J. Austral. Math. Soc. (Series A) 26 (1978), 419-441

BICYCLIC SEMIRINGS

MARTHA O. BERTMAN

(Received 4 February 1975; revised 2 November 1976 and 22 November 1977)

Communicated by T. E. Hall

Abstract

Let B_P be the bicyclic semigroup over $P = G \cap [1, \infty)$ where G is a subgroup of the multiplicative group of positive real numbers. If + is an addition which makes B_P , with its usual multiplication, into a semiring, then + is idempotent, and P is embedded as a sub-semiring in B_P , and for each x in P, $1 \le x + 1 \le x$ and $1 \le 1 + x \le x$. We show that any idempotent addition on P with these inequalities holding is max, min or trivial. The trivial addition on P extends trivially. If addition on P is min, then let

 $U = \{(x, y) \in B_P : (x, y) + (1, 1) = (1, 1)\},\$ $U' = \{(x, y) \in B_P : (1, 1) + (x, y) = (1, 1)\},\$

and

 $R_1 = \{(x, y) \in B_P : x > y \text{ or } x = 1 = y\}$

We characterize all additions on B_P in terms of U and U'; and, in particular, if U = U' is a proper subset of R_1 , we demonstrate a correspondence between all such additions and certain homomorphisms of G to $(0, \infty)$.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 16 A 80; secondary 22 A 15.

Keywords: topological semirings, bicyclic semigroup, inverse semigroup.

1. Introduction

Let G be a subgroup of the positive real numbers under ordinary multiplication, and let $P = P(G) = G \cap [1, \infty)$. Let $B_P = P \times P$ together with this multiplication:

$$(x, y)(z, w) = \left(\frac{xz}{y \wedge z}, \frac{yw}{y \wedge z}\right),$$

where $y \wedge z = \min(y, z)$. If $P = \{1, x, x^2, ...\}$, where x > 1, then B_P is the bicyclic

semigroup, whose structure is well known (see, for example, Clifford and Preston (1961)).

An inverse semigroup is a semigroup S with the property that for any x in S there is a unique element x^{-1} in S such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The bicyclic semigroup is such a semigroup, and so is B_P for any P defined as above.

A (topological) semiring is a non-empty Hausdorff space T together with two continuous associative binary operations, + and \cdot , such that for any x, y and z in T,

 $z \cdot (x+y) = (z \cdot x) + (z \cdot y)$ and $(x+y) \cdot z = (x \cdot z) + (y \cdot z)$.

If T has the additional property that T is multiplicatively a topological inverse semigroup (one in which the inversion operation as well as the multiplication is continuous), then we define T to be an *inverse semiring*.

In this paper we describe the additions which may be placed on B_P so that, together with the given multiplication and the product topology, B_P becomes an inverse semiring, which we will call a *bicyclic semiring*.

In Section 2, we show that any semiring addition on B_P is idempotent; that is, for any (x, y) in B_P , (x, y)+(x, y) = (x, y). We also show that P is embedded in B_P as a subsemiring, and furthermore that on P, for any x, $1 \le x+1 \le x$ and $1 \le 1+x \le x$. For this reason we study in Section 1 those idempotent additions on P which have this property, and show that there are only four possibilities:

(i) x+y = x for each x, y in P (left trivial addition);

(ii) x+y=y for each x, y in P (right trivial addition);

(iii) $x+y = x \wedge y$ for each x, y in P (min addition);

(iv) $x+y = x \lor y$ for each x, y in P (max addition).

This generalizes the result of Pearson (1966) for the case $P = [1, \infty)$.

Section 3 is devoted to a characterization of those additions on B_P which, when restricted to $P \times \{1\}$, are min, and have the property that the set

$$U = \{(x, y) \in B_P : (x, y) + (1, 1) = (1, 1)\}$$

is properly contained in

$$R_1 = \{(x, y) \in B_P : x > y \text{ or } x = 1 = y\}.$$

We show that each such addition corresponds to a homomorphism $f: G \rightarrow (0, \infty)$ such that graph $(f_P) \subseteq R_1$ and for each (x, y) in B_P , graph (f) meets

$$D(x, y) = \{(ax, ay): a > 0\}$$

in a unique point of $G \times G$. We point out that if addition is max on $P \times \{1\}$, the situation is symmetrical. All other cases, including the trivial, are discussed in Section 2.

The author would like to thank the referee for many helpful suggestions; in particular, Lemma 1.2 and its use in proving Lemma 1.3 were pointed out by the referee.

1. Idempotent additions on P

In this section we examine idempotent additions on P. We first remark that since G is either a cyclic subgroup of $(0, \infty)$ or dense in $(0, \infty)$, it follows that P is either a cyclic subsemigroup of $[1, \infty)$ or dense in $[1, \infty)$.

LEMMA 1.1. Let $(R, \cdot, +)$ be a semiring with an additively idempotent multiplicative identity 1. Then

(a) (R, +) is idempotent.

(b) The sets $S = \{y \in R : y+1 = y\}$, $S' = \{y \in R : 1+y = y\}$, $U = \{y \in R : y+1 = 1\}$, and $U' = \{y \in R : 1+y = 1\}$ are closed subsemirings of R.

PROOF. (a) If $x \in R$, x + x = x(1 + 1) = x(1) = x.

(b) It is almost immediate that all these sets are closed additive subsemigroups of R, and that 1 is an element of each. Now let x and y be elements of S. Then xy+1 = x(y+1)+1 = xy+x+1 = xy+x = x(y+1) = xy, so $xy \in S$. Similarly, S' is multiplicatively closed. If x and y are in U, then

$$xy+1 = xy+y+1 = (x+1)y+1 = y+1 = 1$$
,

so $xy \in U$; similarly U' is multiplicatively closed.

We now wish to describe the idempotent additions on P with the property that $1 \le x+1 \le x$ and $1 \le 1+x \le x$ for all x. First we need a lemma.

LEMMA 1.2. Let T be a subsemigroup of $([0, \infty), +)$, and let Q be a subsemigroup of T such that 0 is a limit point of Q. Then $T = Q^*$, the closure of Q in T.

PROOF. Let x be an element of T and let $0 < \varepsilon < x$. Then there is a positive integer N such that $n \ge N$ implies that $(2n+1)\varepsilon > x$. Hence, $n\varepsilon > x - (n+1)\varepsilon$ and so $n(x+\varepsilon) > (n+1)(x-\varepsilon)$, so that $(x+\varepsilon)/(n+1) > (x-\varepsilon)/n$. Thus,

$$\bigcup_{n \ge N} \left(\frac{x - \varepsilon}{n}, \frac{x + \varepsilon}{n} \right) = \frac{(0, x + \varepsilon)}{N}.$$

Now since 0 is a limit point of Q, there exists some s in $Q \cap (0, (x+\varepsilon)/N)$ and so $s \in ((x-\varepsilon)/n, (x+\varepsilon)/n)$ for some $n \ge N$. Hence, $ns \in Q \cap (x-\varepsilon, x+\varepsilon)$ and so $Q \cap (x-\varepsilon, x+\varepsilon) \ne \emptyset$. This shows that $x \in Q^*$ and so $T = Q^*$. Now since $([0,\infty), +)$ is isomorphic to $([1,\infty), \cdot)$ this lemma shows that for any subsemigroup P of $([1,\infty), \cdot)$ and subsemigroup Q of P having 1 as a limit point, we have $Q^* = P$.

LEMMA 1.3. Let P be dense in $[1, \infty)$, and let + be a semiring addition on P with the property that for any x in P, $1 \le x+1 \le x$ and $1 \le 1+x \le x$. Then either P = Sor P = U. Also, either P = S' or P = U'.

PROOF. If there is some x in P with $[1, x] \subseteq U$, then $P = \bigcup_{n \ge 0} [x^n, x^{n+1}] \subseteq U$ so U = P. Hence, if $U \ne P$, then for each x > 1, there is a y in (1, x) with $y \notin U$. If $y \in S$ then $(1, x) \cap S \ne \emptyset$. If $y \notin S$, then 1 < y + 1 < y so $y + 1 \in (1, x)$. Moreover, (y+1)+1 = y+(1+1) = y+1 and so $y+1 \in S$. Hence, in this case also, $(1, x) \cap S \ne \emptyset$. Thus $(1, x) \cap S \ne \emptyset$ for any x > 1 so 1 is a limit point of S. The above lemma shows $S^* = P$, and since S is closed, S = P.

