
Compositio Mathematica 110: 51–64, 1998. 51
c 1998 Kluwer Academic Publishers. Printed in the Netherlands.

The degree of maps between certain 6-manifolds

HANS-JOACHIM BAUES
Max-Planck-Institut für Mathematik, Gottfried-Clarenstrasse 26, 53225 Bonn, Germany
e-mail:baues@mpim-bonn.mpg.de

Received 28 August 1996; accepted in final form 21 September 1996

Abstract. For manifolds M;M 0 of the form S2
[ e4

[ e6 we compute the homomorphisms H�M !

H�M
0 between homology groups which are realizable by a map F : M !M 0.
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For oriented compact closed manifolds M;M 0 of the same dimension the degree
d of a map F : M !M 0 is defined by the equation

F�[M ] = d � [M 0]:

Here [M ] denotes the fundamental class of M . In a classical paper Hopf [H]
considered such degrees. In this paper we compute all possible degrees of maps
M ! M 0 where M and M 0 are 6-manifolds of the form S2 [ e4 [ e6 and for
which the cup square of a generator x 2 H2 is non trivial. For example for such a
manifold M the degrees of maps M !M are exactly the numbers d = k3; k 2 Z.
The result in this paper answers a question of A. Van de Ven. The author is grateful
to Fang Fuquan for his remarks on Pontrjagin classes.

1. Homotopy types of manifolds S2 [ e4 [ e6 and degrees of maps

We consider closed differentiable manifolds M of dimension 6 which are simply
connected and for which the cohomology with integral coefficients satisfies

H
i(M) =

(
Z for i = 0; 2; 4; 6;

0 otherwise.
(1.1)

Moreover we assume that a generator x of H2(M) has a non-trivial cup square
x [ x 6= 0. We choose a generator y 2 H4(M) such that x [ x = my, where
m 2 N = f1; 2; : : : ; g is a natural number; we also write m = m(M). Moreover
let w = w(M) 2 Z=2 be given by the second Stiefel–Whitney class. Then the Wu
formulas show that w(M) = 0 if and only if the Steenrod square

Sq
2 : H4(M;Z=2) = Z=2! H

6(M;Z=2) = Z=2 (1.2)
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52 HANS-JOACHIM BAUES

is trivial so that (1.2) is determined by w(M). Any manifold as in (1.1) admits a
homotopy equivalence

M ' S
2
[g e

4
[f e

6
; (1.3)

where the attaching map g represents m�2 2 �3(S
2). Here �2 is the Hopf element

which generates �3(S
2) = Z. Moreover the attaching map f of the 6-cell satisfies

q�f = w�4 2 �5(S
4) with w = w(M); (1.4)

where q : S2 [g e
4 ! S2 [g e

4=S2 = S4 is the quotient map. Here �n with n > 3
denotes the generator of �n+1(S

n) = Z=2. Recall that �6(S
3) = Z=12 so that

�6(S
3)
 Z=4 = Z=4. We define subsets(
�(M) � Z=4 if w(M) = 0;

�(M) � Z=4 if m(M) is even
(1.5)

as follows. For w(M) = 0 the suspension �f of the attaching map in (1.3) admits
up to homotopy a factorization

S
6 �f

- �(S2
[g e

4)

S
3

f0

?

========= �S2
;

6

i (1.6)

where i is the inclusion. Then�(M) consists of all elements f0
1 2 �6(S
3)
Z=4

for which (1.6) homotopy commutes, that is i�f0 = �f in �6(�(S
2 [g e

4)).
Moreover if m(M) is even then the inclusion i : S3 � �(S2 [g e

4) admits a
retraction r. Let �(M) be the set of all elements (r�f)
 1 2 �6(S

3)
Z=4 given
by compositions

S
6 �f
- �(S2

[g e
4)

r
- S

3
; (1.7)

where r is any retraction of i. Let i2 : Z=2 � Z=4 be the inclusion which carries
1 2 Z=2 to 2 2 Z=4.

