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SOME RESULTS IN THE THEORY OF VECTOR BUNDLES

HIROSHI UMEMURA

We have several definitions of the positivity of a vector bundle,
differentiate definitions, an algebro-geometric definition, a topological
definition etc. In § 1 we review the definitions and the relations between
them. For a line bundle all the definitions are equivalent and every
one agrees that they are reasonable. For a vector bundle, however, the
definitions are not necessarily equivalent. One of the main results of
this paper is the equivalence of the definitions over a complete non-
singular curve. The proof is given in § 2. We proved this over an
elliptic curve in Umemura [18]. In this case the proof was based on
Atiyah's classification. To prove the equivalence over a curve of genus
> 2, the fundamental lemma is A stable bundle of positive degree is
positive in the sense of Nakano. The tool used to prove this lemma is
the theory of stable bundles due to Narasimhan and Seshadri [11] —they
establish a correspondence between stable bundles and certain types of
irreducible unitary representations of a Fuchsian group.

We also discuss the iϊ-stability of Takemoto from two points of view.
In §3, we prove that over an abelian surface, a ruled surface or a
hyperelliptic surface, ίf-stable bundle of rank 2 with c{ — 4e2 > 0, cx > 0,
c2 > 0 is positive in the sense of Nakano. We ask in general: Is a
stable bundle of rank 2 over a surface with positive Ghern class ample?
This is the analogue of the lemma that we mentioned above. But this
is false unless c\ — 4c2 > 0, even over an abelian surface. Hence ίf-stability
is not very comfortable in this case.

In § 4, we deal with vanishing theorems. The first theorem is well
known as the index theorem. In fact an algebraic proof is known. The
second theorem (4.2) is a generalization of the Kodaira vanishing theorem
and Mumford's result [8]. We also remark that a vanishing theorem
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98 HIROSHI UMEMURA

of Griffiths is proved easily by the standard argument using cohomological
dimension and the spectral sequence of de Rham cohomology.

In § 5 we study H(E) and &(E) for a vector bundle E. In general
H(E) and &(E) are too small. So we have to find a good family of
vector bundles E such that H(E) and &(E) reflect properties of E. Over
an elliptic curve, if E is stable, H(E) and &(E) are nice and give the
Heisenberg group. So it is quite natural to ask if H(E) and &(E) give
sufficient information concerning E for an ίf-stable bundle E over an
abelian surface. Unfortunately the answer is no unless c\ — 4c2 = 0.
Here again the iϊ-stability with c\ — 4c4 < 0 is unpleasant.

§ 1. Preliminaries

(1.1) Let V be a non-singular projective algebraic variety of dimension
n defined over the complex number field C. Let £ be a holomorphic
vector bundle of rank r defined over V. Let {Ua} be an open covering
of V such that E is trivial on each Ua. Let gβa be the transition matrix
of E i.e. two elements x X ξa and x X ξβ with x e Ua ΓΊ Uβ, ξa, ξβ e Cr are
identified if and only if gβa(x)ξa = ξβ.

A hermitian metric on E is, by definition, a set of C°°-maps ha from
Ua to the space of positive definite hermitian matrices of degree r such
that 'ϋβaWhaidgpάz) = hβ(z) for any z e Ua Π Uβ.

A (C°° —) connection on E is a set of 1-forms θa on Ua such that θa

= ffaβ(ββ ~ o)aβ)g^ on Ua Π Uβ where ωα/3 = g-jdgaβ. It is easy to see that

a connection defines a C-linear map D: E -^ Ωι(E) by putting

- dpβ + θaAφa

for a local section φa on each ?7α. Similarly we can define two operators:

D':E-> Ω\E)

<pa ι-> dfφa + θa A φa ,

D":E-> Ω\E)

φa »-> ά!fψa

so that Z) = Ό' + Ώ".

D induces an operator from ΩP(E) to Ωp+ι(E) by the following formula

D(λ,φ) = d̂  ^ + (-1)^ Λ Dφ ,

where λ is a local section of Ωp and p is a local section of ί7. We
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VECTOR BUNDLES 99

denote this operator also by ΰ . D2 is called the curvature form of the

connection Θ — {θa}.

Let h = {ha} be a hermitian metric on E. Then by an easy calcu-

lation, we see that {h^d'h^ defines a connection on E. Let {θa} be the

curvature form of the connection h~1d'h. More explicitely θa — dθa +

θaf\θa= -K1dfd"}ιa - h?d"ha A h^d'h.. We put

Σ

where ξ = '(£lf . , ξr) e C\ η = % , - , ηn) eCn, θ = (Σ«<,y*» β ί * ^ Λ

dZj)i<P,a<r and ^, , zn is a local coordinate system on V (we drop the

index a when no confusion is possible).

We say that a vector bundle E is positive (resp. negative) and

denote it by E > 0 (resp. E < 0) if there exists a hermitian metric fe

on E such that θ^( ) is positive (resp. negative) definite any point P

of V for any ξ ψ 0.

A vector bundle £7 is non-negative (resp. non-positive) and we denote

it by Έ > 0 (resp. E < 0) if there exists a hermitian metric h such that

Θ5( ) is non-negative (non-positive) at any point P of V for any ξ Φ 0.

Remark (1.2) Let P be a point of F. By choosing a frame, we

may assume d'h(P) = 0 and Λ(P) = /. Then the curvature form at P is

equal to —d'd"h.

Remark (1.3) Let {feβ} be a metric on £7. If we put ψa = ]•] /^JfsfJ

with £ = '(fi, , ξr) G C r on each Ua X C r, then ψa is a well defined

function. Let P be a point of C7α. We normalize h at P as in Remark

(1.2). Then the Levi form of ψ at P x f is equal to

V a
 "Ί g'g*

<s,t<r dZιUZι

Σ
l<s,ί<r dzndZn

0

Hence # {negative eigenvalues of θ f ( ) at P} = w — % {negative eigenvalues

of the Levi form of ψ at P}
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100 HIROSHI UMEMURA

DEFINITION (1.4) A vector bundle E is positive (resp. non-negative)

in the sense of Nakano if there exists a hermitian metric h on E such

that

is positive (resp. non-negative) at any point for any non-zero vector
( . . . ξ(P,i) . . . ) G C W ,

LEMMA (1.5) // a vector bundle is positive in the sense of Nakano,

then it is positive. The converse holds if either r = 1 or n — 1.

Proof. Trivial from the definition.

Remark (1.6). A positive vector bundle is not positive in the sense

of Nakano in general.

LEMMA (1.7) Let E be a vector bundle on V. Let h be a hermitian

metric on E. Then h induces a natural hermitian metric h on E. We

have Θ — — ιΘ where Θ (resp. Θ) is the curvature form of h (resp. h).

Proof. Let {ha} define a metric on E. Then ^h'1} = {ha} is a metric

on JE. In fact.

Tj-l th-1 tπ-l
ίJ M U

V. yβa) Ma yβa —

Let θ be the connection of f/^1}. Then

θa = Qhrι)-ιd"h

Hence θ; = ~θζ.

EXAMPLE (1.8) Protective space P \ We put Ut = {(x09 x19 , xn)

ePn\xίΦ 0} for 0 < i < n. The transition function gsi of O(—1) is

Xi/Xj. If we put ht = \xQ/Xi\2 + \xJXil2 + + \xn/Xi\2> then hά = {Xi/x^ht

= \9jifK- Hence {ht} defines a metric on O(—1). If we put z1 = Xό/xi9

z2 = ^/a^i, . . , 2t = Xi-Jxt, zi+ι = Xi+i/Xu - , zn = xnjxu the connection

and the curvature form on I7t are given by
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VECTOR BUNDLES 101

hrιd'h =

- Θ= ~ ( 1 + N 2 + - + \Zn\2)(dzλ Adz,+ + dzn A dzn) +
1 + | ^ | 2 + ••• +\Zn\

2

+ {zxdzλ + + ZndzJfadZi + + zndzn) .

