
J. Fluid Mech. (2011), vol. 670, pp. 581–605. c© Cambridge University Press 2011

doi:10.1017/S0022112010005616

581

A dynamic multi-scale approach for turbulent
inflow boundary conditions in spatially

developing flows

GUILLERMO ARAYA1†, LUCIANO CASTILLO2,
CHARLES MENEVEAU1 AND KENNETH JANSEN2

1Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
2Department of Mechanical, Aeronautical and Nuclear Engineering, Rensselaer Polytechnic Institute,

Troy, NY 12180, USA

(Received 18 December 2009; revised 14 October 2010; accepted 21 October 2010)

A dynamic method for prescribing realistic inflow boundary conditions is presented
for simulations of spatially developing turbulent boundary layers. The approach
is based on the rescaling–recycling method proposed by Lund, Wu & Squires
(J. Comput. Phys, vol. 140, 1998, pp. 233–258) and the multi-scale method developed
by Araya, Jansen & Castillo (J. Turbul., vol. 10, no. 36, 2009, pp. 1–33). The rescaling
process requires prior knowledge about how the velocity and length scales are related
between the inlet and recycle stations. Here a dynamic approach is proposed in
which such information is deduced dynamically by involving an additional plane,
the so-called test plane located between the inlet and recycle stations. The approach
distinguishes between the inner and outer regions of the boundary layer and enables
the use of multiple velocity scales. This flexibility allows applications to boundary
layer flows with pressure gradients and avoids the need to prescribe empirically
the friction velocity and other flow parameters at the inlet of the domain. The
dynamic method is tested in direct numerical simulations of zero, favourable and
adverse pressure gradient flows. The dynamically obtained scaling exponents for the
downstream evolution of boundary layer parameters are found to fluctuate in time,
but on average they agree with the expected values for zero, favourable and adverse
pressure gradient flows. Comparisons of the results with data from experiments,
and from other direct numerical simulations that use much longer computational
domains to capture laminar-to-turbulence transition, demonstrate the suitability of
the proposed dynamic method.

Key words: turbulent boundary layers, turbulence modelling, turbulence simulation

1. Introduction
While computational fluid dynamics has gone through notable developments in

the last few decades, spatially developing turbulent flows such as boundary layers
near walls are still very challenging to be computed numerically because of the
difficulties associated with the prescription of inflow boundary conditions. The most
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straightforward approach consists of starting from the easy-to-specify laminar regime
including disturbances and simulating transition to turbulence and, finally, using this
information as input to the main domain of interest (Rai & Moin 1993; Skote 2001;
Khujadze & Oberlack 2004; Schlatter et al. 2009; Wu & Moin 2009). Resolving the
transition in simulations of developing flows has the advantage that there is no need
to prescribe realistic turbulent fluctuations at the inlet. However, the main drawback
is the high computational cost due to the need for very long computational domains
and the ensuing limitations regarding the highest achievable Reynolds number. On
the other hand, several techniques for modelling turbulent inflow conditions have
been put in practice, with different degrees of success. A comprehensive review can
be found in Lund et al. (1998) and Moin & Mahesh (1998) and more recently in
Keating et al. (2004).

The simplest approach is to superimpose random fluctuations on a desired mean
profile. The random fluctuation method has been applied with different variants (e.g.
Lee et al. 1992; Le & Moin 1994; Park & Choi 1999). Unfortunately, the use of
random fluctuations requires long developing regions to obtain physically realistic
flow structures. To overcome some of these drawbacks, Klein, Sadiki & Janicka
(2002) utilized digital filters to generate velocity profiles from random noise. Because
the filtering technique was restricted to equidistant grid-spacing meshes, Kempf, Klein
& Janicka (2005) presented a more general method to artificially generate initial and
inflow conditions, based on a diffusion process that transformed white noise into a
signal by prescribing integral length scales and Reynolds stress tensors.

In an important development, Lund et al. (1998) proposed a modification to the
approach of Spalart & Leonard (1985) to account for the spatial growth, based on
similarity laws of the velocity profiles at different locations in a spatially developing
zero pressure gradient (ZPG) turbulent boundary layer. They considered an auxiliary
simulation in which the velocity field was extracted from a downstream plane, the
‘recycle plane’. The field was rescaled and reintroduced as a boundary condition at the
inlet of the auxiliary zone. Subsequently, the instantaneous velocity field on a selected
plane of the auxiliary domain was utilized as inflow information for the principal
domain. However, the technique is limited in principle to ZPG equilibrium boundary
layers. The limitation arises because of the assumption of a single velocity scaling
for the inner and outer regions and the need to prescribe empirical correlations that
connect the friction velocities uτ between the inlet and recycle planes. A variant
of the Lund approach was introduced by Ferrante & Elghobashi (2004, 2005) by
imposing an appropriate energy spectrum for the turbulence kinetic energy and a
condition to ensure a non-vanishing value of the shear Reynolds stresses at the inlet
plane. Ferrante & Elghobashi (2005) performed direct simulations over a flat plate at
momentum thickness Reynolds numbers up to 2900.

