The degree of maps between certain 6-manifolds

HANS-JOACHIM BAUES

Max-Planck-Institut für Mathematik, Gottfried-Clarenstrasse 26, 53225 Bonn, Germany e-mail:baues@mpim-bonn.mpg.de

Received 28 August 1996; accepted in final form 21 September 1996

Abstract. For manifolds M, M' of the form $S^2 \cup e^4 \cup e^6$ we compute the homomorphisms $H_*M \to H_*M'$ between homology groups which are realizable by a map $F: M \to M'$.

Mathematics Subject Classifications (1991). 57R19, 57R35, 55S45.

Key words: 6-manifolds, degree of maps

For oriented compact closed manifolds M, M' of the same dimension the *degree* d of a map $F: M \to M'$ is defined by the equation

 $F_*[M] = d \cdot [M'].$

Here [M] denotes the fundamental class of M. In a classical paper Hopf [H] considered such degrees. In this paper we compute all possible degrees of maps $M \to M'$ where M and M' are 6-manifolds of the form $S^2 \cup e^4 \cup e^6$ and for which the cup square of a generator $x \in H^2$ is non trivial. For example for such a manifold M the degrees of maps $M \to M$ are exactly the numbers $d = k^3, k \in \mathbb{Z}$. The result in this paper answers a question of A. Van de Ven. The author is grateful to Fang Fuquan for his remarks on Pontrjagin classes.

1. Homotopy types of manifolds $S^2 \cup e^4 \cup e^6$ and degrees of maps

We consider closed differentiable manifolds M of dimension 6 which are simply connected and for which the cohomology with integral coefficients satisfies

$$H^{i}(M) = \begin{cases} \mathbb{Z} & \text{for } i = 0, 2, 4, 6, \\ 0 & \text{otherwise.} \end{cases}$$
(1.1)

Moreover we assume that a generator x of $H^2(M)$ has a non-trivial cup square $x \cup x \neq 0$. We choose a generator $y \in H^4(M)$ such that $x \cup x = my$, where $m \in \mathbb{N} = \{1, 2, \ldots, \}$ is a natural number; we also write m = m(M). Moreover let $w = w(M) \in \mathbb{Z}/2$ be given by the *second Stiefel–Whitney class*. Then the Wu formulas show that w(M) = 0 if and only if the Steenrod square

$$Sq^2 \colon H^4(M, \mathbb{Z}/2) = \mathbb{Z}/2 \to H^6(M, \mathbb{Z}/2) = \mathbb{Z}/2$$
(1.2)

is trivial so that (1.2) is determined by w(M). Any manifold as in (1.1) admits a homotopy equivalence

$$M \simeq S^2 \cup_q e^4 \cup_f e^6, \tag{1.3}$$

where the attaching map g represents $m\eta_2 \in \pi_3(S^2)$. Here η_2 is the Hopf element which generates $\pi_3(S^2) = \mathbb{Z}$. Moreover the attaching map f of the 6-cell satisfies

$$q_*f = w\eta_4 \in \pi_5(S^4)$$
 with $w = w(M)$, (1.4)

where $q: S^2 \cup_g e^4 \to S^2 \cup_g e^4/S^2 = S^4$ is the quotient map. Here η_n with $n \ge 3$ denotes the generator of $\pi_{n+1}(S^n) = \mathbb{Z}/2$. Recall that $\pi_6(S^3) = \mathbb{Z}/12$ so that $\pi_6(S^3) \otimes \mathbb{Z}/4 = \mathbb{Z}/4$. We define subsets

$$\begin{cases} \alpha(M) \subset \mathbb{Z}/4 & \text{if } w(M) = 0, \\ \beta(M) \subset \mathbb{Z}/4 & \text{if } m(M) \text{ is even} \end{cases}$$
(1.5)

as follows. For w(M) = 0 the suspension Σf of the attaching map in (1.3) admits up to homotopy a factorization

$$S^{6} \xrightarrow{\Sigma f} \Sigma(S^{2} \cup_{g} e^{4})$$

$$\downarrow^{f_{0}} \qquad \uparrow^{i}$$

$$S^{3} \xrightarrow{\Sigma S^{2}}, \qquad (1.6)$$

where *i* is the inclusion. Then $\alpha(M)$ consists of all elements $f_0 \otimes 1 \in \pi_6(S^3) \otimes \mathbb{Z}/4$ for which (1.6) homotopy commutes, that is $i_*f_0 = \Sigma f$ in $\pi_6(\Sigma(S^2 \cup_g e^4))$. Moreover if m(M) is even then the inclusion $i : S^3 \subset \Sigma(S^2 \cup_g e^4)$ admits a retraction *r*. Let $\beta(M)$ be the set of all elements $(r\Sigma f) \otimes 1 \in \pi_6(S^3) \otimes \mathbb{Z}/4$ given by compositions

$$S^{6} \xrightarrow{\Sigma f} \Sigma(S^{2} \cup_{g} e^{4}) \xrightarrow{r} S^{3}, \qquad (1.7)$$

where r is any retraction of i. Let $i_2 : \mathbb{Z}/2 \subset \mathbb{Z}/4$ be the inclusion which carries $1 \in \mathbb{Z}/2$ to $2 \in \mathbb{Z}/4$.

