :=
[

F−1
(

|ξ |σ f̂ (ξ)
)]

(x), where f̂ = F(f ), and it fol-
lows that

∑

|α|=k

∫

Rn

∫

Rn

|(Dαf (x)− Dαf (y))|2
|x − y|n+2σ dx dy

= 2C(n, σ )−1
∑

|α|=k

∫

Rn

∣
∣(−�)σ/2 Dαf (x)

∣
∣
2

dx

= 2C(n, σ )−1
∑

|α|=k

∫

Rn

∣
∣
∣

(|ξ |2)σ/2
(iξ)α f̂ (ξ)

∣
∣
∣

2
dξ

= 2C(n, σ )−1
∫

Rn

∣
∣
∣(−�)σ+k

2 f (x)
∣
∣
∣

2
dx.

Hence, for f ∈ C∞
0 (�),

∫

Rn

∣
∣
∣(−�)σ+k

2 f (x)
∣
∣
∣

2
dx

= 1
2

C(n, σ )
∑

|α|=k

∫

Rn

∫

Rn

|(Dαf (x)− Dαf (y))|2
|x − y|n+2σ dx dy

≥ 1
2

C(n, σ )
∑

|α|=k

∫

�

∫

�

|(Dαf (x)− Dαf (y))|2
|x − y|n+2σ dx dy. (7.6.3)

In (7.4.11), the constant multiple of the integral on the right-hand side is

2G(2σ, k, 2)κn,2σ

in which, as σ → 1−, G(2, k, 2) =
(
(2k+1)!
k!22k+1

)2 =
(

2√
π
�
(

k + 3
2

))2
and κn,2σ is

asymptotic to

π(n−1)/2�
( 3+2k

2

)

�
( n+2k+2

2

)
2−2

√
π
� (3/2) (1 − σ)−1

= 1
8
π(n−1)/2 �

( 3+2k
2

)

�
( n+2k+2

2

) (1 − σ)−1. (7.6.4)

Also, as σ → 1−, 1
2 C(n, σ ) in (7.6.3) satisfies

1
2

C(n, σ ) ∼ 2π−n/2�(n/2 + 1)(1 − σ), (7.6.5)

and for f ∈ C∞
0 (�),

I := lim
σ→1−

∫

Rn

∣
∣(−�)(σ+k)/2f (x)

∣
∣
2

dx =
∫

Rn

∣
∣(−�)(1+k)/2f (x)

∣
∣
2

dx.
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This follows by dominated convergence, on noting that

I = lim
σ→1−

∫

Rn

∣
∣
∣(|ξ |2)(σ+k)/2 f̂ (ξ)

∣
∣
∣

2
dξ,

and, for 0 ≤ σ ≤ 1,
∣
∣
∣(|ξ |2)(σ+k)/2 f̂ (ξ)

∣
∣
∣

2 ≤
∣
∣
∣

[

(|ξ |2)(1+k)/2 + 1
]

f̂ (ξ)
∣
∣
∣

2

= ∣
∣F
([

(−�)(1+k)/2 + 1
]

f
)

(ξ)
∣
∣
2 ∈ L1(R

n).

Hence from (7.4.11) and (7.6.3), the inequality we get in the limit as σ → 1−
is

∫

Rn

∣
∣
∣�

1+k
2 f (x)

∣
∣
∣

2
dx ≥ K(n, k) lim

σ→1−

∫

�

|f (x)|2
Mk+σ,2(x)2k+2σ dx, (7.6.6)

where

K(n, k) = 2S−2
k,2

[

�
( 3+2k

2

)]3
�
( n

2 + 1
)

π3/2�
( n+2k+2

2

) . (7.6.7)

As σ → 1−,M−2k−2σ
k+σ,2 is bounded by M−2k−2

k+1,2 on the support of f . Since
|f |2M−2k−2

k+1,2 ∈ L1(�) is proved in [143] (see (7.6.10) below) it follows by domi-
nated convergence from (7.6.6) that

∫

Rn

∣
∣
∣�

1+k
2 f (x)

∣
∣
∣

2
dx ≥ K(n, k)

∫

�

|f (x)|2
Mk+1,2(x)2k+2 dx. (7.6.8)

In [143], Owen establishes the following Hardy–Rellich inequality for poly-
harmonic operators with a sharp constant:

∫

�

f̄ (x)
[

(−�)m f
]

(x) dx ≥ �
( n

2 + m
)

�
(

m + 1
2

)

�
( n

2

)

�
( 1

2

)

∫

�

|f (x)|2
a2m

m (x)
dx

for all f ∈ C∞
0 (�),m ∈ N, and where

1
a2m

m (x)
=
∫

Sn−1

1
δν(x)2m

dω(ν).

Owen expresses his result in the quadratic form sense

((−�)mf , f ) ≥ �
( n

2 + m
)

�
(

m + 1
2

)

�
( n

2

)

�
( 1

2

) (Af , f ),

where (·, ·) is the L2(�) inner-product, (−�)m is the polyharmonic operator
of order 2m and A is the operator of multiplication by 1/a2m

m (x). On C∞
0 (�),
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(−�)m is the restriction of F−1(| · |2m), where F is the Fourier transform. In our
notation, with m = k + 1,

1
a2m

m (x)
= �

(

k + 3
2

)

�
( n

2

)

√
π�

( n
2 + k + 1

)
1

Mk,1,2,�(x)2+2k
.

Owen’s inequality therefore implies
∫

�

f̄ (x)
[

(−�)k+1 f
]

(x) dx ≥ K0(k)
∫

�

|f (x)|2
Mk+1,2(x)2+2k

dx, (7.6.9)

where

K0(k) =
[

�
( 3+2k

2

)]2

π
. (7.6.10)

Hence, in particular, |f |2M−2−2k
k+1,2 ∈ L1(R

n), as noted earlier.
The inequality (7.6.6) can also be expressed in the form sense, namely

∫

�

f̄ (x)
[

(−�)k+1 f
]

(x) dx ≥ K(n, k)
∫

�

|f (x)|2
Mk+1,2(x)2+2k

dx,

and we have from (7.6.7) and (7.6.10),

K0(k)
K(n, k)

= S2
k,2

√
π�

( n+2k+2
2

)

2�
( 3+2k

2

)

�( n
2 + 1)

. (7.6.11)

When k = 0 we have K(n, 0) = K0(0) = 1/4, which confirms that the constant
in the Hardy case of Theorem 7.4.11 with p = 2 is sharp, as already proved
in [130]. However we cannot claim this for k ≥ 1; for instance, when k = 1,
the value K0(1) = 9/16 is sharp, but K(n, 1) = (9/16)(3/(n + 2)) < K0(1) for
n > 1.

When p �= 2 it seems harder to use Fourier transform techniques. However,
there is an analogue of Corollary 1.4.8 of [63] that can be established by induc-
tion, namely that if p ∈ (1,∞) and m ∈ N, then for all α ∈ Nn

0 with |α| = 2m,
∥
∥Dαf |Lp (R

n)
∥
∥ ≤ cm

p

∥
∥�mf |Lp (R

n)
∥
∥ (7.6.12)

for all smooth f with compact support, where

cp = cot2
(

π

2p∗

)

, p∗ = max(p, p′). (7.6.13)

This enables higher-order counterparts of Theorem 7.4 to be proved.
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