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Abstract

In conjunction with an earlier work by Leong (1974a), this paper completes the solution of the
isomorphism problem for finite nilpotent groups of class two with cyclic centre. A canonical
decomposition for 2-groups of such type is obtained and proved.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 D 15 (20 E 10).

1. Introduction

The structure of finite nilpotent groups of class two with cyclic centre was first
discovered by Brady (1970) as part of his results in his Ph.D. thesis. His results
were further exploited by Brady et al. (1969) and Leong (1974b) in their work on
the subvarieties of 2tm(9t2 A 33„) where m and n are coprime. In the latter work on
the CREAM Conjecture of Higman (1967) for these subvarieties, it was found
necessary to solve the isomorphism problem for the above-mentioned groups.
This was solved by Leong (1974a) in the odd order case. The present work settles
the remaining case of finite 2-groups, thereby completing the solution of the
isomorphism problem for the above groups.

It is known, see Leong (1974a), that a finite ̂ -group of nilpotency class two with
cyclic centre is a central product either of two-generator subgroups with cyclic
centre or of two-generator subgroups with cyclic centre and a cyclic subgroup,
and that the finite ^-groups of class two on two generators with cyclic centre
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and if ̂  = 2 we have as well

n > 1: *(«) = <a, &: a**1 = &2"*1 = 1, a2" = [a, 6]2""1 = IT,

Again we use the notation 2(n,0) for the cyclic group of order qn,
Leong (1974a) has shown that if q is an odd prime, then every finite ^-group G

of class two with cyclic centre has the central decomposition

where a>0, ef^0, i= 1,...,/,

l, nol>r1>...>ra>O, 0<n1-r1<...<na-ra,

and that this decomposition is unique up to isomorphism.
In this paper we will prove the following two theorems.

THEOREM A. Every finite 2-group G of class two with cyclic centre either has the
central decomposition

ty... 6(1,1)<S

where a>0, e^O, i= 1,...,/,

or else it has the central decomposition

where n*slgsl, e^O, i = l,...,/.

THEOREM B. The canonical decomposition for finite 2-groups of class two with
cyclic centre (as given in Theorem A) is unique up to isomorphism.

We remark that an extra-special ̂ -group P of order qtr+1 (see Gorenstein (1968),
p. 204) may be written in our notations as

if? is odd, P s G O . i y or (2(2,1)2(1,1)*"1;

ifq = 2, P£<2(l,l)r or R(l)Q(l,iy-\
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[3] Finite 2-groups of class two 127

2. Redaction lemmas

In this section we give a series of lemmas which will be used to reduce a given
central product of the Q(n, r) and R(m) to the canonical form. The first four
lemmas are identical to those (see Leong (1974a)) required for the reduction of the
odd order groups. Since their proofs are the same in both cases, we will merely
state them. However, for the reduction of 2-groups, we need eight more lemmas,
of which seven involve the factor R(m).

LEMMA 2.1. If either nx ̂  n2
 and 0 < rx < r2, or nx ̂  n2, nx — rx ̂  n2—r2 and rl>r2> 0,

then Q(nv rj Q(nz, r2) ~ Q{nx, rj Q(r2, r%).

LEMMA 2.2. Ifnx^r2 or nx < n2 - r2, then Q(nlt 0) Q(n2, r^ Q(n2, r^).

LEMMA 2.3. Ifnx>n2, then Qin^Qin^r^Qin^Qir^r^.

LEMMA 2.4. Ifr^n2, then Qin^rJ QQi^r^^ Qin^r-^ Q{r%,r^)

LEMMA 2.5. If n^m, then Q(n,0)R(m)zR(m).

PROOF. Q(n, 0) = Z(Q(n, 0))^Z(R(m)).

LEMMA 2.6. Ifn>m^l, then Q(n,0)R(m)zQ(n,O)Q(m,m).

PROOF.Let z, c, d be canonical generators of Q(n, 0) R(m) so that z2"""1 = [c, d).
Put x = cz-2"-"-1, y = dz-^-m~\ Then

<*,y> = Qim, m) and <z, c, d} = <z>. <̂ c, j > £ 0(n 0) g(/«, m).

LEMMA 2.7. For n^ 1, g(n+ l ,n)^ g(n,n).

