BICYCLIC SEMIRINGS

MARTHA O. BERTMAN

(Received 4 February 1975; revised 2 November 1976 and 22 November 1977)
Communicated by T. E. Hall

Abstract

Let B_{P} be the bicyclic semigroup over $P=G \cap[1, \infty)$ where G is a subgroup of the multiplicative group of positive real numbers. If + is an addition which makes B_{P}, with its usual multiplication, into a semiring, then + is idempotent, and P is embedded as a sub-semiring in B_{P}, and for each x in $P, 1 \leqslant x+1 \leqslant x$ and $1 \leqslant 1+x \leqslant x$. We show that any idempotent addition on P with these inequalities holding is max, min or trivial. The trivial addition on P extends trivially. If addition on P is \min, then let $$
\begin{aligned} U & =\left\{(x, y) \in B_{P}:(x, y)+(1,1)=(1,1)\right\}, \\ U^{\prime} & =\left\{(x, y) \in B_{P}:(1,1)+(x, y)=(1,1)\right\}, \end{aligned}
$$ and $$
R_{1}=\left\{(x, y) \in B_{P}: x>y \text { or } x=1=y\right\}
$$

We characterize all additions on B_{P} in terms of U and U^{\prime}; and, in particular, if $U=U^{\prime}$ is a proper subset of R_{1}, we demonstrate a correspondence between all such additions and certain homomorphisms of G to $(0, \infty)$.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 16 A 80; secondary 22 A 15.
Keywords: topological semirings, bicyclic semigroup, inverse semigroup.

1. Introduction

Let G be a subgroup of the positive real numbers under ordinary multiplication, and let $P=P(G)=G \cap[1, \infty)$. Let $B_{P}=P \times P$ together with this multiplication:

$$
(x, y)(z, w)=\left(\frac{x z}{y \wedge z}, \frac{y w}{y \wedge z}\right)
$$

where $y \wedge z=\min (y, z)$. If $P=\left\{1, x, x^{2}, \ldots\right\}$, where $x>1$, then B_{P} is the bicyclic
semigroup, whose structure is well known (see, for example, Clifford and Preston (1961)).

An inverse semigroup is a semigroup S with the property that for any x in S there is a unique element x^{-1} in S such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. The bicyclic semigroup is such a semigroup, and so is B_{P} for any P defined as above.

A (topological) semiring is a non-empty Hausdorff space T together with two continuous associative binary operations, + and \cdot, such that for any x, y and z in T,

$$
z \cdot(x+y)=(z \cdot x)+(z \cdot y) \text { and }(x+y) \cdot z=(x \cdot z)+(y \cdot z)
$$

If T has the additional property that T is multiplicatively a topological inverse semigroup (one in which the inversion operation as well as the multiplication is continuous), then we define T to be an inverse semiring.

In this paper we describe the additions which may be placed on B_{P} so that, together with the given multiplication and the product topology, B_{P} becomes an inverse semiring, which we will call a bicyclic semiring.

In Section 2, we show that any semiring addition on B_{P} is idempotent; that is, for any (x, y) in $B_{P},(x, y)+(x, y)=(x, y)$. We also show that P is embedded in B_{P} as a subsemiring, and furthermore that on P, for any $x, 1 \leqslant x+1 \leqslant x$ and $1 \leqslant 1+x \leqslant x$. For this reason we study in Section 1 those idempotent additions on P which have this property, and show that there are only four possibilities:
(i) $x+y=x$ for each x, y in P (left trivial addition);
(ii) $x+y=y$ for each x, y in P (right trivial addition);
(iii) $x+y=x \wedge y$ for each x, y in P (min addition);
(iv) $x+y=x \vee y$ for each x, y in P (max addition).

This generalizes the result of Pearson (1966) for the case $P=[1, \infty)$.
Section 3 is devoted to a characterization of those additions on B_{P} which, when restricted to $P \times\{1\}$, are min , and have the property that the set

$$
U=\left\{(x, y) \in B_{P}:(x, y)+(1,1)=(1,1)\right\}
$$

is properly contained in

$$
R_{1}=\left\{(x, y) \in B_{P}: x>y \text { or } x=1=y\right\} .
$$

We show that each such addition corresponds to a homomorphism $f: G \rightarrow(0, \infty)$ such that graph $\left(f_{P}\right) \subseteq R_{1}$ and for each (x, y) in B_{P}, graph (f) meets

$$
D(x, y)=\{(a x, a y): a>0\}
$$

in a unique point of $G \times G$. We point out that if addition is max on $P \times\{1\}$, the situation is symmetrical. All other cases, including the trivial, are discussed in Section 2.

The author would like to thank the referee for many helpful suggestions; in particular, Lemma 1.2 and its use in proving Lemma 1.3 were pointed out by the referee.

1. Idempotent additions on P

In this section we examine idempotent additions on P. We first remark that since G is either a cyclic subgroup of $(0, \infty)$ or dense in $(0, \infty)$, it follows that P is either a cyclic subsemigroup of $[1, \infty)$ or dense in $[1, \infty)$.

Lemma 1.1. Let $(R, \cdot,+)$ be a semiring with an additively idempotent multiplicative identity 1. Then
(a) $(R,+)$ is idempotent.
(b) The sets $S=\{y \in R: y+1=y\}, S^{\prime}=\{y \in R: 1+y=y\}, U=\{y \in R: y+1=1\}$, and $U^{\prime}=\{y \in R: 1+y=1\}$ are closed subsemirings of R.

Proof. (a) If $x \in R, x+x=x(1+1)=x(1)=x$.
(b) It is almost immediate that all these sets are closed additive subsemigroups of R, and that 1 is an element of each. Now let x and y be elements of S. Then $x y+1=x(y+1)+1=x y+x+1=x y+x=x(y+1)=x y$, so $x y \in S$. Similarly, S^{\prime} is multiplicatively closed. If x and y are in U, then

$$
x y+1=x y+y+1=(x+1) y+1=y+1=1
$$

so $x y \in U$; similarly U^{\prime} is multiplicatively closed.

We now wish to describe the idempotent additions on P with the property that $1 \leqslant x+1 \leqslant x$ and $1 \leqslant 1+x \leqslant x$ for all x. First we need a lemma.

Lemma 1.2. Let T be a subsemigroup of $([0, \infty),+)$, and let Q be a subsemigroup of T such that 0 is a limit point of Q. Then $T=Q^{*}$, the closure of Q in T.

Proof. Let x be an element of T and let $0<\varepsilon<x$. Then there is a positive integer N such that $n \geqslant N$ implies that $(2 n+1) \varepsilon>x$. Hence, $n \varepsilon>x-(n+1) \varepsilon$ and so $n(x+\varepsilon)>(n+1)(x-\varepsilon)$, so that $(x+\varepsilon) /(n+1)>(x-\varepsilon) / n$. Thus,

$$
\bigcup_{n \geqslant N}\left(\frac{x-\varepsilon}{n}, \frac{x+\varepsilon}{n}\right)=\frac{(0, x+\varepsilon)}{N}
$$

Now since 0 is a limit point of Q, there exists some s in $Q \cap(0,(x+\varepsilon) / N)$ and so $s \in((x-\varepsilon) / n,(x+\varepsilon) / n)$ for some $n \geqslant N$. Hence, $n s \in Q \cap(x-\varepsilon, x+\varepsilon)$ and so $Q \cap(x-\varepsilon, x+\varepsilon) \neq \varnothing$. This shows that $x \in Q^{*}$ and so $T=Q^{*}$.

Now since $([0, \infty),+$) is isomorphic to $([1, \infty), \cdot)$ this lemma shows that for any subsemigroup P of $([1, \infty), \cdot)$ and subsemigroup Q of P having 1 as a limit point, we have $Q^{*}=P$.

Lemma 1.3. Let P be dense in $[1, \infty)$, and let + be a semiring addition on P with the property that for any x in $P, 1 \leqslant x+1 \leqslant x$ and $1 \leqslant 1+x \leqslant x$. Then either $P=S$ or $P=U$. Also, either $P=S^{\prime}$ or $P=U^{\prime}$.

Proof. If there is some x in P with $[1, x] \subseteq U$, then $P=\bigcup_{n \geqslant 0}\left[x^{n}, x^{n+1}\right] \subseteq U$ so $U=P$. Hence, if $U \neq P$, then for each $x>1$, there is a y in $(1, x)$ with $y \notin U$. If $y \in S$ then $(1, x) \cap S \neq \varnothing$. If $y \notin S$, then $1<y+1<y$ so $y+1 \in(1, x)$. Moreover, $(y+1)+1=y+(1+1)=y+1$ and so $y+1 \in S$. Hence, in this case also, $(1, x) \cap S \neq \varnothing$. Thus $(1, x) \cap S \neq \varnothing$ for any $x>1$ so 1 is a limit point of S. The above lemma shows $S^{*}=P$, and since S is closed, $S=P$.

We now prove a similar result for the case when P is cyclic. In this case, we are able to drop the hypothesis that $1 \leqslant x+1 \leqslant x$ and $1 \leqslant 1+x \leqslant x$. We first need the following technical lemma.