Hence O(—1) is negative and 0(1) is positive.

EXAMPLE (1.9) An abelian variety. Let A = Cn/Γ be an abelian

variety where Γ is a lattice in Cn. Since Cn is Stein and simply con-

nected, every line bundle is defined by an element of H\Γ, H°(Cn, O& ))

i.e. by a cocycle u •-• ett(^) for Γ with coefficients in H°(Cn, 0%n):

Let ί ί be a hermitian form on Cn such that E = ImH is integral

on Γ. Let α: Γ -»{a; e C| |^| = 1} be a map such that a(uλ + u2) = eίίrE(Ml'W2).

α W αW,tt i e Γ. Then w H-> βw(^) = α:(ΐt)e*^>t*) + (i/a)̂ («,«) i s a cocycle for Γ

with coefficients in H°(Cn,0$n). Hence {eu(z)} determines a line bundle

L(H,(x). The theorem of Appell-Humbert says that any line bundle

on A is uniquely determined by a pair, (H,a) satisfying the condition

above.

Let L — L{H,a) be a line bundle on A. If we put <p(z) = e-πff(*>2>,

2 € Cn, then 99(2) is a metric on the trivial line bundle Cn X C on Cw.
Let ett(#) be the cocycle defined by (H,a), then we have

ψ(Z + U)

In fact,

φ{z + w)|e*ff^«) +

z,u) + (π/2)H(u,u) 12

,u) + (π/2)H(u,u) \2

Hence <p(z) = \eu(z)\2 φ(z + u) i.e.φiz) defines a metric on L(H,a). We

calculate the curvature.

d'ψ = —πί Σ htjZj
\l<i,j^n
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102 HIEOSHI UMEMURA

d"Ψ = - * ( Σ < n

d'd"φ = -d'φΛπί Σ h^d
\l<ij<n

— φ π Σι hίjdZi A dzj
lζi,j<n

Θ = φ-\-φd'd"φ + d'ψ Λ d"φ)

— π Σ hijdZi Λ dzj

where H =

PROPOSITION (1.10) Let E be a vector bundle. If E is positive (resp.

non-negative), then so is any quotient bundle F of E.

Proof. We prove the dual assertion. Let E be negative (resp. non-
positive) and F be a sub-vector bundle, then F is negative (resp. non-
positive) by considering the induced metric. For the details see Griffiths
[4] p. 197.

PROPOSITION (1.11) Let E and F be vector bundles
(i) E > 0 and F > 0 if and only if E Θ F > 0
(iy E and F are positive in the sense of Nakano if and only if

E 0 F is positive in the sense of Nakano.
(ii) If E > 0 and F > 0, then E (g) F > 0.
(ii)/ // E is positive in the sense of Nakano and F is non-negative

in the sense of Nakano, then E ®F is positive in the sense of Nakano.

Proof, (i) is an easy consequence of Proposition (1.10) and the defini-
tions. The proof of (i)7 is similar.

Let hE and hF be metrics on E and on F, respectively. The pairing

{E®F) χ(E®F) ®
c

(a (x) b, c (x) d) • hE(a, c)hF(b, d)

defines a metric on E (x) F. Calculation shows that the curvature of hE<S)F

is ΘE®Is + lr® ΘF where r (resp. s) is the rank of E (resp. F). (ii)
and (ii)' follow from what we have shown (See Griffiths [4] p. 209).

DEFINITION (1.12) A vector bundle E is negative in the sense of
Grauert if there exists a relatively compact and strongly pseudoconvex
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neighbourhood of the zero-section of E. A vector bundle is positive in
the sense of Grauert if E is negative in the sense of Grauert.

.A vector bundle E over V is said to be ample if, for any coherent
sheaf F on V, we have

H%V, Sn(E) ®F) = 0 for sufficiently large n and i > 0.

PROPOSITION (1.13). A vector bundle E is ample if and only if the
tautological bundle is ample.

Proof. See Hartshorne [5] p. 69.

PROPOSITION (1.14). A vector bundle E is positive in the sense of
Grauert if and only if E is ample.

Proof. If E is positive in the sense of Grauert, then E is ample
by Grauert [3] p. 344 Hilfssatz 1.

If E is ample, then E is positive in the sense of Grauert by Hartshorne
[5] p. 72 Proposition (3.5).

We recall a well known

PROPOSITION (1.15) A line bundle is positive if and only if it is
ample.

PROPOSITION (1.16) A positive vector bundle E is ample.

Proof. We deduce the Proposition from Proposition (1.15) and from
the direct calculation of the curvature form of the metric on Op(ί7)(l)
induced by the metric on E (See Griffiths [4]).

Another proof. We shall show that E is negative in the sense of
Grauert. Consider the function φ on E defined as in Remark (1.3).
Then {Q e E \ <p(Q) < 1} is a relatively compact strongly pseudoconvex
neighbourhood of the zero-section. Hence E is negative in the sense of
Grauert. It follows that E is ample by Proposition (1.14).

THEOREM (1.17) (Andreotti and Grauert [1], p. 257)
Let E be a vector bundle. If Θξ( ) is non-degenerate at any point

P of V for any ξ Φ 0, then the number i of the negative eigen values
of Θξ( ) is independent of P and ξ if ξ Φ 0 and we have

Hq(V, Sm(E)) = 0 for sufficiently large m if i Φ q .
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104 HIROSHI UMEMURA

Sketch of the proof. First, Andreotti and Grauert show that there
exists a filtration in Hq(E,OE) such that the associated graded module
GHq(E, OE) is isomorphic to © Hq(V, Sn(E)). Secondely, by Remark (1.3),

considering the functions φ and e~cψ with c > 0, we deduce that E is
strongly (q + l)-pseudoconvex and strongly (n + r — g)-pseudoconcave.
Hq(E, OE) is finite dimensional if qψi. Now the theorem follows from
what we have seen. For the details see Andreotti and Grauert [1],
(cf. Theorem (4.1.1), Theorem (4.2) and Theorem (4.3.1))

(1.18) Let φ — {φa} and ψ — {ψa} be ί7-valued differential forms. We
define the inner product of φ and ψ by

> Ψ ) = f Σ K
J V p , σ

This defines a positive definite hermitian metric on the space of unvalued
differential forms. The adjoint operators of D and d" exist

D <-> δ' , d"*->$

where <9a = δ"φa - *θa Λ *<pa,δ' = - * d / r * and δ" = -*d 7 *. Then, (J)"U
+ ΌfΌ")φa = θaφa. We set • = D"$ + QD". An £7-valued form φ is
called harmonic if Πφ = 0 or equivalently D"φ — 0,<9φ = 0.

£Γ«(y, fl»(£7)) - {ί7-valued harmonic (p, q) forms} .

LEMMA (1.19) (Nakano). Let φ be an E-valued harmonic form. Then

Proof.

Aφ,φ) = -^±-(Λ(D"D' + D'D")ψ,φ)

since Ad" - <Z'M = - V ^ l δ ' (See Weil [19]).
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-((-V-lδ'D'φ,φ) + (d"ΛD'φ,φ))

(( - V = ϊ 3'Zfy, p) + (D'ΆD'φ, φ))

φ) + (ΛD'φ,φ))

2

- 1 // . / Λ <>/

= -ϊ(Dφ,Dφ)<0

q.e.d.