As a consequence of these and other challenges, simulations of spatially developing
turbulent boundary layers with pressure gradients are still relatively scarce. The first
direct numerical simulations (DNS) of boundary layers under pressure gradients
were conducted by Spalart & Leonard (1985) and Spalart (1986). Periodic boundary
conditions were imposed along the streamwise direction by including small growth
terms in the governing equations. The growth-term approach produced satisfactory
results in ZPG (Spalart 1988) and favourable pressure gradient (FPG; Spalart 1986)
flows, but it was less successful in adverse pressure gradient (APG) flows because
the assumption of slight streamwise inhomogeneity was not satisfied. Na & Moin
(1998) carried out direct simulations of two spatially developing turbulent boundary
layers under mild and strong APGs, with induced separation for the latter case. The
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turbulent inflow conditions were generated from the DNS data of Spalart (1988)
for ZPG turbulent boundary layers, the principal purpose of this investigation being
the analysis of space–time characteristics of wall-pressure fluctuations in APG flows.
Skote (2001) performed a series of DNS in self-similar turbulent flows, ranging from
ZPG to APG flows, by resolving the full laminar-to-turbulence transition. He used a
spectral code with streamwise periodicity and furthermore used the ‘fringe’ method
to damp the turbulence back to the desired laminar inflow profile. Later, Lee &
Sung (2008) performed direct simulations of equilibrium APG flows by prescribing a
power-law free-stream velocity U∞ ∼ xm, as in Skote (2001). To avoid the computation
of the laminar–transition stage, they prescribed the turbulent inflow conditions based
on the method of Lund et al. (1998), considering a ZPG zone prior to the APG
region, but this still required a very long computational domain to allow for the
required adjustments in the flow. Xu and Martin (2004) proposed an inflow generation
technique for spatially-evolving turbulent boundary layers in compressible flows, based
on the rescaling-recycling method of Lund et al. (1998). Xu and Martin (2004) showed
results for a supersonic turbulent flat plate (the streamwise length was roughly six
inlet boundary layer thicknesses) at zero pressure gradient, obtaining good agreement
with the theory. More recently, Simens et al. (2009) simulated boundary layers with
and without pressure gradients. For ZPG cases, they used the approach of Lund et al.
(1998) to generate the turbulent inflow conditions, where the momentum thickness
Reynolds numbers spanned the range 620–2140. Furthermore, they simulated a
strong-APG case with separation by assuming a laminar flow at the inflow to be
triggered to the turbulent regime downstream, which resulted in a very long required
computational domain of approximately 173 inlet boundary layer thicknesses.

The objective of this paper is to introduce a methodology that enables us to
prescribe inlet turbulent conditions for a general class of boundary layer flows
including those subject to pressure gradients. The methodology addresses the two
limitations of the original rescaling–recycling approach (Lund et al. 1998) mentioned
above: (i) the dependency on empirical correlations for downstream development is
addressed using a dynamic approach in which the development of the simulated flow
is interrogated to determine the required parameters; and (ii) the limitation of using
single velocity scales across different layers is generalized with a multi-scale procedure
that may better absorb the pressure gradient effects. A non-dynamic version of this
multi-scale approach has recently been described in Araya (2008) and Araya et al.
(2009). The new approach is tested in a suite of DNS of boundary layers with
different pressure gradients and Reynolds numbers, and results are compared with
experimental data, as well as with results from costlier DNS without a recycling
method that must use much longer computational domains to capture transition.

2. The dynamic multi-scale rescaling–recycling method
We concern ourselves with simulating a boundary layer as shown in the schematic

in figure 1. Turbulent inflow boundary conditions are needed at the inlet plane at
xinl . The Cartesian coordinates x, y and z denote the streamwise, wall-normal and
spanwise directions, respectively. The flow is divided into inner and outer regions
(further generalizations including free-stream turbulence would require a third, free-
stream, region). Also, the instantaneous velocity ui is decomposed into a mean value
Ui and a fluctuation u′

i . The basic idea of the rescaling–recycling method of Lund
et al. (1998) is to construct a time-dependent velocity field at the inlet separately in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

56
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005616


584 G. Araya, L. Castillo, C. Meneveau and K. Jansen

y

x

Inlet plane

Outer region

Outflow

Inner region
δinl

δrec

U∞

U∞
δ(x)

Test plane Recycle plane

z

Figure 1. Schematic of the evolving boundary layer, with the inlet, recycle and test planes.

the inner (superscript (i )) and outer (superscript (o)) regions, according to

ui(xinl , y, z, t) =
[
(Ui)

(i)
inl + (u′

i)
(i)
inl

]
{1 − W (η)} +

[
(Ui)

(o)
inl + (u′

i)
(o)
inl

]
W (η), (2.1)

where η = y/δ and δ(x) is the boundary layer thickness. The function W (η) is a
weighting function that goes smoothly from 0 near the wall in the inner region (small
η = y/δ) to W (η) → 1 in the outer region (η → 1). For W (η) we use the same tanh profile
of Lund et al. (1998), namely W (η) = 0.5{1 + tanh[α(η − b)/((1 − 2b)η + b)]/tanh(α)},
where α = 4 and b = 0.2. Thus the mean and fluctuating velocities can be specified
on the basis of the mean and fluctuating velocities at the recycle plane, but separately
for the inner and outer regions. In the inner region, the fluctuating velocities are
rescaled by matching the inner height in wall units above the wall between the recycle
and inlet planes and by rescaling the velocities through the friction velocity scale. For
example, the fluctuating velocity in the inner region, (u′

i)
(i)
inl ≡ u′(i)

i (xinl , y, z, t), at some
height y is obtained from the corresponding height at the recycle plane according to

u′(i)
i (xinl , y, z, t) = λ

(i)
u′ u′

i

(
xrec, λ

(i)
u′ y, z, t

)
, (2.2)

where

λ
(i)
u′ =

(uτ )inl

(uτ )rec
(2.3)

is the scaling factor appropriate for all the fluctuating velocities at the inlet and
recycle planes, in the inner region. Here, uτ =

√
τw/ρ is the local friction velocity;

τw is the wall shear stress; and ρ is the fluid density. A similar relation holds that
connects the mean velocity in the inner region, U (i)(xinl , y) = λ

(i)
U U (xrec, λ

(i)
U y), with a

factor λ
(i)
U , also set equal to the ratio of friction velocities. In the outer region, an

outer layer ratio λ(o) connects the variables between the planes in outer units, y/δ(x),
i.e.

u′(o)
i (xinl , y, z, t) = λ

(o)
u′ u′

i(xrec, yδ(xinl )/δ(xrec), z, t), (2.4)

with possibly different ratios for different components (λ(o)
u′ , λ(o)

v′ and λ
(o)
w′ ) and a similar

expression for the mean velocity defect (Lund et al. 1998) that involves the ratio λ
(o)
U .

The remaining challenge is to specify the values for the various λ factors.
For the inner region, the factor λ(i)

u′ = (uτ )inl/(uτ )rec must be specified. While the stress
(and thus (uτ )rec) may be measured near the wall at the recycle station, the stress at
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the inlet (and thus (uτ )inl ) is unknown. In Lund et al. (1998) this problem was solved
by invoking an empirical law describing the evolution with downstream Reynolds
number, i.e. taking the ratio of friction velocities to be equal to (θrec/θinl )

1/2(n−1), where
n comes from the usual ‘1/n ’ power-law exponent of boundary layers and θ is the
momentum thickness that is measured. A classic value of n=5 has often been used.
However, since n is greatly impacted by pressure gradients and other effects such as
possibly wall roughness and free-stream turbulence and also weakly by the Reynolds
number, it is not justified to use n= 5 in all cases. Therefore, this formulation for
computing the friction velocity ratio is limited in principle to ZPG flows.