(1.8) LEMMA. For w(M) = 0 and m(M) even the sets �(M) = �(M) coincide
and consist of a single element in the image of i2. In this case let p(M) 2 Z=2 be
given by

i2p(M) = �(M) = �(M):

Moreover we have

�(M) = f1; 3g if m(M) � 1 mod 2 and w(M) = 0;

�(M) = f1; 3g if m(M) � 2 mod 4 and w(M) 6= 0;

�(M) = f0; 2g if m(M) � 0 mod 4 and w(M) 6= 0:
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THE DEGREE OF MAPS BETWEEN CERTAIN 6-MANIFOLDS 53

Forw(M) = 0 andm(M) even the first Pontrjagin class p1(M) 2 H4(M) = Z

of M is divisible by 8 and hence yields by reduction mod 16 an element in Z=2
denoted by p01(M) 2 Z=2; then we have in Z=2 the formula

p(M) + p
0

1(M) = fm(M)=2g 2 Z=2

so that the element p(M) in (1.8) is also determined by the Pontrjagin class p1(M).
For this compare Theorem 4 and the proof of Theorem 7 in [W] and [Ya]. Form 2 N

and w 2 Z=2 we define the group

P (m;w) =

(
Z=2; if m even and w = 0;

0; otherwise.

(1.9) PROPOSITION. The homotopy types of manifolds (or Poincaré complex-
es) which satisfy the conditions in (1:1) are in 1-1 correspondence with triples
(m;w; p) where m 2 N; w 2 Z=2 and p 2 P (m;w) such that mw = 0. The
correspondence carries M to the triple (m(M); w(M); p(M)) defined above.

In particular each such triple (M;w; p) is realizable by a manifold as in (1.1)
and the realization is unique up to homotopy equivalence. The case of Poincaré
complexes in (1.9) was proved by Unsöld [U] and by Yamaguchi [Y] and [Ya].
In fact, for Poincaré complexes Proposition (1.9) can be easily derived from the
proof of (1.12) below. In the case of manifolds we can use the result of Wall
(Theorem 8 in [W]) that each Poincaré complex with the properties in (1.1) is
homotopy equivalent to a smooth manifold. Compare also the result of Zubr [Z];
according to the remark at the end of [Z] the results of Jupp [J] and Wall [W] on
the homotopy classification of simply connected 6-manifold have to be modified.

We now are ready to discuss the possible degrees of maps F : M !M 0 where
M and M 0 are manifolds as in (1) with generators x 2 H2(M); x0 2 H2(M 0). We
say that k 2 Z is (M;M 0)-realizable if there exists a continuous map F : M !M 0

with F �(x0) = k � x. Moreover we say that k 2 Z is (M;M 0)-good if k2 �m(M)
is divisible by m(M 0) and if

w(M) �
k2 �m(M)

m(M 0)
= w(M 0) � k �

k2 �m(M)

m(M 0)
(1.10)

holds in Z=2. One readily checks that any k 2 Z which is (M;M 0)-realizable is
(M;M 0)-good. We define the group

G(M;M
0) =

(
Z=2 if w(M) = 0 and m(M 0) even,

0 otherwise.
(1.11)

Then we have the following result which completely determines all degrees k

which are (M;M 0)-realizable.
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(1.12) THEOREM. Let k 2 Z be (M;M 0)-good then k is (M;M 0)-realizable if
and only if an obstruction element

O(M;k;M
0) 2 G(M;M

0)

is trivial. For w(M) = 0 and m(M 0) even this obstruction element is given by the
formula in Z=4

i2O(M;k;M
0) = k

 
��+

k2 �m(M)

m(M 0)
�

!

with � 2 �(M); � 2 �(M 0) as described in (1:8).

Hence, for example, if k is (M;M 0)-good and if k is divisible by 4 then k is
(M;M 0)-realizable. Moreover if M =M 0 then any k 2 Z is (M;M)-good and by
(1.12) also (M;M)-realizable. The theorem computes all possible degrees of maps
F : M ! M 0. In fact, such degrees are exactly the numbers k3 �m(M)=m(M 0)
for which k is (M;M 0)-realizable.