Lemma 1.4. Let $P=G \cap[1, \infty)$ for any subgroup G of $(0, \infty)$, and let + be an idempotent semiring addition on P. Let $x \in P$, and let $y=1+x$. If $y>x$, then
(a) $y / x+1=y / x$, and hence $y^{n} / x^{n}+1=y^{n} / x^{n}$ for every positive integer n;
(b) $y^{n} / x^{n}+x=y^{n+1} / x^{n}$ for every positive integer n;
(c) for every positive integer n and for each $p \leqslant n$ such that $y^{p}>x^{n}$, $y^{p} / x^{n}+1=y^{n} / x^{n}$.

Proof. (a) $x(y / x+1)=y+x=1+x+x=1+x=y$ and so by cancellation, $y / x+1=y / x$. Since S is a multiplicative semigroup, $(y / x)^{n}+1=(y / x)^{n}$ for every n.
(b) For $n=1, y / x+x=y / x+1+x=y / x+y=(y / x)(1+x)=(y / x) y=y^{2} / x$. Now suppose that $y^{n-1} / x^{n-1}+x=y^{n} / x^{n-1}$. Then

$$
\begin{aligned}
y^{n} / x^{n}+x & =y^{n} / x^{n}+1+x=y^{n} / x^{n}+y=(y / x)\left(y^{n-1} / x^{n-1}+x\right) \\
& =(y / x)\left(y^{n} / x^{n-1}\right)=y^{n+1} / x^{n}
\end{aligned}
$$

(c) Let $p=n-i$. The statement that $y^{n-i} / x^{n}+1=y^{n} / x^{n}$ is true for $i=0$ by (a). Now suppose that $y^{n-(i-1)}>x^{n}$ and that $\left(y^{n-(i-1)} / x^{n}\right)+1=y^{n} / x^{n}$. Then $y^{n-i}>x^{n}$, we have

$$
\begin{aligned}
y\left[\left(y^{n-i} / x^{n}\right)+1\right] & =\left(y^{n-(i-1)} / x^{n}\right)+y=\left(y^{n-(i-1)} / x^{n}\right)+1+y \\
& =y^{n} / x^{n}+1+x=y^{n} / x^{n}+x=y^{n+1} / x^{n}=y\left(y^{n} / x^{n}\right)
\end{aligned}
$$

and so

$$
y^{n-i} / x^{n}+1=y^{n} / x^{n} .
$$

Lemma 1.5. Let P be cyclic, and let + be an idempotent semiring addition on P. If S, U, S^{\prime} and U^{\prime} are defined as in Lemma 1.1, then $P=S$ or $P=U$; and similarly, $P=S^{\prime}$ or $P=U^{\prime}$.

Proof. We show the lemma for S^{\prime} and U^{\prime}. Since S^{\prime} and U^{\prime} are multiplicative semigroups, it is enough to show that $1+x=1$ or $1+x=x$ where x is the generator of P. Suppose that $1+x=y=x^{m}$ for some integer $m>1$, and that $x+1=x^{n}$ for some integer $n \geqslant 0$. Then

$$
\begin{aligned}
x^{n}=x+1 & \left.=\left(x^{m} / x^{m-1}\right)+1=\left(y / x^{m-1}\right)+1=\left(y^{m-1} / x^{m-1}\right)+1 \quad \text { (by Lemma 1.4(c) }\right) \\
& =y^{m-1} / x^{m-1} \quad(\text { by Lemma } 1.4(\mathrm{a}))=x^{m(m-1)-(m-1)}=x^{(m-1)^{2}}
\end{aligned}
$$

and hence $n=(m-1)^{2}$. Now since

$$
\begin{aligned}
\left(y^{2} / x^{2}\right)\left(1+x^{2}\right) & =y^{2} / x^{2}+y^{2}=y\left(y / x^{2}+y\right)=y\left(y / x^{2}+1+y\right) \\
& =y\left(y^{2} / x^{2}+y\right)=y^{2}\left(y / x^{2}+1\right)=y^{2}\left(y^{2} / x^{2}\right)
\end{aligned}
$$

we have $1+x^{2}=y^{2}$, and similarly, $x^{2}+1=\left(x^{n}\right)^{2}=x^{2 n}$. But

$$
x^{2}+1=y / x^{m-2}+1=y^{m-2} / x^{m-2}=x^{m(m-2)} / x^{m-2}=x^{(m-1)(m-2)}
$$

and hence $2 n=(m-1)(m-2)$ and so $2(m-1)^{2}=(m-1)(m-2)$. Solving this quadratic equation gives $m=0$ or $m=$, contradicting the assumption that $m>1$. Thus m is either 0 or 1 . Similarly, $n=0$ or $n=1$.

Theorem 1.6. If P is $G \cap[1, \infty)$ where G is any subgroup of $[0, \infty)$, and if + is a semiring addition with the property that for every x in $P, 1 \leqslant x+1 \leqslant x$ and $1 \leqslant 1+x \leqslant x$, then one of the following describes the addition:
(a) for each x, y in $P, x+y=x$;
(b) for each x, y in $P, x+y=y$;
(c) for each x, y in $P, x+y=x \vee y$;
(d) for each x, y in $P, x+y=x \wedge y$.

Proof. Lemmas 1.3 and 1.5 show that exactly one of the following is true for every x in P :
(i) $x+1=x$ and $1+x=1$;
(ii) $x+1=1$ and $1+x=x$;
(iii) $x+1=1+x=x$;
(iv) $x+1=1+x=1$.

If (i) is true, then for each x and y in P,

$$
x+y=(x+1)+y=x+(1+y)=x+1=x
$$

and similarly, if (ii) is true, then for each x, y in P,

$$
x+y=y
$$

If (iii) is true, and if $x<y$, then

$$
x+y=x(1+y / x)=x(y / x)=y
$$

while if $x>y$, then

$$
x+y=(x / y+1) y=(x / y) y=x
$$

and so in either case $x+y=x \vee y$. Similarly, if (iv) is true then

$$
x+y=x \wedge y
$$

Remark 1.7. We conjecture that the hypothesis $1 \leqslant x+1 \leqslant x$ and $1 \leqslant 1+x \leqslant x$ may be omitted from the dense case for P. The work of Pearson (1966) and Lemma 1.5 above show that it may be omitted if $P=[1, \infty)$ or if P is cyclic.

2. Additions on B_{P} with $U \supseteq R_{1}$

In this section we first show that all semiring additions on B_{P} are idempotent and that the subset $P \times\{1\}$ is a subsemiring isomorphic to P and that for each x in $P, 1 \leqslant 1+x \leqslant x$ and $1 \leqslant x+1 \leqslant x$. Thus, Theorem 1.6 applies and $P \times\{1\}$ is additively max, min or trivial. We show immediately that the trivial addition on $P \times\{1\}$ can only extend trivially and assume that $P \times\{1\}$ has the min addition. In this case, we show that the set $\left\{(x, y) \in B_{P} ; x<y\right\}$ is contained in both S and S^{\prime}, where these are defined for B_{P} as in Lemma 1.1, and we describe the additions in which U contains the set $\left\{(x, y) \in B_{P}: x>y\right.$ or $\left.x=y=1\right\}$.

We remark for the reader that $(1,1)$ is a multiplicative identity for B_{P}, and that for each element (x, y) of $B_{P},(x, y)^{-1}=(y, x)$. The multiplicative idempotents are precisely the diagonal elements $\{(x, x)\}$.

Lemma 2.1. If + is a semiring addition on B_{P}, then B_{P} is additively idempotent.
Proof. Since $(1,1)$ is a multiplicative identity for B_{P}, then Lemma 1.1 implies that it is sufficient to show $(1,1)$ is an additive idempotent. Let $(e, f)=(1,1)+(1,1)$. If $x>1$, we have

$$
\begin{aligned}
(x e / x \wedge e, x f / x \wedge e) & =(x, x)(e, f)=(x, x)[(1,1)+(1,1)]=(x, x)+(x, x) \\
& =(x, 1)[(1,1)+(1,1)](1, x)=(x, 1)(e, f)(1, x) \\
& =(x e, f)(1, x)=(x e, f x) .
\end{aligned}
$$

Thus, $x \wedge e=1$. Similarly, $(x e, f x)=(e, f)(x, x)=(e x / f \wedge x, f x / f \wedge x)$ and so

$$
f \wedge x=1=e \wedge x
$$

Now since $x>1, e=1=f$ and so $(1,1)+(1,1)=(1,1)$.

Lemma 2.2. Let $x>1$ be an element of P. Then there exists $a \in P$ such that $a \leqslant x$ and $(x, 1)+(1,1)=(a, 1)$, and there exists $b \in P$ with $b \leqslant x$ such that

$$
(1,1)+(x, 1)=(b, 1)
$$

Furthermore, $(1,1)+(1, x)=(1, x / a)$ and $(1, x)+(1,1)=(1, x / b)$.

Proof. We prove the assertion for a and x / a; the proof for b and x / b is similar. Let $(x, 1)+(1,1)=(a, c)$. Then

$$
\begin{aligned}
(x a, x c) & =(x a, c)(1, x)=(x, 1)(a, c)(1, x)=(x, 1)[(x, 1)+(1,1)](1, x) \\
& =\left[\left(x^{2}, 1\right)+(x, 1)\right](1, x)=\left(x^{2}, x\right)+(x, x)=[(x, 1)+(1,1)](x, x) \\
& =(a, c)(x, x)=(a x / c \wedge x, c x / c \wedge x) .
\end{aligned}
$$

Thus, $c \wedge x=1$; but $x>1$ and so $c=1$. Now let $(1,1)+(1, x)=(1, s)$. Then since $(a / a \wedge x, x / a \wedge x)=(1, x)(a, 1)=(1, x)[(x, 1)+(1,1)]=(1,1)+(1, x)=(1, s)$, we have $a=a \wedge x$ and hence $s=x / a$.