§ 2 Positive vector bundles over a compact Riemann surface

LEMMA (2.1) Let V be a manifold or an algebraic variety defined

over an algebraically closed field k. Let Ex and E2 be vector bundles on

V. Let Eζ be the extension of E2 by Eλ\

determined by an element ξ e H\V, Horn (£72, EJ). Then Eξ ~ Eλζ for any

0 ψ λek.

Proof. Consider the commutative diagram

I-
0 -> Ex -> Eλς -> E2 -> 0

where the vertical arrow on the left is the multiplication by λ.

LEMMA (2.2) Let V be a non-singular protective algebraic variety

defined over C. Let Ex and E2 be vector bundles on V. If Eλ and E2

are positive in the sense of Nakano, then an extension of E2 by Eλ is

positive in the sense of Nakano.

Proof. Let E be defined by v e H\V, Horn (E2, EJ). Take a sufficiently

fine open covering {Ua} of V so that the extension Ev is given by patch-

ing EUUa®E2lUa and E1]Uβ(g)E2lUβ on Ua Π Uβ by fc ^ή where aβae

Γ(Ua Π Uβ9 Horn (E2, EJ) and (xa, ya) e Eι]Ua0 E2Wa and (xβ9 yβ) e E1]Uβ 0 E2]Uβ
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106 HIROSHI UMEMURA

are identified if (xa + aβaya,ya) = (xβ,yβ). Then the extension EλΌ is de-

fined by replacing ί^ ^βa\ by (Q ?βA. Since an extension is differen-

tiably trivial, there exists a C°° homomorphism ba: E2]Ua —> EUUa for each

α such that aβa = ba — bβ on Z7β Π C/«

\o i)

16 t) λbβ\
)

E1]Ua Θ E2[Ua — — > Euϋβ 0 E2lUβ

Let hEl and feSa be hermitian metrics on Ex and ^ 2 such that their

curvature forms,

and

are positive definite. We set

, __ιll —λba\ίhla 0\// — λ

{hEλυa} defines a hermitian metric on EλV. If we set Hλ(ξ) —

Σ
pτ®Eλυ lij ξip)ί) ξiσJ\ then Hλ( ) is a hermitian form at each point

P of V. We fix a point P. Then there exists a number cp > 0 and an

open neighbourhood £7̂  of P such that ί^ is positive definite at any

point QeUp if \λ\ < cp, since iί 0 is positive definite at P. Since V is

compact, there exists a number c > 0 such that Hλ is positive definite

at any point if \λ\ < c. Now the lemma follows from lemma (2.1).

LEMMA (2.3) Let V be a non-singular protective algebraic variety

defined over C. Let E be a vector bundle of rank r on V. Let {Ua} be

an open covering of V such that EιUa is trivial. Assume that the transition

matrices gβa can be written in the form gβa = jβa'Uβa where fβa is a

scalar function and Uβa is a unitary matrix on Ua Π Uβ. If άetE is

positive, then E is positive in the sense of Nakano. In particular E is

positive and ample.
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Proof. Let {ha} be a hermitian metric on det E such that its curvature

form is positive definite. From the definition |det gβa\
2ha — hβ on

Ua ΠUβ i.e. \fβa\
2r ha = hβ. Hence \fβa\

2hψ = / # r . Consider the matrix

hψlr. This is a positive definite hermitian metric on E\Ua. On the

other hand, we have

%WIrgPa =fβa-
tUβa TnψU -fβa-Uβa

Hence {hι

a

/rlr} defines a hermitian metric on E. Let Θ be the curvature

form of {ha}. Then the curvature form of {h^rIa} is given by (l/r)ΘIr.

Hence E is positive in the sense of Nakano. q.e.d.

(2.4) We need some results of Narasimhan and Seshadri [11].

Let S be a compact Riemann surface of genus g ^ 2. Let π be a

discrete group acting effectively, properly and holomorphically on the

unit disc T such that T/π ~ S and such that the projection P: T -> S

is unramified except at only one point x0 and ramified with order n at

x0. Such a group π always exists. Let p: π —> GL0& C) be a represen-

tation. Then π operates on the trivial bundle T x Cn by (#, v) »-> (y, p(γ)v),

y eT,v e Cn, γ e π. We denote by Eπ(p) this vector bundle carrying the

action of π. We denote by P%(E(p)) the subsheaf of P*(E(p)) consisting

of elements invariant under the action of π. Then P%(E(p)) is a vector

bundle of rank n on S. We call Eπ(ρ) the 7r-bundle associated to p. The

vector bundle P%(E(p)) is called the vector bundle arising from the re-

presentation p of π.

Let y0 e p"Kx0) and τryo be the isotropy group of π at y0. Let « be

a coordinate system around yQ such that the action of πyo is multiplication

by ζk where ζ is a primitive nth root of unity. Let γ0 be the generator

of πVo corresponding to multiplication by ζ. Let r be a character of πyo.

If τ(γ0) — ζ*, 0 < s < n, then the integer s is independent of s and «.

The integer s is called the associated integer to r.

A homomorphism p: TΓ -> f/(n, C) is a representation of type τ, by

definition, if for every γeπyQ, we have p(γ) = τ(γ)In.

A vector bundle £7 of rank r over a compact Riemann surface is

said to be stable if
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degree E , degree F

rank E rank F

for any quotient bundle F of E.

THEOREM (2.4.1) (Narasimhan and Seshadri [11]) A vector bundle

F of rank n and degree —n<q<0 over a compact Riemann surface

of genus > 2 is stable if and only if F is isomorphic to P%(E(p)) where

p is an irreducible unitary representation of type τ and the associated

integer to τ is q.

COROLLARY (2.4.2). Let E be a stable vector bundle of rank r over

a compact Riemann surface R of genus > 2, then there exists an open

covering {Ua} of R such that E]Ua is trivial for each a and such that the

transition matrices can be written in the form;

Scalar function x unitary matrix.

Proof of the Corollary. If the transition matrices are of the desired

form, so are the transition matrices of E ® L for any line bundle L on

R. Hence we may assume —n < deg£7 < 0. In this case the corollary

is an easy consequence of the Theorem and Narasimhan and Seshadri

[11] Remark 6.2. p. 550.

LEMMA (2.5) A stable bundle of positive degree over a compact

Riemann surface of genus > 2 is positive in the sense of Nakano.

Proof. The Lemma is an easy consequence of Lemma (2.2) and

Corollary (2.4.2).

THEOREM (2.6) Let R be a compact Riemann surface of genus g.

Let E be a vector bundle of rank r over R. Then the following are

equivalent.

( i ) E is positive in the sense of Nakano.

(ii) E is positive.

(iii) E is ample.

(iv) The degree of every quotient bundle of E (including E itself)

is positive.

Proof. The equivalence of (i) and (ii) follows from Lemma* (1.5).

(ii) ι=> (iii) follows from Proposition (1.16). Since any quotient bundle

of an ample vector bundle is ample, (iii) t=ί> (iv). Hence it is sufficient
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to show that (iv) ι=> (i). Let E be a vector bundle on R such that the
degree of any quotient bundle is positive. If g = 0, E is the direct sum
of line bundles. Hence the assertion follows from Proposition (1.11).
If g — 1. The assertion was proved in Umemura [18]. We may assume
g > 2. We proceed by induction on the rank r of E.

If r = 1, the assertion (iv) i=t> (i) follows from Proposition (1.15) and
the Riemann-Roch theorem.

Now we assume that the assertion (iv) «=> (i) is proved for rank
strictly less than r. Suppose that E contains a subbundle Eλ which is
positive in the sense of Nakano:

0-^Eί-^E -±E2-+0 .