(1.8) LEMMA. For w(M) = 0 and m(M) even the sets $\alpha(M) = \beta(M)$ coincide and consist of a single element in the image of i_2 . In this case let $p(M) \in \mathbb{Z}/2$ be given by

$$i_2 p(M) = \alpha(M) = \beta(M).$$

Moreover we have

$$\begin{split} &\alpha(M) = \{1,3\} \quad \textit{if} \ m(M) \equiv 1 \ \text{mod} \ 2 \quad \textit{and} \quad w(M) = 0, \\ &\beta(M) = \{1,3\} \quad \textit{if} \ m(M) \equiv 2 \ \text{mod} \ 4 \quad \textit{and} \quad w(M) \neq 0, \\ &\beta(M) = \{0,2\} \quad \textit{if} \ m(M) \equiv 0 \ \text{mod} \ 4 \quad \textit{and} \quad w(M) \neq 0. \end{split}$$

For w(M) = 0 and m(M) even the *first Pontrjagin class* $p_1(M) \in H^4(M) = \mathbb{Z}$ of M is divisible by 8 and hence yields by reduction mod 16 an element in $\mathbb{Z}/2$ denoted by $p'_1(M) \in \mathbb{Z}/2$; then we have in $\mathbb{Z}/2$ the formula

$$p(M) + p'_1(M) = \{m(M)/2\} \in \mathbb{Z}/2$$

so that the element p(M) in (1.8) is also determined by the Pontrjagin class $p_1(M)$. For this compare Theorem 4 and the proof of Theorem 7 in [W] and [Ya]. For $m \in \mathbb{N}$ and $w \in \mathbb{Z}/2$ we define the group

$$P(m, w) = \begin{cases} \mathbb{Z}/2, & \text{if } m \text{ even and } w = 0, \\ 0, & \text{otherwise.} \end{cases}$$

(1.9) **PROPOSITION**. The homotopy types of manifolds (or Poincaré complexes) which satisfy the conditions in (1.1) are in 1-1 correspondence with triples (m, w, p) where $m \in \mathbb{N}, w \in \mathbb{Z}/2$ and $p \in P(m, w)$ such that mw = 0. The correspondence carries M to the triple (m(M), w(M), p(M)) defined above.

In particular each such triple (M, w, p) is realizable by a manifold as in (1.1) and the realization is unique up to homotopy equivalence. The case of Poincaré complexes in (1.9) was proved by Unsöld [U] and by Yamaguchi [Y] and [Ya]. In fact, for Poincaré complexes Proposition (1.9) can be easily derived from the proof of (1.12) below. In the case of manifolds we can use the result of Wall (Theorem 8 in [W]) that each Poincaré complex with the properties in (1.1) is homotopy equivalent to a smooth manifold. Compare also the result of Zubr [Z]; according to the remark at the end of [Z] the results of Jupp [J] and Wall [W] on the homotopy classification of simply connected 6-manifold have to be modified.

We now are ready to discuss the possible degrees of maps $F: M \to M'$ where M and M' are manifolds as in (1) with generators $x \in H^2(M), x' \in H^2(M')$. We say that $k \in \mathbb{Z}$ is (M, M')-*realizable* if there exists a continuous map $F: M \to M'$ with $F^*(x') = k \cdot x$. Moreover we say that $k \in \mathbb{Z}$ is (M, M')-good if $k^2 \cdot m(M)$ is divisible by m(M') and if

$$w(M) \cdot \frac{k^2 \cdot m(M)}{m(M')} = w(M') \cdot k \cdot \frac{k^2 \cdot m(M)}{m(M')}$$
(1.10)

holds in $\mathbb{Z}/2$. One readily checks that any $k \in \mathbb{Z}$ which is (M, M')-realizable is (M, M')-good. We define the group

$$G(M, M') = \begin{cases} \mathbb{Z}/2 & \text{if } w(M) = 0 \text{ and } m(M') \text{ even,} \\ 0 & \text{otherwise.} \end{cases}$$
(1.11)

Then we have the following result which completely determines all degrees k which are (M, M')-realizable.

(1.12) THEOREM. Let $k \in \mathbb{Z}$ be (M, M')-good then k is (M, M')-realizable if and only if an obstruction element

 $\mathcal{O}(M,k,M') \in G(M,M')$

is trivial. For w(M) = 0 and m(M') even this obstruction element is given by the formula in $\mathbb{Z}/4$

$$i_2 \mathcal{O}(M, k, M') = k \left(-\alpha + \frac{k^2 \cdot m(M)}{m(M')} \beta \right)$$

with $\alpha \in \alpha(M), \beta \in \beta(M')$ as described in (1.8).