PROOF. Let Q(n, ri) = <a, Z>>, and put x = ab, y — b. Then

LEMMA 2.8. For m^l, R(m)2^Q(m,mf.

PROOF. Let ax, bv a2, b2 be canonical generators of Q(m, nif. Put xx = ax bv

yx = 6xa2Z>2, and x2 = a2b2, y2 = b2axbv Then <Jc1,>'1>Si?(m)s<,x2,y2}. Moreover
[xvxz] = [xx,y2] = [yvx2] = 1, and [^,72] = [61, «i] [a2,*2] = 1- Hence

Q(m, mf = <*!, ̂ > . <x2, ̂ 2> ~ Rirrif.
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128 Y. K. Leong [4]

LEMMA 2.9. Ifn>m>l, then R(n)R(m)^R(n)Q(m,m).

PROOF. Z = Z(R(n)) is a 2n-cycle containing Z(R(m)). Hence

R(n) R(m) = R(n) (Z. R(m))^R(n) (Z. Q(m, m)) = R(ri) Q(m, m)

in view of Lemma 2.6.

LEMMA 2.10. Ifm>n>r>l, then Q(n,r)R(m) = Q(r,r)R(m).

PROOF. There is a 2n-cycle C^Z(R(m)), and

Q{n,r)Bffn) = C0(n,r)l{(m)s

by Lemma 2.3. But CQ(r,r)R(m) = Q(r,r)R(m).

PROOF. First we show that canonical generators a,b,c,dof Q(n,r)R(m) may be
chosen to satisfy the relations

(1) a2H-1 = [a,6]2'-1 = c2'" = rf2".

Now if 2r < n, then Z(Q(n, r)) = <a2') and is of order 2n~r. The amalgamation in
the central product Q(n, r) R(m) may be chosen to be

d*'-"=[c,d] or a*' = [c,dF"-n+'

according as m<n~r or m^n—r. In either case, the above relations (1) hold.
On the other hand, if 2r>n, then Z(Q(n,r)) = <\a,b\> and is of order 2r. The
amalgamation may be chosen to be [a,b]2"m = [c,d] or [a,b] = [c,rf]2*"' according
asm<rorm>r . The relations (1) are then easily verified.

To prove the lemma, we consider three cases.
(i) m<r. Put x = c[a,bf"m~l, y = d[a,bfr~m~\ Then in view of relations (1),

<x,y}^Q(m,m). Thus Q(n,r)R(m) = <a,&>.<*,*>£Gfo'OGOn.ifi) since <*,;>'>
obviously centralizes <a, by.

(ii) m<n-r. Put x = ca2""1""1, >> = da*1'""1. By relations (1), <x,j'>=g(iw,m),
and since n—w — 1 ^r, <JC,J>> centralizes <a,6>. Hence

<a, &>. <JC, ̂ > ~ Q(n, r) Q(m, m).

(iii) m > max {r,n—r}. It is clear that the amalgamation may be chosen so that
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[5] Finite 2-groups of class two 129

Now put u = a, v = fo^-'-V2"-'-1, x = a2"—1<rJ, j> = a2""""1^ By relation (2),
(x,y) centralizes <M,I>>> so that Q(n,r)R(m) is the central product of (u,v)> and
<AT,_V>. Moreover, (x,yy^Q(m,m). Bearing in mind that n—r^2, n^m + 1 and
n > 3, we easily check that <M, I/> S £?(«,0-

3. The canonical decomposition

The results of the preceding section enable us to obtain the canonical decompo-
sition of a finite 2-group of class two with cyclic centre. Its uniqueness up to
isomorphism will be proved in the next section.

PROOF OF THEOREM A. Assume that G is non-trivial. By Theorem 2.1 and 2.2 of
Brady et al. (1969), G has a decomposition as a central product of the Q(n,r) and
R(m) which we arrange as

(3) GzQfa.rJ... Q{nfi,rfi)Q{s,sY>... Q(l, l)

where w1>...>n^_1^l, ni>ri>Q (1</^/?— 1), n^>r^0, and r/?<0 implies
np_x^rip, and where Als ...,A4, j ^ , . . . , / t^0, and A4 = 0 (respectively /x( = 0)
implies Ai = ... = Ag_x = 0 (respectively /^ = ... = pt_x = 0) also.