E2 is positive by the inductive hypothesis since every quotient bundle of
E2 has positive degree. Hence by Lemma (2.2), E is positive in the
sense of Nakano. If E does not contain a subbundle which is positive
in the sense of Nakano, then E is stable. In fact, let F be a subbundle
of E. We prove that the degree F is < 0. We use induction on the
rank s of F. If s = 1, then the degree F < 0 since otherwise F would
be positive in the sense of Nakano. Now we suppose that the degree
of a subbundle is < 0 if its rank is less than s. Let F be a subbundle
of rank s. By the inductive hypothesis every subbundle of F has degree
< 0. Hence if the degree of F were positive, every quotient bundle of
F would be positive. By the inductive hypothesis F would be positive
in the sense of Nakano. Hence we may assume E to be stable. Since
the degree of E is positive, E is positive in the sense of Nakano by
Lemma (3.5).

Remark (2.7). Hartshorne proved the equivalence of (iii) and (iv)
(cf. Hartshorne [6]).

§ 3. Some positive vector bundles of rank 2 over an algebraic surface.*}

(3.1) We recall the results of Takemoto [14] and [15]. Let S be a non-
singular projective surface defined over C. Let E be a vector bundle
of rank 2 over S. Let H be an ample line bundle over S.

DEFINITION (3.1.1) E is said to be H-stable (resp. H-sernί-stable) if

for any successive blowing ups π: S' -»S and for any sub line bundle F

of π*E, we have

*> See [20].
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(detE,H)/2> (F,π*H)

(resp. >)

where ( , ) denotes the intersection number.

PROPOSITION (3.1.2) An H-stable bundle is simple i.e. H\S, End (E))
= C.

THEOREM (3.1.3) The set of all H-stable vector bundles of rank 2
with fixed numerical Chern class is bounded i.e. there exists a scheme
T of finite type over C and a vector bundle E on T x S such that, for
any H-stable vector bundle F of rank 2 with the fixed numerical Chern
class, there exists a closed point teT with F ~ EμxS.

THEOREM (3.1.4) Let H19H2 be ample line bundles on S. Assume
that S is relatively minimal and N(E) — c\ — 4c2 > 0 where ct is i-th
Chern class of E. Then E is H-stable if and only if E is H2-stable.

Remark (3.1.5) If N(E) < 0, the ίf-stability depends on the choice
of an ample line bundle if. (See Takemoto [14]. See also Example (3.3)).
By the Riemann-Roch theorem, N(E) < 0 on an abelian surface and
N(E) < - 2 on P2.

PROPOSITION (3.1.6) Let G be a finite solvable group. Let G operate
on S holomorphically so that the projection π:S-^S/G is unramified.
Let H be an ample line bundle on S/G. Let E be an H-semi-stable
bundle on S/G. Then π*E is π*H-semi-stable.

DEFINITION (3.1.7) A non-singular projective surface S is said to
be hyperelliptic if the first Betti number of S is 2 and if there exist an
elliptic curve Δ and a smooth morphism π: S -* Δ such that every fibre
is an elliptic curve.

THEOREM (3.2) Let S be either an abelian variety of dimension 2,
a geometrically ruled surface or a hyperelliptic surface. Let E be a
vector bundle of rank 2 over S. Let H be an ample line bundle on S.
If E is H-stable with N(E) > 0 and cγ > 0, then E is positive in the
sense of Nakano.

Proof. Case I. S = A is an abelian variety. In this case, we
prove a slightly more general assertion: If E is iϊ-semi-stable with
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N(E) > 0, and cλ > 0, then E is positive in the sense of Nakano. If E
is simple, then by Oda [12], there exists an isogeny p:A'-+ A of degree
2 and a line bundle L on Af such that p^L ~ E. We have p*p*L ~

0 T*L by Oda [12] where Tx denotes translation by x. Since p is

finite and det p*L is ample by the Nakai criterion and the hypothesis,
det (p*p*L) is ample. Since L and T*L are numerically equivalent,
det (p*p*L) is numerically equivalent to L®\ It follows that L®2 is ample
by the Nakai criterion hence L is ample or equivalently positive in the
sense of Nakano. The direct image p^L is positive in the sense of
Nakano.

If E is not simple, then, by Proposition (5.2), Takemoto [14],*} E is
written in the form Ef ®M where Ef is an extension :

0->O-+E'->O->0

and M a line bundle on A. Hence

c(E) = (1 + Mt)(l + Mt)

+ (M2)t2 .

From our hypothesis M®2 is positive, hence ample by the Nakai
criterion. It follows that M is ample. Since M is a line bundle, M is
positive in the sense of Nakano by Proposition (1.15). By Lemma (2.2)
the extension 0 -> M —>Ef®M->M-+§ is positive in the sense of Nakano.

Case II. Geometrically ruled surfaces. Let p: S = P(V) -> C be
a geometrically ruled surface over a curve C of genus g. We know
from the hypothesis and Takemoto [14] that there exist a stable vector
bundle F of rank 2 over C and a line bundle L on P(V) such that
E ~L® p*F.

If g — 0, we have nothing to prove, since there is no stable bundle
of rank 2 on C

If g = 1, there exist an isogeny π: C" —• C of elliptic curves and a
line bundle U on C7 such that π*U - F by Oda [12]. Consider the
diagram:

W = P(V) χ C ; Λ P(V) ,
G

C.
*} See (Added in proof) p. 127.
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Since π is affine, we have p*F ~ π*p*Z/. Hence τr*(p*Z/ <g) π*L) ~ E.

Let 2V be the kernel of π. Then W is a Galois covering of P(V) with

Galois group N. By Takemoto [15], we have π*E ~ © T*(p*L'®π*L)
g£N

where Tg denotes the operation of g on W. As in case I, we know

det (p*U (x) π*L © T*(p*U (x) τr*L)) is ample with eφ geN. On the other

hand, T*($*U <g> ;r*L) - T*(p*U) <g> T*0r*L) = ρ*(Γ*L') ® Λ*L. Since T*Z/

and 1/ are numerically equivalent, we proved that det (p*U (g) π^L 0

T*(p*U (g)ττ*L)) is numerically equivalent to (ρ*Z/ ® ̂ *L)0 2. Hence

p*L7 ® τr*L is ample by the Nakai criterion and the direct image

7tχ(p*L' (8) τf*L) = E is positive in the sense of Nakano.

If g > 2, then by Corollary (2.4.2) the transition matrices of F can

be written in the form:

Scalar function x unitary matrix.

Hence τr*F and π*F (x) L have the same property. By Lemma (2.3),

the Theorem is proved for geometrically ruled surfaces.

Case III. Hyperelliptic surface. In this case, there exists an abelian

variety A and a finite abelian group G such that G operates on A,A/G

is isomorphic to S and the projection π:A/G—>S is unramified. By

Proposition (3.1.6), π*E is 7r*#-semi-stable with N(π*E) = 0. By what

we have proved in case I, π*E is positive in the sense of Nakano.

Hence π*π*E is positive in the sense of Nakano. Since E is a direct

summand of π*π*E, E is positive in the sense of Nakano by Proposition

(1.11). q.e.d.

EXAMPLE (3.3) Let E19E2 be elliptic curves. Let M\ be a line bundle

of degree 1 on Eu i = 1,2. We put A = Eγ x E2 and pfM't = M% for

i — 1,2 where pt is the projection pt: A — Eλ x E2-^ Et. We set L2 =

MfWl (x) Mfw% L2 = Mfmi (8) Mfm2. We define a vector bundle E of rank 2

by the exact sequence

Then

cλ{E) = Mfini+mi) (

cx(E) = n2mj + njm2 .