The following is now immediate, using Lemma 2.2 and Theorem 1.6.

Theorem 2.3. $P \times\{1\}$ is a subsemiring of B_{P} which is multiplicatively isomorphic to P, and hence the addition on $P \times\{1\}$ is either trivial, max or min.

We dispose of the trivial addition at once.

Theorem 2.4. If + is a semiring addition on B_{P} which is trivial when restricted to $P \times\{1\}$, then + is trivial on B_{P}.

Proof. Suppose + is left trivial on $P \times\{1\}$. Then for any x in P,

$$
(x, 1)+(1,1)=(x, 1) \text { and }(1,1)+(x, 1)=(1,1)
$$

and so the a of Lemma 2.2 is x and the b is 1 , and hence $(1,1)+(1, x)=(1,1)$ and $(1, x)+(1,1)=(1, x)$. Thus, for any (x, y) and (z, w) in B_{P},

$$
\begin{aligned}
(x, y)+(z, w) & =[(x, y)+(z, y)]+(z, w)=(x, y)+[(z, y)+(z, w)] \\
& =(x, y)+(z, y)=(x, y)
\end{aligned}
$$

Hence, the addition on B_{P} is left trivial. The situation is symmetrical for the right trivial addition.

In the remainder of this section, we assume that addition on $P \times\{1\}$ is min; in this case we will see that addition on $\{1\} \times P$ is max; it is easy to show that the case where addition on $P \times\{1\}$ is max is completely symmetrical.

Lemma 2.5. Suppose addition restricted to $P \times\{1\}$ is min, and let $(x, y) \in B_{P}$.
(a) If $(z, w) \in B_{P}$ with $x \leqslant z$ and $y \geqslant w$, then $(x, y)+(z, w)=(x, y)=(z, w)+(x, y)$.
(b) If $x<y$, then $(x, y)+(1,1)=(x, y)=(1,1)+(x, y)$.
(c) If $x \geqslant y$, then there exist a and b in P with $a \leqslant y$ and $b \leqslant y$ such that

$$
(x, y)+(1,1)=(a, a) \quad \text { and } \quad(1,1)+(x, y)=(b, b)
$$

Proof. (a) Since $(x, 1)+(1,1)=(1,1)=(1,1)+(x, 1)$, the a and b of Lemma 2.2 are 1 , so that $(1, x)+(1,1)=(1,1)+(1, x)=(1, x)$ and hence for every x and y in P,

$$
\begin{aligned}
(1, x)+(1, y) & =(1, x \vee y) \text { and } \\
(x, 1)+(1, y) & =(x, 1)+[(1,1)+(1, y)]=[(x, 1)+(1,1)]+(1, y) \\
& =(1,1)+(1, y)=(1, y)
\end{aligned}
$$

Thus, if $x \leqslant z$ and $y \geqslant w$,

$$
\begin{aligned}
(x, y)+(z, w) & =[(x, y)+(z, y)]+(z, w)=(x, y)+[(z, y)+(z, w)] \\
& =(x, y)+(z, y)=(x, y)
\end{aligned}
$$

(b) and (c) are proved as follows. Let $(x, y)+(1,1)=(a, c)$. Then
$(a x / c \wedge x, c x / c \wedge x)=(a, c)(x, x)=[(x, y)+(1,1)](x, x)=\left(x^{2} / x \wedge y, x y / x \wedge y\right)+(x, x)$, which equals (x, y) if $x<y$ and (x, x) if $x \geqslant y$. Thus, if $x<y$, then $a x / c \wedge x=x$ and $c x / c \wedge x=y$ and so $a=c \wedge x$. If $a=c$, then $x=y$; but $x<y$ and so $a=x$ and hence $c=y$. If $x \geqslant y$, then $a x / c \wedge x=x$ and $c x / c \wedge x=x$ and so $a=c \leqslant x$. Premultiplying (a, c) by (y, y), we find that if $x \geqslant y$, then $a \leqslant y$. This completes the proof of the lemma.

We now introduce some notation which will be referred to throughout the rest of this paper. Let
$L=\left\{(x, y) \in B_{P}: x \leqslant y\right\}, \quad R=\left\{(x, y) \in B_{P}: x \geqslant y\right\}$ and $D=L \cap R=\{(x, x): x \in P\}$.

As in Lemma 1.1,

$$
\begin{aligned}
U & =\left\{(x, y) \in B_{P}:(x, y)+(1,1)=(1,1)\right\} \\
U^{\prime} & =\left\{(x, y) \in B_{P}:(1,1)+(x, y)=(1,1)\right\} \\
S & =\left\{(x, y) \in B_{P}:(x, y)+(1,1)=(x, y)\right\}
\end{aligned}
$$

and

$$
S^{\prime}=\left\{(x, y) \in B_{P}:(1,1)+(x, y)=(x, y)\right\} .
$$

Finally, for (x, y) in B_{P}, let $D(x, y)=\{(a x, a y): a>0\}$, and let $R_{1}=(R \backslash D) \cup\{(1,1)\}$.
Remark 2.6. If (x, y) and (z, w) are two elements of B_{P}, assume $x \leqslant z$. Then one and only one of the following statements is true:
(a) $y \geqslant w$;
(b) $y<w$ and $z / x<w / y$;
(c) $y<w$ and $z / x \geqslant w / y$.

In case $(\mathrm{a}),(x, y)+(z, w)=(x, y)=(z, w)+(x, y)$ by Lemma 2.5. If either (b) or (c) is true, then $(x, y)+(z, w)=(x, 1)[(1,1)+(z / x, w / y)](1, y)$. Hence, in case (b), $(x, y)+(z, w)=(z, w)=(z, w)+(x, y)$, by Lemma 2.5, and it is evident that a complete description of the addition on B_{P} depends on a description of addition by (1,1) on the subset R of B_{P}. We have the following partial result: if (x, y) and (z, w) are elements of B_{P} with neither $(x / z, y / w)$ nor $(z / x, w / y)$ in R, then

$$
(x, y)+(z, w)=\left(\frac{x w \wedge y z}{y \wedge w}, y \vee w\right) .
$$

We now examine the diagonal D of B_{P}. If P is dense in $[1, \infty)$, then since $L \backslash D \subseteq S \cap S^{\prime}$ by Lemma 2.5 and $D \subseteq L^{*}$, we have $D \subseteq S \cap S^{\prime}$ by Lemma 1.1, and hence $L=S=S^{\prime}$. Section 3 will be devoted to characterizing semiring additions on B_{P} such that $D \subseteq S \cap S^{\prime}$ and U is a proper subset of R_{1}.

If $P=\left\{1, x, x^{2}, \ldots\right\}$ for $x>1$, then by Lemma 2.5 , either $(1,1)+(x, x)=(1,1)$ or $(1,1)+(x, x)=(x, x)$, and similarly for $(x, x)+(1,1)$. Now if $(1,1)+(x, x)=(1,1)$, suppose that for $1 \leqslant k<n,(1,1)+\left(x^{k}, x^{k}\right)=(1,1)$. Then

$$
\begin{aligned}
(1,1)+\left(x^{n}, x^{n}\right) & =\left[(1,1)+\left(x^{n-1}, x^{n-1}\right)\right]+\left(x^{n}, x^{n}\right) \\
& =(1,1)+\left[\left(x^{n-1}, x^{n-1}\right)+\left(x^{n}, x^{n}\right)\right] \\
& =(1,1)+\left(x^{n-1}, 1\right)[(1,1)+(x, x)]\left(1, x^{n-1}\right) \\
& =(1,1)+\left(x^{n-1}, x^{n-1}\right)=(1,1)
\end{aligned}
$$

Hence $D \subseteq U^{\prime}$. If $(1,1)+(x, x)=(x, x)$ then suppose that for $1 \leqslant k<n$,

$$
(1,1)+\left(x^{k}, x^{k}\right)=\left(x^{k}, x^{k}\right)
$$

Then

$$
\begin{aligned}
(1,1)+\left(x^{n}, x^{n}\right) & =(1,1)+\left(x^{n-1}, 1\right)(x, x)\left(1, x^{n-1}\right) \\
& =(1,1)+\left(x^{n-1}, 1\right)[(1,1)+(x, x)]\left(1, x^{n-1}\right) \\
& =(1,1)+\left(x^{n-1}, x^{n-1}\right)+\left(x^{n}, x^{n}\right) \\
& =\left(x^{n-1}, x^{n-1}\right)+\left(x^{n}, x^{n}\right) \\
& =\left(x^{n-1}, 1\right)[(1,1)+(x, x)]\left(1, x^{n-1}\right)=\left(x^{n}, x^{n}\right)
\end{aligned}
$$

and hence by induction $D \subseteq S^{\prime}$. Similar manipulations hold for U and S. We summarize this discussion as follows.

Theorem 2.7. Suppose + is a semiring addition on B_{P}.
(a) Either $D \subseteq U$ or $D \subseteq S$; also $D \subseteq U^{\prime}$ or $D \subseteq S^{\prime}$.
(b) If P is dense in $[1, \infty)$, then $D \subseteq S \cap S^{\prime}$.