First we show that the central decomposition (3) may be reduced to one of the
following forms.

(4) G^Sto, ' ! ) ••• Q{nrry)Q{k,k)'*... Q{\, l)\

where n 1 ^ . . .>n r ^ l , ni>ri>0 (1 </<£— 1), «y>ry>0, and where SX,..., 8fc^0,
and Sfc = 0 implies 8X = ... = Sk_t = 0 also;

(5) G

where t^k, 8V..., Sfc>0.
Suppose that /x, = 0 in (3). If, moreover, r^ = 0 and «^>«< for some 1

then by Lemma 2.3, Q(nf,0)Q(ni,ri)^Q(n^,0)Q(ri,r^). So we may assume
n^^n^-x, and G is then of the form (4).

So suppose that ft, > 0. If n, = 2/ for some j> 1, then ^(O^ = (R(tfy^ Q(t, tf'
by Lemma 2.8. If /*, = 2j+1 for somey> 1, then R(ty» = R(t?iR(t)^ Q(t,t)VR(t)
by Lemma 2.8. Hence we may assume /*,= 1. If ^ > 0 for some K/<f , then
R(t)R(iYi^R(t)Q(i,iYi by Lemma 2.9. Hence we may assume
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130 Y. K. Leong [6]

In view of Lemmas 2.5, 2.6, 2.10 and 2.11, we may assume /3 = 0. If, moreover,
Ag = 0, then G is of the form (5). So assume A4 > 0. If s > t, then

by Lemma 2.12. Hence we may assume t^s, and G will be of the form (5).
We prove by induction on y that any group G of the form (4) has a decomposition

of the first form asserted in the theorem. The case y = 0 is easy. So suppose y >0
and that all groups of the form (4) with fewer than y factors of the type Q(n,r)
with n>r do have a decomposition of the first form asserted. If n1—r1= 1, then
by Lemma 2.7, <2(«i./'i)S2('i>ri)> aQd hence G has a decomposition with y— 1
factors of the type Q{n,r) with n>r; so, by induction, we are done. We may now
assume « 1 - r 1 > l . The rest of the induction process is identical to that in the
proof of Theorem 2.5 of Leong (1974a).

4. Uniqueness of the canonical decomposition

In this section, G and H will always denote finite 2-groups of class two with
cyclic centre. For any finite group A, we use the notations

d(A) = minimal number of generators of A if Ai= 1,

As in Section 3 of Leong (1974a), we define the following isomorphism invariant
Pi(G), i>0:

Pj(G) = d(Ci%G/Z(G))).

The value of Pt(G) is easily obtained from the following three lemmas, of which
the first two are Lemmas 3.1 and 3.3 of Leong (1974a).

LEMMA 4.1. Let GH be the central product of G and H with cyclic centre. Then

LEMMA 4.2. Let n>r^0. Then Pi(Q(n,r)) = 2if0^i<r, and zero ifi^r.

LEMMA 4.3. Let m^l. Then Pi(R(m)) = 2ifO^i<m, and zero ifi^m.

PROOF. If R(m) = <c,d>, then c*,d*eZ{R(m)) if and only if i
The method of enumeration of the cyclic subgroups of order 4 of an extra-

special 2-group in Gorenstein (1968), pp. 205, 206, may be extended to give more
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[7] Finite 2-groups of class two 131

general results. In the following Lemmas 4.4 and 4.5,

n>l, l>\ and g = fi(/-l,/-l)iM.

LEMMA 4.4. The number of cyclic subgroups of order 2l+1 of Q(l, / ) " Q is
(2an-i_2<sa-i>n-i) \Q/Z(Q)\.

PROOF. Write G = Q1Q2...QnQ where each Qt is isomorphic to Q(l,l), and
Z = Z(G). Fix indices I< i 1 < i a < . . .< j m <« , and let X be the set of expressions
x = X^X^.-.X^XQ, where x^eQ^-ZJ = 1, ...,m, xQeQ, such that <x> is cyclic
of order 2'+1. Two expressions x = xfl... x ^ x ^ and x' = x^... X'^X'Q are said to
be the same if and only if jcf = x'ifj=\,...,m, and xQ = x'Q; otherwise x and x'
are said to be different. Note that different expressions in X do not necessarily
define distinct elements of G.