If T&! — mx and n2 — m2 are coprime, nx > m ^ ^ < m2 and if we take a

non-trivial extension, then, by Takemoto [14] p. 41, E is ίf-stable for a
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certain ample line bundle ί ί on A. But there exists an ample line
bundle H' such that E is not iϊ'-stable. In fact we have c\ — 4c2 < 0.
It is easy to see that cx > 0, c2 > 0, c\ — c2 > 0 if and only if nx + mx

> 0, ή2 + m2 > 0, n2mx + nxm2 > 0,2nxn2 + n{m2 + mxn2 + 2m1m2 > 0. Hence

if we take nx = 1000, n2 = 0, mx = — l,m2 = 1, then E is iϊ-stable with
cx > 0, c2 > 0, c\ — c2 > 0 and c\ — 4c2 < 0. Since L2 is not ample, £7 is
not ample, (see Remark (3.1.5)).

Remark (3.4) Theorem (3.2) is an analogue of Lemma (2.5). It is
natural to ask:

PROBLEM (3.4.1) Let S be a non-singular protective surface defined
over C Let H be an ample line bundle. Let E be a vector bundle of
rank 2 on S. Assume that E is iϊ-stable with N(E) == c\ — 4c2 > 0,
cx > 0, c2 > 0. Then is E ample ?

(3.4.2) The answer may be negative in characteristic p > 0, because in
characteristic p > 0, there exists a curve C of genus g > 2 such that
there exists a stable bundle of positive degree on C which is not ample
(cf. Hartshorne [6]).

§4. Vanishing theorems

(4.1) The following theorem is well known. We prove it by our own
methods.

THEOREM (4.1.1) Let A be an abelian variety of dimension n defin-
ed over C. Let L = L(H,a) be a non-degenerate line bundle over A.
Then,

Hl(A,L) = 0 if i Φ § {negative eigen values of H} .

Proof. Let r be the number of negative eigen values of H. We
choose a coordinate system (z19 , zn) of the universal covering space
Cn of A so that H is written in the following form:

n — r + 1

We use the metric ψ{z) defined in Example (1.9). Then the curvature
form Θ is given by
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Θ == —π(dz1 A dzx + + dzr A dzr)

+ -(dzr+1 A dzr+ι + + dzn A dzn) .
n — r + 1

We define a kahler metric on Cn hence on A by ω — V—1/2 Σ?=i &z% A dzt.

Now the theory of harmonic integrals (1.18) is applied.

LEMMA (4.1.2) If φ — φodzίχ A Λ dziq is a (0,q)-form with coe-

fficients in L, then

— —-—(AΘ A φ,φ) > πlr — q — n ~ r—)(<p, φ) .
2 \ n — r + 1/

Proof of the lemma. We compare integrands. We may assume that

φ — dzh A - - Λ d«ίβ since the question is local.

— Θ A φ ~ π((dz1 A dzγ + + dzr A dzr) — (dzr+ι A dzr+1

\ n — r + 1

+ + dzn A dzjj A dziχ A Λ dzίq .

We use the following notation:

i ^^ \tι9 > βqr} > iv = |-L, , nj y o)£:== ciZβ /\ ctZβ .

—Θ A φ — π 2 dziχ A Λ dziq A ω£

Yt dzu A Λ dig, Λ ω, .
n — r + 1

Hence

Σ
{i

A so = 7r 2 ^<i A Λ dzi

dzh Λ Λ dzlq .
n — r + 1 ίejv-{r+i, ,w}-i

The lemma follows from the inequality

# { i V - {r + 1, ,n] - /} ί — - X #{N - {1, ,r} - /}
n — r + 1

> {n _ ( n _ r) - g} ~ = r - q n ~~ r

n — r + 1 n — r + 1

q.e.d.

Let φ be a harmonic form of type (0, q) with coefficients in L. Let

Ψ — Έiiψi where / = {i19 , iq} c iV and ^7 = ^7d2€l Λ Λ df<β and the
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summation is taken for all such Γs.

0 > - ^~1 (ΛΘ Λ φ,φ) by Lemma (1.19)

since {dzt Λ Λ dzlq) A* (dzh Λ Λ dz^) = 0

i f { i l t ... , i q } φ { j u - • • , } „ } ,

by lemma (4.1.2)

= <r -" -

Hence if r — q — (n — r)/(n — r + 1) > 0 i.e. r > q, we have Hq(A,E)

= 0. The line bundle L, dual to L(iϊ,αr) is given by L{-H,a~ι) (cf.

Mumford [9]). Hence by Serre duality we have Hq(A,L) — 0 for q > r.

This completes the proof of the theorem. q.e.d.

THEOREM (4.2)*} Let V be a protective non-singular variety defined

over C. Let L be a line bundle on V such that LΘ m is generated by

global sections for large m. Let ψ: V —> W C PN be a morphίsm defined

by L®m. If dim W = q, then H\Vf L) = 0 for ί < q - 1.

Proof. Let H be a hyperplane section of PN. Then, L®m = ^*iϊ.

Let hr be a metric on H. Then h = hΌφ is a metric on L®m. The

curvature form Θh of Λ, is, by an easy calculation, given by

Θh = JΘh, 'J

where / is the Jacobian of φ and Θh, is the curvature form of hf.

Hence hιβ defines a metric on L and its curvature form is l/£θh. Let

Θ be the curvature form of L~\ We fix a kahler metric ω on V. From

what we have seen, at a point Q e V, we may assume that
%) This result is independently proved by C. P. Ramanujam: Remarks on the

Kodaira vanishing theorem, Jour, of the Indian Math. Soc. 36 (1972) p. 41-51.
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-λι 0]

0

0 0

and that there exists a point Q such that λt > 0,1 < ί < g. i.e. a point
where / attains its maximal rank q. Let φ be a non-zero harmonic
(0, p)-form with coefficients in L~ι. Then ?̂ is non-zero on a dense open
set in V. As in the proof of Lemma (4.1.2), the integrand of —j(ΛΘ A φ, φ)
is non-negative at any point Q and there exists a point Q where the
integrand is positive if p < q. Hence if p < q, we have — V—lβ{ΛΘ A φ9 φ)
> 0. On the other hand - V^Λ/2(ΛΘ A ψ, φ) < 0 by Lemma (1.19). This
is a contradiction. Hence when φ is non-zero, p > q. q.e.d.

(4.3) Let V be a non-singular projective variety of dimension n defined
over C. Let E be a vector bundle of rank r < n. Let s be a section
of E. s is said to be a regular section if S ~ {ze V\s(z) = 0} is non-
singular and of codimension r. Griffiths [4] proved the following
vanishing theorem.

THEOREM (4.3.1)*) // E is positive, r = 2 and if E has a regular
section, then H\V, E) = 0 for i < n — 2.

His proof depends on the generalized Lefschetz theorem and the
Hodge decomposition. In fact he compared the cohomology group of V and
S with coefficients in Z by using Morse theory. But to obtain the vanish-
ing theorem, we need only the generalized Lefschetz theorem with coe-
fficients in C. We remark here that the generalized Lefschetz theorem
with coefficients in C is proved by a standard technique using cohomological
dimension and de Rham cohomology.

LEMMA (4.3.2) Let V be a non-singular projective variety of dimen-
sion n defined over C. Let E be a vector bundle of rank r < n. Let S
be a zero locus of a regular section s. If E is positive, then V — S is
r-complete. In particular ancd (V — S) < r — 1 where ancd (V — S) de-
notes the analytic cohomogical dimension of V — S (c/. Umemura [16]).