We now prove a similar result for the case when P is cyclic. In this case, we are able to drop the hypothesis that $1 \le x+1 \le x$ and $1 \le 1+x \le x$. We first need the following technical lemma.

LEMMA 1.4. Let $P = G \cap [1, \infty)$ for any subgroup G of $(0, \infty)$, and let + be an idempotent semiring addition on P. Let $x \in P$, and let y = 1 + x. If y > x, then

- (a) y/x+1 = y/x, and hence $y^n/x^n+1 = y^n/x^n$ for every positive integer n;
- (b) $y^n/x^n + x = y^{n+1}/x^n$ for every positive integer n;
- (c) for every positive integer n and for each $p \le n$ such that $y^p > x^n$, $y^p/x^n + 1 = y^n/x^n$.

PROOF. (a) x(y/x+1) = y+x = 1+x+x = 1+x = y and so by cancellation, y/x+1 = y/x. Since S is a multiplicative semigroup, $(y/x)^n + 1 = (y/x)^n$ for every n.

(b) For n = 1, $y/x + x = y/x + 1 + x = y/x + y = (y/x)(1 + x) = (y/x)y = y^2/x$. Now suppose that $y^{n-1}/x^{n-1} + x = y^n/x^{n-1}$. Then

$$y^{n}/x^{n} + x = y^{n}/x^{n} + 1 + x = y^{n}/x^{n} + y = (y/x)(y^{n-1}/x^{n-1} + x)$$
$$= (y/x)(y^{n}/x^{n-1}) = y^{n+1}/x^{n}.$$

(c) Let p = n-i. The statement that $y^{n-i}/x^n + 1 = y^n/x^n$ is true for i = 0 by (a). Now suppose that $y^{n-(i-1)} > x^n$ and that $(y^{n-(i-1)}/x^n) + 1 = y^n/x^n$. Then $y^{n-i} > x^n$, we have

$$y[(y^{n-i}/x^n) + 1] = (y^{n-(i-1)}/x^n) + y = (y^{n-(i-1)}/x^n) + 1 + y$$
$$= y^n/x^n + 1 + x = y^n/x^n + x = y^{n+1}/x^n = y(y^n/x^n)$$

and so

$$y^{n-i}/x^n + 1 = y^n/x^n$$

LEMMA 1.5. Let P be cyclic, and let + be an idempotent semiring addition on P. If S, U, S' and U' are defined as in Lemma 1.1, then P = S or P = U; and similarly, P = S' or P = U'.

PROOF. We show the lemma for S' and U'. Since S' and U' are multiplicative semigroups, it is enough to show that 1 + x = 1 or 1 + x = x where x is the generator of P. Suppose that $1 + x = y = x^m$ for some integer m > 1, and that $x + 1 = x^n$ for some integer $n \ge 0$. Then

$$x^n = x + 1 = (x^m/x^{m-1}) + 1 = (y/x^{m-1}) + 1 = (y^{m-1}/x^{m-1}) + 1$$
 (by Lemma 1.4(c))
= y^{m-1}/x^{m-1} (by Lemma 1.4(a)) = $x^{m(m-1)-(m-1)} = x^{(m-1)^2}$,

and hence $n = (m-1)^2$. Now since

$$(y^2/x^2)(1+x^2) = y^2/x^2 + y^2 = y(y/x^2 + y) = y(y/x^2 + 1 + y)$$
$$= y(y^2/x^2 + y) = y^2(y/x^2 + 1) = y^2(y^2/x^2),$$

we have $1 + x^2 = y^2$, and similarly, $x^2 + 1 = (x^n)^2 = x^{2n}$. But

$$x^{2}+1 = y/x^{m-2}+1 = y^{m-2}/x^{m-2} = x^{m(m-2)}/x^{m-2} = x^{(m-1)(m-2)}$$

and hence 2n = (m-1)(m-2) and so $2(m-1)^2 = (m-1)(m-2)$. Solving this quadratic equation gives m = 0 or $m = \frac{1}{2}$, contradicting the assumption that m > 1. Thus m is either 0 or 1. Similarly, n = 0 or n = 1.

THEOREM 1.6. If P is $G \cap [1, \infty)$ where G is any subgroup of $[0, \infty)$, and if + is a semiring addition with the property that for every x in P, $1 \le x + 1 \le x$ and $1 \le 1 + x \le x$, then one of the following describes the addition:

(a) for each x, y in P, x+y = x;

- (b) for each x, y in P, x+y = y;
- (c) for each x, y in P, $x+y = x \lor y$;
- (d) for each x, y in P, $x + y = x \land y$.

PROOF. Lemmas 1.3 and 1.5 show that exactly one of the following is true for every x in P:

- (i) x+1 = x and 1+x = 1;
- (ii) x+1 = 1 and 1+x = x;
- (iii) x+1 = 1+x = x;
- (iv) x+1 = 1 + x = 1.

[5]

If (i) is true, then for each x and y in P,

$$x+y = (x+1)+y = x+(1+y) = x+1 = x,$$

and similarly, if (ii) is true, then for each x, y in P,

$$x+y=y$$
.

If (iii) is true, and if x < y, then

$$x + y = x(1 + y/x) = x(y/x) = y$$

while if x > y, then

$$x + y = (x/y + 1)y = (x/y)y = x$$

and so in either case $x + y = x \lor y$. Similarly, if (iv) is true then

 $x + y = x \wedge y$.

REMARK 1.7. We conjecture that the hypothesis $1 \le x+1 \le x$ and $1 \le 1+x \le x$ may be omitted from the dense case for *P*. The work of Pearson (1966) and Lemma 1.5 above show that it may be omitted if $P = [1, \infty)$ or if *P* is cyclic.

2. Additions on B_P with $U \supseteq R_1$

In this section we first show that all semiring additions on B_P are idempotent and that the subset $P \times \{1\}$ is a subsemiring isomorphic to P and that for each xin P, $1 \le 1+x \le x$ and $1 \le x+1 \le x$. Thus, Theorem 1.6 applies and $P \times \{1\}$ is additively max, min or trivial. We show immediately that the trivial addition on $P \times \{1\}$ can only extend trivially and assume that $P \times \{1\}$ has the min addition. In this case, we show that the set $\{(x, y) \in B_P: x < y\}$ is contained in both S and S', where these are defined for B_P as in Lemma 1.1, and we describe the additions in which U contains the set $\{(x, y) \in B_P: x > y \text{ or } x = y = 1\}$.

We remark for the reader that (1, 1) is a multiplicative identity for B_P , and that for each element (x, y) of B_P , $(x, y)^{-1} = (y, x)$. The multiplicative idempotents are precisely the diagonal elements $\{(x, x)\}$.

LEMMA 2.1. If + is a semiring addition on B_P , then B_P is additively idempotent.

PROOF. Since (1, 1) is a multiplicative identity for B_P , then Lemma 1.1 implies that it is sufficient to show (1, 1) is an additive idempotent. Let (e, f) = (1, 1) + (1, 1). If x > 1, we have

$$(xe/x \land e, xf/x \land e) = (x, x)(e, f) = (x, x)[(1, 1) + (1, 1)] = (x, x) + (x, x)$$
$$= (x, 1)[(1, 1) + (1, 1)](1, x) = (x, 1)(e, f)(1, x)$$
$$= (xe, f)(1, x) = (xe, fx).$$

424

Thus, $x \wedge e = 1$. Similarly, $(xe, fx) = (e, f)(x, x) = (ex/f \wedge x, fx/f \wedge x)$ and so

 $f \wedge x = 1 = e \wedge x$.

Now since x > 1, e = 1 = f and so (1, 1) + (1, 1) = (1, 1).

LEMMA 2.2. Let x > 1 be an element of P. Then there exists $a \in P$ such that $a \leq x$ and (x, 1) + (1, 1) = (a, 1), and there exists $b \in P$ with $b \leq x$ such that

$$(1,1)+(x,1)=(b,1).$$

Furthermore, (1, 1) + (1, x) = (1, x/a) and (1, x) + (1, 1) = (1, x/b).

