ON THE MEAN CONVERGENCE OF MARKOV OPERATORS

by ROBERT E. ATALLA (Received 21st July 1973)

1. Introduction

Throughout the paper, T will be a Markov operator on C(X) (X compact T_2), i.e. a continuous positive operator such that Te = e (e the unit function). P will be the set of Borel probability measures on X, which we shall often think of as linear functionals on C(X), and $P_T = \{m \in P: T'm = m\}$, where T' is the adjoint of T. Let

 $F = \text{closure} \cup \{\text{carrier}(m): m \in P_T\}.$

Our main result, Theorem 3.1, is the following. Suppose S is a Markov projection on C(X) such that $T_n f \rightarrow 0$ iff Sf = 0, where $T_n = (1/n)(T + ... + T^n)$. Then T and S induce operators T_0 and S_0 on C(F) such that $(T_0)_n f \rightarrow S_0 f$ for all $f \in C(F)$.

Our results may be motivated as follows. If T is a continuous operator on a topological vector space and S is a projection, it is an easy exercise to prove that for $T_n x \rightarrow Sx$ (all x) to occur, it is necessary and sufficient that

(i)
$$T_n x \rightarrow 0$$
 iff $Sx = 0$, and

(ii)
$$ST = TS = S$$
.

Now (i) easily implies ST = S. (We must show that if (i) holds, then 0 = S(T-I), or $Tx - x \in \text{kernel}(S)$ for all x. But $T_n(Tx - x) \rightarrow 0$, so

$$S(Tx-x)=0$$

by condition (i).) Thus (ii) may be replaced by (ii)' TS = S. What our main result shows is that in the special case of Markov operators on C(X), (ii) may be discarded altogether, and positive convergence results still obtained.

Section 4 will show how condition (i) arises naturally in the theory of regular matrices.

We shall assume throughout the paper that S and T are Markov operators such that

(1)
$$T_n f \rightarrow 0$$
 iff $Sf = 0$ $(f \in C(X))$.

2. Preliminaries

This section is devoted to lemmas needed for the main result in Section 3. The following notation will be used. If $x \in X$, let t_x be the element of P representing the functional $f \rightarrow Tf(x)(f \in C(X))$. Thus, $Tf(x) = \int f dt_x$. Likewise, $Sf(x) = \int f ds_x$. Recall that $P_T = \{m \in P: T'm = m\}$. We shall assume throughout this section that S and T are operators satisfying condition (I) of the Introduction.

Remark 2.1. We proved in the Introduction that condition (I) implies that ST = S, so that for each $x \in X$ and $f \in C(X)$ we have $\int fds_x = \int Tfds_x$. Thus, $S'\delta_x = s_x \in P_T$ (where δ_x is the point mass at x), and hence $S'P \subset P_T$.

Our first result shows that if $S^2 = S$, then $S'P = P_T$. The condition $S^2 = S$ is the hypothesis for all results after the first, although it may be of interest to note that the results are valid under the weaker assumption that $S'P = P_T$.

Lemma 2.2. (a) $S^2 = S$ iff $P_T = P_S$. (b) Hence if $S^2 = S$, then $S'P = P_T$.

Proof. (a) First we note that in any case, $P_S \subset P_T$. To show this, recall that ST = S (Remark 2.1). If $m \in P_S$, then T'm = T'S'm = S'm = m, i.e. $m \in P_T$.

Assume $S^2 = S$. If $f \in C(X)$, then $Sf - f \in \text{kernel}(S)$, so by condition (I) we have $T_n(Sf - f) \rightarrow 0$. If $m \in P_T$, then $m(Sf - f) = m(T_n(Sf - f)) \rightarrow 0$, so m(Sf) = m(f), i.e. $m \in P_S$. Thus, $P_T = P_S$.

Assume $P_T = P_S$. Let $x \in X$. Since ST = S, we have $\int Tfds_x = \int fds_x$ for all $f \in C(X)$, and hence $s_x \in P_T = P_S$, whence $S's_x = s_x$. This implies $S^2 = S$.

(b) Assume $S^2 = S$. We know that $S'P \subset P_T$. If $m \in P_T$, then by (a), S'm = m, so $m \in S'P$. Thus $S'P = P_T$.

Lemma 2.3. Assume $S^2 = S$. Then (a) all extreme points of P_T have the form s_x for some $x \in X$, and (b)

$$F = \operatorname{cl} \cup \{\operatorname{car}(s_x) : s_x \in (P_T)^e\},\$$

where $(P_T)^e$ is the set of extreme points of P_T .