*> The author learned that a more general result is obtained by J. Le Potier:
Theoreme d'annulation en cohomologie, C. R. Acad. Sc. Paris, t. 276 (12 fevrier 1973)
Serie A 535.
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Proof, Let h be a metric on E. Consider the function <p(z) =
ts(z)h(z)s(z) on V — S. Since φ(z) > 0 on V — S, we can put ψθ?) =

— \ogφ(z). We shall calculate the Levi form of ψ(z) at a fixed point 0

in 7- — S. We may assume that h(O) = /, d'h(O) = 0, hence we have

Θ(O) = -dfd"h(O). Then, by a direct calculation,

ZidZj φ2

It is sufficient to show that the Levi form [(d2ψ)/(dZidZj)]0 is positive de-

finite on an n — r + 1 dimensional subspace. Since 2]i£ίj£n (1/0 tsΘίjS7]ίηJ

is positive definite, it suffices to show that the form in η = 0?1, , 2/O e Cn

(4.3.3)

vanishes on an n — r + 1 dimensional subspace. Let s = t(s1,s2,

Consider the equation

ds1 ds1

dz2

ds2

dz.

dsr

ds1

dzn

dsr

dzn 0

V

- λ

V"

sr

dzγ

for some λeC.

Then the dimension of the vector space W = {η eCn\(dsi/dzj)0 η =

λ s(O) for some λeC} > n — r + 1. We show (4.3.3) vanishes on W. In

fact we have Σi*tj*n ('s ids/dz^Uid^/ids^'S^ψ = \λ\2 (%O)s(O))2 and

Σi*<j*n mOMOXm/idz^/ids/dz^ηψ = \λ\χ*s(O)s(O)y Hence (4.3.3) -

0 on W.

The last assertion of the lemma follows from Andreotti and Grauert

[1]. q.e.d.

THEOREM (4.3.4) Using the notation of lemma (4.3.2), the homo-

morphism

Hl(V, C) —> H%S, C) is bijective for i < n — r — 1 and injective for

1 =z n — r.

Proof. Consider the spectral sequence of de Rham cohomology:
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ψ = w(y - s, Ω*) ^> H*B(V - s) = H*(y - s, o .

Since ancd (V — S) < r — 1, we have:

/f« = 0 if q > r or p > n + 1 .

Hence ff*(V - S, C) = 0 for ΐ > w + r and consequently HW, S C) = 0
for j <n — r. The theorem follows from the exact sequence of co-
homology

-> H'-KS, C) -> HKV, S;C)-> H'(V, C) -* H'(S, C) -> W+\V, S C)-* .

Proof of Theorem (4.3.1). The following argument is due to Griffiths
[4], Let / be the ideal sheaf of S:

We have the commutative diagram

HKV,O >HKS,C)

I
HKV, Oy) > HKS, 08)

0 0

since the Hodge decomposition is functional.

By the Theorem (4.3.4), we have Hι{V91) = 0 for i<n — r. From now
on we suppose that the rank r of E is equal to 2. Since s is regular,
we can construct an exact Koszul complex by using s;

0-+Λ2Έ:->E->I->0

By Kodaira vanishing theorem or Theorem (4.2), Hι(y, Λ2E) = 0 for
i < n - 1. Hence HKV, E) = 0 for i < n - r. q.e.d.

§ 5. 9(E) and H(E)

(5.1) Let H be a finite abelian group. Let k be an algebraically closed
field of characteristic p. We consider a central extension,

0-*&*->G->i7->0.

Let x,y be elements of H. We put e(x>y) = x~ιy~xxy where x,y eG
lie over x,y. e(x,y) is an element of &* and is independ of the choice
of x and y. Then e(x, y) is a skew-symmetric bilinear pairing from H
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to k*. A subgroup K of G is said to be a level subgroup if K Π k* =
{0} i.e. K is isomorphic to its image in H. Let K be a subgroup of
H such that the pairing e(x,y) is trivial on K, then there exists a level
subgroup K lying over K. In fact in this case the extension is com-
mutative over K and in the category of commutative group schemes
over k, an extension of a finite group by fc* is trivial. If the pairing
is degenerate, there exists a subgroup K such that the pairing e is
trivial on K and such that \K\2 > \H\. Hence there exists a level sub-
group K of order > \H\1/2.

LEMMA (5.1.1) Let H be a finite abelian group. Let 0 —• &* —> G

— > H -»0 be a central extension of H. If G has a representation of
degree 1 on which fc* operates as the natural character^ then G is iso-
morphic to &* x H.

Proof. Let V be a representation of G of degree 1 on which fc*
operates as the natural character. We denote by Ux the operation of
x e G on V. Let K be maximal level subgroup. Then there exists a
character χ0 e Horn (K, &*) such that t/^ s = χo(#) s for any # e K and
any s e V. Let p G . Setting x~ιy~ιxy = χy(#), » e If, χ^O) is an element
of k*. χy:K-^k* is a character. If π(y)£π(K), then χ̂  is not trivial
since K is maximal. It is sufficient to show that π(K) — H. Hence we
have to show that χy is trivial for any yeG. In fact, if x e K9 we have

χo(x)Uy-s = UxUys

= χv(%)Uv χo(x) s

Hence χo(x) — χv(x)χ0(%) and χv(x) = 1. χ* is trivial. q.e.d.

(5.2) Let A be an abelian variety of dimension g denned over an
algebraically closed field k of characteristic p. Let E be a vector bundle
on A. We put

H(E) = {aeA\E=>. T*E where Γα:A->A}

x ι-> x + a

<&{E) = {(a,Ψ)\aeH(E) and φ:E=ί T*E} .
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Let (α,φ), (&,ψ) e&(E). Consider the composition T*ψoφ; E -+ T*E

T*T*E = T*+bE. If we define (6, ψ)o(α,p) = (a + b, Γ*ψoP), then

is a group. We have an exact suquence

1 -> Aut E -> SP(S) -> # ( # ) -> 0 .

Let x = (α, φ) e &(E). Then 17,: H°(A, E) -> #°(A, S) defined by E^β =

Tΐa(φ(s)) is a representation of

(5.2.1) If E = L is of rank 1 and ample, the structure of ^(L) is well

known and ^(L) plays a very important role in the algebraic theory of

theta functions. We recall some basic properties of &(L) (For the details

see Mumford [7]). From now on, for simplicity we assume that ch k —

p is zero. However all the results hold in positive characteristic if we

avoid inseparable isogenies.

H(L) is a finite subgroup of A. Since A u t L ^ / c * , we have the

exact sequence studied in (5.1) and (5.1.1):

0 _> fc* -> ^(L) — H(L) -> 0

By the Riemann-Roch theorem, there exists an integer d such that

dim H\X9 L®n) = d ng for all n > 1. Let i be the dual of A. We de-

fine Λ(L): A ~> A by sending a; to Γ*L (x) L"1. Then we have

d2 = |χ(L)|2 = degree Λ(L) = \H(L)\ .

Given a level subgroup i? c <g(L),L descends to A/K i.e. there exists

an invertible sheaf 1/ on A/K such that p*L' ~ L where p is the pro-

jection p: A —+ A/K. Conversely let K be a finite subgroup of A, the

descent data associated to L is given by a level subgroup lying over K.

PROPOSITION (5.2.2) There exist a subgroup K of H{L) and an in-

vertible sheaf U on A/K such that χ(Z/) = \H(L')\ — 1 and p*U ~ L

where p is the projection A —» A /K.

THEOREM (5.2.3) H°(A,L) is the unique irreducible representation of

&(L) in which A;* operates by its natural character.

What is &(E) for a vector bundle E on A?