PROOF. We prove the assertion for a and x/a; the proof for b and x/b is similar. Let (x, 1)+(1, 1) = (a, c). Then

$$(xa, xc) = (xa, c)(1, x) = (x, 1)(a, c)(1, x) = (x, 1)[(x, 1) + (1, 1)](1, x)$$
$$= [(x2, 1) + (x, 1)](1, x) = (x2, x) + (x, x) = [(x, 1) + (1, 1)](x, x)$$
$$= (a, c)(x, x) = (ax/c \land x, cx/c \land x).$$

Thus, $c \wedge x = 1$; but x > 1 and so c = 1. Now let (1, 1) + (1, x) = (1, s). Then since $(a/a \wedge x, x/a \wedge x) = (1, x)(a, 1) = (1, x)[(x, 1) + (1, 1)] = (1, 1) + (1, x) = (1, s)$, we have $a = a \wedge x$ and hence s = x/a.

The following is now immediate, using Lemma 2.2 and Theorem 1.6.

THEOREM 2.3. $P \times \{1\}$ is a subsemiring of B_P which is multiplicatively isomorphic to P, and hence the addition on $P \times \{1\}$ is either trivial, max or min.

We dispose of the trivial addition at once.

THEOREM 2.4. If + is a semiring addition on B_P which is trivial when restricted to $P \times \{1\}$, then + is trivial on B_P .

PROOF. Suppose + is left trivial on $P \times \{1\}$. Then for any x in P,

$$(x, 1)+(1, 1) = (x, 1)$$
 and $(1, 1)+(x, 1) = (1, 1)$

and so the *a* of Lemma 2.2 is *x* and the *b* is 1, and hence (1, 1) + (1, x) = (1, 1) and (1, x) + (1, 1) = (1, x). Thus, for any (x, y) and (z, w) in B_P ,

$$(x, y) + (z, w) = [(x, y) + (z, y)] + (z, w) = (x, y) + [(z, y) + (z, w)]$$
$$= (x, y) + (z, y) = (x, y).$$

Hence, the addition on B_P is left trivial. The situation is symmetrical for the right trivial addition.

In the remainder of this section, we assume that addition on $P \times \{1\}$ is min; in this case we will see that addition on $\{1\} \times P$ is max; it is easy to show that the case where addition on $P \times \{1\}$ is max is completely symmetrical.

LEMMA 2.5. Suppose addition restricted to $P \times \{1\}$ is min, and let $(x, y) \in B_P$. (a) If $(z, w) \in B_P$ with $x \leq z$ and $y \geq w$, then (x, y) + (z, w) = (x, y) = (z, w) + (x, y). (b) If x < y, then (x, y) + (1, 1) = (x, y) = (1, 1) + (x, y).

(c) If $x \ge y$, then there exist a and b in P with $a \le y$ and $b \le y$ such that

(x, y) + (1, 1) = (a, a) and (1, 1) + (x, y) = (b, b).

PROOF. (a) Since (x, 1) + (1, 1) = (1, 1) = (1, 1) + (x, 1), the *a* and *b* of Lemma 2.2 are 1, so that (1, x) + (1, 1) = (1, 1) + (1, x) = (1, x) and hence for every *x* and *y* in *P*,

$$(1, x) + (1, y) = (1, x \lor y)$$
 and
 $(x, 1) + (1, y) = (x, 1) + [(1, 1) + (1, y)] = [(x, 1) + (1, 1)] + (1, y)$
 $= (1, 1) + (1, y) = (1, y).$

Thus, if $x \leq z$ and $y \geq w$,

$$(x, y) + (z, w) = [(x, y) + (z, y)] + (z, w) = (x, y) + [(z, y) + (z, w)]$$
$$= (x, y) + (z, y) = (x, y).$$

(b) and (c) are proved as follows. Let (x, y) + (1, 1) = (a, c). Then

 $(ax/c \land x, cx/c \land x) = (a, c)(x, x) = [(x, y) + (1, 1)](x, x) = (x^2/x \land y, xy/x \land y) + (x, x),$

which equals (x, y) if x < y and (x, x) if $x \ge y$. Thus, if x < y, then $ax/c \land x = x$ and $cx/c \land x = y$ and so $a = c \land x$. If a = c, then x = y; but x < y and so a = x and hence c = y. If $x \ge y$, then $ax/c \land x = x$ and $cx/c \land x = x$ and so $a = c \le x$. Premultiplying (a, c) by (y, y), we find that if $x \ge y$, then $a \le y$. This completes the proof of the lemma.

We now introduce some notation which will be referred to throughout the rest of this paper. Let

$$L = \{(x, y) \in B_P : x \le y\}, \quad R = \{(x, y) \in B_P : x \ge y\} \text{ and } D = L \cap R = \{(x, x) : x \in P\}.$$

As in Lemma 1.1,

$$U = \{(x, y) \in B_P: (x, y) + (1, 1) = (1, 1)\},\$$
$$U' = \{(x, y) \in B_P: (1, 1) + (x, y) = (1, 1)\},\$$
$$S = \{(x, y) \in B_P: (x, y) + (1, 1) = (x, y)\}$$

and

$$S' = \{(x, y) \in B_P : (1, 1) + (x, y) = (x, y)\}.$$

Finally, for (x, y) in B_P , let $D(x, y) = \{(ax, ay): a > 0\}$, and let $R_1 = (R \setminus D) \cup \{(1, 1)\}$.

REMARK 2.6. If (x, y) and (z, w) are two elements of B_P , assume $x \le z$. Then one and only one of the following statements is true:

(a)
$$y \ge w$$

- (b) y < w and z/x < w/y;
- (c) y < w and $z/x \ge w/y$.

In case (a), (x, y)+(z, w) = (x, y) = (z, w)+(x, y) by Lemma 2.5. If either (b) or (c) is true, then (x, y)+(z, w) = (x, 1)[(1, 1)+(z/x, w/y)](1, y). Hence, in case (b), (x, y)+(z, w) = (z, w) = (z, w)+(x, y), by Lemma 2.5, and it is evident that a complete description of the addition on B_P depends on a description of addition by (1, 1) on the subset R of B_P . We have the following partial result: if (x, y) and (z, w) are elements of B_P with neither (x/z, y/w) nor (z/x, w/y) in R, then

$$(x, y) + (z, w) = \left(\frac{xw \wedge yz}{y \wedge w}, y \vee w\right).$$

We now examine the diagonal D of B_P . If P is dense in $[1,\infty)$, then since $L \setminus D \subseteq S \cap S'$ by Lemma 2.5 and $D \subseteq L^*$, we have $D \subseteq S \cap S'$ by Lemma 1.1, and hence L = S = S'. Section 3 will be devoted to characterizing semiring additions on B_P such that $D \subseteq S \cap S'$ and U is a proper subset of R_1 .

If $P = \{1, x, x^2, ...\}$ for x > 1, then by Lemma 2.5, either (1, 1) + (x, x) = (1, 1) or (1, 1) + (x, x) = (x, x), and similarly for (x, x) + (1, 1). Now if (1, 1) + (x, x) = (1, 1), suppose that for $1 \le k < n$, $(1, 1) + (x^k, x^k) = (1, 1)$. Then

$$(1,1) + (x^{n}, x^{n}) = [(1,1) + (x^{n-1}, x^{n-1})] + (x^{n}, x^{n})$$

= (1,1) + [(x^{n-1}, x^{n-1}) + (x^{n}, x^{n})]
= (1,1) + (x^{n-1},1) [(1,1) + (x,x)] (1, x^{n-1})
= (1,1) + (x^{n-1}, x^{n-1}) = (1,1).

Hence $D \subseteq U'$. If (1, 1) + (x, x) = (x, x) then suppose that for $1 \le k < n$,

$$(1,1)+(x^k,x^k)=(x^k,x^k).$$

Then

$$(1, 1) + (x^{n}, x^{n}) = (1, 1) + (x^{n-1}, 1)(x, x)(1, x^{n-1})$$

= (1, 1) + (x^{n-1}, 1) [(1, 1) + (x, x)](1, x^{n-1})
= (1, 1) + (x^{n-1}, x^{n-1}) + (x^{n}, x^{n})
= (x^{n-1}, x^{n-1}) + (x^{n}, x^{n})
= (x^{n-1}, 1) [(1, 1) + (x, x)](1, x^{n-1}) = (x^{n}, x^{n}),

and hence by induction $D \subseteq S'$. Similar manipulations hold for U and S. We summarize this discussion as follows.

THEOREM 2.7. Suppose + is a semiring addition on B_P . (a) Either $D \subseteq U$ or $D \subseteq S$; also $D \subseteq U'$ or $D \subseteq S'$. (b) If P is dense in $[1, \infty)$, then $D \subseteq S \cap S'$.