By a suitable choice of canonical generators at, bi of Qt, and <z> = Z(G) = Z(Qt),
i= 1,...,«, we have

X2' =

where xtj = a$j b$j zv), j = \,...,m. Call JC^ odd if A,= l s ^ (mod 2) and xif even
if Aj,^=0 (mod 2). It is clear that <x> has order 21+1 if and only if the number of
odd x(j occurring in the expression x = X^.-.X^XQ is odd. Now the number of
odd xif in Qi}-Z is equal to p0 = I1-1.!1'1.!! = 231~2, while the number of even
xi,in Qi, -Zispe = (2'. 2' - 2'-1.21"1 - 1 ) 2' = (3.221~2 -1)2 ' . Hence the number of
different expressions in X is

-Ids (£)
where the summation is over all those odd integers k, 1 <fc<m, and so

For any odd integer y and x = x^... X^XQ, define x'' to be the expression in X
given by xt = *£.. . x^x^. Now if x, x ' e X, then <x> = <x'> if and only if x' = x*
for some odd integer y. We show that if y and 5 are odd integers, then the expressions
X? and x" are the same if and only if y= 8 (mod2I+1). Let xi} = a^b^[aij,bij]'>),
j = 1, ...,m. If xf and x* are the same, then x\ = xl, x^ = XSQ,J = 1, ...,/M. Hence
AJysA;S(mod2l), (i}y=^8 {moAl1), j = \,...,m. Now for some l^k^m, xit

is odd, and so y= 8 (mod2*). Write S = y+y'2 ' . Then

'2'-i (mod20,

and
-1, J = l w>
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132 Y. K. Leong [8]

We have

Since x' = x? also, and A1/x1+... + ^ ^ and y are both odd, it follows that y' is
even, and hence 8=y (mod 2I+1). The converse is easy.

The following relation ~ is an equivalence relation on X, where x~x' if and
only if <x> = <*'>. The number of different expressions in a given equivalence
class is the number of different expressions of the form x' = x^ for some odd
integer y, where x is any representative of the given equivalence class. To compute
this number, let x = xtl...ximxQ and x' = X'^.-.X'^XQ. Then x' = x? implies that

(6) x'Q = xiQzQ, x^x^zp j=l,...,m,

where zQ eZ(Q), Zj eZ, j = 1,..., m, such that

(7) z1...zmzQ = l.

Clearly, zx is uniquely determined by z2, ...,zm,z0 in (7). Hence by the remarks in
the preceding paragraph, the number of different expressions x' of the form x' = xy

for some odd integer y is equal to 2I |Z|m-1 . |Z(0| = 2""|Z(0|.
Thus the number of distinct equivalence classes is

where a = (pe+p0)l2
l, j3 = (pe~PoW- By taking all possible choices of indices

1 < ix <... < im < n, it follows that the number of distinct cyclic subgroups of order
21+1 of G is equal to

LEMMA 4.5. The number of cyclic subgroups of order 2(+1 of RQ)Q{l,t)n-1Q is

PROOF. Write H = R(l)Q1...Qn^Q where Q^Qihl), i = l , . . . ,n - l , and
Z = Z(H). By Lemma 4.4, the number of cyclic subgroups <x> of order 2J+1 with
xeQi-Qn-iQ is equal to (2a<B-1>-1-2(a-1><»-1>-1)|e/Z(0|. So it remains to
count the number of relevant subgroups <*> with xeH—Q1... Qn-\Q-

Fix indices 1 ^ ix < i2 <... < im < n—1 where m may be zero. Let Xo be the set of
expressions x = x0 xt t... x^ xQ, where x0 e R(l)—Z,xijeQi—Z,j= l,...,m,XQeQ,
and JC = xoxQ if m = 0, and such that <*> is cyclic of order 2I+1. Two expressions
x = X O ^ . - . X ^ ^ Q and x' = x'ox'ix...x'imx'Q are said to be the same if xo = x'o
xij = x'ij,j=*\ m, and xQ = x'Q; otherwise they are said to be different.
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[9] Finite 2-groups of class two 133