2. Proof of Theorem (1.12)

For the proof of (1.12) and (1.8) we first consider the homotopy groups �n(Cg) of
a mapping cone Cg = B [g CA of a map g : A ! B where CA is the cone of
A. We assume that A = �A0 is a suspension. Let �g : (CA;A) ! (Cg; B) be the
canonical map and let i : B � Cg be the inclusion. For the one point union A _B

let r = (0; 1) : A _B ! B be the retraction and let

�n(A _B)2 = kernel(r� : �n(A _B)! �nB):

Then we obtain the following commutative diagram in which the bottom row is
exact.

�n(CA _B;A _B)
@
�=

- �n(A _B)2

�nB
i�
- �n(Cg)

j
- �n(Cg; B)

?

(�g;i)�

@
- �n�1B:

?

(g;1)� (2.1)

Hence we can define the functional suspension operator

Eg : kernel(g; 1)� ! �n(Cg)=i��nB

Eg(�) = j�1(�g; 1)�@�1(�);

where � 2 �n(A _ B)2 with (g; 1)�� = 0; see 3.4.3 [BO] and II.11.7 [BA]. Now
let [Cg; U ] be the set of homotopy classes of maps Cg ! U . Then the coaction
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Cg ! Cg _ �A yields an action + of � 2 [�A;U ] on G 2 [Cg; U ] so that
G+ � 2 [Cg; U ] is defined. For f 2 �n(Cg) with f 2 Eg(�) we have by II.12.3
[BA] the formula in �n(U)

f
�(G+ �) = f

�(G) + (�;Gi)E�; (2.2)

where

E : �n�1(A _B)2 ! �n(�A _B)2

is the partial suspension; see [BA].
Now let Ch be the mapping cone of h : A0 ! B0 and let G : Cg ! Ch be a map

associated to a homotopy commutative diagram

A
a
- A

0

B

g

?

b
- B

0
:

?

h

Then we call G a principal map; see [BA]. The functional suspension is natural in
the sense that

G�Eg(�) � Eh((a _ b)��): (2.3)

This follows from V.2.8 [BA] and diagram (2.1).
Now let A = S2 andB = S2 so thatCg = S2[g e

4. Then we see by 3.4.7 [BO]
or V.7.6 [BA] that (�g; i)� in (2.1) is surjective for n = 6 and is an isomorphism
for n = 5. Hence we obtain the exact sequence

�5(S
3
_ S

2)2
(g;1)�
- �5(S

2)
i�
- �5(Cg)

�
- �4(S

3
_ S

2)2
(g;1)�
- �4(S

2) (2.4)

with �(�) = � if and only if � 2 Eg(�). Here �5(S
2) = Z=2 is generated by �3

2
and we have

�4(S
3
_ S

2)2 = Z� Z=2;

where Z is generated by the Whitehead product [i3; i2] of the inclusions i3 : S3 �

S3 _ S2; i2 : S2 � S3 _ S2 and where Z=2 is generated by i3 �3. Using the Hilton
Milnor theorem [H] we see that (2.4) induces for g 2 m�2 2 �3(S

2) the exact
sequences

0 ! �5S
2 i�
- �5(Cg)

�
- �4(S

3
_ S

2)2 ! 0 if m is even; (2.5)
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�5S
2 i�=0
- �5(Cg)

�

�=

- Z if m is odd. (2.6)

For this we need the fact that the Whitehead product [�2; �2] = 0 is trivial where
�2 2 �2(S

2) is represented by the identity of S2. We point out that (2.5) is non split
if m � 2(4) and is split otherwise; compare [Ya].