With the aim of avoiding having to specify such empirical parameters a priori, we
recall the case of large-eddy simulation (LES). In LES, the dynamic approach by
Germano et al. (1991) has provided a highly successful approach, by invoking a ‘test
filter’ and interrogating simulated length scales of turbulence to determine unknown
model parameters. In the present work, we propose a similar approach to obtain
unknown model parameters for the inlet boundary condition. We begin by assuming
a power-law variation of the friction velocity as (uτ/U∞) ∼ (Reδ)

γ , where Reδ = δU∞/ν,
with ν the kinematic viscosity and δ denoting the boundary layer thickness, e.g. δ99

in which the velocity is 99 % of the free-stream velocity U∞. By relating the friction
velocity at the inlet station to that at the recycle station, we can write

(uτ/U∞)inl

(uτ/U∞)rec
=

(
Reδ inl

Reδ rec

)γ

, (2.5)

where (uτ )inl and γ are unknowns. In order to find (uτ )inl from this expression, we must
know γ . For ZPG boundary layers, the relationship between γ and the value n used
in Lund et al. (1998) is γ = 1/[2(1 − n)] = −1/8 for n= 5. The proposed methodology
consists of determining the exponent γ dynamically. In analogy with the test-filter
scale used in LES, we introduce a new plane, called the ‘test plane’, located between
the inlet and recycle stations (figure 1), where the mean velocity gradient at the wall,
and thus the friction velocity, can be measured. By applying the same expression
to the test and recycle planes, the exponent γ may now be dynamically evaluated
according to

γ =
ln[(uτ/U∞)test /(uτ/U∞)rec]

ln[Reδ test /Reδ rec]
. (2.6)

One assumes that γ is constant along the computational domain, between the inlet
and recycle planes. For cases in which the Reynolds number does not vary greatly,
and the flow is in reasonable equilibrium during the downstream evolution, this
assumption appears warranted. Once the exponent γ is obtained from (2.6), the value
of (uτ )inl is calculated from (2.5). The free-stream velocities (U∞)rec and (U∞)test can
be evaluated by averaging the mean streamwise velocity in the region above the
boundary layer edge in the transverse direction. For ZPG flows, U∞ is constant so
that once γ is determined, in the special case of ZPG we obtain λ

(i)
u′ = (δinl/δrec)

γ . The
parameter δinl is the prescribed inlet boundary layer thickness. Besides the free-stream
velocity, δinl is the only parameter that needs to be prescribed at the inlet in this
dynamic multi-scale approach.

For the scaling of the outer mean and fluctuating velocities, several options
exist. The classic scaling uses the friction velocity, λ(o)

u′ = (uτ )inl/(uτ )rec . Conversely,
other theories lead to other scales. For instance, the asymptotic invariance principle
(George & Castillo 1997; Castillo & George 2001) leads to λ

(o)
u′ = λ

(o)
w′ =(U∞)inl/(U∞)rec

and λ
(o)
v′ = (U∞dδ/dx)inl / (U∞dδ/dx)rec . Other scalings have been proposed, such
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as the mixed scaling of DeGraaff & Eaton (2000) which would imply
λ

(o)
u′ =(uτU∞)1/2

inl /(uτU∞)1/2
rec . An interesting discussion about scaling laws in general

pressure gradient flows can be found in Perry, Marusic & Jones (2002). The proposed
dynamic approach may be applied to any of these formulations. For the outer region,
here we explore applying it with the formulation of Castillo & George (2001). The
specification of λ

(o)
v′ requires the rate of boundary layer growth dδ/dx at the inlet

and its determination at the recycle plane. Measuring such derivatives from noisy
data is challenging, and therefore we prefer to postulate power-law growth of δ(x)
with respect to the x-coordinate Reynolds number (Rex = xU∞/ν), i.e. (δ/x) ∼ (Rex)

γδ .
Again, by relating the inlet station to the recycle station, we can write

(δ/x)inl

(δ/x)rec
=

(
Rex inl

Rex rec

)γδ

. (2.7)

Then, the exponent γδ can be obtained dynamically by linking the corresponding
quantities of the test and recycle planes as follows:

γδ =
ln[(δ/x)test /(δ/x)rec]

ln[Rex test /Rex rec]
. (2.8)

Finally, the boundary layer growth ratio is obtained as

(dδ/dx)inl

(dδ/dx)rec
=

d
(
xReγδ

x

)
inl

/dx

d
(
xRe

γδ
x

)
rec

/dx
. (2.9)

It is expected that the use of these scales can be applied to boundary layers with or
without external pressure gradients.

At the test and recycle stations, one must obtain velocity gradients at the wall, as well
as the boundary layer thickness from the mean velocity profiles. The assumed power-
law behaviours for downstream evolution of friction velocity and boundary layer
thickness refer to the properties of the mean velocity, not instantaneous realizations.
Therefore, averaging procedures must be incorporated into the method. Since the flows
considered in this paper have spanwise spatial homogeneity, spanwise averaging is
performed. Still, time averaging is required to further reduce fluctuations. We use
a linear relaxation process in which the time-filtered velocity U (x, y, tn), at time tn
corresponding to the time step n, is obtained according to

U (x, y, tn) = (1 − ε)U (x, y, tn−1) + ε〈u(x, y, tn)〉z, (2.10)

where 〈u(x, y, tn)〉z is the velocity at the current time step, averaged in the z-direction,
and ε is a small parameter, taken to be ε = 1/Nav . The selection of the number
of averaging time steps, Nav , or averaging time, Nav
t , is crucial and a compromise
between a short transient and the desired level of noise in turbulent inflow information.