Hence, for example, if k is (M, M')-good and if k is divisible by 4 then k is (M, M')-realizable. Moreover if M = M' then any $k \in \mathbb{Z}$ is (M, M)-good and by (1.12) also (M, M)-realizable. The theorem computes all possible *degrees of maps* $F: M \to M'$. In fact, such degrees are exactly the numbers $k^3 \cdot m(M)/m(M')$ for which k is (M, M')-realizable.

2. Proof of Theorem (1.12)

For the proof of (1.12) and (1.8) we first consider the homotopy groups $\pi_n(C_g)$ of a mapping cone $C_g = B \cup_g CA$ of a map $g : A \to B$ where CA is the cone of A. We assume that $A = \Sigma A'$ is a suspension. Let $\pi_g : (CA, A) \to (C_g, B)$ be the canonical map and let $i: B \subset C_g$ be the inclusion. For the one point union $A \lor B$ let $r = (0, 1): A \lor B \to B$ be the retraction and let

$$\pi_n(A \lor B)_2 = \operatorname{kernel}(r_* \colon \pi_n(A \lor B) \to \pi_n B).$$

Then we obtain the following commutative diagram in which the bottom row is exact.

Hence we can define the *functional suspension operator*

$$E_g: \text{kernel}(g, 1)_* \to \pi_n(C_g)/i_*\pi_n B$$

$$E_g(\xi) = j^{-1}(\pi_g, 1)_* \partial^{-1}(\xi),$$

where $\xi \in \pi_n(A \vee B)_2$ with $(g, 1)_* \xi = 0$; see 3.4.3 [BO] and II.11.7 [BA]. Now let $[C_q, U]$ be the set of homotopy classes of maps $C_q \to U$. Then the coaction

 $C_g \to C_g \vee \Sigma A$ yields an action + of $\alpha \in [\Sigma A, U]$ on $G \in [C_g, U]$ so that $G + \alpha \in [C_g, U]$ is defined. For $f \in \pi_n(C_g)$ with $f \in E_g(\xi)$ we have by II.12.3 [BA] the formula in $\pi_n(U)$

$$f^*(G + \alpha) = f^*(G) + (\alpha, Gi)E\xi,$$
 (2.2)

where

 $E: \pi_{n-1}(A \vee B)_2 \to \pi_n(\Sigma A \vee B)_2$

is the partial suspension; see [BA].

Now let C_h be the mapping cone of $h: A' \to B'$ and let $G: C_g \to C_h$ be a map associated to a homotopy commutative diagram

Then we call G a principal map; see [BA]. The functional suspension is natural in the sense that

$$G_*E_q(\xi) \subset E_h((a \lor b)_*\xi). \tag{2.3}$$

This follows from V.2.8 [BA] and diagram (2.1).

Now let $A = S^2$ and $B = S^2$ so that $C_g = S^2 \cup_g e^4$. Then we see by 3.4.7 [BO] or V.7.6 [BA] that $(\pi_g, i)_*$ in (2.1) is surjective for n = 6 and is an isomorphism for n = 5. Hence we obtain the exact sequence

$$\pi_{5}(S^{3} \vee S^{2})_{2} \xrightarrow{(g,1)_{*}} \pi_{5}(S^{2}) \xrightarrow{i_{*}} \pi_{5}(C_{g})$$
$$\xrightarrow{\delta} \pi_{4}(S^{3} \vee S^{2})_{2} \xrightarrow{(g,1)_{*}} \pi_{4}(S^{2})$$
(2.4)

with $\delta(\alpha) = \xi$ if and only if $\alpha \in E_g(\xi)$. Here $\pi_5(S^2) = \mathbb{Z}/2$ is generated by η_2^3 and we have

$$\pi_4(S^3 \vee S^2)_2 = \mathbb{Z} \oplus \mathbb{Z}/2,$$

where \mathbb{Z} is generated by the Whitehead product $[i_3, i_2]$ of the inclusions $i_3 : S^3 \subset S^3 \vee S^2$, $i_2 : S^2 \subset S^3 \vee S^2$ and where $\mathbb{Z}/2$ is generated by $i_3 \eta_3$. Using the Hilton Milnor theorem [H] we see that (2.4) induces for $g \in m\eta_2 \in \pi_3(S^2)$ the exact sequences

$$0 \to \pi_5 S^2 \xrightarrow{i_*} \pi_5(C_g) \xrightarrow{\delta} \pi_4(S^3 \vee S^2)_2 \to 0 \quad \text{if } m \text{ is even}, \tag{2.5}$$

HANS-JOACHIM BAUES

$$\pi_5 S^2 \xrightarrow{i_*=0} \pi_5(C_g) \xrightarrow{\delta} \mathbb{Z}$$
 if *m* is odd. (2.6)

For this we need the fact that the Whitehead product $[\eta_2, \iota_2] = 0$ is trivial where $\iota_2 \in \pi_2(S^2)$ is represented by the identity of S^2 . We point out that (2.5) is non split if $m \equiv 2(4)$ and is split otherwise; compare [Ya].