LEMMA 2.8. Suppose + is min on $P \times \{1\}$.

(a) If $(x, y) \in U$ (respectively, U') and $z \ge x$, then $(z, y) \in U$ (respectively, U').

(b) If $D \subseteq S$ (respectively, $D \subseteq S'$) and $a \ge 1$, then for every (x, y) in B_P , (ax, ay) + (x, y) = (ax, ay) (respectively, (x, y) + (ax, ay) = (ax, ay)).

(c) If $D \subseteq S$ (respectively, $D \subseteq S'$), and if $(x, y) \in U'$ (respectively, U) and $1 \le a \le y$, then $(x/a, y/a) \in U'$ (respectively, U).

(d) If $D \subseteq S \cap S'$ or $D \subseteq U \cap U'$, then + is abelian.

PROOF. (a) If $(x, y) \in U$ and $z \ge x$, then

$$(z, y) + (1, 1) = (z, y) + [(x, y) + (1, 1)] = [(z, y) + (x, y)] + (1, 1)$$
$$= (x, y) + (1, 1) = (1, 1)$$

and so $(z, y) \in U$.

(b) Let $D \subseteq S$ and a > 1. Then

(ax, ay) + (x, y) = (x, 1)[(a, a) + (1, 1)](1, y) = (x, 1)(a, a)(1, y) = (ax, ay).

(c) Let $D \subseteq S$, $(x, y) \in U'$ and $1 \leq a \leq y < x$. Then

(1, 1) + (x/a, y/a) = (1, 1) + (x, y) + (x/a, y/a) = (1, 1) + (x, y) (by (b)) = (1, 1) and so $(x/a, y/a) \in U'$.

(d) To see that + is abelian, it is enough by Remark 2.6 to show that (1, 1) commutes additively with each element (x, y) of R. This is obvious if $D \subseteq U \cap U'$. If $D \subseteq S \cap S'$, let (a, a) = (1, 1) + (x, y) and (b, b) = (x, y) + (1, 1) as in Lemma 2.5. Then

$$(b,b) = (1,1) + (b,b) = (1,1) + [(x,y) + (1,1)] = [(1,1) + (x,y)] + (1,1)$$
$$= (a,a) + (1,1) = (a,a).$$

LEMMA 2.9. Let + be a semiring addition on B_P which is min on $P \times \{1\}$. If $D \subseteq U'$ (respectively, $D \subseteq U$), then $R \setminus D \subseteq U$ (respectively, $R \setminus D \subseteq U'$).

PROOF. Suppose $D \subseteq U'$; then R = U' by Lemma 2.8(a). Suppose that $R \setminus D$ is not contained in U. Then $D \subseteq S$ by Theorem 2.7 and there exist x and y such that x > y with (x, y) + (1, 1) = (a, a) for some a > 1. Then

$$(ax, ay) + (1, 1) = [(ax, ay) + (x, y)] + (1, 1)$$
 (by Lemma 2.8(b))
= $(ax, ay) + [(x, y) + (1, 1)] = (ax, ay) + (a, a)$
= $(a, 1) [(x, y) + (1, 1)] (1, a) = (a^2, a^2).$

Hence,

$$(a, a) = (x, y) + (1, 1) = (x, 1) [(1, 1) + (a, a)](1, y) + (1, 1)$$
$$= (x, y) + (ax, ay) + (1, 1) = (x, y) + (a^2, a^2),$$

which by Lemma 2.5 equals (a^2, a^2) if $y \le a^2$ and equals $(a^2 b, a^2 b)$ for some $b \ge 1$ if $y > a^2$. This contradiction implies that $R \setminus D \subseteq U$. Similarly, if $D \subseteq U$, then $R \setminus D \subseteq U'$. If $D \subseteq U \cap U'$, then R = U = U'.

THEOREM 2.10. Let + be a semiring addition on B_P which is min on $P \times \{1\}$. (a) One of the following is true:

(i) U = U' = R. (ii) U = R and $U' = R_1$. (iii) U' = R and $U = R_1$. (iv) $U = U' = R_1$. (v) U = U' is a proper subset of R_1 . (b) In cases (*i*-*iv*), for (*x*, *y*) and (*z*, *w*) in B_P ,

$$(x, y) + (z, w) = \begin{cases} (x \land z, y \land w) & \text{if } (x/z, y/w) \in U & \text{or } (z/x, w/y) \in U', \\ \left(\frac{xw \land yz}{y \land w}, y \lor w\right) & \text{otherwise.} \end{cases}$$

If + is max on $P \times \{1\}$, then U and U' are subsets of L, and for (x, y) and (z, w) in B_P ,

$$(x, y) + (z, w) = \begin{cases} (x \land z, y \land w) & \text{if } (x/z, y/w) \in U & \text{or } (z/x, w/y) \in U', \\ \left(x \lor z, \frac{xw \land yz}{x \land z}\right) & \text{otherwise.} \end{cases}$$

(c) If P is dense in $[1, \infty)$, then only (v) can be true.

Martha O. Bertman

PROOF. (a) follows from Theorem 2.7, and Lemma 2.9, and (b) is easy to verify. For (c), we note that $D \subseteq S \cap S'$ by Theorem 2.7b and since in cases (i-iv) above, $U = U^* \supseteq D$, (v) is the only possibility. We discuss this case in Section 3.

3. Additions on B_P with $U \subseteq R_1$

In this section, we examine semiring additions on B_P which have the property that U is a proper subset of $R_1 = (R \setminus D) \cup \{(1, 1)\}$, which implies that $P \times \{1\}$ is additively min. We stress that the situation in which $P \times \{1\}$ is max additively is exactly symmetrical. Recall that by Lemma 2.8 (d) addition is abelian; furthermore, Lemma 2.8(a), (c) imply that U = U' is a subset of R_1 bounded above by a nondecreasing curve C. (The least U can be is $P \times \{1\}$. In this case, it follows from Remark 2.6 that for each (x, y) and (z, w) in B_P ,

$$(x, y) + (z, w) = \left(\frac{xw \wedge yz}{y \wedge w}, y \vee w\right).$$

In fact, if $(x, y) \in R$, the "a" of Lemma 2.5 is y.)

LEMMA 3.1. Let + be a semiring addition on B_P which is min on $P \times \{1\}$. Suppose that U is a proper subset of R_1 .

(a) If $(x, y) \in R \setminus D$ and (1, 1) + (x, y) = (a, a) for some a > 1, then

$$(1, 1) + (xc, yc) = (1, 1)$$

if and only if $c \leq 1/a$; and if b > 1, then (1, 1) + (xb/a, yb/a) = (b, b).

(b) If $(x, y) \in L \setminus D$ and if there is a d > 1 such that (x, y) + (d, d) = (px, py) where p > 1, then (x, y) + (w, w) = (x, y) if and only if $y \le w \le d/p$; and if $b \ge 1$, then (x, y) + (bd/p, bd/p) = (bx, by).

PROOF. (a) Let $(x, y) \in \mathbb{R} \setminus D$ and suppose (1, 1) + (x, y) = (a, a) with $1 < a \le y$. Since (a, a) + (x, y) = (a, a) + (1, 1) + (x, y) = (a, a), we have (1, 1) + (x/a, y/a) = (1, 1)and Lemma 2.8(c) implies that $c \le 1/a$ if and only if (1, 1) + (xc, yc) = (1, 1).

Now suppose that $b \ge 1$ and that (1, 1) + (xb/a, yb/a) = (z, z) where $z \le yb/a$. If z < b/a, then since (z, z) + (xb/a, yb/a) = (z, z), we have

$$(1,1)+(xb/az,yb/az) = (1,1)$$

and so by the preceding paragraph, $b/az \le 1/a$ and so $b \le z < b/a$. This contradiction

shows that $z \ge b/a$. Now

$$(b,b) = (b/a,1)(a,a)(1,b/a) = (b/a,1)[(1,1)+(x,y)](1,b/a)$$
$$= (b/a,b/a)+(xb/a,yb/a) = (b/a,b/a)+(1,1)+(xb/a,yb/a)$$
$$= (b/a,b/a)+(z,z) = (z,z)$$

and so (1, 1) + (xb/a, yb/a) = (b, b).