Additional smoothing is required when obtaining the boundary layer thickness. It
has already been stated that δinl is the only parameter to be prescribed at the inlet
on the basis of the desired inflow Reynolds number. However, δ at the test and
recycle stations (needed in (2.6) and (2.8)) must be determined from the mean velocity
profiles, where the velocity is 99 % of the free-stream value U∞. To reduce oscillations
on δ computations, the mean streamwise velocity profiles can be smoothed in the
y-direction by using a spatial filter, in addition to the temporal filtering described
above. This is similar to various averaging procedures that are often used in the
Germano-identity-based dynamic subgrid model (Germano et al. 1991). Details of
the implementation are described in the next section.
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ZPG FPG APG

Parameter Low Reθ High Reθ Moderate Moderate Strong

Reθ 308–385 2667–3005 700 438–633 1029–1512
Lx/δinl 10.7 10 15 15 12
Ly/δinl 3 3 3 3.8 3
Lz/δinl 1.7 1.6 3 1.6 3.2

NxNyNz 90 × 50 × 40 400 × 150 × 125 200 × 120 × 120 120 × 65 × 50 150 × 90 × 100

x+ 18.9 20 20 20 21


y+
min/
y+

max 0.5/13 0.5/20 0.2/15 0.2/6.8 0.2/17

z+ 6.77 10 8 5 8

t+ 0.63 0.44 0.36 0.59 0.22

Tsample
u2
τ

ν
1890 2200 1080 1770 1540

δ+
inl 152 980 446 161 271

Table 1. Proposed DNS cases and domain parameters for various pressure gradients.

3. Applications
Direct numerical simulations of the Navier–Stokes equations for incompressible

flow are performed using the Parallel Hierarchic Adaptive Stabilized Transient
Analysis code. It is based on the finite-element method with a streamline upwind
Petrov–Galerkin stabilization. A weak formulation of the problem results in a system
of nonlinear ordinary differential equations, which are discretized in time via a
generalized-α time integrator producing a nonlinear system of algebraic equations.
This system is, in turn, linearized with Newton’s method which yields a linear algebraic
system of equations. Additionally, the fully coupled momentum and continuity
equations are solved with multiple nonlinear iterations and an additional discrete
pressure Poisson equation between each iteration, to maintain a tight tolerance on
continuity. Two nonlinear iterations are performed on each step. More details about
the code can be found in Jansen (1999) and Whiting & Jansen (2001), as well as some
applications in Trofima et al. (2009) and Tejada-Martinez & Jansen (2005, 2006).

Regarding the inlet boundary condition, and as in Lund et al. (1998) and every
other application of a recycling boundary condition, the velocity profiles from the
recycle plane are deformed in the wall-normal direction but not in the other directions.
As a consequence, the reinjected velocity field is not exactly divergence-free at the
inlet plane. However, deviations from zero divergence are small because of the slow
variations in time of the convective velocity, the relatively small fractional vertical
rescaling and the use of a fully implicit method with multiple nonlinear iterations
and tight tolerance on continuity. Therefore, at the first plane after the inlet, the
divergence-free condition has already been fully restored up to the imposed tolerance.
We have experimented with higher numbers of nonlinear iterations and tighter solver
tolerances and shown that these do not affect the results shown. Periodic boundary
conditions are prescribed in the spanwise direction.

Table 1 summarizes the different simulation cases, covering various levels of pressure
gradients (ZPG, FPG and APG) and Reynolds numbers (i.e. 308 � Reθ � 3005). The
corresponding domain dimensions and mesh resolutions are also shown. A grid
independence test as well as a sensitivity analysis of domain dimensions have already
been performed in Araya et al. (2009). In the wall-normal direction, non-uniform mesh
sizes are used with the minimum near-wall and maximum outer vertical resolutions
indicated in table 1.
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The recycle plane is located far downstream from the inlet, at approximately 80 %
of the streamwise domain length in all cases. This ensures an almost zero value for
the two-point correlation (see the analysis in the Appendix) of fluctuating velocities
between these two planes, and it allows the turbulent structures to evolve relatively
independent of the recycle plane conditions. The test plane is situated halfway
between the inlet and recycle planes, and its only function is the determination of
the corresponding powers from (2.6) and (2.8) by relating the flow solutions at the
test and recycle stations. In this way, the friction velocity at the inlet is determined
independent of ad hoc parameters from theory or empirical scaling laws.

Recent studies carried out by several groups including Balakumar & Adrian
(2007), Guala, Hommema & Adrian (2006), Mathis, Hutchins & Marusic (2009)
and Hutchins & Marusic (2007a ,b) have shown the importance of large-scale
structures that extend significantly in the streamwise direction of wall-bounded
turbulent flows. These include scales identified through spectral analysis that are
of length O(6δ) and observations in physical space of even longer structures (‘super-
structures’) of length O(10–20δ). An implication from these studies is that the
computational domain must be long enough in the streamwise direction to capture
the spectral scales, as discussed in the study of Hutchins & Marusic (2007b), and
ideally the super-structures as well. As shown in the second row of table 1, the
ratio Lx/δinl falls in a range of 10–15, providing clear evidence that spectral scales
(O(6δ)) are well resolved and that some of the super-structures (of length ∼ 10δinl )
are properly captured in the simulations as well. In addition, a two-point correlation
analysis can be used to quantify the couplings among the inlet and outlet regions
in the computational domain. These considerations are presented in detail in the
Appendix for the ZPG, FPG and APG flow simulations. The analysis shows that
the autocorrelations decay in the streamwise direction sufficiently quickly to support
the adequacy of the domain lengths used in this study. For instance, in the present
two-point correlations, we observe that streamwise fluctuation correlations Ruu are
approximately uncorrelated by x+ ≈ 500 in most cases considered (and x+ ≈ 1000
for the high-Reynolds-number ZPG case). These decorrelation scales correspond
to about 15–25 % of the length of the computational domain. We caution that if
DNS is carried out with the specific purpose of studying the detailed dynamics of
very long streamwise super-structures, longer domains should be used (i.e. of the
order of 20–30δinl ) to make sure that the longest structures are resolved without any
possibilities of inflow–outflow coupling. For such applications, the dynamic inflow
boundary condition approach proposed in this work can be applied with the required
longer domains as well, still providing significant savings compared with having to
simulate the full laminar–transition regimes.