Proof. (a) If $m \in (P_T)^e$, then since $S'P = P_T$ (by Lemma 2.2 (b)), the set $(S')^{-1}(m) = \{\rho \in P: S'\rho = m\}$ is a non-empty face of P, and hence contains an extreme point (by, e.g., Theorem 9 on page 9 of (3)). Since all extreme points of P have the form $\delta_x(x \in X)$, there exists $x \in X$ with $m = S'\delta_x = s_x$.

(b) Let F_0 be the set in question. Clearly, $F_0 \subset F$. Suppose $y \in F \setminus F_0$. Then there exists a non-negative $f \in C(X)$ with f = 0 on F_0 and f(y) > 0. Then m(f) > 0 for some $m \in P_T$, while (a) implies $\rho(f) = 0$ for each $\rho \in (P_T)^e$. But this is impossible, by the Krein-Milman theorem. Hence $F_0 = F$.

Lemma 2.4. Assume $S^2 = S$. Let $F_T(F) = \{f \in C(X) : Tf | F = f | F\}$. Then $S(C(X)) \subset F_T(F)$.

Proof. Since $S^2 = S$, it follows that $s_x \in P_S$ for each $x \in X$. Furthermore, Lemma 2.2 implies $P_T = P_S$, and Lemma 2.3 (a) implies that each extreme point of P_S has the form s_x for some $x \in X$. Let s_x be a fixed extreme point of P_S . By Theorem 1.11 of (4), car (s_x) is contained in an "S-ergodic set", i.e. a set of

206

constancy for any $g \in C(X)$ such that Sg = g. Since $S^2 = S$, it follows that Sf is constant (say t) on car (s_x) for any $f \in C(X)$. If $y \in car(s_x)$, then since $s_x \in P_T$ we have car $(t_y) \subset car(s_x)$ (4, Theorem 1.3), and hence

$$T(Sf)(y) = t = Sf(y).$$

Lemma 2.3 (b) implies T(Sf) | F = Sf | F. Hence $Sf \in F_T(F)$ for each $f \in C(X)$.

Remark 2.5. The preceding proof suggests the following: let S be a Markov projection on C(X). If Sf = 0, then S(fSg) = 0 for all $g \in C(X)$.

Proof. Let s_x be an extreme point of $P_s = S'P$. Then for each $g \in C(X)$, Sg is constant (say t) on car (s_x) , and hence

$$S(fSg)(x) = \int f(w)Sg(w)ds_x(w) = t \int f(w)ds_x(w) = 0.$$

By Krein-Milman, $S(fSg)(y) = \int f(w)Sg(w)ds_y(w) = 0$ for all $y \in X$, since each $s_y \in P_S$.

Lemma 2.6. Assume $S^2 = S$. If f = 0 on F, then Tf = 0 on F, and Sf = 0 everywhere.

Proof. To show Tf = 0 on F we note that since $s_x \in P_T$ for each x, car (s_x) is *T*-self-supporting (4, Theorem 1.3), and hence, by (4, Theorem 1.1), if g = 0 on car (s_x) , then Tg = 0 on car (s_x) . Thus, since f = 0 on F we have Tf = 0 on each car (s_x) , and hence Tf = 0 on F, by Lemma 2.3 (b).

To show Sf(x) = 0 for all x, it is enough to show car $(s_x) \subset F$ for each $x \in X$. By Remark 2.1, $s_x \in P_T$ for each $x \in X$, and hence car $(s_x) \subset F$ by the definition of F.

3. Mean convergence theorem

In this section we assume condition (I), and also that $S^2 = S$. By Lemma 2.6, f | F = 0 implies Tf | F = 0 and Sf | F = 0. We define T_0 on C(F) by $T_0f(x) = T\overline{f}(x)$ for each $f \in C(F)$ and $x \in F$, where $\overline{f} \in C(X)$ is any extension of f. Likewise, $S_0f = S\overline{f}$.

Since f | F = 0 implies Tf | F = Sf | F = 0, the set F is both T-selfsupporting and S-self-supporting, i.e. $x \in F$ implies $\operatorname{car}(t_x) \subset F$ and $\operatorname{car}(s_x) \subset F$ (4, Theorem 1.1). Hence for $f \in C(F)$ and $x \in F$ we have

$$T_0f(x) = T\overline{f}(x) = \int \overline{f}dt_x = \int fdt_x$$
, and $S_0f = \int fds_x$.