(b) Let $(x, y) \in L \setminus D$. Recall from Lemma 2.5(b) that (x, y) + (1, 1) = (x, y). Suppose that there is d > 1 such that $(x, y) + (d, d) \neq (x, y)$. Then

$$(x, y) + (d, d) = (x, 1) [(1, 1) + (d/x, d/y)] (1, y) = (xp, yp)$$

where 1 . By (b), <math>(1, 1) + (w/x, w/y) = (1, 1) if and only if $y \le w \le d/p$ and if $b \ge 1$, then (1, 1) + (bd/px, bd/py) = (b, b). Hence, (x, y) + (w, w) = (x, y) if and only if $y \le w \le d/p$; and if $b \ge 1$, then (x, y) + (bd/p, bd/p) = (bx, by).

Now suppose that every (x, y) in R possesses an a = a(x, y) as in Lemma 3.1; then a = 1 if and only if $(x, y) \in U$ and for b > 1, $(xb, yb) \notin U$; in fact, using Lemma 2.8(c) we see that $(x, y) \in U$ if and only if $a \leq 1$. In Example 3.2, we let the curve C be the graph of a non-decreasing homomorphism f, which intercepts

$$D(x, y) = \{(tx, ty): t > 0\}$$

in a unique point (x/a, y/a) of $G \times G$. We define an addition $+_f$ in terms of this denominator a, and show that $+_f$ is a semiring addition. In Theorem 3.4 we show that Example 3.2 actually characterizes all additions with U a proper subset of R_1 .

EXAMPLE 3.2. Let f be a continuous non-decreasing homomorphism from G to $((0,\infty), \cdot)$ with the properties that for each (x, y) in B_P , graph (f) meets $D(x, y) = \{(ax, ay): a > 0\}$ in a unique point of $G \times G$, and that graph $(f|_P) \subseteq R_1$. Then we define the function $\beta: B_P \rightarrow G$ so that for $(x, y) \in B_P$, $\beta(x, y)$ is that unique element of G such that $(x/\beta(x, y), y/\beta(x, y)) \in graph(f)$. If we define addition by

$$(x, y) +_{f}(z, w) = \left(\frac{x\beta(z, w) \wedge z\beta(x, y)}{\beta(z, w) \wedge \beta(x, y)}, \frac{y\beta(z, w) \wedge w\beta(x, y)}{\beta(z, w) \wedge \beta(x, y)}\right)$$

then $+_f$ is a commutative semiring addition on B_P and $U = \{(x, y) \in R : y \leq f(x)\}$ is a proper subset of R_1 .

PROOF. To aid in proving associativity, we establish the following facts: if (x, y) (z, w) are elements of B_P with $\beta(x, y) = p$ and $\beta(z, w) = q$, and if $y/x \ge w/z$, then

- (i) $xq \leq zp$ and $yq \leq pw$,
- (ii) if $y \ge w$ then $p \ge q$,
- (iii) for any a in G such that $(ax, ay) \in B_P$, $\beta(ax, ay) = ap$.

To see (i), note that y/x is the slope of D(x, y) and w/z is the slope of D(z, w) and so since f is non-decreasing and (x/p, y/p) and (z/q, w/q) lie on graph(f), we have $x/p \le z/q$ and $y/p \le w/q$. Hence, if $y \ge w$, $q \le wp/y \le p$. Finally,

$$(ax/ap, ay/ap) = (x/p, y/p)$$

is the unique intersection of D(x, y) and graph(f). We note that closure follows from these observations.

Now suppose $\beta(x, y) = p$, $\beta(z, w) = q$ and $\beta(a, b) = c$. If $y/x \ge z/w \ge b/a$, we have

$$= (x, y) + ((z \land aq)/(c \land q), \quad (wc \land bq)/(c \land q))$$

$$= (x, y) + ((zc \land aq)/(c \land q), \quad wc/(c \land q))$$

$$= \left(\frac{(xqc)}{c \land q} \land (\frac{zcp}{c \land q}), \quad (\frac{yqc}{c \land q}) \land (\frac{wcp}{c \land q})\right)$$

$$= \left(\frac{(xqc)}{p \land (\frac{qc}{c \land q})}, \frac{yqc}{p \land (\frac{qc}{c \land q})}\right) = \left(\frac{(xqc)}{p \land (\frac{qc}{c \land q})}, \frac{(yqc)}{p \land (\frac{qc}{c \land q})}\right)$$

$$= \left(\frac{xqc}{cp \land pq \land qc}, \frac{yqc}{cp \land pq \land qc}\right) = \left(\frac{(xqc)}{(\frac{pq}{p \land q})}, \frac{(yqc)}{(\frac{pq}{p \land q}) \land c}\right)$$

$$= \left(\frac{(xqc)}{(\frac{pq}{p \land q})} \land (\frac{apq}{p \land q}), \frac{(ycq)}{(\frac{pq}{p \land q}) \land (\frac{pq}{p \land q})}{(\frac{pq}{p \land q}) \land c}\right)$$

$$= \left(\frac{xqc}{p \land q}, \frac{yq}{p \land q}\right) + (a, b) = \left(\frac{xq \land zp}{p \land q}, \frac{yq \land wp}{p \land q}\right) + (a, b)$$

$$= [(x, y) + (z, w)] + (a, b).$$

Since this addition is clearly commutative, associativity is proven.

We prove distributivity in two parts. First note that if $a \in P$ with $\beta(a, 1) = b$ and if $(x, y) \in B_P$ with $\beta(x, y) = p$ then $\beta(ax, y) = bp$, for

$$y/bp = (y/p)(1/b) = f(x/p) f(a/b) = f(xa/pb).$$

Also if $\beta(1, a) = c$, then $\beta[(1, a)(x, y)] = \beta(x/a \wedge x, ay/a \wedge x) = ap/a \wedge x$; for if $a \leq x$, then ay/cp = f(1xa/cpa) and so $\beta(x/a, y) = cp/a$, and if $a \geq x$, then

$$(ay/x)/(cp/x) = (a/c)(y/p) = f(1x/cp)$$

and so $\beta(1, ay/x) = cp/x$.

(r v) + [(r w) + (a h)]

Now if (x, y) and (z, w) are two elements of B_P with $\beta(x, y) = p$, $\beta(z, w) = q$, and if $\beta(a, 1) = b$, then

$$(a, 1) [(x, y) + (z, w)]$$

= $(a, 1) \left(\frac{xq \land zp}{p \land q}, \frac{yq \land wp}{p \land q}\right) = \left(\frac{a(xq \land zp)}{p \land q}, \frac{yq \land wp}{p \land q}\right)$
= $\left(\frac{abxq \land abzp}{bp \land bq}, \frac{ybq \land wbp}{bp \land bq}\right) = (ax, y) + (az, w) = (a, 1)(x, y) + (a, 1)(z, w).$

Now if $\beta(1, a) = c$, then

$$(1, a) [(x, y) + (z, w)]$$

$$= (1, a) \left(\frac{xq \land zp}{q \land p}, \frac{yq \land wp}{q \land p}\right)$$

$$= \left(\frac{\left(\frac{xq \land zp}{q \land p}\right)}{a \land \left(\frac{xq \land zp}{q \land p}\right)}, \frac{a\left(\frac{xq \land zp}{q \land p}\right)}{a \land \left(\frac{yq \land wp}{q \land p}\right)}\right)$$

$$= \left(\frac{xq \land zp}{aq \land xq \land zp \land ap}, \frac{ayq \land awp}{aq \land xq \land zp \land ap}\right)$$

$$= \left(\frac{\left(\frac{xcq}{(a \land x)(a \land z)}\right) \land \left(\frac{zcp}{(a \land x)(a \land z)}\right)}{\left(\frac{cq}{a \land z}\right) \land \left(\frac{cp}{a \land x}\right)}, \frac{\left(\frac{aycq}{(a \land x)(a \land z)}\right) \land \left(\frac{awcp}{(a \land x)(a \land z)}\right)}{\left(\frac{cq}{a \land x}\right) \land \left(\frac{cp}{a \land x}\right)}\right)$$

$$= \left(\frac{x}{a \land x}, \frac{ay}{a \land x}\right) + \left(\frac{z}{a \land z}, \frac{aw}{a \land z}\right)$$

$$= (1, a) (x, y) + (1, a) (z, w).$$

Combining these two results gives

$$(a,b)[(x,y)+(z,w)] = (a,1)(1,b)[(x,y)+(z,w)]$$
$$= (a,1)[(1,b)(x,y)+(1,b)(z,w)]$$
$$= (a,b)(x,y)+(a,b)(z,w).$$

Hence, multiplication is distributive over this addition.