In order to accelerate convergence, reduce initial transients and help maintain
simulation stability, it has been found convenient to fix the mean part of the
inlet streamwise velocity profile for some initial time before allowing it to adjust
dynamically. The prescribed fixed mean profile is obtained from the theory of George
& Castillo (1997) for ZPG flows. During the initialization stage, the wall-normal and
spanwise components of the mean velocity and all the fluctuations are rescaled from
the recycle plane according to the proposed dynamic method. After the transients
have died down, the mean streamwise velocity from the recycle plane is also rescaled
and prescribed at the inflow. The reader is referred to page 8 of Araya et al. (2009)
for further details about the initial conditions and start-up stage. During the start-up
process it has been found convenient to clip the λ values between reasonable top
and bottom limits (we use 0.5< λ< 1.5). The start-up stage in present simulations is
chosen to last about 6000–7000 viscous time scales.
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Figure 2. Time series of the dynamically computed power-law exponents for a low-Reynolds-
number ZPG boundary layer: (a) the friction velocities and (b) the boundary layer thickness.

For the time smoothing via time averaging, a value of Nav must be prescribed.
It was found that a value of Nav = 103 was appropriate for the low- to moderate-
Reynolds-number cases. In physical units, this corresponds to about 220–600 viscous
time scales, depending on the flow cases considered. In outer units, it corresponds to
about 78(δ/U∞)inl . In the ZPG case at higher Reynolds numbers, a value of 7 × 103

for Nav was prescribed, which matches the averaging time of the ZPG case at lower
Reynolds numbers in outer units, i.e. also 78(δ/U∞)inl . To determine δ from the mean
velocity profile in the outer part, spatial filtering of the mean streamwise velocity
profiles in the y-direction is done using a five-point averaging window, i.e. two points
above and two below any given height. This smoothing procedure was applied only
at the boundary layer edge to compute the boundary layer thickness at the test and
recycle planes but was not performed either on the composite inlet velocity profile
(2.1) or in the final statistics calculation.

3.1. ZPG boundary layer

Figure 2(a) shows a representative time series of the dynamically computed power-
law exponent γ obtained as in (2.6) for the case of a ZPG boundary layer at a low
Reynolds number. It is observed that γ fluctuates significantly, around the classical
empirical value of −0.125 (see e.g. White 1974) shown as the dashed line. Figure 2(b)
shows the time series of γδ for the boundary layer thickness from which the growth
rate is computed. Similarly, γδ fluctuates around the classical empirical value of −0.2
(White 1974). It is encouraging that for the case of ZPG, the dynamic approach yields
values that agree with the expected well-known empirical values. Figure 3(a) depicts
the time variation of γ based on (2.6) for the ZPG case at high Reynolds numbers up
to Reθ ∼ 3000. It is observed that the instantaneous value of γ fluctuates more strongly
than in the smaller-Reynolds-number case. Such fluctuations can be large because
the exponents γ are ratios of averages and thus are susceptible to fluctuations of
both the numerator and the denominator. There is some periodicity in the exponent
fluctuations for the case of γδ in the high-Reynolds-number case, which seems to
occur at a time scale of the order of the averaging time scale. But these oscillations
do not translate into oscillations of the λ factors (see below). It is worth recalling that
in the implementation the only temporarily filtered and spanwise-averaged variable
is the streamwise velocity by means of (2.10). The computed γ values from (2.6) and
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Figure 3. Time series of the dynamically computed power-law exponents for a
high-Reynolds-number ZPG boundary layer: (a) the friction velocities and (b) the boundary
layer thickness.
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Figure 4. Time variation of the friction velocity ratio at the inlet plane to the recycle station
for (a) low and (b) high Reynolds numbers.

(2.8) are not filtered a posteriori. The level of fluctuations could be reduced in future
applications by increasing Nav (decreasing ε) in the time-averaging process of the
velocity.

The λ factors, which directly enter in the rescaling process, do not fluctuate as
much as the values of γ do because of cancellations that occur through variations
of other parameters such as the boundary layer thickness and free-stream velocity.
The time series of λ(i) = (uτ )inl/(uτ )rec are shown in figure 4. As can be seen, typical
values obtained are between 1 % and 4.5 % change with respect to λ=1. In terms
of stresses, these represent downstream changes between 2 % and 10 %. We also
observe that the value of γδ at high Reynolds numbers is lower than the expected
−0.2 based on White (1974). Still, as will be seen below, the resulting flow statistics
are quite realistic. Figure 5(a) presents the streamwise development of the boundary
layer thickness δ and the shape factor H = δ∗/θ as a function of the momentum
thickness Reynolds number Reθ for the low-Reynolds-number ZPG simulations.
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Figure 5. Streamwise development of some boundary layer parameters in ZPG flows for low
Reynolds numbers: (a) δ/δinl and H ; (b) local maxima of velocity fluctuations.
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Figure 6. Streamwise development of some boundary layer parameters in ZPG flows for
high Reynolds numbers: (a) δ/δinl and H ; (b) local maxima of velocity fluctuations.

There is a good agreement of the present values of H with the theory of George &
Castillo (1997) and the DNS data from Skote (2001). The local maxima of velocity
fluctuations normalized by the free-stream velocity (i.e. (u′

rms )max/U∞, (v′
rms )max/U∞ and

(w′
rms )max/U∞) are shown in figure 5(b). As can be seen, (u′

rms )max/U∞ shows a small
bump near Reθ ≈ 340 (streamwise length of approximately 4.7δinl ), which suggests
that the fluctuations are still recovering from the inlet condition even when mean
boundary layer parameters, such as δ and H , are fully equilibrated in this region.
Figure 6(a) shows the streamwise growth of the boundary layer thickness for the
high-Reynolds-number case. The computed shape factor H , also shown in figure 6(a),
agrees very well with the experiments of DeGraaff & Eaton (2000) and the theory of
George & Castillo (1997). The ratios of velocity fluctuation maxima to free-stream
velocities are approximately constant along the entire domain (figure 6b) without an
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Figure 7. (a) Streamwise variation of the skin-friction coefficient in a low-Reynolds-number
ZPG boundary layer and comparison with the existing data and −1/4 scaling law and (b)
mean streamwise velocity in wall units and comparison with the results of Skote (2001).

obvious developing section. The ratio (u′
rms )max/U∞ is found to be near 12 %, whereas

the same ratio was found to be near 14 % in the low-Reynolds-number simulations.
Next, the downstream evolution of mean velocity near the wall is documented

by computing the wall stress from ∂U/∂y at the wall, obtaining the friction velocity,
measuring the momentum thickness and plotting Cf = 2(uτ/U∞)2 as function of Reθ in
figure 7(a). It is observed that no transient or adjustment region is visible near the inlet
in the Cf plot. Furthermore, the computed skin-friction coefficient in figure 7(a) is in
good agreement with the DNS data from Skote (2001) (at Reθ = 350) and Kong, Choi
& Lee (2000), the experiments from Smits, Matheson & Jourbert (1983), the empirical
correlation from Smits et al. (1983) for low Reynolds numbers and the power law
theory of George & Castillo (1997). Maximum errors were found to be within 3 %.
There is a small ‘uptick’ at the end of the domain, caused by the prescribed pressure
outflow boundary condition. However, the recycle plane is selected sufficiently far
away from the outflow that the flow solution is not affected at this recycling station.