It is easily checked that <,xoxit ...X^XQ} is of order 2(+1 if and only if

(8) (l + A)(l+M)+2A,/i ; = O (mod 2),

where x0 = cxd?z", xtj = a\>bKzv>,}= 1,..., m, with a suitable choice of canonical
generators c, d and at, bt for R(l) and Qi} respectively, and <z> = Z. To calculate
the number of different expressions in Xo, we consider two cases: (i) (1 + A)(l +/x)
is odd, (ii) (1 + A) (1 +fi) is even. If we use the terminology introduced in the proof
of Lemma 4.4, condition (8) is equivalent to the condition that the number of
odd xif occurring in the expression x0xfl ...ximxQ is odd or even according as we
are in case (i) or case (ii). With the notations po,pe used in the preceding proof, the
number of different expressions in Xo is then

where the first summation is over all those odd integers k, 1< k < m, and the second
summation is over all those even integers t,0^t^m. Evaluating the sums, we have

As before, we may define an equivalence relation ~ on Xo by x~x' if and only
if <*> = <*')• It is again easily shown that the number of different expressions in
each equivalence class is equal to 2'(m+1) |Z(0|. Thus the number of distinct
equivalence classes is

| Q/Z(Q) | {(221-1 - 2-1) «*"»+(2a-2+2-1) ?»},

where a = (pe+p0)/2
l, fi = (pe-p0)/2

l. Hence the number of distinct cyclic sub-
groups <*> of order 2'+1 with xeH—Qx... Qn-iQ is equal to

I Q/Z(Q) \n£ I"'1) {(221-1 - 2-1) «m+(2a"2+2-1) pm}
OT=o\ m )

= I Q/Z(Q) | {(22*-1 - 2-1) 2<»-" + (2a-2+2"1) 2<2J-1»("-1»}.

The lemma then follows from the remarks at the beginning of this proof.

We recapitulate some terminology from Leong (1974b). Let Z2, be the ring of
integers modulo 2r, r > 1. A finitely-generated Z2r-module U is said to be a symplectic
module over Z2, if there is an alternating Z^-bilinear form / defined on U. We
write V= KX1K2 if V{c U, i = 1,2, V=V1® V2 and f(vltvj = 0 for all ^eFf,
i— 1,2. We denote by <M1, ...,«„> the submodule of U generated by «x ... un.
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134 Y. K. Leong [10]

For a submodule W of U, we write Wx = {ue U:f(u, w) = 0 for all we W}. The
structure of non-degenerate symplectic modules over the ring of integers modulo
qr for any prime q and r ^ 1 is given in Leong (1974b). For our purposes we will
only need the following two lemmas.

LEMMA 4.6. Let U be a symplectic module over Zv, r~& 1, given by

U=(u1,v1>±...±<unvn,>

where/(iifrVi) = 1 i = 1,...,/!.
Ifu,veUsuch that f{u,v) = 1, then U= <« p> 1L^/or JO/MC submodule Uv

PROOF. Write M = xa + . . . + x n , » = ^ + . . . +yn, where :cJ,3'ie<Mi, »,>, i = 1, ...,n.
Then f(u,v) =f(xvy1)+...+f(xn,yn). Since /(M,I;) = 1, /{x^y^s 1 (mod2) for
some i. We may assume that / (x a , y^) = 1. Clearly then, <«x, ̂ > = ^ i . j ' i ) , so that
ixi> yi> M2> v& • • • > un» t'n) is a basis of (7, and hence {«, t), «2, v2, • • •, un, v^ is a basis of
C/. Now choose W3, w4,..., w>2»-i> wzn s u c h that

and

"» »>*•» I = 2 , 3 , . . . , 71.

Clearly {u,v, w3,wt, ...,wit)} is again a basis of t/, and hence U = <M, t>> 1 Ult

where t/j = <w3 w2n>.

LEMMA 4.7. Lef C/ be the symplectic module as given in Lemma 4.6. Suppose
xvy1,...,xn, yneU such that /(*<,;>><) = 1, f(xt,xi)=f(xi,yi)=f(y{,yi)=0
(mod 2), i,7 = 1,..., n and ij=j.

Let xeU such that f{x,x^sQ=f{x,y^{moA2), i = l,...,n. Then f(x,u)=0
(mod 2) for all ueU.

PROOF. The congruences here will be modulo 2. We use induction on n. Suppose
« = 1. Then U = (x^y^}. Write JC=|X1+TJ71, so that £sij = 0, and hence
f(x,u)=0 for all ueU.