Theorem 3.1. Assume (I) Sf = 0 iff $T_n f \rightarrow 0$, and (II) $S^2 = S$. Then $(T_0)_n f \rightarrow S_0 f$ for each $f \in C(F)$.

Proof. We first prove the following:

- (i) $T_0 S_0 = S_0$,
- (ii) $S_0^2 = S_0$, and
- (iii) $S_0 f = 0$ implies $(T_0)_n f \rightarrow 0$.

ROBERT E. ATALLA

For (i), if $f \in C(F)$, then by Lemma 2.4, $S\overline{f} \in F_T(F)$, and hence for each $y \in F$, $T(S\overline{f})(y) = S\overline{f}(y)$, or $T_0(S_0f)(y) = S_0f(y)$.

For (ii), if
$$f \in C(F)$$
, $S_0^2 f = S^2 \bar{f} | F = S \bar{f} | F = S_0 f$.

For (iii), let $x \in X$. Then since Sf = 0 on car $(s_x) (\subset F)$, we have

$$S\overline{f}(x) = S^2\overline{f}(x) = \int S\overline{f}ds_x = 0.$$

By condition (I), $(T_0)_n f = T_n \overline{f} | F \rightarrow 0$.

We now show that if $f \in C(F)$, then $(T_0)_n f \to S_0 f$. Since $S_0^2 = S_0$, we have $S_0 f - f \in \text{kernel}(S_0)$, and hence (iii) implies $(T_0)_n (S_0 f - f) \to 0$. Using (i), we have $(T_0)_n f - S_0 f = (T_0)_n (f - S_0 f) \to 0$.

Theorem 3.2. Suppose the conditions of Theorem 3.1 are satisfied, and that T also satisfies the condition

$$\operatorname{car}(t_x) \subset F$$
 for all $x \in X$.

Then $T_n f \rightarrow TSf$ for all $f \in C(X)$ (and hence TS is a projection).

Proof. By Theorem 3.1 we have $T_n f | F \to Sf | F$ for each $f \in C(X)$. Let $R_n = (1/n)(I + T + ... + T^{n-1})$, so $T_n = TR_n$. Clearly, $R_n f | F \to Sf | F$ for each $f \in C(X)$. If $x \in X$,

$$T_n f(x) = T(R_n f)(x) = \int_F R_n f dt_x$$

$$\rightarrow \int_F Sf dt_x = T(Sf)(x),$$

by dominated convergence. By Theorem 1.1 of (2), $T_n f \rightarrow T(Sf)$ uniformly.

4. Final remarks

We conclude with a remark on how condition (I) arises naturally in matrix summability. Let $T = (t_{mn})$ be a regular matrix, considered as a linear operator on $C^*(N)$, and m_T the set of T-invariant means on $C^*(N)$, as defined in (1). $f \in C^*(N)$ is T-almost convergent if $\rho_1(f) = \rho_2(f)$ for all $\rho_1, \rho_2 \in m_T$. Let V_T be the space of T-almost convergent functions. By a well-known result of G. G. Lorentz, if T is the shift matrix (Tf(n) = f(n+1)), then V_T is not equal to the bounded convergence field C_S of any regular matrix S. It is natural to ask under what circumstances the equation $V_T = C_S$ is possible. (This question has been asked by J. P. Duran. To the author's knowledge it remains open.)

As in (1), let T_1 and S_1 be the operators induced on $C(\beta N \setminus N)$ by the matrices T and S. Then it can be shown that the condition $V_T = C_S$ is equivalent to (I) $(T_1)_n f \rightarrow 0$ iff $S_1 f = 0$ ($f \in C(\beta N \setminus N)$). (Necessity is easy, and sufficiency follows from an easy generalisation of the Mazur-Orlicz consistency theorem.)

REFERENCES

(1) R. ATALLA, On the inclusion of a bounded convergence field in the space of almost convergent sequences, *Glasgow Math. J.* 13 (1972), 82-90.

(2) B. JAMISON, Ergodic decompositions induced by certain Markov operators, *Trans. Amer. Math. Soc.* 117 (1965), 451-468.

(3) G. LEIBOWITZ, Lectures on complex function algebras (Scott, Foresman and Company, Glenview, Illinois, 1970).

(4) R. SINE, Geometric theory of a single Markov operator, *Pacific J. Math*²⁷ (1968), 155-166.

Ohio University Athens, Ohio 45701