For $f \in \pi_5(C_g)$ we obtain $\xi = \delta(f)$ with $f \in E_g(\xi)$. Let $X = S^2 \cup_g e^4 \cup_f e^6$ be the mapping cone of f. Then the cohomology ring $H^* = H^*(X)$ satisfies for appropriate generators $x \in H^2, y \in H^4, z \in H^6$ the formulas

$$x \cup x = my \quad \text{if } g \in m\eta_2, \tag{2.7}$$

$$y \cup x = nz$$
 if $\xi = n[i_3, i_2] + w \cdot i_3 \eta_3.$ (2.8)

Moreover the squaring operation $Sq^2 \colon H^4(X, \mathbb{Z}/2) \to H^6(X, \mathbb{Z}/2)$ is determined by w; that is $Sq^2 \neq 0$ if and only if $w \neq 0$. Hence for a manifold M as in (1.3) we have $f \in E_g(\xi)$ with $g \in m(M) \cdot \eta_2$ and

$$\xi = [i_3, i_2] + w(M) \cdot i_3 \eta_3 \in \pi_4(S^3 \vee S^2)_2.$$
(2.9)

Proof of (1.12). We consider manifolds $M = S^2 \cup_g e^4 \cup_f e^6$ and $M' = S^2 \cup_h e^4 \cup_d e^6$. Any map

$$G: C_g = S^2 \cup_g e^4 \to C_h = S^2 \cup_h e^4 \tag{1}$$

is principal and hence associated to a diagram

where b and a have degree k and $k^2 \cdot m(M)/m(M')$ respectively. We see this by V.7.4,...,V.7.9 [BA]. Moreover for maps G, G' both associated to (a, b) there exists $\alpha \in \pi_4(S^2)$ such that

$$G' = G + i_* \alpha \in [C_g, C_h]. \tag{3}$$

56

We now consider the diagram

where f and d are the attaching maps of the 6-cell in M and M' respectively. The map G extends to a map $F: M \to M'$ if and only if the obstruction

$$\mathcal{O}(G) = -Gf + da' \in \pi_5(C_h) \tag{5}$$

vanishes in $\pi_5(C_h)$. We now assume that a' is a map of degree $k^3 \cdot m(M)/m(M')$ and that k is (M, M')-good as in the assumption of (1.12). Then we see by (2.9) and (2.3) that

$$j\mathcal{O}(G) = 0$$
 in $\pi_5(C_h, S^2)$. (6)

Hence there exists an element $\mathcal{O}'(G) \in \pi_5(S^2)$ with

$$i_*\mathcal{O}'(G) = \mathcal{O}(G). \tag{7}$$

Moreover by (2.9) and (2.2) we see that for G' in (3) we have

$$\mathcal{O}(G') = -f^*(G + i_*\alpha) + da'$$

= $-f^*(G) + da' - (\alpha, Gi)E\xi$
= $\mathcal{O}(G) - (\alpha, ib)E(\xi).$ (8)

Here $E\xi$ is given by

$$E\xi = E([i_3, i_2] + w(M) \cdot i_3\eta_3)$$

= $[i_4, i_2] + i_4 w(M)\eta_4 \in \pi_5(S^4 \vee S^2)_2$.

Since the Whitehead product $[\alpha, \iota_2] \in \pi_5(S^2)$ vanishes for $\alpha \in \pi_4(S^2)$ we therefore get

$$\mathcal{O}(G') = \mathcal{O}(G) - w(M) \cdot i_*(\alpha \circ \eta_4).$$
(9)

(4)

We now are able to construct maps $M \to M'$ as follows. Let k be (M, M')-good. Then (2) homotopy commutes and hence there exists a map G associated to (a, b). If m(M) is odd then (7) and (2.6) show that $\mathcal{O}(G) = 0$ and hence G can be extended to obtain a map $M \to M'$ associated to (a', b) in (4). If $w(M) \neq 0$ then $\mathcal{O}(G)$ might be non zero but by (9) and (7) we find G' such that $\mathcal{O}(G') = 0$ and hence G' can be extended. Hence we are allowed to put G(M, M') = 0 if m(M') odd or $w(M) \neq 0$.