We remark that the proof of associativity of $+_f$ does not require that f be a homomorphism; however, our proof of distributivity does. In part (c) of the proof of Theorem 3.4 we will show the necessity of the homomorphism property of f.

https://doi.org/10.1017/S1446788700011952 Published online by Cambridge University Press

Martha O. Bertman

Now we show that β (and hence $+_f$) is continuous. Without loss of generality we can assume that P is dense in $[1,\infty)$. Let $\{(x_n, y_n)\}_{n=1}^{\infty}$ be a sequence from B_P converging to a point (x, y) of B_P , and let $\beta(x_n, y_n) \equiv p_n$. Since $\{(x_n, y_n)\}_{n=1}^{\infty}$ is convergent and hence bounded in P^2 , $\{p_n\}_{n=1}^{\infty}$ is also bounded. (In fact $\{p_n\}_{n=1}^{\infty}$ is bounded below by some $\varepsilon > 0$), and hence has a subsequence $\{p_{n_i}\}_{i=1}^{\infty}$ which converges to a point a in $(0,\infty)$. Then by definition of p_n and the continuity of f, $y/a = \lim_i f(x_{n_i}/p_{n_i}) = f(\lim_i (x_{n_i}/p_{n_i})) = f(x/a)$ and hence $a = \beta(x, y)$. It follows that $\beta(x_n, y_n) \rightarrow \beta(x, y)$. This completes the proof that $+_f$ is a semiring addition. Moreover, since $\beta(x, y) \leq 1$ if and only if $y \leq f(x)$, we have

$$(x,y) + (1,1) = \left(\frac{x\beta(1,1) \wedge 1\beta(x,y)}{\beta(1,1) \wedge \beta(x,y)}, \frac{y\beta(1,1) \wedge 1\beta(x,y)}{\beta(1,1) \wedge \beta(x,y)}\right)$$
$$= \left(\frac{x \wedge \beta(x,y)}{1 \wedge \beta(x,y)}, \frac{y \wedge \beta(x,y)}{1 \wedge \beta(x,y)}\right) = \left(\frac{\beta(x,y)}{1 \wedge \beta(x,y)}, \frac{\beta(x,y)}{1 \wedge \beta(x,y)}\right)$$
$$= \begin{cases} (1,1) & \text{if } y \leq f(x), \\ (\beta(x,y), \beta(x,y)) & \text{if } y \geq f(x). \end{cases}$$

Hence, $U = \{(x, y) \in R : y \leq f(x)\}.$

REMARK 3.3. The homomorphisms of $[(0, \infty), \cdot]$ to $[(0, \infty), \cdot]$ are the functions $\{f_{\alpha} : \alpha \text{ real}\}$ where $f_{\alpha}(x) = x^{\alpha}$ for every x, and the ones which satisfy the conditions of Example 3.2 must have $0 \le \alpha < 1$. Clearly, any such α satisfies the conditions if $P = [1, \infty)$. However, suppose P is cyclic. Then we can calculate from the relationship $(x/\beta(x, y), y/\beta(x, y)) \in \text{graph}(f) \cap G^2$, that if $f(x) = x^{\alpha}$ for every x in G, then $\beta(x, y) = (y/x^{\alpha})^{1/(1-\alpha)}$, and since $P = \{1, a, a^2, ...\}$ where a > 1, $\beta(1, a)$ must be a^k for some integer k. That is, $\beta(1, a) = a^{1/(1-\alpha)} = a^k$ and so $k = 1/(1-\alpha)$ and hence $\alpha = (k-1)/k$ if $k \neq 0$. We show in part (b) of the proof of Theorem 3.4 that every semiring addition on B_P with P cyclic and U a proper subset of R_1 is $+_{\alpha}$ where $\alpha = N/(N+1)$ for a non-negative integer N.

THEOREM 3.4. Let + be a semiring addition on B_P which is min on $P \times \{1\}$. Suppose that U is a proper subset of R_1 . Then there exists a non-decreasing homomorphism $f: G \rightarrow (0, \infty)$ which satisfies the properties of Example 3.2 and $+=+_f$ as in Example 3.2.

PROOF. We prove this theorem in several steps, which we state as follows. (a) If $h: B_P \rightarrow G \cup \{0, \infty\}$ is defined so that

$$h(x, y) = \begin{cases} \sup \{d: (x, y) + (d, d) = (x, y)\} & \text{if } (x, y) \in L, \\ \inf \{a: (1, 1) + (x/a, y/a) = (1, 1)\} & \text{if } (x, y) \in R, \end{cases}$$

then h is well defined on B_P , the range of h is actually contained in G, and for x and y in P, h(x, y) = xy/h(y, x). Furthermore, for each (x, y) and (z, w) in B_P , if $(z/x, w/y) \in R \setminus D$, then

$$(x, y) + (z, w) = \left(\frac{x(h(z, w) \lor h(x, y))}{h(x, y)}, \frac{y(h(z, w) \lor h(x, y))}{h(x, y)}\right).$$

(b) If P is cyclic, then there exists a non-negative integer N such that $(x, y) \in U$ if and only if $y \leq x^{N/(N+1)}$; we let $f(x) = x^{N/(N+1)}$, and in this case, for every (x, y)in B_P , $\beta(x, y) = (y^{(N+1)}/x^N)$ where β is defined for f as in (3.2). If P is dense in $[1, \infty)$ and f: $G \rightarrow (0, \infty)$ is defined by

$$f(x) = \begin{cases} \sup \{y \in P \colon (x, y) \in U\} & \text{if } x \ge 1, \\ 1/f(1/x) & \text{if } x \le 1, \end{cases}$$

then f is a continuous non-decreasing function.

(c) If β is defined for f as in Example 3.2 then $h \equiv \beta$ in the dense case as well as the cyclic. Hence, in either case, $+ = +_f$. Moreover, f is a homomorphism. We now commence the proof.

PROOF. (a) It is a simple observation that h(x, x) = x whether calculated in R or in L, and it follows from Lemma 3.1 that the range of h is contained in $G \cup \{0, \infty\}$. Note that h(x, y) = 0 if and only if $(x, y) \in R \setminus D$ and (1, 1) + (ax, ay) = (1, 1) for every $a \ge 1/y$; and $h(x, y) = \infty$ if and only if $(x, y) \in L \setminus D$ and $(x, y) + D = \{(x, y)\}$. We show later that h takes on neither of these values. Suppose that $(x, y) \in L$ and h(x, y) = c = d/p as in Lemma 3.1(b). Then since

$$(x, y) + (c, c) = (x, y)$$

and for t > c,

$$(x, y) + (t, t) = (xt/c, yt/c),$$

we have

$$(1,1)+(c/x,c/y)=(1,1)$$

and for t > c,

$$(1, 1) + (t/x, t/y) = (t/c, t/c).$$

Hence,

$$(1, 1) + (y, x) = (1, 1) + (xy/x, xy/y) = (xy/c, xy/c)$$

and hence,

$$h(y,x)=xy/c.$$

Martha O. Bertman

We now analyse the addition on B_P . Recall from Remark 2.6 that if (x, y) and (z, w) are elements of B_P such that neither (z/x, w/y) nor (x/z, y/w) is in $R \setminus D$ then

$$(x, y) + (z, w) = \left(\frac{xw \wedge yz}{y \wedge w}, y \vee w\right).$$

We can thus assume that (z/x, w/y) is in $R \setminus D$ and consider three cases: (1) both addends are in R; (2) $(x, y) \in L$ and $(z, w) \in R$; and (3) both addends are in L. We begin by considering elements on which h is finite and non-zero, and then show that either $h(R \setminus D) = \{0\}$ and $h(L \setminus D) = \{\infty\}$, or $h(B_P) \subset G$. Notice that if x < y, then $(x, y) + D = \{(x, y)\}$ if and only if $(1, 1) + D(y/x, 1) = \{(1, 1)\}$. We also remark that if $(x, y) \in R$, then if $h(x, y) = a \ge 1$, then for every $b \ge 1$, h(bx, by) = ba, by (a).