Lemma 2.8. Suppose + is min on $P \times\{1\}$.
(a) If $(x, y) \in U$ (respectively, $\left.U^{\prime}\right)$ and $z \geqslant x$, then $(z, y) \in U$ (respectively, $\left.U^{\prime}\right)$.
(b) If $D \subseteq S$ (respectively, $D \subseteq S^{\prime}$) and $a \geqslant 1$, then for every (x, y) in B_{P}, $(a x, a y)+(x, y)=(a x, a y)(r e s p e c t i v e l y,(x, y)+(a x, a y)=(a x, a y))$.
(c) If $D \subseteq S$ (respectively, $\left.D \subseteq S^{\prime}\right)$, and if $(x, y) \in U^{\prime}($ respectively, $U)$ and $1 \leqslant a \leqslant y$, then $(x / a, y / a) \in U^{\prime}$ (respectively, U).
(d) If $D \subseteq S \cap S^{\prime}$ or $D \subseteq U \cap U^{\prime}$, then + is abelian.

Proof. (a) If $(x, y) \in U$ and $z \geqslant x$, then

$$
\begin{aligned}
(z, y)+(1,1) & =(z, y)+[(x, y)+(1,1)]=[(z, y)+(x, y)]+(1,1) \\
& =(x, y)+(1,1)=(1,1)
\end{aligned}
$$

and so $(z, y) \in U$.
(b) Let $D \subseteq S$ and $a>1$. Then

$$
(a x, a y)+(x, y)=(x, 1)[(a, a)+(1,1)](1, y)=(x, 1)(a, a)(1, y)=(a x, a y)
$$

(c) Let $D \subseteq S,(x, y) \in U^{\prime}$ and $1 \leqslant a \leqslant y<x$. Then
$(1,1)+(x / a, y / a)=(1,1)+(x, y)+(x / a, y / a)=(1,1)+(x, y) \quad(b y(b))=(1,1)$
and so $(x / a, y / a) \in U^{\prime}$.
(d) To see that + is abelian, it is enough by Remark 2.6 to show that $(1,1)$ commutes additively with each element (x, y) of R. This is obvious if $D \subseteq U \cap U^{\prime}$. If $D \subseteq S \cap S^{\prime}$, let $(a, a)=(1,1)+(x, y)$ and $(b, b)=(x, y)+(1,1)$ as in Lemma 2.5. Then

$$
\begin{aligned}
(b, b) & =(1,1)+(b, b)=(1,1)+[(x, y)+(1,1)]=[(1,1)+(x, y)]+(1,1) \\
& =(a, a)+(1,1)=(a, a)
\end{aligned}
$$

Lemma 2.9. Let + be a semiring addition on B_{P} which is min on $P \times\{1\}$. If $D \subseteq \mathrm{U}^{\prime}$ (respectively, $D \subseteq U$), then $R \backslash D \subseteq U$ (respectively, $R \backslash D \subseteq U^{\prime}$).

Proof. Suppose $D \subseteq U^{\prime}$; then $R=U^{\prime}$ by Lemma 2.8(a). Suppose that $R \backslash D$ is not contained in U. Then $D \subseteq S$ by Theorem 2.7 and there exist x and y such that $x>y$ with $(x, y)+(1,1)=(a, a)$ for some $a>1$. Then

$$
\begin{aligned}
(a x, a y)+(1,1) & =[(a x, a y)+(x, y)]+(1,1) \quad(\text { by Lemma } 2.8(b)) \\
& =(a x, a y)+[(x, y)+(1,1)]=(a x, a y)+(a, a) \\
& =(a, 1)[(x, y)+(1,1)](1, a)=\left(a^{2}, a^{2}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(a, a) & =(x, y)+(1,1)=(x, 1)[(1,1)+(a, a)](1, y)+(1,1) \\
& =(x, y)+(a x, a y)+(1,1)=(x, y)+\left(a^{2}, a^{2}\right)
\end{aligned}
$$

which by Lemma 2.5 equals $\left(a^{2}, a^{2}\right)$ if $y \leqslant a^{2}$ and equals $\left(a^{2} b, a^{2} b\right)$ for some $b \geqslant 1$ if $y>a^{2}$. This contradiction implies that $R \backslash D \subseteq U$. Similarly, if $D \subseteq U$, then $R \backslash D \subseteq U^{\prime}$. If $D \subseteq U \cap U^{\prime}$, then $R=U=U^{\prime}$.

Theorem 2.10. Let + be a semiring addition on B_{P} which is min on $P \times\{1\}$.
(a) One of the following is true:
(i) $U=U^{\prime}=R$.
(ii) $U=R$ and $U^{\prime}=R_{1}$.
(iii) $U^{\prime}=R$ and $U=R_{1}$.
(iv) $U=U^{\prime}=R_{1}$.
(v) $U=U^{\prime}$ is a proper subset of R_{1}.
(b) In cases (i-iv), for (x, y) and ($z, w)$ in B_{P},

$$
(x, y)+(z, w)= \begin{cases}(x \wedge z, y \wedge w) \quad \text { if }(x / z, y / w) \in U \quad \text { or }(z / x, w / y) \in U^{\prime} \\ \left(\frac{x w \wedge y z}{y \wedge w}, y \vee w\right) \quad \text { otherwise } .\end{cases}
$$

If + is max on $P \times\{1\}$, then U and U^{\prime} are subsets of L, and for (x, y) and (z, w) in B_{P},

$$
(x, y)+(z, w)= \begin{cases}(x \wedge z, y \wedge w) \quad \text { if }(x / z, y / w) \in U \quad \text { or }(z / x, w / y) \in U^{\prime} \\ \left(x \vee z, \frac{x w \wedge y z}{x \wedge z}\right) & \text { otherwise. }\end{cases}
$$

(c) If P is dense in $[1, \infty)$, then only (v) can be true.

Proof. (a) follows from Theorem 2.7, and Lemma 2.9, and (b) is easy to verify. For (c), we note that $D \subseteq S \cap S^{\prime}$ by Theorem 2.7 b and since in cases (i-iv) above, $U=U^{*} \supseteq D$, (v) is the only possibility. We discuss this case in Section 3.

3. Additions on B_{P} with $U \subset R_{1}$

In this section, we examine semiring additions on B_{P} which have the property that U is a proper subset of $R_{1}=(R \backslash D) \cup\{(1,1)\}$, which implies that $P \times\{1\}$ is additively min. We stress that the situation in which $P \times\{1\}$ is max additively is exactly symmetrical. Recall that by Lemma 2.8 (d) addition is abelian; furthermore, Lemma 2.8(a), (c) imply that $U=U^{\prime}$ is a subset of R_{1} bounded above by a nondecreasing curve C. (The least U can be is $P \times\{1\}$. In this case, it follows from Remark 2.6 that for each (x, y) and (z, w) in B_{P},

$$
(x, y)+(z, w)=\left(\frac{x w \wedge y z}{y \wedge w}, y \vee w\right)
$$

In fact, if $(x, y) \in R$, the " a " of Lemma 2.5 is y.)

Lemma 3.1. Let + be a semiring addition on B_{P} which is min on $P \times\{1\}$. Suppose that U is a proper subset of R_{1}.
(a) If $(x, y) \in R \backslash D$ and $(1,1)+(x, y)=(a, a)$ for some $a>1$, then

$$
(1,1)+(x c, y c)=(1,1)
$$

if and only if $c \leqslant 1 / a ;$ and if $b>1$, then $(1,1)+(x b / a, y b / a)=(b, b)$.
(b) If $(x, y) \in L \backslash D$ and if there is a $d>1$ such that $(x, y)+(d, d)=(p x, p y)$ where $p>1$, then $(x, y)+(w, w)=(x, y)$ if and only if $y \leqslant w \leqslant d / p$; and if $b \geqslant 1$, then $(x, y)+(b d / p, b d / p)=(b x, b y)$.

Proof. (a) Let $(x, y) \in R \backslash D$ and suppose (1,1$)+(x, y)=(a, a)$ with $1<a \leqslant y$. Since $(a, a)+(x, y)=(a, a)+(1,1)+(x, y)=(a, a)$, we have $(1,1)+(x / a, y / a)=(1,1)$ and Lemma $2.8(c)$ implies that $c \leqslant 1 / a$ if and only if $(1,1)+(x c, y c)=(1,1)$.

Now suppose that $b \geqslant 1$ and that $(1,1)+(x b / a, y b / a)=(z, z)$ where $z \leqslant y b / a$. If $z<b / a$, then since $(z, z)+(x b / a, y b / a)=(z, z)$, we have

$$
(1,1)+(x b / a z, y b / a z)=(1,1)
$$

and so by the preceding paragraph, $b / a z \leqslant 1 / a$ and so $b \leqslant z<b / a$. This contradiction
shows that $z \geqslant b / a$. Now

$$
\begin{aligned}
(b, b) & =(b / a, 1)(a, a)(1, b / a)=(b / a, 1)[(1,1)+(x, y)](1, b / a) \\
& =(b / a, b / a)+(x b / a, y b / a)=(b / a, b / a)+(1,1)+(x b / a, y b / a) \\
& =(b / a, b / a)+(z, z)=(z, z)
\end{aligned}
$$

and so $(1,1)+(x b / a, y b / a)=(b, b)$.
(b) Let $(x, y) \in L \backslash D$. Recall from Lemma 2.5(b) that $(x, y)+(1,1)=(x, y)$. Suppose that there is $d>1$ such that $(x, y)+(d, d) \neq(x, y)$. Then

$$
(x, y)+(d, d)=(x, 1)[(1,1)+(d / x, d / y)](1, y)=(x p, y p)
$$

where $1<p \leqslant d / y$. By (b), $(1,1)+(w / x, w / y)=(1,1)$ if and only if $y \leqslant w \leqslant d / p$ and if $b \geqslant 1$, then $(1,1)+(b d / p x, b d / p y)=(b, b)$. Hence, $(x, y)+(w, w)=(x, y)$ if and only if $y \leqslant w \leqslant d / p$; and if $b \geqslant 1$, then $(x, y)+(b d / p, b d / p)=(b x, b y)$.