If m(M') even and w(M) = 0 then we define the obstruction in (1.12) by $\mathcal{O}'(G)$ in (7); that is

$$\mathcal{O}(M,k,M') = \mathcal{O}'(G) \in \pi_5(S^2) = \mathbb{Z}/2.$$
(10)

Here $\mathcal{O}'(G)$ is well defined since the map i_* in (2.5) is injective. We are able to compute the element (10) by using the suspension of diagram (4). We know that the composite

$$i_2 \colon \mathbb{Z}/2 = \pi_5(S^2) \xrightarrow{\Sigma} \pi_6(S^3) = \mathbb{Z}/12 \twoheadrightarrow \pi_6(S^3) \otimes \mathbb{Z}/4 = \mathbb{Z}/4$$

coincides with the inclusion i_2 ; see Toda [T]. Hence $\mathcal{O}(M, k, M')$ is determined by

$$i_2 \mathcal{O}(M, k, M') = (\Sigma \mathcal{O}'(G)) \otimes 1 \in \mathbb{Z}/4.$$
(11)

Since m(M') is even we see that $\Sigma h = 0$ so that there exists a retraction $r: \Sigma C_h \to S^3$ of $i: S^3 \subset \Sigma C_h$. Hence we get

$$(\Sigma \mathcal{O}'(G)) \otimes 1 = r\Sigma(i_* \mathcal{O}'(G)) \otimes 1$$

= $r\Sigma \mathcal{O}(G) \otimes 1$
= $(-r(\Sigma G)(\Sigma f) + r(\Sigma d)(\Sigma a')) \otimes 1 \in \mathbb{Z}/4.$ (12)

Here we have by (1.6)

$$r(\Sigma G)\Sigma f \otimes 1 = r(\Sigma G)if_0 \otimes 1$$

= $ribf_0 \otimes 1$
= $bf_0 \otimes 1 = k\alpha$ with $\alpha \in \alpha(M)$. (13)

On the other hand we have by (1.7)

$$(r\Sigma d)(\Sigma a') \otimes 1 = \text{degree}(a') \cdot \beta \quad \text{with } \beta \in \beta(M').$$
 (14)

By (12), (13), (14) the proof of the formula in (1.12) is complete. \Box

It remains to prove Lemma (1.8).

3. Proof of Lemma (1.8)

The proof of (1.8) relies on the following two propositions (3.1) and (3.2). Let $\mathbb{C}P_2$ be the *complex projective space* with $\mathbb{C}P_2 = S^2 \cup_q e^4$, $g \in \eta_2 \in \pi_3 S^2$.

(3.1) **PROPOSITION.** Let $h: S^5 \to \mathbb{C}P_2$ be the Hopf map which is the attaching map of the 6-cell in $\mathbb{C}P_3$. Then the suspension of h admits up to homotopy a factorization

where $h' \in \pi_6(S^3) = \mathbb{Z}/12$ is a generator.

As pointed out by the referee a short proof of (3.1) is obtained as follows. The complex projective space $\mathbb{C}P^3$ is the total space of the S^2 -bundle over S^4 with characteristic element $\xi \in \pi_3(SO_3) \cong \mathbb{Z}$ being a generator. The *J*-homomorphism $J : \pi_3(SO_3) \to \pi_6 S^3 = \mathbb{Z}/12 \cdot h'$ satisfies $J(\xi) = h'$. Hence by a formula of James-Whitehead we obtain $\sigma h = i \circ J(\xi) = i \circ h'$; see [Jam]. We give below a different proof of (3.1) which does not use the *J*-homomorphism. Our proof is related with the proofs of (3.3) and (3.4) which as well are needed for the main result in this paper.

Let J_2S^2 be the second reduced product of S^2 with $J_2S^2 = S^2 \cup_g e^4$, $g \in 2\eta_2 = [i_2, i_2] \in \pi_3 S^2$. We define a map

$$\rho \colon \pi_5(J_2 S^2) \to \mathbb{Z}/2 \tag{3.2}$$

by $\rho(f) = (r\Sigma f) \otimes 1 \in \pi_6(S^3) \otimes \mathbb{Z}/2$. Here ρ does not depend on the choice of the retraction $r: \Sigma J_2 S^2 \to \Sigma S^2$ of $i: \Sigma S^2 \subset \Sigma J_2 S^2$.

(3.3) **PROPOSITION.** The function ρ coincides with the function which carries $f \in \pi_5(J_2S^2)$ to $qf \in \pi_5S^4 = \mathbb{Z}/2$, where $q: J_2S^2 \to S^4$ is the quotient map.

In addition we get the following result:

(3.4) ADDENDUM. For $\epsilon = 1, 2$ there exist $h_{\epsilon} \in \pi_5(J_2S^2)$ with $h_1 \in E_g([i_3, i_2] + \iota_3\eta_3)$ and $h_2 \in E_g([i_3, i_2]), g \in 2\eta_2$, such that for an appropriate retraction r the following diagram homotopy commutes.