Now if (x, y) and (z, w) are two elements of R with $h(x, y) = d \ge 1$ and $h(z, w) = c \ge 1$, then let (1, 1) + (z/x, w/y) = (g, g). Then

$$(gd, gd) = (1, 1) + (gx, gy) = (1, 1) + [(x, y) + (z, w)]$$

= [(1, 1) + (x, y)] + (z, w) = (d, d) + (z, w)
= [(d, d) + (1, 1)] + (z, w) = (d, d) + [(1, 1) + (z, w)]
= (d, d) + (c, c) = (d \lor c, d \lor c),

and so $g = d \vee c/d$. Hence,

$$(x, y) + (z, w) = \left(\left(\frac{d \lor c}{d} \right) x, \left(\frac{d \lor c}{d} \right) y \right).$$

If either d < 1 or c < 1, let $d \wedge c = 1/b$ where b > 1; then $h(bx, by) = bd \ge 1$ and $h(bz, bw) = bc \ge 1$, so that by the preceding formula,

$$(bx, by) + (bz, bw) = \left(\left(\frac{bd \lor bc}{bd} \right) bx, \left(\frac{bd \lor bc}{bd} \right) by \right) = \left(b \left(\frac{d \lor c}{d} \right) x, b \left(\frac{d \lor c}{d} \right) y \right),$$

and hence

$$(x, y) + (z, w) = \left(\left(\frac{d \lor c}{d} \right) x, \left(\frac{d \lor c}{d} \right) y \right)$$

for any (x, y) and (z, w) in R with h(x, y) > 0, h(z, w) > 0, and (z/x, w/y) in R. If $(x, y) \in L$ and $(z, w) \in R$ with $h(x, y) = d < \infty$ and h(z, w) = c > 0, then

$$(x, y) + (z, w) = (x, y) + (d, d) + (z, w) = (x, y) + (d \lor c, d \lor c)$$
$$= \left(\left(\frac{d \lor c}{d} \right) x, \left(\frac{d \lor c}{d} \right) y \right) \quad \text{if } w > d;$$

and if $w \leq d$, then

$$(x, y) + (z, w) = [(x, y) + (w, w)] + (z, w) = (x, y) + [(w, w) + (z, w)]$$
$$= (x, y) + (w, w) = (x, y) = \left(\left(\frac{d \lor c}{d}\right)x, \left(\frac{d \lor c}{d}\right)y\right)$$

id hence the formula of the preceding paragraph holds between elements of and R on which h is neither 0 nor ∞ .

Finally, let (x, y) and (z, w) be elements of L with $h(x, y) = d < \infty$, $h(z, w) = c < \infty$, and $(z/x, w/y) \in \mathbb{R} \setminus D$. Then (x, y) + (z, w) = (tx, ty) for some $t \ge 1$. If d > c, then

$$(tx, ty) = (x, y) + (z, w) = (x, y) + (d, d) + (z, w) = (x, y) + (dz/c, dw/c)$$
$$= (x, 1) [(1, 1) + (dz/cx, dw/cy)](1, y) = (x, 1) (dt/c, dt/c) (1, y)$$
$$= (dtx/c, dty/c)$$

ad so d would equal c. Hence, $d \leq c$. Now choose (a, b) in $R \setminus D$ with

$$(a,b) = q > p \lor dt;$$

ien (a/x, b/y) and (a/z, b/w) are in $R \setminus D$ and

$$(qx/d, qy/d) = (qtx/dt, qty/dt) = (tx, ty) + (a, b) = [(x, y) + (z, w)] + (a, b)$$
$$= (x, y) + [(z, w) + (a, b)] = (x, y) + (qz/c, qw/c)$$
$$= (x, 1) [(1, 1) + (qz/cx, qw/cy)] (1, y)$$
$$= (x, 1) (qt/c, qt/c) (1, y) = (qtx/c, qty/c),$$

) that t = c/d and hence

$$(x, y) + (z, w) = (cx/d, cy/d) = \left(\left(\frac{d \lor c}{d} \right) x, \left(\frac{d \lor c}{d} \right) y \right).$$

Now suppose that there exists an (a, b) in L/D with $h(a, b) = \infty$. Note that if $\leq a$, $h(c, d) = \infty$, and $h(D(a, b) \cap B_P) = \{\infty\}$. Hence, if $h(L \setminus D) \neq \{\infty\}$, we may sume that there exists (p, x) in $L \setminus D$ such that $h(p, s) = q < \infty$ and $(p/a, s/b) \in R \setminus D$. hen h(q/p, q/s) = 1 and we may choose c > q, and let (z, w) = (qc/p, qc/s); then (z, w) = c and z > w. Now let (a, b) + (p, s) = (ha, hb) for some $h \ge 1$. Then

$$(ha, hb) + (z, w) = (ha, hb) + (w, w) + (z, w) = (ha, hb) + (w, w) = (ha, hb),$$

o that

$$(ha, hb) = (ha, hb) + (z, w) = [(a, b) + (p, s)] + (z, w) = (a, b) + [(p, s) + (z, w)]$$
$$= (a, b) + (cp/q, cs/q) = (hca/q, hcb/q),$$

b that c = q. But c was chosen larger than q, and hence, there is no such (p, s). 'hus, $h(L \setminus D) = \{\infty\}$, and $h(R \setminus D) = \{0\}$, which contradicts the assumption that *I* be a proper subset of R_1 and, hence, the range of h is contained in G, and the Martha O. Bertman

formula

$$(x, y) + (z, w) = \left(x\left(\frac{h(z, w) \lor h(x, y)}{h(x, y)}\right), y\left(\frac{h(z, w) \lor h(x, y)}{h(x, y)}\right)\right)$$

is valid for every pair (x, y), (z, w) in B_P with $(z/x, w/y) \in R \setminus D$.

(b) If P is cyclic, we put $P = \{1, x, x^2, ...\}$ for x > 1. Since U is a proper subset of R_1 , there is an N such that $(x^{N+1}, x^N) \in U$ but $(x^{N+2}, x^{N+1}) \notin U$. Then

$$(x^{N+2}, x^{N+1}) + (1, 1) = (x, x)$$

by (a). Now

$$(x^{2(N+1)}, x^{2N}) + (1, 1) = (x^{2(N+1)}, x^{2N}) + (x^{N+1}, x^N) + (1, 1)$$

= $(x^{N+1}, 1) [(x^{N+1}, x^N) + (1, 1)] (1, x^N) + (1, 1)$
= $(x^{N+1}, 1) (1, 1) (1, x^N) + (1, 1) = (x^{N+1}, x^N) + (1, 1)$
= $(1, 1)$

and by induction we can show that for every k, $(x^{k(N+1)}, x^{kN}) \in U$. On the other hand, we will show that for every k, $(x^{(N+1)k-N}, x^{Nk-(N-1)}) + (1, 1) = (x, x)$. This is true for k = 1 by the way N was selected. Now suppose that it is true for k < n. Then

$$\begin{aligned} (x^{(N+1)n-N}, x^{Nn-(N-1)}) + (1, 1) \\ &= (x^{(N+1)n-N}, x^{Nn-(N-1)}) + (x^{(N+1)(n-2)}, x^{N(n-2)}) + (1, 1) \\ &= (x^{(N+1)(n-2)}, 1) [(x^{N+2}, x^{N+1}) + (1, 1)] (1, x^{N(n-2)}) + (1, 1) \\ &= (x^{(N+1)(n-2)}, 1) (x, x) (1, x^{N(n-2)}) + (1, 1) \\ &= (x^{(N+1)(n-2)+1}, x^{N(n-2)+1}) + (1, 1) \\ &= (x^{(N+1)(n-1)-N}, x^{N(n-1)-(N-1)}) + (1, 1) = (x, x). \end{aligned}$$

It follows from this that $(a, b) \in U$ if and only if $a \leq b^{N/(N+1)}$. If we define $f: G \to (0, \infty)$ by $f(a) = a^{N/(N+1)}$ then since $\alpha = N/(N+1)$, by Example 3.2,

$$\beta(a,b) = \left(\frac{b}{a^{\alpha}}\right)^{1/(1-\alpha)} = \left(\frac{b}{a^{N/(N+1)}}\right)^{1-(N/N+1)} = \left(\frac{b}{a^{N/(N+1)}}\right)^{N+1} = \frac{b^{N+1}}{a^N},$$

and it is not hard to verify that this formula also gives h(a, b) and hence for every $(a, b) \in B_P$, $h(a, b) = \beta(a, b)$. We will show in (c) that $+ = +_f$.