(5.2.4) Assume A is of dimension 1, an elliptic curve. Let E be an

ample irreducible vector bundle of rank r and of degree d, in Atiyah's
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notation, E e E(r, d). First we assume r, d are coprime. Then E is

stable and in particular, simple: H\A, End (E)) ~ k. Hence we get the

exact-sequence 0 —> fc* —> ^(£7) -> iϊ(^7) -» 0 and a level subgroup of &(E)

corresponds to a descent data for E. By Oda [12], there exists an iso-

geny p: Ar —* A of degree r and an ample line bundle L of degree d on

A7 such that E is isomorphic to the direct image p*L and the inter-

section of Kerp and Kev Λ(L) is just 0. Moreover, d = dim H°(A,E) —

aim H°(A',L). Since the intersection of H(L) and Kerp is 0, a non-

trivial translation by an element of H(L) induces a non-zero element of

H(E). Hence H(L) is a subgroup of #(#) . We have |ίf(L)|2 = d\ hence

\H(E)\ > d2. There exists a level subgroup of order > d. If we had

\H{E)\ > d2, then there would exists a level subgroup of order d' > d.

Hence there would be an isogeny ψ: A —> A" of degree d' and a vector

bundle £" on A" such that £>*£" a E. But we have d = χ(A, β) = ^(A 7 , £Ό.

This is a contradiction. Hence H(E) = .ff(L) and (̂Z?) is nothing but

^(L) and the unique representation of &(E) is given by H°(A,E). There

exists an isogeny ψ: A —> 5 and a vector bundle E'77 on B such that

= 1 and E is isomorphic to the inverse image ψ*E".

(5.2.4.1) In other words the theory of &(E) for a stable bundle over an

elliptic curve is absorbed in the theory of the usual Heisenberg group

and its representation.

If r, d are not coprime, then H(E) is too small it is not useful to

consider &(E). Say r = d — 2. Then by Atiyah [2], E is isomorphic to

F2®L where L is a line bundle of degree 1 and F2 is the non-trivial

extension uniquely determined up to isomorphism by the exact sequence

0 - + O - > F 2 - * O - * 0 with Γ(A, F2) Φ 0. F2 is homogeneous : F2 - Γ*F2

for any a e A. Hence if x e H(E), we have F2®L ~E ~ Γ*(F2 ® L) -

T*F2 (x) T*L - F 2 (x) Γ*L. It follows that L - Γ*L. In fact consider the

diagram

0 > L —^F2®L -̂ -> L >0

0 > T*L -^-> F 2 (x) Γ*L «^> T*L > 0 .

If L and Γ*L were not isomorphic, then the composite π2 o ^ o ^ : L -> Γ*L

would be trivial since H\L~ι (x) T*L) = 0. Hence φoiγ would factor
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through T*L. And <poix would be injective. But this is impossible since

H\L~ι (x) T*L) = 0.

We proved that H(E) = H(L). On the other hand by (5.2.1), we

have |#(L) | 2 = 1 ^ 1 . H\A,E) is two dimensional. Hence H(E) is too

small.

This shows that the group &(E) does not give sufficient information

concerning E for a general vector bundle E. We have to restrict our-

selves to a certain appropriate family of vector bundles. Over an elliptic

curve, as we have seen above, the family of stable vector bundles is

nice. So it is natural to ask if the group &(E) has good properties for

H-stable bundles over an abelian surface. Unfortunately, the answer is

no.

EXAMPLE (5.2.5) Let A be an abelian surface. Let E be an ample

vector bundle of rank 2 over A. Let H be an ample line bundle on A.

We assume that E is ίf-stable.

(5.2.5.1) In the case c\ — 4c2 > 0 (This automatically is = 0 ) , since E

is simple, there exist an isogeny A' > A and an ample line bundle L on

Af such that E is isomorphic to the direct image π^L. By the same

argument as in (5.2.4), we conclude that &(E) is nothing but the

Heisenberg group &(L),H°(A,E) is the unique representation of &(E) and

that E descends to E' with χ(E') = 1. &(E) is considered to be reasonable.

EXAMPLE (5.2.6) We use the notation of Example (3.3). We sub-

stitute nx — n2 = 0, m1 = 1, m2 = — 1 and we consider a non-trivial extension:

0 -> 0 -> E -» Mx <g) MΪ1 -> 0. Then E is ff-stable for a certain ample

line bundle H. Let L = Mλ®M2. Let g be a prime number. Tensor-

ing Iβqn with the exact sequence above, we get an exact sequence

0 _> L®qn -> E (x) L®qn -> Mf <qn+1) (x) Mf w-v -> 0 .

If n > 2, then E (x) L®qn is ample and dim H°(E (x) L®^) = q2n +

(qn + ϊ)(qn - 1) = 2 g2w - 1.

Let α e H(E ® L®«Λ) i.e. S <g) L®9n - Γ*(£; (g) L®qn).

0 > L®«n - ^ > J? (g) L®^w - ^ > Mfiqn+1) 0 Mf^-v > 0

0 > T*L®qn —i> Γ*(S ® L® "̂) - Λ T*(ikίf(^+2) ® M?^11-") > 0

Since the index of L®~qn ® T*(Mf(qn+1) ® Mf(qn~1}) is 1, we have
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H°(L®-qn® Γ*(Mf(«n+1) ® Mf^n~l))) = 0. It follows that ff2oPoί1 = 0. Hence

φoix factors through T*L®qn. For the same reason, φ~ι°i2 factors through

T*L®qn. Hence p induces isomorphisms L®qn ~> T*L®qn and Mf(«n+1)

^ Γ*(Mf(ίn+1) ® Mf (^-1 }). This proves x e H(L®qn) Π H(Mf^n+1)

and so H(E ® L®*m) c ff(L®«") Π ίf(Mf(«ra+1) ® Mf w-»). On the other hand,

\Ή(L®qn)\ =
1 ) ) 2 - (g 2 w - I ) 2

Hence |(H(L®«n)| and \H(Mf{qn+1) <g> Mf**-")] are coprime and consequently

H(L®qn) n H(Mf^n+1) ® ΛffK*"-1) - {0} .

We proved H°(A,E ®Iβ>*Λ) = 2 q2n -1 and H(E ® Lqn) = {0} for

> 2. ^(£7) is too small in this case.

Remark (5.2.7) In the example above c\(E ® L®Qn) - 02(5; ® L®qn) < 0

and the stability of E depends on the choice of an ample line bundle.

Again, by the conclusion that we have deduced above, the notion of an

ίf-stable vector bundle with c\ — 4c2 < 0 is not very agreeable (See Ex-

ample (3.3))

Remark (5.2.8). Let A be an abelian surface. Let E be a vector

bundle of rank 2 on A. The following are equivalent.

(1) E is iϊ-stable for any ample line bundle H on A and c\ — 4c2

= 0

(2) E is ίf-stable for an ample line bundle H on A and c\ — 4c2

(3) E is simple and c\ — 4c2 = 0

(4) There exist an isogeny π: A' —> A of abelian surfaces and an

ample line bundle U on A' such that Ker Λ(JJ) Λ Ker π = {0} and £7 is

isomorphic to the direct image π^U.

(5) E is simple. For any ample line bundle L on A and for suf-

ficiently large n, we have

0 _> fc* _> ̂ (£7 ® Ln) -> ίί(£7 ® L®n) -> 0

is a Heisenberg group: the pairing e(x, y) is non-degenerate and

\H(E ® L®w)| = ifc°(L®2w (g) det £7)2 .

(6) E is simple. The same assertion as in (5) holds for one ample

line bundle L and for infinitely many n > 0.
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Proof. The equivalence of (1), (2), (3) and (4) follows from Takemoto

[14] and Oda [13] if we note that an extension of OA by OA is not a

simple vector bundle.