Here h' *is a generator of* $\pi_6 S^3 \cong \mathbb{Z}/12$.

Proof of (1.8). Let $M = S^2 \cup_g e^4 \cup_f e^6$ as in Section 1. If m(M) is odd (and hence w(M) = 0) there is a map

 $G: S^2 \cup_q e^4 \to \mathbb{C}P_2$

of degree m(M) in H_4 and degree 1 in H_2 . By (2.6) and (2.9) this map carries f to

$$G_*f = m(M) \cdot h,$$

where h is the Hopf map in (3.1). Hence (3.1) shows that $\alpha(M)$ contain $\{m(M)\} \in \mathbb{Z}/4$. Hence $\alpha(M) = \{1, 3\}$ since $\alpha(M)$ is a coset of $i_2\mathbb{Z}/2$ and m(M) odd.

Next let m(M) be even. In this case we obtain a map

$$G: S^2 \cup_a e^4 \to J_2 S^2$$

of degree t = m(M)/2 in H_4 and degree 1 in H_2 . By (2.6) and (2.9) the map G carries f to

$$G_*f \in E_{2\eta_2}(t \cdot [i_3, i_2] + t \cdot w(M) \cdot i_3\eta_3).$$

On the other hand a retraction $r: \Sigma J_2 S^2 \to S^3$ yields a retraction $r' = r(\Sigma G)$: $S^2 \cup_g e^4 \to S^3$ so that in $\pi_6(S^3) \otimes \mathbb{Z}/2$ we have by (3.3)

$$(r'\Sigma f) \otimes 1 = r(\Sigma G)(\Sigma f) \otimes 1$$
$$= \rho((\Sigma G)(\Sigma f))$$
$$= q(Gf)$$
$$= t \cdot w(M) \operatorname{mod} 2.$$

This shows $\beta(M) \in i_2(\mathbb{Z}/2) \subset \mathbb{Z}/4$ if w(M) = 0 and it yields the formula for $\beta(M)$ in (1.8) if $w(M) \neq 0$.

For the proof of (3.1), (3.3) and (3.4) we need the *infinite reduced product JX* of James [Ja] where X is a pointed space. In fact J is a functor which carries pointed spaces to pointed spaces and one has a canonical natural transformation

$$JX \xrightarrow{-} \Omega \Sigma X \tag{3.5}$$

which is a homotopy equivalence since we assume that X is a connected CWcomplex. Moreover J is a monad in the sense that there are natural maps $i = i_X$: $X \to JX$, $\mu: JJX \to JX$ satisfying

$$\mu J(i_X) = 1 \quad \text{and} \quad \mu i_{JX} = 1. \tag{1}$$

By (3.5) the suspension Σ can be described by the composite

$$\Sigma \colon [Y, X] \xrightarrow{(i_X)_*} [Y, JX] \xrightarrow{\vartheta} [\Sigma Y, \Sigma X], \tag{2}$$

where the isomorphism ϑ is obtained by (3.5).

Proof of (3.1). We consider $V = J \mathbb{C}P_2$ and the suspension

$$\Sigma \colon \pi_5 \mathbb{C}P_2 \xrightarrow{i_*} \pi_5(V) \cong \pi_6(\Sigma \mathbb{C}P_2).$$
⁽¹⁾

Using $g = \Sigma \eta_2$ in (2.1) we see that the sequence

$$\pi_6 S^4 \xrightarrow{(\eta_3)_*} \pi_6(S^3) \xrightarrow{i_*} \pi_6 \Sigma \mathbb{C} P_2 \to 0$$
⁽²⁾

is exact since $(\pi_g, i)_*$ is an isomorphism for n = 7, 6; compare 3.4.7 [BO] or V.7.6 [BA]. Here we have $(\eta_3)_*\pi_6S^4 = \Sigma\pi_5S^2$ so that the following diagram commutes

The bottom row is exact. The space V is a CW-complex in which all cells have even dimension. Therefore we obtain the exact sequence

$$\pi_6(V^6, V^4) \xrightarrow{\partial} \pi_5(V^4, S^2) \to \pi_5(V, S^2) \to 0.$$
(4)

Let $S_W^3 = S_H^3 = S^3$ and let $A = S_W^3 \vee S_H^3$ be the one point union with inclusions $i_W, i_H : S^3 \subset A$ accordingly. Then V^4 is the mapping cone of $g : A \to S^2$ with $gi_W = [\iota_2, \iota_2]$ and $gi_H = \eta_2$. This shows that

$$\pi_{5}(V^{4}, S^{2}) \xrightarrow{\partial} \pi_{4}(A \lor S^{2})_{2}$$

$$\downarrow^{(g,1)_{*}}$$

$$\pi_{4}S^{2} = \mathbb{Z}/2$$
(5)

commutes. The isomorphism is $\theta^{-1} = (\pi_q, i)_* \partial^{-1}$ as in (2.1). Moreover we have

$$\pi_4(A \vee S^2)_2 = \mathbb{Z}/2i_W\eta_3 \oplus \mathbb{Z}/2i_H\eta_3 + \mathbb{Z}[i_W, i_2] + \mathbb{Z}[i_H, i_2].$$