Now suppose that every (x, y) in R possesses an $a=a(x, y)$ as in Lemma 3.1; then $a=1$ if and only if $(x, y) \in U$ and for $b>1,(x b, y b) \notin U$; in fact, using Lemma 2.8(c) we see that $(x, y) \in U$ if and only if $a \leqslant 1$. In Example 3.2, we let the curve C be the graph of a non-decreasing homomorphism f, which intercepts

$$
D(x, y)=\{(t x, t y): t>0\}
$$

in a unique point $(x / a, y / a)$ of $G \times G$. We define an addition $+_{f}$ in terms of this denominator a, and show that $+_{f}$ is a semiring addition. In Theorem 3.4 we show that Example 3.2 actually characterizes all additions with U a proper subset of R_{1}.

Example 3.2. Let f be a continuous non-decreasing homomorphism from G to $((0, \infty), \cdot)$ with the properties that for each (x, y) in B_{P}, graph (f) meets $D(x, y)=\{(a x, a y): a>0\}$ in a unique point of $G \times G$, and that graph $\left(\left.f\right|_{P}\right) \subseteq R_{1}$. Then we define the function $\beta: B_{P} \rightarrow G$ so that for $(x, y) \in B_{P}, \beta(x, y)$ is that unique element of G such that $(x / \beta(x, y), y / \beta(x, y)) \in \operatorname{graph}(f)$. If we define addition by

$$
(x, y)+_{f}(z, w)=\left(\frac{x \beta(z, w) \wedge z \beta(x, y)}{\beta(z, w) \wedge \beta(x, y)}, \frac{y \beta(z, w) \wedge w \beta(x, y)}{\beta(z, w) \wedge \beta(x, y)}\right)
$$

then $+_{f}$ is a commutative semiring addition on B_{P} and $U=\{(x, y) \in R: y \leqslant f(x)\}$ is a proper subset of $\boldsymbol{R}_{\mathbf{1}}$.

Proof. To aid in proving associativity, we establish the following facts: if (x, y) (z, w) are elements of B_{P} with $\beta(x, y)=p$ and $\beta(z, w)=q$, and if $y / x \geqslant w / z$, then
(i) $x q \leqslant z p$ and $y q \leqslant p w$,
(ii) if $y \geqslant w$ then $p \geqslant q$,
(iii) for any a in G such that $(a x, a y) \in B_{P}, \beta(a x, a y)=a p$.

To see (i), note that y / x is the slope of $D(x, y)$ and w / z is the slope of $D(z, w)$ and so since f is non-decreasing and $(x / p, y / p)$ and $(z / q, w / q)$ lie on $\operatorname{graph}(f)$, we have $x / p \leqslant z / q$ and $y / p \leqslant w / q$. Hence, if $y \geqslant w, q \leqslant w p / y \leqslant p$. Finally,

$$
(a x / a p, a y / a p)=(x / p, y / p)
$$

is the unique intersection of $D(x, y)$ and $\operatorname{graph}(f)$. We note that closure follows from these observations.

Now suppose $\beta(x, y)=p, \beta(z, w)=q$ and $\beta(a, b)=c$. If $y / x \geqslant z / w \geqslant b / a$, we have

$$
\begin{aligned}
& (x, y)+[(z, w)+(a, b)] \\
& =(x, y)+((z c \wedge a q) /(c \wedge q), \quad(w c \wedge b q) /(c \wedge q)) \\
& =(x, y)+(z c /(c \wedge q), \quad w c /(c \wedge q)) \\
& =\left(\frac{\left(\frac{x q c}{c \wedge q}\right) \wedge\left(\frac{z c p}{c \wedge p}\right)}{p \wedge\left(\frac{q c}{c \wedge q}\right)}, \frac{\left(\frac{y q c}{c \wedge q}\right) \wedge\left(\frac{w c p}{c \wedge q}\right)}{p \wedge\left(\frac{q c}{c \wedge q}\right)}\right)=\left(\frac{\left(\frac{x q c}{c \wedge q}\right)}{p \wedge\left(\frac{q c}{c \wedge q}\right)}, \frac{\left(\frac{y q c}{c \wedge q}\right)}{p \wedge\left(\frac{q c}{c \wedge q}\right)}\right) \\
& =\left(\frac{x q c}{c p \wedge p q \wedge q c}, \frac{y q c}{c p \wedge p q \wedge q c}\right)=\left(\frac{\left(\frac{x q c}{p \wedge q}\right)}{\left(\frac{p q}{p \wedge q}\right) \wedge c}, \frac{\left(\frac{y q c}{p \wedge q}\right)}{\left(\frac{p q}{p \wedge q}\right) \wedge c}\right) \\
& =\left(\frac{\left(\frac{x q c}{p \wedge q}\right) \wedge\left(\frac{a p q}{p \wedge q}\right)}{\left(\frac{p q}{p \wedge q}\right) \wedge c}, \frac{\left(\frac{y c q}{p \wedge q}\right) \wedge\left(\frac{b p q}{p \wedge q}\right)}{\left(\frac{p q}{p \wedge q}\right) \wedge c}\right) \\
& =\left(\frac{x q}{p \wedge q}, \frac{y q}{p \wedge q}\right)+(a, b)=\left(\frac{x q \wedge z p}{p \wedge q}, \frac{y q \wedge w p}{p \wedge q}\right)+(a, b) \\
& =[(x, y)+(z, w)]+(a, b) \text {. }
\end{aligned}
$$

Since this addition is clearly commutative, associativity is proven.
We prove distributivity in two parts. First note that if $a \in P$ with $\beta(a, 1)=b$ and if $(x, y) \in B_{P}$ with $\beta(\dot{x}, y)=p$ then $\beta(a x, y)=b p$, for

$$
y / b p=(y / p)(1 / b)=f(x / p) f(a / b)=f(x a / p b)
$$

Also if $\beta(1, a)=c$, then $\beta[(1, a)(x, y)]=\beta(x / a \wedge x, a y / a \wedge x)=a p / a \wedge x$; for if $a \leqslant x$, then $a y / c p=f(1 x a / c p a)$ and so $\beta(x / a, y)=c p / a$, and if $a \geqslant x$, then

$$
(a y / x) /(c p / x)=(a / c)(y / p)=f(1 x / c p)
$$

and so $\beta(1, a y / x)=c p / x$.

Now if (x, y) and (z, w) are two elements of B_{P} with $\beta(x, y)=p, \beta(z, w)=q$, and if $\beta(a, 1)=b$, then

$$
\begin{aligned}
(a, 1) & {[(x, y)+(z, w)] } \\
= & (a, 1)\left(\frac{x q \wedge z p}{p \wedge q}, \frac{y q \wedge w p}{p \wedge q}\right)=\left(\frac{a(x q \wedge z p)}{p \wedge q}, \frac{y q \wedge w p}{p \wedge q}\right) \\
= & \left(\frac{a b x q \wedge a b z p}{b p \wedge b q}, \frac{y b q \wedge w b p}{b p \wedge b q}\right)=(a x, y)+(a z, w)=(a, 1)(x, y)+(a, 1)(z, w) .
\end{aligned}
$$

Now if $\beta(1, a)=c$, then

$$
\begin{aligned}
& (1, a)[(x, y)+(z, w)] \\
& =(1, a)\left(\frac{x q \wedge z p}{q \wedge p}, \frac{y q \wedge w p}{q \wedge p}\right) \\
& =\left(\frac{\left(\frac{x q \wedge z p}{q \wedge p}\right)}{a \wedge\left(\frac{x q \wedge z p}{q \wedge p}\right)}, \frac{a\left(\frac{x q \wedge z p}{q \wedge p}\right)}{a \wedge\left(\frac{y q \wedge w p}{q \wedge p}\right)}\right) \\
& =\left(\frac{x q \wedge z p}{a q \wedge x q \wedge z p \wedge a p}, \frac{a y q \wedge a w p}{a q \wedge x q \wedge z p \wedge a p}\right) \\
& =\left(\frac{\left(\frac{x c q}{(a \wedge x)(a \wedge z)}\right) \wedge\left(\frac{z c p}{(a \wedge x)(a \wedge z)}\right)}{\left(\frac{c q}{a \wedge z}\right) \wedge\left(\frac{c p}{a \wedge x}\right)}, \frac{\left(\frac{a y c q}{(a \wedge x)(a \wedge z)}\right) \wedge\left(\frac{a w c p}{(a \wedge x)(a \wedge z)}\right)}{\left(\frac{c q}{a \wedge z}\right) \wedge\left(\frac{c p}{a \wedge x}\right)}\right) \\
& =\left(\frac{x}{a \wedge x}, \frac{a y}{a \wedge x}\right)+\left(\frac{z}{a \wedge z}, \frac{a w}{a \wedge z}\right) \\
& =(1, a)(x, y)+(1, a)(z, w) .
\end{aligned}
$$

Combining these two results gives

$$
\begin{aligned}
(a, b)[(x, y)+(z, w)] & =(a, 1)(1, b)[(x, y)+(z, w)] \\
& =(a, 1)[(1, b)(x, y)+(1, b)(z, w)] \\
& =(a, b)(x, y)+(a, b)(z, w) .
\end{aligned}
$$

Hence, multiplication is distributive over this addition.
We remark that the proof of associativity of $+_{f}$ does not require that f be a homomorphism; however, our proof of distributivity does. In part (c) of the proof of Theorem 3.4 we will show the necessity of the homomorphism property of f.