For f 2 �5(Cg) we obtain � = �(f) with f 2 Eg(�). Let X = S2 [g e
4 [f e

6

be the mapping cone of f . Then the cohomology ring H� = H�(X) satisfies for
appropriate generators x 2 H2; y 2 H4; z 2 H6 the formulas

x [ x = my if g 2 m�2; (2.7)

y [ x = nz if � = n[i3; i2] + w � i3�3: (2.8)

Moreover the squaring operation Sq2 : H4(X;Z=2)! H6(X;Z=2) is determined
by w; that is Sq2 6= 0 if and only if w 6= 0. Hence for a manifold M as in (1.3) we
have f 2 Eg(�) with g 2 m(M) � �2 and

� = [i3; i2] +w(M) � i3�3 2 �4(S
3
_ S

2)2: (2.9)

Proof of (1:12). We consider manifolds M = S2 [g e
4 [f e

6 and M 0 =
S2 [h e

4 [d e
6. Any map

G : Cg = S
2
[g e

4
! Ch = S

2
[h e

4 (1)

is principal and hence associated to a diagram

S
3 a

- S
3

S
2

g

?

b
- S

2
;

?

h (2)

where b and a have degree k and k2 � m(M)=m(M 0) respectively. We see this
by V.7.4,: : :,V.7.9 [BA]. Moreover for maps G;G0 both associated to (a; b) there
exists � 2 �4(S

2) such that

G
0 = G+ i�� 2 [Cg; Ch]: (3)
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We now consider the diagram

S
5 a0

- S
5

Cg

f

?

G
- Ch

?

d

S
2

[

6

b
- S

2
;

[

6

i

(4)

where f and d are the attaching maps of the 6-cell in M and M 0 respectively. The
map G extends to a map F : M !M 0 if and only if the obstruction

O(G) = �Gf + da
0
2 �5(Ch) (5)

vanishes in �5(Ch). We now assume that a0 is a map of degree k3 �m(M)=m(M 0)
and that k is (M;M 0)-good as in the assumption of (1.12). Then we see by (2.9)
and (2.3) that

jO(G) = 0 in �5(Ch; S
2): (6)

Hence there exists an element O0(G) 2 �5(S
2) with

i�O
0(G) = O(G): (7)

Moreover by (2.9) and (2.2) we see that for G0 in (3) we have

O(G0) = �f
�(G+ i��) + da

0

= �f
�(G) + da

0
� (�;Gi)E�

= O(G)� (�; ib)E(�): (8)

Here E� is given by

E� = E([i3; i2] + w(M) � i3�3)

= [i4; i2] + i4w(M)�4 2 �5(S
4
_ S

2)2:

Since the Whitehead product [�; �2] 2 �5(S
2) vanishes for� 2 �4(S

2)we therefore
get

O(G0) = O(G)� w(M) � i�(� � �4): (9)
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We now are able to construct maps M !M 0 as follows. Let k be (M;M 0)-good.
Then (2) homotopy commutes and hence there exists a map G associated to (a; b).
If m(M) is odd then (7) and (2.6) show that O(G) = 0 and hence G can be
extended to obtain a map M ! M 0 associated to (a0; b) in (4). If w(M) 6= 0 then
O(G) might be non zero but by (9) and (7) we find G0 such that O(G0) = 0 and
hence G0 can be extended. Hence we are allowed to put G(M;M 0) = 0 if m(M 0)
odd or w(M) 6= 0.

If m(M 0) even and w(M) = 0 then we define the obstruction in (1.12) by
O0(G) in (7); that is

O(M;k;M
0) = O

0(G) 2 �5(S
2) = Z=2: (10)

Here O0(G) is well defined since the map i� in (2.5) is injective. We are able to
compute the element (10) by using the suspension of diagram (4). We know that
the composite

i2 : Z=2 = �5(S
2)

�
- �6(S

3) = Z=12� �6(S
3)
 Z=4 = Z=4

coincides with the inclusion i2; see Toda [T]. Hence O(M;k;M 0) is determined
by

i2O(M;k;M
0) = (�O0(G))
 1 2 Z=4: (11)

Sincem(M 0) is even we see that�h = 0 so that there exists a retraction r : �Ch !