The space V has exactly 3 cells a, b, c of dimension 6. Let

$$p_a \colon S^2 \times \mathbb{C}P_2 \to V,$$

$$p_b \colon \mathbb{C}P_2 \times S^2 \to V,$$

$$p_c \colon S^2 \times S^2 \times S^2 \to JS^2 \subset V$$

be the canonical maps given by $S^2 \subset \mathbb{C}P_2$. Then $a = p_a(e^2 \times e^4)$, $b = p_b(e^4 \times e^2)$ and $c = p_c(e^2 \times e^2 \times e^2)$ where $e^2 \cup * = S^2$ and $S^2 \cup e^4 = \mathbb{C}P_2$. We claim that $\theta \partial$ defined by (4) and (5) satisfies the formulas:

$$\begin{cases} \theta\partial(a) = \theta\partial(b) = [i_H, i_2] + [i_W, i_2] + i_W\eta_3, \\ \theta\partial(c) = 3[i_W, i_2]. \end{cases}$$
(6)

Moreover we have for ji_* defined by (1) and (3)

$$ji_*(h) = [i_H, i_2].$$
 (7)

Now (6) and (7) yield by (4) the proposition in (3.1). In fact by (3) and (5) the group

$$\pi_5 V \cong (\mathbb{Z}/2 \oplus \mathbb{Z} \oplus \mathbb{Z})/\sim \tag{8}$$

is generated by $i_W \eta_3$, $[i_H, i_2]$, $[i_W, i_2]$ with the relation $\theta \partial(a) \sim 0$ and $\theta \partial(c) = 0$ where i_*h is represented by $[i_h, i_2]$. Hence i_*h in (1) is a generator of $\pi_5 V \cong \mathbb{Z}/6$. It remains to prove the formulas in (6). Since Sq^2 is non trivial in $S^2 \times \mathbb{C}P_2$ and $\mathbb{C}P_2 \times S^2$ we see that $i_W \eta_3$ has to be a summand of $\theta \partial(a)$ and $\theta \partial(b)$. On the other hand we show below that

$$2\theta\partial(a) = 2\theta\partial(b) = 2[i_H, i_2] + 2[i_W, i_2].$$
(9)

This implies the first formula in (6).

For i = 1, 2, 3 let $S_i = S^2$ be the 2-sphere with 2-cell e_i , that is $S_i = * \cup e_i$. Moreover let $T = S_1 \times S_2 \times S_3$ and let

$$\xi_i: S_i \subset S_1 \lor S_2 \lor S_3 = T^2$$

be the inclusions. Then the cell $e_i \times e_j$ in T with i < j has the attaching map $[\xi_i, \xi_j]$ which is the Whitehead product of ξ_i, ξ_j . Hence T^4 is the mapping cone of

$$g \colon A = S_{12} \lor S_{13} \lor S_{23} \to S_1 \lor S_2 \lor S_3,$$

where $S_{12} = S_{13} = S_{23} = S^3$ and $g|S_{ij} = [\xi_i, \xi_j]$. Moreover let $w \in \pi_5(T^4)$ be the attaching map of the 6-cell $e_1 \times e_2 \times e_3$ in T. Then we know

$$w \in E_g([\xi_{12}, \xi_3] + [\xi_{13}, \xi_2] + [\xi_{23}, \xi_1]), \tag{10}$$

62

where $\xi_{ij} : S_{ij} \subset A \subset A \vee T^2$ and $\xi_i : S^2 \subset T^2 \subset A \vee T^2$ are the inclusions. Formula (10) corresponds to the Nakaoka Toda formula [NT], see also 3.6.10 in [BO] or [BI]. Now (10) and the canonical map $T \to JS^2$ show that the second formula in (6) holds. For this we use the naturality (2.3). On the other hand we have the canonical map $\lambda : S^2 \times S^2 \to J_2S^2 \to \mathbb{C}P_2$ which is of degree 2 in H_4 . Then (10) and the maps $p_a(1 \times \lambda) : T \to V$, $p_b(\lambda \times 1) : T \to V$ show that (9) holds. For this we again use (2.3).