We prove that (4) πz> (5). Let E be a simple vector bundle and let

H be an ample line bundle. By (4) E ® L®n is isomorphic to the direct

image of U ®τr*L®\ Let x e Ker π A Ker A(U®τr*L®ft). Then U®ττ*L®n

~ T*(L' ® τr*LΘw) >̂ TIL' ® T*π*L®n >̂ Γ*L; ® π*L®n. Hence 1/ ~> T*U:

^ e K e r π Λ Λ(Z/). It follows that x = 0. As in (5.2.4), we get

|ff(L' (x) ττ*L®w)| < \H(E ® L®»)| .

By descent theory (cf. (5.2.4)), we conclude that H(U ® τr*L®w) q> £Γ(£? ® L®w)

and IJΪίE' (g) L®w)| = fco(£; (g) LΘw)2 if Lr (g) L®n is ample. By the Riemann-

Roch theorem

h\E ® L®n) = χ(E ® L®w) = JcJ(£? ® L®w) - c2(E

Since (6) is a special case of (5), (5) c=> (6) is trivial.

Now we show that (6) c=> (3). Let E be a simple vector bundle of

rank 2. We assume that (6) holds. Then there exist an integer n and

an ample line bundle if on A such that H°(A, E ® L®n) ψ 0, W(A, E ® L®w)

= 0 for % = 1,2, 0 -> fe* -> ^(£7 ® LΘn) -> £Γ(£7 ® LΘn) -> 0 is a Heisenberg

group and \H(E ® L®n)| = \h\L®2n ® detE7)2. Since E®L®n is simple,

by the Riemann-Roch theorem, we have c*(£7 ® L®w) - 4c2(# ® L®w) < 0.

Hence

( * ) 1 < fc°(£; ® L®n) = \c\{E ® L®w) - c2(S ® L®w)

Since ^(£7 ® L®n) is a Heisenberg group and h\E ® LΘw) is a representa-

tion of <g(E®L®n) in which Zc* operates by its natural character, h\E®Ln)

is divisible by | ί f ( # ® L ® ψ 2 = p°(L®2* ® detS). By inequality (*), we

get fc°(# ® L®w) - p°(L®2* ® det £/). Hence \<%JΞ ® L®w) - c2(£7 ® L®w) =

icf(£7 ® L®n): c>(£f ® L®n) - 4c2(£; ® L®w) = 0. If follows that c\{E) - 4c2(E)

= 0. This completes the proof. q..e.d.

EXAMPLE (5.2.9) Let A be an abelian surface. Let L be a very

ample line bundle over A. Let φ = (φ1,φ29φ3) eH°(A,L)@\ We assume
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that φ19φ29φ3 do not vanish simultaneously. This we can define the vector

bundle E(φ), frequently referred to as Kleiman's example, by the exact

sequence

(**) 0 -> 0 -> L®3 -> E(φ) -> 0 .

1 H-> (φ19φ29φ3)

LEMMA (5.2.10) H\A9 E(φ) ® L) = 0.

Proof. 0 -* £(φ) -> L®3 -» 0 ~> 0 .

0 _+ £ ( 0 ® L -> OΘ3 — L -> 0 .

Hence we get

0 -> #°(A, $ ( 0 ® L) -> iϊ°(A, O)®3 -> H\A, L) —

The map #°(A, O)®3 -> JΪ°(L) which sends (1,0,0) >-> ψl) (0,1,0) κ-> φ29 (0,0,1)

ι-> 3̂ is injective. Hence H\A,E(φ)®L) = 0. Applying Serre duality,

we get the lemma. q.e.d.

LEMMA (5.2.11) E(φ) is simple.

Proof. Tensoring E(φ) with the exact sequence (**), we get the

exact sequence,

0 -> E(φ) ® £(φ) -> (E(φ) ® L)®3 -> J&(p) -> 0 .

The exact sequence of cohomology is:

HKE(φ)) -> iϊ2(End (E(φ)) — ίί2(£7(0 ® L)®3

H\E{ψ)) ~ iϊ2(O^) is one dimensional and H\E(φ) ® i ) = 0 by Lemma

(5.2.10). Hence dim # 2(End (£?(^))) < 1. By Serre duality, the lemma

is proven.

LEMMA (5.2.12) The vector bundles E(φ) and E(φ') are ίsomorphic

if and only if the vector space generated by <pi,<p2><p3 is equal to the

vector space generated by φί9φί9φί in H°(A9L).

Proof. Assume that the vector space generated by φ19 φ29 φ2 = the

vector space generated by φ[9φ
f

29φ^ We have

(φ'Λ (φι\

\ = B\φ2\ with B e GL(3, k) .

1 \ψzl

B defines an automorphism of L®3 which we denote by B. We note that

the following diagram is commutative:
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If

0

0
l l

>L® 3 -

L®3

y

E(φ)

E{ψf)

This proves the if part of the lemma.

Now we prove only if part. Suppose that E(φ) and E(φ') are iso-

morphic. Tensoring L with the exact sequense (**), we get the diagram:

0

0

E(φ) <g) L > 0

E(φ') ® L > 0

where σ is an isomorphism. I t is sufficient to show t h a t a can be lifted

to an automorphism of O®3. Noting t h a t H\L) = Hι(L) = 0, we get

the commutative d i a g r a m :

OA®H\E(φ)®L)

O®

which induces an automorphism of O®3 making the diagram commutative.

This completes the proof. q.e.d.

Since (E(φ)) has a representation H\A,E) of degree 1, &(E(φ)) is

commutative by Lemma (5.1.1). We calculate &(E(φ)) and its representa-

tion for a very special case. Let Cl9 C2 be elliptic curves. Let A —

d X C2. Let ^ be an ample line bundle of degree divisible by 3 on Cί9

i = 1,2. Let L be the tensor product v*Lx <g) p2*L2 where p4 denotes the

projection from Cγ x C2 onto the i-th factor. Let Kx be a maximal level

subgroup of ^(A). Then there exists an element ψx e ίίXCj, Lx) and an

element a of ^(Lj) of order 3 such that ψx is invariant under the opera-

tion of Kλ and ψ19 ψ2 = ^Ψi and ψ3 = α2ψx do not have a common zero.

We do the same thing with L2 on C2 and we get ψ{, ψa = &Ψί> Ψs = &2Ψί>

6 e ^(L2) δ3 = 1. We put φx = ψxψί, ̂ ?2 z= ψ2ψ^, ̂ 3 = ψ-3ψ̂  φ = (^, p2, ̂ 3 ).
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Since the operations Kx x K2 and ab,a2b2 leave the vector space generat-
ed by φι9φ29φz invariant, by Lemma (5.2.12) we have \H(E(φ))\ > 3 x h\L^
X h[(L2) where K€ is the maximal level subgroup chosen above. On the
other hand χ(E) = 3 x h\Lx) x h°(L2). Since &(E) is commutative, \H(E)\
divides χ(E) by descent theory. Hence \H(E)\ = 3 x h\Lx) x Λ°(L2). It
follows that

= fc* Θ Jϊ(ί7) .

Consider the exact sequence of representations of

0 > flo(0) • #°(L)@ 3 • H%E(φ)) > HKO) • 0

trivial regular trivial
representation representation representation

of Z/3Z®ίfi®l?j of degree 2

It follows that

H\E(φ)) - regular representation of ZβZ®Kλ ®K2® trivial
representation of ZβZ®Kλ®K2 of degree 1.

E(φ) is L-stable.

ADDED IN PROOF

Since in Proposition (5.2) [14], the assumption that E is indecom-
posable is forgotten, our argument in p. I l l is incomplete. We have
to treat the case where E is a decomposable ίf-semi-stable bundle over
A with N(E) > 0. In this case E is isomorphic to Lx ® L2 where Lt is
a line bundle algebraically equivalent to one another for ί = 1,2. Then
it follows easily that Lt is ample. Hence E is positive in the sense of
Nakano.
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