S3 of i : S3 � �Ch. Hence we get

(�O0(G))
 1 = r�(i�O
0(G))
 1

= r�O(G)
 1

= (�r(�G)(�f) + r(�d)(�a0))
 1 2 Z=4: (12)

Here we have by (1.6)

r(�G)�f 
 1 = r(�G)if0 
 1

= ribf0 
 1

= bf0 
 1 = k� with � 2 �(M): (13)

On the other hand we have by (1.7)

(r�d)(�a0)
 1 = degree(a0) � � with � 2 �(M 0): (14)

By (12), (13), (14) the proof of the formula in (1.12) is complete. 2

It remains to prove Lemma (1.8).
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3. Proof of Lemma (1.8)

The proof of (1.8) relies on the following two propositions (3.1) and (3.2). Let CP2

be the complex projective space with CP2 = S2 [g e
4; g 2 �2 2 �3S

2.

(3.1) PROPOSITION. Let h : S5 ! CP2 be the Hopf map which is the attaching
map of the 6-cell in CP3 . Then the suspension of h admits up to homotopy a
factorization

S
6 �h

- �CP2

S
3

h0

?

======= �S2
;

[

6

i

where h0 2 �6(S
3) = Z=12 is a generator.

As pointed out by the referee a short proof of (3.1) is obtained as follows. The
complex projective space CP 3 is the total space of the S2 -bundle over S4 with
characteristic element � 2 �3(SO3) �= Zbeing a generator. The J-homomorphism
J : �3(SO3) ! �6S

3 = Z=12 � h0 satisfies J(�) = h0. Hence by a formula of
James-Whitehead we obtain �h = i � J(�) = i � h0; see [Jam]. We give below
a different proof of (3.1) which does not use the J-homomorphism. Our proof is
related with the proofs of (3.3) and (3.4) which as well are needed for the main
result in this paper.

Let J2S
2 be the second reduced product of S2 with J2S

2 = S2[g e
4; g 2 2�2 =

[i2; i2] 2 �3S
2. We define a map

� : �5(J2S
2)! Z=2 (3.2)

by �(f) = (r�f)
 1 2 �6(S
3) 
 Z=2. Here � does not depend on the choice of

the retraction r : �J2S
2 ! �S2 of i : �S2 � �J2S

2.

(3.3) PROPOSITION. The function � coincides with the function which carries
f 2 �5(J2S

2) to qf 2 �5S
4 = Z=2, where q : J2S

2 ! S4 is the quotient map.

In addition we get the following result:
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(3.4) ADDENDUM. For � = 1; 2 there existh� 2 �5(J2S
2)with h1 2 Eg([i3; i2]+

�3�3) and h2 2 Eg([i3; i2]); g 2 2�2, such that for an appropriate retraction r the
following diagram homotopy commutes.

S
6 �h�

- �J2S
2

S
3

��h0

?

======= �S2
:

?

r

Here h0 is a generator of �6S
3 �= Z=12.

Proof of (1:8). Let M = S2 [g e
4 [f e

6 as in Section 1. If m(M) is odd (and
hence w(M) = 0) there is a map

G : S2
[g e

4
! CP2

of degreem(M) in H4 and degree 1 in H2. By (2.6) and (2.9) this map carries f to

G�f = m(M) � h;

where h is the Hopf map in (3.1). Hence (3.1) shows that�(M) contain fm(M)g 2
Z=4. Hence �(M) = f1; 3g since �(M) is a coset of i2Z=2 and m(M) odd.