Proof of (3.3) *and* (3.4). The space J_2S^2 is the 4-skeleton of JS^2 ; let $j : J_2S^2 \subset JS^2$ be the inclusion. Then j induces the exact sequences

Here δ is the map in (2.5) for $g = [\iota_2, \iota_2]$. In the top row $1 \in \mathbb{Z}$ is mapped to the attaching map w of the 6-cell in JS^2 for which $\delta(w) = (3,0)$ by (10) in the proof of (3.1) above. Recall that the second coordinate of $\delta(x), x \in \pi_5 J_2 S^2$, coincides with $q(x) \in \pi_5 S^4 = \mathbb{Z}/2$. The kernel of δ is given by the inlcusion $i_* : \pi_5 S^2 \subset \pi_5 J_2 S^2$. We now obtain by the maps in (3.5) (1) the following commutative diagram

$$\pi_{6}S^{3} \stackrel{\vartheta}{\cong} \pi_{5}JS^{2} \stackrel{1}{\longrightarrow} \pi_{5}(JS^{2})$$

$$\downarrow^{i_{*}} \qquad \downarrow^{(Ji)_{*}} \qquad \downarrow^{\mu_{*}}$$

$$\pi_{6}(\Sigma J_{2}S^{2}) \stackrel{\vartheta}{\cong} \pi_{5}(JJ_{2}S^{2}) \stackrel{(Jj)_{*}}{\longrightarrow} \pi_{5}(JJS^{2})$$

$$\downarrow^{r_{*}} \qquad \downarrow^{u_{1}} \qquad \downarrow^{u_{2}}$$

$$\pi_{6}(S^{3}) \qquad \pi_{5}(J_{2}S^{2}) \stackrel{j_{*}}{\longrightarrow} \pi_{5}(JS^{2}) \stackrel{\vartheta}{\cong} \pi_{6}S^{3}.$$

$$(2)$$

Here u_1 , resp. u_2 , is induced by the inclusion $i_X : X \subset JX$ with $X = J_2S^2$ and $X = JS^2$ respectively. We have $\vartheta u_1 x = \Sigma(x)$. Moreover we have $\mu_* u_2 = 1$. Now we get for $y = r_*\Sigma(x) \in \pi_6(S^3)$ the equation $\vartheta u_1 x = i_*y + z$ with $r_*(z) = 0$ and 2z = 0 since kernel $(r_*) = \mathbb{Z}/2$. Now we obtain

$$u_1 x = \vartheta^{-1} (i_* y + z) = (Ji)_* \vartheta^{-1} y + \vartheta^{-1} z$$
(3)

and hence by diagram (2)

$$j_*(x) = \mu_*(Jj)_* u_1 x$$

= $\vartheta^{-1} y + \mu_*(Jj)_* \vartheta^{-1} z.$ (4)

Therefore we get

$$\vartheta j_*(x) = y + z' = r_* \Sigma(x) + z', \tag{5}$$

where z' is an element of order at most 2. Since the kernel of δ' in (1) is the element of order 2 we thus derive from (5) the result in (3.3) and (3.4) respectively; compare the definition of δ in (2.4).

References

- [BA] Baues, H.J.: Algebraic Homotopy, Cambridge Studies in Advanced Math. 15, Cambridge University Press, 1989, 450 pages.
- [BI] Baues, H.J.: Identitäten für Whitehead Produkte höherer Ordnung, Math. Z. 146 (1976) 239–265.
- [BO] Baues, H.J.: Obstruction Theory, Lecture Notes in Math. 628 (1977) 387 pages.
- [H] Hopf, H.: Abbildungsklassen *n*-dimensionaler Mannigfaltigkeiten, *Math. Annalen* 92 (1926) 209–224.
- [J] Jupp, P.E.: Classification of certain 6-manifolds, *Proc. Camb. Phil. Soc.* (1973) 293–300.
- [Ja] James, I.M.: Reduced product spaces, Ann. of Math. 62 (1955) 170–197.
- [Jam] James, I.M.: On sphere bundles over spheres, Comment. Math. Helv. 35 (1961) 126–135.
- [NT] Nakaoka, M. and Toda, H.: On the Jacobi identity for Whitehead products, J. Inst. Polytechn., Osaka Univ. 5 (1954) 1–13.
- [T] Toda, H.: Composition methods in homotopy groups of spheres, *Annals of Math. Studies* 49.
- [U] Unsöld, H.M.: On the Classification of Spaces with Free Homology, Dissertation Fachbereich Math., Freie Universität Berlin, 1987.
- [W] Wall, C.T.C.: Classification Problems in differential topology V, Invent. math. 1 (1966) 355–374.
- [Y] Yamaguchi, K.: On the homotopy type of CW-complexes with the form $S^2 \cup e^4 \cup e^6$, *Kodai Math. J.* 5 (1982) 303–312.
- [Ya] Yamaguchi, K.: The group of self-homotopy equivalences of S^2 -bundles over S^4 , I, II, *Kodai Math. J.* 10 (1987) 1–8.
- [Z] Zubr, A.V.: *Classification of Simply-Connected Topological 6-Manifolds*, Lecture Notes in Math. 1346, 1988, pp. 325–339.

64