Now assume that the result in the lemma is true for symplectic modules of
dimension 2k, k^ 1. Suppose now

y = <"i> »i> i • • • i Ofc+i, »*+i>,

where f{uitv^ = 1, i = l , . . . , /c+l , and x1,y1,...,xk+1,yk+1 are elements of
satisfying the conditions of the lemma. By Lemma 4.6, we may write
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[11] Finite 2-groups of class two 135

for some submodule W whose dimension is evidently 2k. For l<i<fc, write
xi = \xk+1+fiiyk+1+wi, yi=£ixk+1+r]iyk+1+zi, where witzteW. Now
/(*<.*fc+i)=/(*i.:>'fc+i)=0 imply Xi=fii=O. Similarly, ^ = ^ = 0 . If l^j^k and
i ¥=j, we have/(xf, x3) =f(wit Wj)=0. We also have/OVf, ẑ ) =f{zit Zj)=0. Moreover,
since 1 =f{xt,y^)=f(yvi,z^, we may assume that/(wi,zi) = 1. Thus the elements
wx, zlt..., wk, zk of W satisfy the conditions of the lemma.

Let *e Vand x = i>0+i>i, where »0
G<**+i.3'fc+i>» vie w- Hf(x,xd=0=f(x,yd,

i=l,...,k, then ffv^w^0 =/(»!,zt). Hence by the induction hypothesis,
f(vvw)=0 for all we W. Since f(x,xk+j)=0=f(x,yk+J), we have/(i;o,D')S0 for
all v' 6 <Jcfc+1, ̂ fc+i>. It is then immediate that/(x, v)=0 for all D e F. The induction
is now complete.

We are in a position to prove the following crucial result.

LEMMA 4.8. If G has the canonical decomposition

GS CK, /i)... 0(«a, r j 2(/, Z)61 • • • 2(1,1)%

a>0, ra>0, l = na— 1 am/ £j>0, /Aen G Aas no subgroup isomorphic to

PROOF. Let a^bi be canonical generators of Q{nitr^, and cik, djk, k = 1 e,-
those of Q(jJ)a't Ky</ . For convenience, we will use the additive notation in
writing elements of G in terms of the canonical generators. An element x of G
may be written in the form

(9) x = S(*f«i+/**6<)+ S S (***c,fc
i - l }=1 k=l

where <z> = Z(G).
Write r = rre. Then

S S

If 2rx = 0, then taking commutators on both sides, we have

A '̂fo,^] = 0 = n^fabil i = 1,...,«
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Hence we have

A AJ2»*- ti2T+ i = l a,

Thus we have

(10) 0 = 0£A;2'-<ai+X'a2'aa+ A>;2- 1 [a a ,6J+ 2

Now the amalgamation may be taken so that

K , ba] = [crk, drk] = 2 ^ 2 , [clk, dlk] = z, k = 1,..., e,,

2r'af = 2'-"*+r'z, i = 1,...,«,

The relation (10) becomes

10= 21A;2i-^'+^r1+A;/i;2
I-1+ 2 ^ ^ 2 " + ^ (mod2l).

t=l k=l

Since (/-7jf+ri)-(r-l) = na-r0t-ni+rj>0, i= 1, ...,a-l, and

(/-l)-(r-l) = na-r a - l>0,

it follows that A;=0 (mod 2), and Aa = X'a = 2X"a.
Hence if 2rx = 0, then x has the form

x = ^{i
i=l

+ S
j=r+l &=

+ S S (Xjk Cjk+H-ik d}k) + vz,
j=\ k=l

where we have suppressed the dashes of our previous notations. Let y be another
element of G such that 2ry = 0, and let the corresponding integers in a similar
expression of y be p t , aiy p i k , aik, i '= l , . . . , a , 4 = 1 £y ,K; '< / . Then

(11) [x,y] = S1

I

s _
fc=l

+ S S (A,-fc
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To prove the lemma, we consider two cases: (i) sr = 0, (ii) e r >0 . In the first
case, if G has a subgroup isomorphic to Q(r, r), then there exist elements x and y
of G with 2rx = 0 = 2ry, and [x,y] is of order 2". But putting er = 0 in (11) gives
2r~1[x,y] = 0, a contradiction.