Now we show that β (and hence $+_{f}$) is continuous. Without loss of generality we can assume that P is dense in $[1, \infty)$. Let $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{\infty}$ be a sequence from B_{P} converging to a point (x, y) of B_{P}, and let $\beta\left(x_{n}, y_{n}\right) \equiv p_{n}$. Since $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=1}^{\infty}$ is convergent and hence bounded in $P^{2},\left\{p_{n}\right\}_{n=1}^{\infty}$ is also bounded. (In fact $\left\{p_{n}\right\}_{n=1}^{\infty}$ is bounded below by some $\varepsilon>0$), and hence has a subsequence $\left\{p_{n}\right\}_{i=1}^{\infty}$ which converges to a point a in $(0, \infty)$. Then by definition of p_{n} and the continuity of f, $y / a=\lim _{i} f\left(x_{n_{i}} / p_{n_{i}}\right)=f\left(\lim _{i}\left(x_{n_{i}} / p_{n_{i}}\right)\right)=f(x / a)$ and hence $a=\beta(x, y)$. It follows that $\beta\left(x_{n}, y_{n}\right) \rightarrow \beta(x, y)$. This completes the proof that $+_{f}$ is a semiring addition. Moreover, since $\beta(x, y) \leqslant 1$ if and only if $y \leqslant f(x)$, we have

$$
\begin{aligned}
(x, y)+(1,1) & =\left(\frac{x \beta(1,1) \wedge 1 \beta(x, y)}{\beta(1,1) \wedge \beta(x, y)}, \frac{y \beta(1,1) \wedge 1 \beta(x, y)}{\beta(1,1) \wedge \beta(x, y)}\right) \\
& =\left(\frac{x \wedge \beta(x, y)}{1 \wedge \beta(x, y)}, \frac{y \wedge \beta(x, y)}{1 \wedge \beta(x, y)}\right)=\left(\frac{\beta(x, y)}{1 \wedge \beta(x, y)}, \frac{\beta(x, y)}{1 \wedge \beta(x, y)}\right) \\
& = \begin{cases}(1,1) & \text { if } y \leqslant f(x), \\
(\beta(x, y), \beta(x, y)) & \text { if } y \geqslant f(x) .\end{cases}
\end{aligned}
$$

Hence, $U=\{(x, y) \in R: y \leqslant f(x)\}$.

Remark 3.3. The homomorphisms of $[(0, \infty), \cdot]$ to $[(0, \infty), \cdot]$ are the functions $\left\{f_{\alpha}: \alpha\right.$ real $\}$ where $f_{\alpha}(x)=x^{\alpha}$ for every x, and the ones which satisfy the conditions of Example 3.2 must have $0 \leqslant \alpha<1$. Clearly, any such α satisfies the conditions if $P=[1, \infty)$. However, suppose P is cyclic. Then we can calculate from the relationship $(x / \beta(x, y), y / \beta(x, y)) \in \operatorname{graph}(f) \cap G^{2}$, that if $f(x)=x^{\alpha}$ for every x in G, then $\beta(x, y)=\left(y / x^{\alpha}\right)^{1 /(1-\alpha)}$, and since $P=\left\{1, a, a^{2}, \ldots\right\}$ where $a>1, \beta(1, a)$ must be a^{k} for some integer k. That is, $\beta(1, a)=a^{1 /(1-\alpha)}=a^{k}$ and so $k=1 /(1-\alpha)$ and hence $\alpha=(k-1) / k$ if $k \neq 0$. We show in part (b) of the proof of Theorem 3.4 that every semiring addition on B_{P} with P cyclic and U a proper subset of R_{1} is $+_{\alpha}$ where $\alpha=N /(N+1)$ for a non-negative integer N.

Theorem 3.4. Let + be a semiring addition on B_{P} which is min on $P \times\{1\}$. Suppose that U is a proper subset of R_{1}. Then there exists a non-decreasing homomorphism $f: G \rightarrow(0, \infty)$ which satisfies the properties of Example 3.2 and $+=+_{f}$ as in Example 3.2.

Proof. We prove this theorem in several steps, which we state as follows.
(a) If $h: B_{P} \rightarrow G \cup\{0, \infty\}$ is defined so that

$$
h(x, y)= \begin{cases}\sup \{d:(x, y)+(d, d)=(x, y)\} & \text { if }(x, y) \in L \\ \inf \{a:(1,1)+(x / a, y / a)=(1,1)\} & \text { if }(x, y) \in R\end{cases}
$$

then h is well defined on B_{P}, the range of h is actually contained in G, and for x and y in $P, h(x, y)=x y / h(y, x)$. Furthermore, for each (x, y) and (z, w) in B_{P}, if $(z / x, w / y) \in R \backslash D$, then

$$
(x, y)+(z, w)=\left(\frac{x(h(z, w) \vee h(x, y))}{h(x, y)}, \frac{y(h(z, w) \vee h(x, y))}{h(x, y)}\right) .
$$

(b) If P is cyclic, then there exists a non-negative integer N such that $(x, y) \in U$ if and only if $y \leqslant x^{N /(N+1)}$; we let $f(x)=x^{N /(N+1)}$, and in this case, for every (x, y) in $B_{P}, \beta(x, y)=\left(y^{(N+1)} / x^{N}\right)$ where β is defined for f as in (3.2). If P is dense in $[1, \infty)$ and $f: G \rightarrow(0, \infty)$ is defined by

$$
f(x)= \begin{cases}\sup \{y \in P:(x, y) \in U\} & \text { if } x \geqslant 1, \\ 1 / f(1 / x) & \text { if } x \leqslant 1,\end{cases}
$$

then f is a continuous non-decreasing function.
(c) If β is defined for f as in Example 3.2 then $h \equiv \beta$ in the dense case as well as the cyclic. Hence, in either case, $+=+{ }_{f}$. Moreover, f is a homomorphism. We now commence the proof.

Proof. (a) It is a simple observation that $h(x, x)=x$ whether calculated in R or in L, and it follows from Lemma 3.1 that the range of h is contained in $G \cup\{0, \infty\}$. Note that $h(x, y)=0$ if and only if $(x, y) \in R \backslash D$ and $(1,1)+(a x, a y)=(1,1)$ for every $a \geqslant 1 / y$; and $h(x, y)=\infty$ if and only if $(x, y) \in L \backslash D$ and $(x, y)+D=\{(x, y)\}$. We show later that h takes on neither of these values. Suppose that $(x, y) \in L$ and $h(x, y)=c=d / p$ as in Lemma 3.1(b). Then since

$$
(x, y)+(c, c)=(x, y)
$$

and for $t>c$,

$$
(x, y)+(t, t)=(x t / c, y t / c)
$$

we have

$$
(1,1)+(c / x, c / y)=(1,1)
$$

and for $t>c$,

$$
(1,1)+(t / x, t / y)=(t / c, t / c) .
$$

Hence,

$$
(1,1)+(y, x)=(1,1)+(x y / x, x y / y)=(x y / c, x y / c)
$$

and hence,

$$
h(y, x)=x y / c
$$

We now analyse the addition on B_{P}. Recall from Remark 2.6 that if (x, y) and (z, w) are elements of B_{P} such that neither $(z / x, w / y)$ nor $(x / z, y / w)$ is in $R \backslash D$ then

$$
(x, y)+(z, w)=\left(\frac{x w \wedge y z}{y \wedge w}, y \vee w\right) .
$$

We can thus assume that $(z / x, w / y)$ is in $R \backslash D$ and consider three cases: (1) both addends are in R; (2) $(x, y) \in L$ and $(z, w) \in R$; and (3) both addends are in L. We begin by considering elements on which h is finite and non-zero, and then show that either $h(R \backslash D)=\{0\}$ and $h(L \backslash D)=\{\infty\}$, or $h\left(B_{P}\right) \subset G$. Notice that if $x<y$, then $(x, y)+D=\{(x, y)\}$ if and only if $(1,1)+D(y / x, 1)=\{(1,1)\}$. We also remark that if $(x, y) \in R$, then if $h(x, y)=a \geqslant 1$, then for every $b \geqslant 1, h(b x, b y)=b a, b y$ (a).