Turning to vertical profiles, in figure 7(b) the mean streamwise velocity profile for
the Reθ = 350 case is shown. It overlaps the velocity profile computed by Skote (2001)
very well. The corresponding root mean square (r.m.s.) values of velocity fluctuations
are shown in figure 8(a) in inner variables. In general, the comparison with the data
of Skote (2001) is quite good, only that the presently computed peak values of u′+

rms are
approximately 4 % larger. The Reynolds shear stresses are plotted in figure 8(b). The
agreement with the results of Skote (2001) at the same Reynolds number is excellent
over the entire boundary layer. These results provide evidence that the prescribed inlet
velocity profile obtained from the dynamic rescaling–recycling method is realistic.
Notice that Skote (2001) started the simulations from a laminar profile and triggered
the flow to become turbulent. Hence, a much longer computational domain size was
needed. The streamwise domain size used in this work is about 5 times shorter. A
successful grid-independence test of a similar simulation case (ZPG at low Reynolds
numbers, but using a non-dynamic recycling approach) was performed in Araya et al.
(2009). They also presented comparison with a much longer domain.

For the high-Reynolds-number ZPG simulations, figure 9(a) shows the skin-friction
coefficient as a function of Reθ . The results are generally in good agreement with
the theoretical profile of George & Castillo (1997), the empirical correlation of
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Figure 8. Profiles of (a) turbulence intensities and (b) Reynolds shear stresses in wall units
for DNS of a low-Reynolds-number ZPG boundary layer.
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Figure 9. (a) Streamwise variation of the skin-friction coefficient in a high-Reynolds-number
ZPG boundary layer and (b) the mean streamwise velocity in wall units. (b) Lines and symbols:
(–·–·–), Present study, DNS: Reθ = 2900; (�), Lund et al. (1998), LES: Reθ = 1850; (�),
Simens et al. (2009), DNS: Reθ = 1968; (�), Khujadze & Oberlack (2004), DNS: Reθ = 2240;
(X), Österlund (1999), experiment: Reθ =2533; (�), DeGraaff & Eaton (2000), experiment:
Reθ =2900; (–··–··–), Ferrante & Elghobashi (2005), DNS: Reθ =2900; (————), Schlatter
et al. (2009), DNS: Reθ = 3274.

Kays & Crawford (1993) for high Reynolds numbers, the experimental results of
DeGraaff & Eaton (2000) and the proposed empirical function of Osterlund (1999).
Figure 9(b) shows the results for the mean streamwise velocity in wall units at
Reθ = 2900. The agreement with the experimental results of DeGraaff & Eaton (2000)
and the DNS of Ferrante & Elghobashi (2005) at similar Reθ is excellent. Similarly,
a good collapse with the LES results of Lund et al. (1998), the DNS of Simens et al.
(2009), Khujadze & Oberlack (2004) and Schlatter et al. (2009) and the experiments
from Osterlund (1999) can be appreciated, except in the wake region because of
the different Reynolds numbers involved. The turbulence intensities (i.e. u′+

rms , v′+
rms

and w′+
rms ) are shown in figure 10(a) in inner–outer variables at Reθ = 2900. The

agreement with the experiments of DeGraaff & Eaton (2000) and the DNSs of
Ferrante & Elghobashi (2005), Simens et al. (2009) and Schlatter et al. (2009) is quite
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Figure 10. Profiles of (a) turbulence intensities and (b) Reynolds shear stresses in wall units
for DNS of a high-Reynolds-number ZPG boundary layer.

good, particularly with the results of the experiments that were performed at the
same Reθ . The most significant discrepancies can be observed in the peak of u′+

rms

(∼3.5 %). The Reynolds shear stresses −u′v′+ are plotted in figure 10(b) together
with the experiments of DeGraaff & Eaton (2000) and the DNS of Ferrante &
Elghobashi (2005), Simens et al. (2009) and Schlatter et al. (2009). Our data show a
better agreement with DeGraaff & Eaton (2000) in the inner region (up to y/δ ∼ 0.4).
However, the present values of the Reynolds shear stresses are significantly higher
than those of DeGraaff & Eaton (2000) in the outer layer (i.e. y/δ > 0.4), and a better
match with the predictions of Ferrante & Elghobashi (2005), Simens et al. (2009) and
Schlatter et al. (2009) is appreciated in this region. It should be pointed out that the
present shear-stress profile displays some remaining fluctuations due to lack of full
statistical convergence. The prior results by Simens et al. (2009) and Schlatter et al.
(2009) display less fluctuations because of larger averaging samples in the case of
Schlatter et al. (2009) and additional streamwise averaging (between Reθ = 1938 and
Reθ = 1996) in the case of Simens et al. (2009).

In comparing the computational cost associated with the domain length, we point
out that the simulations of Schlatter et al. (2009) used a laminar inlet profile that
was triggered to transition to turbulent conditions, as in Skote (2001), requiring a
computational domain roughly 9 times larger than ours. The domain employed by
Simens et al. (2009) was roughly 4.7 times longer than that used in present simulations.