So assume that e r >0 . If xeG is expressed as in (9), define xeQ(r,r)e' by

* =

and define Jc as the coset of Q{r,r)e' modulo its centre with representative x.
Now Q(r,r)e' induces a symplectic module U of dimension 2er over Z2, with
U= Q(r,r)e'IZ(Q(r,rY') and an alternating form/defined on U as follows: if u,
v e Q(r, r)**, then f{u, v) = A, where u, v are the corresponding cosets in U and
[u,v] = X[crl,drl].

Suppose G has a subgroup isomorphic to Q(r, r)Cr+1. Then there are elements xt,
yt, i = 1,..., er +1, of G such that <xt,y^^ Q(r, r), 1 = [xt, Xj] = [x{,y}] = [yt,^],
i,j = 1,...,er+1 and j#y. Let iff, j'i be the elements of U corresponding to xiy yiy

i = l,..., er+1. It follows from (11) that

and /(***,)=• 0^ (**^ )= / (* . J ' i ) (mod2),

We may assume that/(Jcf ,^) = 1, i = 1,..., sr+1. The elements xt, yiti= 1,..., er,
will then satisfy the conditions of Lemma 4.7. Since f{xt,x^=0=f{xt,y^ (mod 2),
/ = l , . . . , e r , where / = e r + l , Lemma 4.7 tells us that / (^ ( , j , ) s0 (mod2) , a
contradiction. Hence G cannot have the supposed subgroup.

We will now prove the uniqueness of the canonical decomposition.

PROOF OF THEOREM B. A non-trivial finite 2-group of class two with cyclic
centre will be said to be of the first or second type according as its canonical
decomposition is of the first or second type as given in Theorem A. If G or H is
of the first type, we write their canonical decompositions as

H= 6KS,) . . . Q(mfi,sfi)Q(k,ky*...

If G or H is of the second type, we write their canonical decompositions as

H = R(m) Q(k, it)**...
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It is trivial that G^Htf they are of the same type and either a = ft, I = k, nt = mt,
ri = Si(i= l,...,a), £j = S^0= 1,...,/) orn = m,l = k,ej = hj(J= 1,...,/).

So assume G^H.
Step 1. We prove: G and H are of the same type.
If not, we may assume G to be of the first type and H of the second type. Suppose

a = 0. Then by considering the exponents of G and H, we have 1 = m. Since we
may 'multiply' the isomorphism relation G^H throughout by Q(l,l), we may
assume k = /. From the relations p^G) = pt(H), i = 0,1,...,/— 1, and Lemmas 4.1,
4.2 and 4.3, we have c, = 1 + 8,, e< = S{, i = 1,.. . ,/-1. Thus, with the notations of
Lemma 4.4, Q(l, I)e'Q=R(l) Q(l, I)*1'1 Q, which is impossible since these two
groups, by Lemmas 4.4 and 4.5, do not have the same number of cyclic subgroups
of order 2l+\

Next suppose <x>0. The exponents of G and H are respectively 2ni and 2m+1.
Hence «x = m+1. Furthermore, the exponents of the derived groups of G and H
are respectively 2max(r iJ) and 2m since we may assume e,>0. But m = nx— 1 >rx;
hence / = wand « = 1. It is clear that e, = 1 + 8,, l + e r= 8r, e< = Sit i = 1,...,/— 1
and /#r. We then have G = Q(l+l,r)Q(l,l)nQ and H = R(l)Q(l,l)n-XQ& where
0 = 2(/- l , / - l ) e<-i . . . (2(1,1)% 0o = 0 - 0 ^ r ) and n = e,.

We now compute the number A(G) (respectively A(H)) of elements in G
(respectively H) of order 2I+1. Let a, 6, ctj, bt, i = l,...,n = e, be canonical
generators of Q(l+1, r) 0(/, /)"», and <z> = Z(G). Let x e G and

x = axb'1 aji 6fi... a** b%> xQ z",

where xQeQ and 0<A, \t<T, O^A^ fif, v<21, i= l,...,n. Then x is of order
2l+1 if and only if

A + S A t ^ s l (mod2);

that is, if and only if the number of integers U K n for which A4/i4= 1 (mod2)
is odd or even according as A is even or odd. If a>0 (respectively u>j) is the number
of ordered pairs (A', p), where 0 < A', /n' < 2\ such that A' p = 0 (mod 2) (respectively
A'/i 'sl (mod2)), then we have

where the first summation is over all those odd integers k, l<£<fi, and the
second summation is over all those even integers t, O^tK^n. Hence

A(G) = 10/Z(0) 12'+*-1K+"i)n -1 Q/Z(Q) 12
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Multiplying by 2' the number of cyclic subgroups of H of order 2'+1 obtained from
Lemma 4.5, we have

MH) = |eo/Z(eo)|{2<2»+1«-1+2<2»+1"-»-1}.