Next let m(M) be even. In this case we obtain a map

G : S2
[g e

4
! J2S

2

of degree t = m(M)=2 in H4 and degree 1 in H2. By (2.6) and (2.9) the map G

carries f to

G�f 2 E2�2(t � [i3; i2] + t � w(M) � i3�3):

On the other hand a retraction r : �J2S
2 ! S3 yields a retraction r0 = r(�G) :

S2 [g e
4 ! S3 so that in �6(S

3)
 Z=2 we have by (3.3)

(r0�f)
 1 = r(�G)(�f)
 1

= �((�G)(�f))

= q(Gf)

= t � w(M)mod 2:

This shows �(M) 2 i2(Z=2) � Z=4 if w(M) = 0 and it yields the formula for
�(M) in (1.8) if w(M) 6= 0. 2
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For the proof of (3.1), (3.3) and (3.4) we need the infinite reduced product JX of
James [Ja] where X is a pointed space. In fact J is a functor which carries pointed
spaces to pointed spaces and one has a canonical natural transformation

JX
'
- 
�X (3.5)

which is a homotopy equivalence since we assume that X is a connected CW-
complex. Moreover J is a monad in the sense that there are natural maps i = iX :
X ! JX , � : JJX ! JX satisfying

�J(iX) = 1 and �iJX = 1: (1)

By (3.5) the suspension � can be described by the composite

� : [Y;X]
(iX)�
- [Y; JX]

#
�=

- [�Y;�X]; (2)

where the isomorphism # is obtained by (3.5).
Proof of (3:1). We consider V = JCP2 and the suspension

� : �5CP2
i�
- �5(V ) �= �6(�CP2 ): (1)

Using g = ��2 in (2.1) we see that the sequence

�6S
4 (�3)�
- �6(S

3)
i�
- �6�CP2 ! 0 (2)

is exact since (�g; i)� is an isomorphism for n = 7; 6; compare 3.4.7 [BO] or V.7.6
[BA]. Here we have (�3)��6S

4 = ��5S
2 so that the following diagram commutes

�6(S
3)

i�
- �6�CP2

�5S
2

�

6

0
- �rV

wwwwwwwwwwww
j
� �5(V; S

2)
@
- �4S

2
- 0:

(3)

The bottom row is exact. The space V is a CW-complex in which all cells have
even dimension. Therefore we obtain the exact sequence

�6(V
6
; V

4)
@
- �5(V

4
; S

2)! �5(V; S
2)! 0: (4)

Let S3
W = S3

H = S3 and let A = S3
W _ S3

H be the one point union with inclusions
iW ; iH : S3 � A accordingly. Then V 4 is the mapping cone of g : A ! S2 with
giW = [�2; �2] and giH = �2. This shows that

�5(V
4
; S

2)
@
�=

- �4(A _ S
2)2

�4S
2

@

?

========== Z=2
?

(g;1)� (5)
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commutes. The isomorphism is ��1 = (�g; i)�@
�1 as in (2.1). Moreover we have

�4(A _ S
2)2 = Z=2iW�3 � Z=2iH�3 + Z[iW ; i2] + Z[iH; i2]:

The space V has exactly 3 cells a; b; c of dimension 6. Let

pa : S2 � CP2 ! V;

pb : CP2 � S2 ! V;

pc : S2 � S2 � S2 ! JS2 � V

be the canonical maps given by S2 � CP2 . Then a = pa(e
2 � e4); b = pb(e

4 � e2)
and c = pc(e

2 � e2 � e2) where e2 [ � = S2 and S2 [ e4 = CP2 . We claim that
�@ defined by (4) and (5) satisfies the formulas:(

�@(a) = �@(b) = [iH ; i2] + [iW ; i2] + iW �3;

�@(c) = 3[iW ; i2]:
(6)

Moreover we have for ji� defined by (1) and (3)

ji�(h) = [iH ; i2]: (7)

Now (6) and (7) yield by (4) the proposition in (3.1). In fact by (3) and (5) the
group

�5V
�= (Z=2� Z� Z)=� (8)

is generated by iW �3; [iH ; i2]; [iW ; i2] with the relation �@(a) � 0 and �@(c) = 0
where i�h is represented by [ih; i2]. Hence i�h in (1) is a generator of �5V

�= Z=6.
It remains to prove the formulas in (6). Since Sq2 is non trivial in S2 � CP2 and
CP2 �S2 we see that iW�3 has to be a summand of �@(a) and �@(b). On the other
hand we show below that

2�@(a) = 2�@(b) = 2[iH ; i2] + 2[iW ; i2]: (9)

This implies the first formula in (6).
For i = 1; 2; 3 let Si = S2 be the 2-sphere with 2-cell ei, that is Si = � [ ei.