Now if (x, y) and (z, w) are two elements of R with $h(x, y)=d \geqslant 1$ and $h(z, w)=c \geqslant 1$, then let $(1,1)+(z / x, w / y)=(g, g)$. Then

$$
\begin{aligned}
(g d, g d) & =(1,1)+(g x, g y)=(1,1)+[(x, y)+(z, w)] \\
& =[(1,1)+(x, y)]+(z, w)=(d, d)+(z, w) \\
& =[(d, d)+(1,1)]+(z, w)=(d, d)+[(1,1)+(z, w)] \\
& =(d, d)+(c, c)=(d \vee c, d \vee c)
\end{aligned}
$$

and so $g=d \vee c / d$. Hence,

$$
(x, y)+(z, w)=\left(\left(\frac{d \vee c}{d}\right) x,\left(\frac{d \vee c}{d}\right) y\right)
$$

If either $d<1$ or $c<1$, let $d \wedge c=1 / b$ where $b>1$; then $h(b x, b y)=b d \geqslant 1$ and $h(b z, b w)=b c \geqslant 1$, so that by the preceding formula,

$$
(b x, b y)+(b z, b w)=\left(\left(\frac{b d \vee b c}{b d}\right) b x,\left(\frac{b d \vee b c}{b d}\right) b y\right)=\left(b\left(\frac{d \vee c}{d}\right) x, b\left(\frac{d \vee c}{d}\right) y\right)
$$

and hence

$$
(x, y)+(z, w)=\left(\left(\frac{d \vee c}{d}\right) x,\left(\frac{d \vee c}{d}\right) y\right)
$$

for any (x, y) and (z, w) in R with $h(x, y)>0, h(z, w)>0$, and $(z / x, w / y)$ in R.
If $(x, y) \in L$ and $(z, w) \in R$ with $h(x, y)=d<\infty$ and $h(z, w)=c>0$, then

$$
\begin{aligned}
(x, y)+(z, w) & =(x, y)+(d, d)+(z, w)=(x, y)+(d \vee c, d \vee c) \\
& =\left(\left(\frac{d \vee c}{d}\right) x,\left(\frac{d \vee c}{d}\right) y\right) \text { if } w>d ;
\end{aligned}
$$

and if $w \leqslant d$, then

$$
\begin{aligned}
(x, y)+(z, w) & =[(x, y)+(w, w)]+(z, w)=(x, y)+[(w, w)+(z, w)] \\
& =(x, y)+(w, w)=(x, y)=\left(\left(\frac{d \vee c}{d}\right) x,\left(\frac{d \vee c}{d}\right) y\right)
\end{aligned}
$$

id hence the formula of the preceding paragraph holds between elements of and R on which h is neither 0 nor ∞.
Finally, let (x, y) and (z, w) be elements of L with $h(x, y)=d<\infty, h(z, w)=c<\infty$, ad $(z / x, w / y) \in R \backslash D$. Then $(x, y)+(z, w)=(t x, t y)$ for some $t \geqslant 1$. If $d>c$, then

$$
\begin{aligned}
(t x, t y) & =(x, y)+(z, w)=(x, y)+(d, d)+(z, w)=(x, y)+(d z / c, d w / c) \\
& =(x, 1)[(1,1)+(d z / c x, d w / c y)](1, y)=(x, 1)(d t / c, d t / c)(1, y) \\
& =(d t x / c, d t y / c)
\end{aligned}
$$

ad so d would equal c. Hence, $d \leqslant c$. Now choose (a, b) in $R \backslash D$ with

$$
(a, b)=q>p \vee d t
$$

len $(a / x, b / y)$ and $(a / z, b / w)$ are in $R \backslash D$ and

$$
\begin{aligned}
(q x / d, q y / d) & =(q t x / d t, q t y / d t)=(t x, t y)+(a, b)=[(x, y)+(z, w)]+(a, b) \\
& =(x, y)+[(z, w)+(a, b)]=(x, y)+(q z / c, q w / c) \\
& =(x, 1)[(1,1)+(q z / c x, q w / c y)](1, y) \\
& =(x, 1)(q t / c, q t / c)(1, y)=(q t x / c, q t y / c)
\end{aligned}
$$

, that $t=c / d$ and hence

$$
(x, y)+(z, w)=(c x / d, c y / d)=\left(\left(\frac{d \vee c}{d}\right) x,\left(\frac{d \vee c}{d}\right) y\right)
$$

Now suppose that there exists an (a, b) in L / D with $h(a, b)=\infty$. Note that if $\leqslant a, h(c, d)=\infty$, and $h\left(D(a, b) \cap B_{P}\right)=\{\infty\}$. Hence, if $h(L \backslash D) \neq\{\infty\}$, we may ssume that there exists (p, x) in $L \backslash D$ such that $h(p, s)=q<\infty$ and $(p / a, s / b) \in R \backslash D$. hen $h(q / p, q / s)=1$ and we may choose $c>q$, and let $(z, w)=(q c / p, q c / s)$; then $(z, w)=c$ and $z>w$. Now let $(a, b)+(p, s)=(h a, h b)$ for some $h \geqslant 1$. Then

$$
(h a, h b)+(z, w)=(h a, h b)+(w, w)+(z, w)=(h a, h \dot{b})+(w, w)=(h a, h b)
$$

, that

$$
\begin{aligned}
(h a, h b) & =(h a, h b)+(z, w)=[(a, b)+(p, s)]+(z, w)=(a, b)+[(p, s)+(z, w)] \\
& =(a, b)+(c p / q, c s / q)=(h c a / q, h c b / q)
\end{aligned}
$$

$\boldsymbol{0}$ that $c=q$. But c was chosen larger than q, and hence, there is no such (p, s). hus, $h(L \backslash D)=\{\infty\}$, and $h(R \backslash D)=\{0\}$, which contradicts the assumption that I be a proper subset of R_{1} and, hence, the range of h is contained in G, and the
formula

$$
(x, y)+(z, w)=\left(x\left(\frac{h(z, w) \vee h(x, y)}{h(x, y)}\right), y\left(\frac{h(z, w) \vee h(x, y)}{h(x, y)}\right)\right)
$$

is valid for every pair $(x, y),(z, w)$ in B_{P} with $(z / x, w / y) \in R \backslash D$.
(b) If P is cyclic, we put $P=\left\{1, x, x^{2}, \ldots\right\}$ for $x>1$. Since U is a proper subset of R_{1}, there is an N such that $\left(x^{N+1}, x^{N}\right) \in U$ but $\left(x^{N+2}, x^{N+1}\right) \notin U$. Then

$$
\left(x^{N+2}, x^{N+1}\right)+(1,1)=(x, x)
$$

by (a). Now

$$
\begin{aligned}
\left(x^{2(N+1)}, x^{2 N}\right)+(1,1) & =\left(x^{2(N+1)}, x^{2 N}\right)+\left(x^{N+1}, x^{N}\right)+(1,1) \\
& =\left(x^{N+1}, 1\right)\left[\left(x^{N+1}, x^{N}\right)+(1,1)\right]\left(1, x^{N}\right)+(1,1) \\
& =\left(x^{N+1}, 1\right)(1,1)\left(1, x^{N}\right)+(1,1)=\left(x^{N+1}, x^{N}\right)+(1,1) \\
& =(1,1)
\end{aligned}
$$

and by induction we can show that for every $k,\left(x^{k(N+1)}, x^{k N}\right) \in U$. On the other hand, we will show that for every $k,\left(x^{(N+1) k-N}, x^{N k-(N-1)}\right)+(1,1)=(x, x)$. This is true for $k=1$ by the way N was selected. Now suppose that it is true for $k<n$. Then

$$
\begin{aligned}
&\left(x^{(N+1) n-N}, x^{N n-(N-1)}\right)+(1,1) \\
&=\left(x^{(N+1) n-N}, x^{N n-(N-1)}\right)+\left(x^{(N+1)(n-2)}, x^{N(n-2)}\right)+(1,1) \\
&=\left(x^{(N+1)(n-2)}, 1\right)\left[\left(x^{N+2}, x^{N+1}\right)+(1,1)\right]\left(1, x^{N(n-2)}\right)+(1,1) \\
&=\left(x^{(N+1)(n-2)}, 1\right)(x, x)\left(1, x^{N(n-2)}\right)+(1,1) \\
&=\left(x^{(N+1)(n-2)+1}, x^{N(n-2)+1}\right)+(1,1) \\
&=\left(x^{(N+1)(n-1)-N}, x^{N(n-1)-(N-1)}\right)+(1,1)=(x, x)
\end{aligned}
$$

It follows from this that $(a, b) \in U$ if and only if $a \leqslant b^{N /(N+1)}$. If we define $f: G \rightarrow(0, \infty)$ by $f(a)=a^{N /(N+1)}$ then since $\alpha=N /(N+1)$, by Example 3.2,

$$
\beta(a, b)=\left(\frac{b}{a^{\alpha}}\right)^{1 /(1-\alpha)}=\left(\frac{b}{a^{N /(N+1)}}\right)^{1-(N / N+1)}=\left(\frac{b}{a^{N /(N+1)}}\right)^{N+1}=\frac{b^{N+1}}{a^{N}}
$$

and it is not hard to verify that this formula also gives $h(a, b)$ and hence for every $(a, b) \in B_{P}, h(a, b)=\beta(a, b)$. We will show in (c) that $+=+_{f}$.