Since \QJZ(Q0)\ = \Q/Z(Q)\22r, we have A(H)>A(G), a contradiction. Hence
G and H are of the same type.

Step 2. We prove: if G and H are both of the second type, then n = m, I = k,

Clearly, n = m. We may assume that e,>0, 8k>0. Suppose l>k. Then by
Lemmas 4.1, 4.2 and 4.3, pk(G) = 2 + 2(e,+ ... + efc+1)>2, while pk(H) = 2, a
contradiction. Hence l = k. It follows easily from the relations p^G) = p^H),

3. We prove: if G and /f are both of the first type and a = 0, then /3 = 0,
/ = &, ey = 8,,./= 1,...,/.

Suppose /}>0. We may assume c,>0 and Sfc>0. Then by considering the
exponents of G, G', H and H', we have / + 1 =m1, I = max{s1,k}. Since /}>1
implies that m1— \>k and /wx— l > s , we have jS = 1 and l = k=m1 — 1. Thus
G = Q(l,l)nQ.Q(s,s) and i / = C(/+l,s)Q(l,l)nQ, where n = e^ 5 = ^ , and
G = G(/~ 1./-1)*'-1... Q(l, I)*1. If A)G) and A ( # ) have the same meaning as in
the proof of Step 1, A(H) may be obtained as in Step 1 and A(G) obtained from
Lemma 4.4. A comparison shows that A(G)<A(H), a contradiction. Hence
j8 = 0. Finally, as in Step 2, I = k, e,- = 8}, j = 1,...,/.

Henceforth we assume G and H are both of the first type with a > 0 and j3 > 0.
Step 4. We prove: nr = mv rx = sv

It is clear that nx = m1 and that rx = 0 implies JX = 0. If we now 'multiply' the
relation G%H throughout by Q(n, n), where n = nt—1, we obtain after the necessary
reduction the following isomorphism relation

where An>0, /*n>0. Suppose r 1 > j 1 . From the relations /><(Gi) =
ri, we have 1 + A, = /xr, r = rj. Thus Gj has a subgroup isomorphic to G(r» r)Ap+1>
contradicting Lemma 4.8. Hence rx = sv

Step 5. We prove: a = jS, nt = »if, r4 = j < t i = 1,...,a.
First we prove that if nt = mt, rt = sif i= 1 v, where K v<min{a,)3}, then

nv+i — mv+i> rv+i = s»+v Suppose ny+x > mv+x. As in Step 4, we would then have the
isomorphism G^H^ where

= <2(»i,r,)... G(«,,rv)Q{n,n)»>...

https://doi.org/10.1017/S1446788700012052 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700012052


140 Y. K. Leong [16]

with n = ny+1— 1 and An>0. The centres of Gx and Hx show that rv+1>0, and we
conclude from the relations pi(G^ = p£H^), i = rv+1—\, ry+1, that fir=l + XT,
r = rv+1. Thus Gx would have a subgroup isomorphic to Q(r, r)Ar+1, contradicting
Lemma 4.8. Hence nv+1 = mv+1. A similar argument shows that the supposition
rv+1> sv+1 leads again to a contradiction of Lemma 4.8; and hence rv+1 = sy+1.
Together with the above remarks, Step 4 and a further application of the above
argument in case a^jS lead to the stated assertion.

Step 6. We prove: l = k,et = 8it i = 1 /.
If e, = 0 and 8k = 0, we are done. If e,>0 and 8k = 0, then

a contradiction. Hence we may assume e,>0 and 8k>0. Suppose l>k; then again
Pi-i(G) = /3j_1(/f)+2e,, which is impossible. Hence l = k. Finally, the relations
Pi(G) = pt(H), i = 0,1 / - I , imply that e4 = 8{, i = 1,...,/. The proof is then
complete.
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