Moreover let T = S1 � S2 � S3 and let

�i : Si � S1 _ S2 _ S3 = T
2

be the inclusions. Then the cell ei�ej in T with i < j has the attaching map [�i; �j]
which is the Whitehead product of �i; �j . Hence T 4 is the mapping cone of

g : A = S12 _ S13 _ S23 ! S1 _ S2 _ S3;

where S12 = S13 = S23 = S3 and gjSij = [�i; �j ]. Moreover let w 2 �5(T
4) be

the attaching map of the 6-cell e1 � e2 � e3 in T . Then we know

w 2 Eg([�12; �3] + [�13; �2] + [�23; �1]); (10)
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where �ij : Sij � A � A _ T 2 and �i : S2 � T 2 � A _ T 2 are the inclusions.
Formula (10) corresponds to the Nakaoka Toda formula [NT], see also 3.6.10 in
[BO] or [BI]. Now (10) and the canonical map T ! JS2 show that the second
formula in (6) holds. For this we use the naturality (2.3). On the other hand we have
the canonical map � : S2 � S2 ! J2S

2 ! CP2 which is of degree 2 in H4. Then
(10) and the maps pa(1� �) : T ! V; pb(�� 1) : T ! V show that (9) holds. For
this we again use (2.3). 2

Proof of (3:3) and (3:4). The space J2S
2 is the 4-skeleton of JS2; let j :

J2S
2 � JS2 be the inclusion. Then j induces the exact sequences

0 - Z - �5J2S
2 j�

- �5JS
2

- 0

0 - Z

wwwwwwwwwwww
(3;0)
- Z� Z=2

?

�

1�1
- Z=3� Z=2

?

�0

- 0:

(1)

Here � is the map in (2.5) for g = [�2; �2]. In the top row 1 2 Z is mapped to the
attaching mapw of the 6-cell in JS2 for which �(w) = (3; 0) by (10) in the proof of
(3.1) above. Recall that the second coordinate of �(x); x 2 �5J2S

2, coincides with
q(x) 2 �5S

4 = Z=2. The kernel of � is given by the inlcusion i� : �5S
2 � �5J2S

2.
We now obtain by the maps in (3.5) (1) the following commutative diagram

�6S
3

#
�= �5JS

2 1
- �5(JS

2)

�6(�J2S
2)

#
�=

?

i�

�5(JJ2S
2)

?

(Ji)�

(Jj)�
- �5(JJS

2)

6

��

�6(S
3)

?

r�

�5(J2S
2)

6

u1

j�
- �5(JS

2)
#
�= �6S

3
:

6

u2

(2)

Here u1, resp. u2, is induced by the inclusion iX : X � JX with X = J2S
2

and X = JS2 respectively. We have #u1x = �(x). Moreover we have ��u2 = 1.
Now we get for y = r��(x) 2 �6(S

3) the equation #u1x = i�y+z with r�(z) = 0
and 2z = 0 since kernel (r�) = Z=2. Now we obtain

u1x = #
�1(i�y + z) = (Ji)�#

�1
y + #

�1
z (3)
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and hence by diagram (2)

j�(x) = ��(Jj)�u1x

= #
�1
y + ��(Jj)�#

�1
z: (4)

Therefore we get

#j�(x) = y + z
0 = r��(x) + z

0
; (5)

where z0 is an element of order at most 2. Since the kernel of �0 in (1) is the element
of order 2 we thus derive from (5) the result in (3.3) and (3.4) respectively; compare
the definition of � in (2.4). 2
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