3.2. FPG boundary layer

The dynamic rescaling–recycling method is also tested in a moderate-FPG flow,
generated by a boundary layer under a top convergent straight wall (sink flow). The
dimensionless pressure gradient parameter K = ν/U 2

∞ dU∞/dx remains approximately
constant and equals 1.5 × 10−6. To simplify the implementation for the pressure
gradient simulations, the wall-normal components of the velocity have been scaled
only by U∞ in the outer layer. Hence, we do not need to determine dynamically
the exponent γδ . The assessment of using the scale U∞dδ/dx and determining γδ

dynamically also in pressure gradient flows is left as a task for future studies.
Figure 11 shows the time variation of the dynamically computed γ (2.6). It is

observed that γ oscillates around zero; consequently, the ratio uτ/U∞ is nearly
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Figure 11. Time series of the dynamic exponent γ for an FPG boundary layer.
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Figure 12. (a) Downstream evolution of the skin friction. (b) Mean velocity profiles at three
downstream stations and comparison with earlier data.

constant along the streamwise direction. This is consistent with the expected constant
value for the skin-friction coefficient Cf , as shown in figure 12(a). Similarly,
the momentum thickness Reynolds number Reθ exhibits a constant value of
approximately 700 after a short initial transient (not shown). In figure 13(a), the
boundary layer thickness δ exhibits a nearly linear decreasing behaviour typical
in sink flows. And the shape factor H is almost constant and equal to 1.4 in the
entire computational domain. The local streamwise and spanwise velocity fluctuations
display some entrance effects over roughly 18 % of the domain, or 3δinl , as observed in
figure 13(b). The local maxima of wall-normal velocity fluctuations show less entrance
effects.

The mean streamwise velocity profiles shown in figure 12(b) are normalized by the
local free-stream velocity U∞ and plotted at three different x streamwise locations:
0, 0.4Lx and 0.8Lx , i.e. the inlet, test and recycle planes, respectively. The collapse
of profiles is excellent, even for the inlet velocity profile. Furthermore, a comparison
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Figure 13. Streamwise development of some boundary layer parameters in FPG flows:
(a) δ/δinl and H ; (b) local maxima of velocity fluctuations.
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Figure 14. (a) Turbulence intensities and (b) Reynolds shear stresses in outer units for DNS
of an FPG boundary layer, using the dynamic multi-scale rescaling–recycling method.

is performed with the DNS data from Spalart (1986) and the experimental results
by Jones & Launder (1972) in sink flows for similar Reθ and K values. Maximum
discrepancies with the data are less than 3 %. Turbulence intensities are depicted
at x = 0.8Lx in figure 14(a) and are also normalized by the local U∞. Generally
speaking, our results exhibit good agreement with prior data, and slightly better
agreement is seen with the results of Spalart (1986). Furthermore, the maxima of
v′+

rms and w′+
rms in the present DNS are very close to the ones obtained by Jones &

Launder (1972), but their data do not reach the peak of u′+
rms . The Reynolds shear

stresses u′v′/U 2
∞ are plotted in figure 14(b) together with the DNS from Spalart (1986)

and the experiments from Jones & Launder (1972). Our results produce peak values
in between both existing data sets. Specific causes for the differences will require
further, more detailed exploration. In the outer region, present simulation results for
−u′v′/U 2

∞ agree better with the experiments of Jones & Launder (1972).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

56
16

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005616


Turbulent inflow boundary conditions in spatially developing flows 597

–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

6000 16 0008000 10 000 12 000 14 000
–0.7
–0.6
–0.5
–0.4
–0.3
–0.2
–0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Time (tu2
τ /ν)

7000 17 0009000 11 000 13 000 15 000

Time (tu2
τ /ν)

γ

(a) (b)

Figure 15. Time series of the dynamically computed power-law exponents for the friction
velocities in APG flows: (a) moderate and (b) strong.
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Figure 16. Streamwise development of some boundary layer parameters in moderate-APG
flows: (a) δ/δinl and H ; (b) local maxima of velocity fluctuations.

3.3. APG boundary layers

For simulations of moderate and strong APGs, the curvature at the upper surface of
the computational box is prescribed in such a way as to obtain a power-law variation
of the free-stream velocity, i.e. U∞ ∼ (x −xo)

m with m = −0.17 and −0.22, respectively.
Figure 15 show the representative time series of the dynamically computed power-

law exponent γ for the friction velocities in the moderate- and strong-APG cases.
As can be seen, the fluctuations of γ for the strong case are significantly higher
than those for the moderate case. This is consistent with the overall larger level of
variability in the strong-APG flow and the higher Reynolds number. In addition, the
streamwise development of some boundary layer parameters (δ and H ) are depicted
in figures 16(a) and 17(a). The boundary layer thickness δ exhibits an almost-linear
increasing trend, as is expected in these types of APG flows where the free-stream
velocity follows a power law. A non-negligible developing section with a length of
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Figure 18. Downstream evolution of (a) Cf and (b) θ/θinl for both moderate
and strong APGs.

approximately 1δinl is observed for the strong-APG case. The shape factor H varies
between 1.71 and 1.62 for the range of Reθ (∼438–633) considered in the moderate-
APG case with m = −0.17. It is encouraging to see close agreement with Skote (2001),
who obtained a value of H ∼ 1.625 at Reθ ≈ 685 in a similar APG flow (m = − 0.15).

The local maxima of velocity fluctuations scaled by the local free-stream velocity
(i.e. (u′

rms )max/U∞, (v′
rms )max/U∞ and (w′

rms )max/U∞) are shown in figures 16(b) and 17(b)
for the moderate- and strong-APG cases, respectively. An initial adjustment section
is also observed with lengths of approximately 4δinl in both APG cases. Furthermore,
downstream of the adjustment section, a decreasing behaviour of (u′

rms )max/U∞ can
be observed, as expected in a decelerating boundary layer.

The skin-friction coefficient evolutions, plotted in figure 18(a), depict an initial
adjustment region, which is slightly longer for the strong APG. Downstream, the
Cf profiles decrease very slowly, particularly for the strong-APG flow. Note that the
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Figure 19. (a) Mean streamwise defect velocity and (b) turbulence intensities and Reynolds
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Figure 20. (a) Turbulence intensities and (b) Reynolds shear stresses for simulations
of strong APG.

upticks at the end of the domain are more evident here than for the ZPG case. The
momentum thickness θ plotted in figure 18(b) exhibits an almost-linear trend in both
cases. We recall that a linear growth is one of the main expected characteristics of
equilibrium APG boundary layers.

In figure 19(a), the mean streamwise defect velocity profiles are shown in outer
units for moderate APG, normalized by the local free-stream velocity, at several
downstream positions. A good collapse of all profiles is observed. Furthermore, good
agreement can be observed with the data from Skote (2001) that was at a lower
Reθ but for the same value of m = −0.15. The turbulence intensities (u′+

rms , v
′+
rms and

w′+
rms ) and Reynolds shear stresses (−u′v′+) are shown in figure 19(b) at Reθ = 580.