We now assume P is dense in $[1, \infty)$. Let $x \in P$. Since $(1,1)+(x, z) \neq(1,1)$ for any $z \geqslant x$, the set $U_{x}=\{y \in P:(x, y) \in U\}$ is bounded above. We define $f: G \rightarrow(0, \infty)$ by

$$
f(x)= \begin{cases}\sup U_{x} & \text { if } x \geqslant 1, \\ 1 / f(1 / x) & \text { if } x \leqslant 1 .\end{cases}
$$

By Lemma 2.8(a), (c), f is a non-decreasing function. Let $x \in P$ and $x_{n} \rightarrow x$. Since f is non-decreasing $f\left(x_{n}\right)$ is bounded and hence has a convergent subsequence $\left\{f\left(x_{n_{i}}\right)\right\}$, which converges to an element y of $[1, \infty)$. If $y<f(x)$, let $z \in P$ such that $v<z<f(x)$. Since $f\left(x_{n_{d}}\right)$ is eventually strictly greater than $z, y \geqslant z$. Hence $y \geqslant f(x)$. Similarly, $y \leqslant f(x)$ and so $y=f(x)$, and it follows that $f\left(x_{n}\right) \rightarrow f(x)$, and thus that f is zontinuous on P. Since f, when restricted to $G \cap(0,1]$, is the composition of inversions with $\left.f\right|_{P}, f$ is continuous on $G \cap(0,1]$ and since $f(1)=1, f$ is continuous on G.

We remark that $\operatorname{graph}(f) \cap B_{P} \subseteq U$; for suppose $(x, y) \in \operatorname{graph}(f) \cap B_{P}$. Then $y=\sup \{z:(x, z) \in U\}$ and since U is closed, $(x, y) \in U$.
(c) For any element (x, y) of $R \backslash D$, let $a=h(x, y)$. Then since

$$
(1,1)+(x / a, y / a)=(1,1), \quad y / a \leqslant f(x / a)
$$

If $k=f(x / a)$, suppose $y / a<k$; then since P is dense in [$1, \infty$), there is a $p \in P$ such that $y / a<p<k$ and $(x / a, p) \in U$, which implies that $(p x / y, p) \in U \cap D(x, y)$ (since $p x / y>x / a)$, contradicting (a). Hence, $y / a=f(x / a)$. Suppose that graph (f) contains another point $(x / b, y / b)$ of $D(x, y) \cap B_{P}$. We may assume that $b>a$. Then if $a<c<b$, since $(x / a, y / a) \in U,(x / c, y / c) \in U$ and so $y / c \leqslant f(x / c)$. Suppose $y / c<f(x / c)$; then there exists $d \in P$ such that $(x / c, d) \in U$ and $y / c<d<f(x / c)$. Hence $(x / b, d c / b) \in U$ and so $y / b<d c / b \leqslant f(x / b)$. This contradiction shows that if $\operatorname{graph}(f)$ contains two points of $D(x, y)$, it contains all the points on a straight line between those two points. Now we show that $(x / a, y / a)=(x / b, y / b)$. Let $x_{n} \rightarrow x / b$ from the left. Then $\left(x_{n}, f\left(x_{n}\right)\right) \rightarrow(x / b, y / b)$ and $(1,1)+\left(b x_{n} / a, b y_{n} / a\right) \rightarrow(1,1)+(x / a, y / a)=(1,1)$, but for every $n,(1,1)+\left(b x_{n} / a, b y_{n} / a\right)=(b / a, b / a)$. Thus, $b / a=1$, and hence,

$$
(x / h(x, y), y / h(x, y))
$$

is the unique intersection point of $D(x, y)$ and $\operatorname{graph}(f)$. This shows that $h \equiv \beta$ on $R \backslash D$ and since $h(x, x)=x=\beta(x, x)$ for every $x \in P, h \equiv \beta$ on R. Now if $(x, y) \in L \backslash \mathrm{D}$ and $h(x, y)=a$, then $h(y / x, 1)=1 / a$ and so $\beta(y / x, 1)=1 / a$ by what was just shown. Hence, $a / y=f(a / x)$ and $(a / x, a / y)$ is the unique intersection point of $\operatorname{graph}(f)$ and $D(y / x, 1)$; it follows that $y / a=f(x / a)$ and that $(x / a, y / a)$ is the unique intersection of $D(x, y)$ and $\operatorname{graph}(f)$, and so h agrees with β on L as well.

Now we wish to show that $+=+_{f}$ as in Example 3.2. We may assume P is either dense or cyclic. Since $h=\beta$ and f is non-decreasing, it follows that h has the property proved for β in Example 3.2 (which only involved the monotonicity of f) that if $w / y<z / x$, then $x \beta(z, w) \leqslant z \beta(x, y), y \beta(z, w) \leqslant w \beta(x, y)$ and $p \geqslant q$ if $y \geqslant w$. If we let

$$
k=\left(\frac{x \beta(z, w) \wedge z \beta(x, y)}{\beta(x, y) \wedge \beta(z, w)}, \frac{y \beta(z, w) \wedge w \beta(x, y)}{\beta(x, y) \wedge \beta(z, w)}\right)
$$

then if $x \leqslant z, y \leqslant w$ and $w / y<z / x$, we have

$$
k=\left(\frac{x(\beta(x, y) \vee \beta(z, w))}{\beta(x, y)}, \frac{y(\beta(x, y) \vee \beta(z, w))}{\beta(x, y)}\right),
$$

which equals $(x, y)+(z, w)$ by the formula derived in (c). Similarly, if $x \leqslant z, y \leqslant w$ and $w / y \geqslant z / x$, then $\beta(x, y) \leqslant \beta(z, w), x \beta(z, w) \geqslant z \beta(x, y)$ and $y \beta(z, w) \geqslant w \beta(x, y)$ and so $k=(z, w)$ which equals $(x, y)+(z, w)$ by Remark 2.6. Finally, if $x \leqslant z$ and $y \geqslant w$, then

$$
\beta(x, y) \geqslant \beta(z, w)
$$

and since

$$
x / z \leqslant 1 \leqslant y / w, \quad x \beta(z, w) \leqslant z \beta(x, y) \quad \text { and } \quad y \beta(z, w) \leqslant w \beta(x, y) .
$$

So $k=(x, y)$, which, again by Remark 2.6, is equal to $(x, y)+(z, w)$. This shows that $+=+_{f}$ as in Example 3.2.

We now show that f is a homomorphism. We assume first that (x, y) and (z, w) are two elements of $R \backslash D$ with $y=f(x)$ and $w=f(z)$. Without loss of generality, suppose $w / z \geqslant y / x$. Then $\beta(z / w, 1)=1 / w$, and if p is any element of $P \backslash\{1\}$, $\beta(p x, p y)=p$. Now

$$
\begin{aligned}
(z p / w, p) & =(z / w, 1)(p, p)=(z / w, 1)[(1,1)+(p x, p y)]=(z / w, 1)+(z p x / w, p y) \\
& =\left(\frac{z r / w}{r \wedge(1 / w)}, \frac{r}{r \wedge(1 / w)}\right)
\end{aligned}
$$

(by the calculations used in Example 3.2 for proving associativity), where $r=\beta(z p x / w), p y)$. Hence, $r /(r \wedge(1 / w))=p$ and since $p>1, r \wedge(1, w) \neq r$ and so $p=r w$. Hence, $y w=p y /(p / w)=p y / r=f(z p x / w r)=f(x z)$ and hence f is a homomorphism when restricted to $f^{-1}(P)$. Now suppose that $z<1$ and $w=f(z) \in G \cap(0,1]$. Then if (x, y) is as above, $w / z \geqslant y / x, \beta(1, w / z)=1 / z$, and if $r=\beta(p x, p y w / z)$ where $p>1$, we have

$$
(p, w p / z)=(1, w / z)+(p x, p y w / z)=\left(\frac{r}{r \wedge(1 / z)}, \frac{w r}{r \wedge(1 / z)}\right)
$$

Hence $p=r z$ and $y w=p y w / r z=f(x p / r)=f(z x p / r z)=f(x z)$. Since for $x<1$, $f(x)=1 / f(1 / x)$, we easily see that if both x and z are in $G \cap(0,1]$ then $f(x z)=f(x) f(z)$ and so f is a homomorphism on $f^{-1}(G)$. Now suppose $x \in G$ and $y=f(x) \in(0, \infty)$. Let $\left\{d_{n}\right\}_{n=1}^{\infty}$ be a sequence converging to x / y; then if $p_{n}=\beta\left(d_{n}, 1\right)$, it follows that $\left(d_{n} / p_{n}, 1 / p\right) \rightarrow(x, y)$. Now if $w=f(z)$ and $y=f(x)$ where x and z are in G, let $x_{n} \rightarrow x, z_{n} \rightarrow z, y_{n}=f\left(x_{n}\right)$ and $w_{n}=f\left(z_{n}\right)$. Then $y_{n} w_{n} \rightarrow y w$; but $y_{n} w_{n}=f\left(x_{n} z_{n}\right) \rightarrow f(x z)$. Hence, f is a homomorphism on all of G. This completes the proof of Theorem 3.4.

References

A. H. Clifford and G. B. Preston (1961), The Algebraic Theory of Semigroups (Amer. Math. Soc. Math. Surveys No. 7, Vol. I, Providence, R.I.).
C. Eberhart and J. Selden (1972), "One-parameter inverse semigroups", Trans. Amer. Math. Soc. 168, 53-66.
K. R. Pearson (1966), 'Interval semirings on R_{1} with ordinary multiplication", J. Austral. Math. Soc. 6, 273-282.

Department of Mathematics

Clarkson College
Potsdam, New York 13676
U.S.A.