We now assume P is dense in $[1, \infty)$. Let $x \in P$. Since $(1, 1) + (x, z) \neq (1, 1)$ for any $z \ge x$, the set $U_x = \{y \in P : (x, y) \in U\}$ is bounded above. We define $f : G \to (0, \infty)$ by

$$f(x) = \begin{cases} \sup U_x & \text{if } x \ge 1, \\ 1/f(1/x) & \text{if } x \le 1. \end{cases}$$

438

By Lemma 2.8(a), (c), f is a non-decreasing function. Let $x \in P$ and $x_n \to x$. Since f is non-decreasing $f(x_n)$ is bounded and hence has a convergent subsequence $[f(x_{n_i})]$, which converges to an element y of $[1, \infty)$. If y < f(x), let $z \in P$ such that v < z < f(x). Since $f(x_{n_i})$ is eventually strictly greater than $z, y \ge z$. Hence $y \ge f(x)$. Similarly, $y \le f(x)$ and so y = f(x), and it follows that $f(x_n) \to f(x)$, and thus that f is continuous on P. Since f, when restricted to $G \cap (0, 1]$, is the composition of inversions with $f|_P$, f is continuous on $G \cap (0, 1]$ and since f(1) = 1, f is continuous on G.

We remark that graph $(f) \cap B_P \subseteq U$; for suppose $(x, y) \in \text{graph}(f) \cap B_P$. Then $y = \sup\{z: (x, z) \in U\}$ and since U is closed, $(x, y) \in U$.

(c) For any element (x, y) of $R \setminus D$, let a = h(x, y). Then since

$$(1,1)+(x/a, y/a) = (1,1), y/a \leq f(x/a).$$

If k = f(x/a), suppose y/a < k; then since P is dense in $[1, \infty)$, there is a $p \in P$ such that $y/a and <math>(x/a, p) \in U$, which implies that $(px/y, p) \in U \cap D(x, y)$ (since px/y > x/a), contradicting (a). Hence, y/a = f(x/a). Suppose that graph(f) contains another point (x/b, y/b) of $D(x, y) \cap B_P$. We may assume that b > a. Then if a < c < b, since $(x/a, y/a) \in U$, $(x/c, y/c) \in U$ and so $y/c \leq f(x/c)$. Suppose y/c < f(x/c); then there exists $d \in P$ such that $(x/c, d) \in U$ and y/c < d < f(x/c). Hence $(x/b, dc/b) \in U$ and so $y/b < dc/b \leq f(x/b)$. This contradiction shows that if graph(f) contains two points of D(x, y), it contains all the points on a straight line between those two points. Now we show that (x/a, y/a) = (x/b, y/b). Let $x_n \rightarrow x/b$ from the left. Then $(x_n, f(x_n)) \rightarrow (x/b, y/b)$ and $(1, 1) + (bx_n/a, by_n/a) \rightarrow (1, 1) + (x/a, y/a) = (1, 1)$, but for every n, $(1, 1) + (bx_n/a, by_n/a) = (b/a, b/a)$. Thus, b/a = 1, and hence,

is the unique intersection point of D(x, y) and $\operatorname{graph}(f)$. This shows that $h \equiv \beta$ on $R \setminus D$ and since $h(x, x) = x = \beta(x, x)$ for every $x \in P$, $h \equiv \beta$ on R. Now if $(x, y) \in L \setminus D$ and h(x, y) = a, then h(y/x, 1) = 1/a and so $\beta(y/x, 1) = 1/a$ by what was just shown. Hence, a/y = f(a/x) and (a/x, a/y) is the unique intersection point of graph(f) and D(y/x, 1); it follows that y/a = f(x/a) and that (x/a, y/a) is the unique intersection of D(x, y) and graph(f), and so h agrees with β on L as well.

Now we wish to show that $+ = +_f as$ in Example 3.2. We may assume P is either dense or cyclic. Since $h = \beta$ and f is non-decreasing, it follows that h has the property proved for β in Example 3.2 (which only involved the monotonicity of f) that if w/y < z/x, then $x\beta(z, w) \le z\beta(x, y)$, $y\beta(z, w) \le w\beta(x, y)$ and $p \ge q$ if $y \ge w$. If we let

$$k = \left(\frac{x\beta(z,w) \wedge z\beta(x,y)}{\beta(x,y) \wedge \beta(z,w)}, \frac{y\beta(z,w) \wedge w\beta(x,y)}{\beta(x,y) \wedge \beta(z,w)}\right),$$

then if $x \leq z$, $y \leq w$ and w/y < z/x, we have

$$k = \left(\frac{x(\beta(x, y) \lor \beta(z, w))}{\beta(x, y)}, \frac{y(\beta(x, y) \lor \beta(z, w))}{\beta(x, y)}\right),$$

which equals (x, y)+(z, w) by the formula derived in (c). Similarly, if $x \le z$, $y \le w$ and $w/y \ge z/x$, then $\beta(x, y) \le \beta(z, w)$, $x\beta(z, w) \ge z\beta(x, y)$ and $y\beta(z, w) \ge w\beta(x, y)$ and so k = (z, w) which equals (x, y)+(z, w) by Remark 2.6. Finally, if $x \le z$ and $y \ge w$, then

$$\beta(x, y) \ge \beta(z, w)$$

and since

$$x/z \leq 1 \leq y/w, \quad x\beta(z,w) \leq z\beta(x,y) \text{ and } y\beta(z,w) \leq w\beta(x,y)$$

So k = (x, y), which, again by Remark 2.6, is equal to (x, y) + (z, w). This shows that $+ = +_t$ as in Example 3.2.

We now show that f is a homomorphism. We assume first that (x, y) and (z, w) are two elements of $R \setminus D$ with y = f(x) and w = f(z). Without loss of generality, suppose $w/z \ge y/x$. Then $\beta(z/w, 1) = 1/w$, and if p is any element of $P \setminus \{1\}$, $\beta(px, py) = p$. Now

$$(zp/w,p) = (z/w,1)(p,p) = (z/w,1)[(1,1)+(px,py)] = (z/w,1)+(zpx/w,py)$$
$$= \left(\frac{zr/w}{r\wedge(1/w)}, \frac{r}{r\wedge(1/w)}\right)$$

(by the calculations used in Example 3.2 for proving associativity), where $r = \beta(zpx/w), py$). Hence, $r/(r \land (1/w)) = p$ and since p > 1, $r \land (1, w) \neq r$ and so p = rw. Hence, yw = py/(p/w) = py/r = f(zpx/wr) = f(xz) and hence f is a homomorphism when restricted to $f^{-1}(P)$. Now suppose that z < 1 and $w = f(z) \in G \cap (0, 1]$. Then if (x, y) is as above, $w/z \ge y/x$, $\beta(1, w/z) = 1/z$, and if $r = \beta(px, pyw/z)$ where p > 1, we have

$$(p, wp/z) = (1, w/z) + (px, pyw/z) = \left(\frac{r}{r \wedge (1/z)}, \frac{wr}{r \wedge (1/z)}\right).$$

Hence p = rz and yw = pyw/rz = f(xp/r) = f(zxp/rz) = f(xz). Since for x < 1, f(x) = 1/f(1/x), we easily see that if both x and z are in $G \cap (0, 1]$ then f(xz) = f(x)f(z) and so f is a homomorphism on $f^{-1}(G)$. Now suppose $x \in G$ and $y = f(x) \in (0, \infty)$. Let $\{d_n\}_{n=1}^{\infty}$ be a sequence converging to x/y; then if $p_n = \beta(d_n, 1)$, it follows that $(d_n/p_n, 1/p) \to (x, y)$. Now if w = f(z) and y = f(x) where x and z are in G, let $x_n \to x$, $z_n \to z$, $y_n = f(x_n)$ and $w_n = f(z_n)$. Then $y_n w_n \to yw$; but $y_n w_n = f(x_n z_n) \to f(xz)$. Hence, f is a homomorphism on all of G. This completes the proof of Theorem 3.4.

440

References

- A. H. Clifford and G. B. Preston (1961), *The Algebraic Theory of Semigroups* (Amer. Math. Soc. Math. Surveys No. 7, Vol. I, Providence, R.I.).
- C. Eberhart and J. Selden (1972), "One-parameter inverse semigroups", Trans. Amer. Math. Soc. 168, 53-66.
- K. R. Pearson (1966), "Interval semirings on R₁ with ordinary multiplication", J. Austral. Math. Soc. 6, 273–282.

Department of Mathematics Clarkson College Potsdam, New York 13676 U.S.A.