The pressure gradient effects are mostly manifested in the region around y+ ≈ 100, as
peaks or ‘shoulders’ in the profiles. This behaviour is even more evident in streamwise
velocity fluctuations u′+

rms . As the APG becomes stronger, in figure 20(a) the outer
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peak in u′+
rms at y+ ≈ 200 is almost as high as the inner peak in u′+

rms at y+ ≈ 10.

Notice that the maxima of the Reynolds shear stresses (−u′v′+), shown in figures
19(b) and 20(b), move away from the wall as the APG strength increases. It is also
observed that, as expected, the stress profile has a slope given by the pressure gradient,
which becomes very steep for the strong-APG case. Moreover, comparing the present
velocity fluctuations with the simulations by Skote (2001) and Lee & Sung (2008) at
similar Reynolds numbers (Reθ ) and APG strength (m), we see that the agreement is
quite good, particularly for the Reθ = 1370 case which matches the Reynolds number
of Lee & Sung (2008). The good agreement is particularly encouraging considering
that the streamwise domain lengths of these prior studies by Skote (2001) and Lee
& Sung (2008) were 4 and 14 times larger, respectively, than those of the presently
reported simulations using the dynamic rescaling–recycling method.

4. Conclusions
A generalized rescaling–recycling method has been proposed and tested. The

method enables the use of different velocity scaling parameters in different regions of
boundary layers, and unknown scaling exponents have been dynamically determined
using information from the downstream evolution in the simulation. The proposed
approach opens up the possibility to simulate spatially evolving boundary layers
under more general pressure gradient situations, because empirical correlations are
not needed to be known a priori. The approach has been shown to yield reasonable
exponents for cases in which they are already known empirically (such as ZPG).
Applications to FPG and APG flows have yielded realistic results with relatively
short adjustment regions near the inlet of the computational domains. The adjustment
region was found to be quite short for the mean velocity profile characteristics such
as boundary layer thicknesses and shape factors, but longer for parameters associated
with turbulent fluctuations, such as peak r.m.s. values.

The proposed method has several limitations that are important to appreciate.
One is the assumption that the scaling exponents that are relevant between the inlet
and recycle planes are the same as between the test and recycle planes. Therefore,
the method is not expected to be applicable to flows with strong non-equilibrium
transitions between the planes used in the dynamic approach. For instance, if the
flow separates or relaminarizes somewhere between the inlet and recycle planes
naturally, the method cannot be applied. For such cases, the method could be used to
generate inflow in a separate simulation with near-equilibrium conditions, which could
then be employed to feed data into a main simulation domain under more general
conditions. The strength of the method lies in the fact that it becomes possible to
simulate high-Reynolds-number boundary layers (results at Reθ = 2900 have been
shown for ZPG flows) at a significantly lower cost, without having to simulate the
entire laminar–transition–turbulent region. As in the method of Lund et al. (1998),
another limitation is that rescaling is done only in the vertical direction. This is
appropriate for the mean velocity field. The fluctuations, however, include structures
whose characteristic spanwise length scales also develop downstream. The same is true
for the characteristic time scales. However, reinjecting fields that have been rescaled
in the z -direction would appear to be challenging, especially using periodic boundary
conditions, and temporal rescaling appears even more difficult without the storing and
processing fields at different times. Such further generalizations could be considered
in future improvements of the recycle method.
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Figure 21. Two-point correlations for velocity fluctuations in ZPG at low Reθ at y+ = 5:
(a) in the x-direction and (b) in the z-direction.

Finally, we remark that it will be of interest to generalize the new dynamic
approach to capture the effects of roughness, compressibility, free-stream turbulence
and curvature and to simulate the evolution of scalars.
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Appendix. Two-point correlations
To document the suitability of dimensions used for the computational domains,

a two-point correlation analysis is performed along the streamwise and spanwise
directions, for all velocity components. The two-point correlation function is defined
as usual:

Ruiui
(x, y) =

u′
i(0, y, z, t)u′

i(x, y, z, t)

u′
i(0, y)rmsu

′
i(x, y)rms

, i = 1, 2, 3, (A 1)

with no summation over i. Averaging is done over time t and over the spanwise
position z in all cases. A similar expression is used for cross-stream spectra as a
function of z, but additional averaging over x is performed.

Except for figure 21, all cases are for heights in the outer layer (figures 22–24)
which is the most critical zone because of the presence of large-scale structures. In the
cross-stream direction, displacements z for only half of the domain are shown because
of the symmetry of the two-point correlations given by the periodic conditions. In the
plots as a function of downstream distance, the peak at the recycle plane is expected,
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Figure 22. Two-point correlations for velocity fluctuations in ZPG at high Reθ at
y+ =500: (a) in the x-direction and (b) in the z-direction.
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Figure 23. Two-point correlations for velocity fluctuations in an FPG flow at
y+ =180: (a) in the x-direction and (b) in the z-direction.

since it is highly correlated with the inlet. In most cases, in the middle of the domain
in both the streamwise and cross-stream directions, the correlations decay essentially
to zero. As seen in figure 21, correlations in the near-wall regions decay quickly to
zero. The same is true in all the other cases (not shown). In addition, correlations of
u′ in figure 21(b) exhibit a local minimum at z+ ≈ 50 for y+ = 5, which indicates an
average spacing (λ+ = λuτ/ν) of low-speed streaks equal to 100. This is consistent with
the generally accepted range of λ+ = 100 ± 20 in the near-wall region for canonical
boundary layers (Smith & Metzler 1983; Kim & Moser 1987). In the outer regions,
for some of the variables some residual correlations in the spanwise direction can
be seen, especially in the APG case. Two-point correlations for the other test cases
or locations (ZPG at low Reθ in the outer region and FPG and APG closer to the
wall) have shown decay to low correlation values, similar to the results shown in
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Figure 24. Two-point correlations for velocity fluctuations in a moderate-APG flow at
y+ = 100: (a) in the x-direction and (b) in z-direction.

figures 21–24. Still, wider and longer domains would obviously further decrease these
correlations, but the domains are deemed appropriate for the goals of this study.
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